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Abstract 

This study quantifies the increase in the peak power demand, net of non-dispatchable generation, that 

may be required by widespread adoption of heat pumps. Electrification of heating could reduce 

emissions but also cause a challenging increase in peak power demand. This paper expands on 

previous studies by quantifying the increase in greater detail; considering a wider range of scenarios, 

the characteristics of heat pumps and the interaction between wind generation and demand side 

management. A model was developed with dynamic simulations of individual heat pumps and 

dwellings.  
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The increase in peak net-demand is highly sensitive to assumptions regarding the heat pumps, their 

installation, building fabric and the characteristics of the grid. If 80% of dwellings in the UK use heat 

pumps, peak net-demand could increase by around 100% (54GW) but this increase could be mitigated 

to 30% (16GW) by favourable conditions. Demand side management could reduce this increase to 

20%, or 15% if used with extensive thermal storage. If 60% of dwellings use heat pumps, the increase 

in peak net-demand could be as low as 5.5GW. 

High-performance heat pumps, appropriate installation and better insulated dwellings could make the 

increase in peak net-demand due to the electrification of heating more manageable. 

Highlights 

 Widespread (80% of dwellings) use of heat pumps could increase UK peak net electrical 

demand by 100%. 

 A combination of measures could reduce this peak increase to approximately 30%. 

 Demand side management has potential to further reduce the peak increase to 20%. 

 Extensive thermal storage could further reduce the peak increase to 15%.  

 The increase in peak net-demand due to 60% of dwellings using ASHPs could be as low as 

5.5GW. 

Abbreviations 

ASHP  Air Source Heat Pump 

DSM  Demand Side Management 

MR  Market Rules (a pathway description developed by the ‘Transition Pathways’ project) 

 



 

 

1. Introduction 

1.1 Significance of the peak power demand associated with heat pumps 

Domestic heating must be substantially decarbonised if goals for the reduction of carbon dioxide 

emissions are to be achieved. Many transition pathways for the UK envisage that a significant share of 

emissions reductions will be achieved through the electrification of heating in conjunction with the 

decarbonisation of electricity [1], [2]. However, the widespread use of heat pumps would pose 

significant challenges. This paper quantifies the increase in the peak demand which might occur under 

a range of scenarios; indicating the extent to which favourable conditions may mitigate it. 

Quantification of the challenges relating to peak power demands is of value in assessing the overall 

merits and impacts of a strategy that involves electrification of heating [3], [4]. This was recognised in 

the UK Energy Research Centre’s recent reports in which the potential role of  thermal storage was 

explored [5] and the cost of an estimated 40GW increase in peak demand was presented as a barrier to 

the widespread adoption of heat pumps [6].   

1.2 Existing studies 

Pudjianto et al. and Gan et al. have investigated the cost implications of heat pumps on the UK grid 

(at grid and distribution levels) and the potential for Demand Side Management (DSM) to reduce 

them [7], [8]. These studies extrapolated from the heat demands of 21 properties to estimate that a 

56% (45GW) increase in peak electrical demand due to heat pumps could be reduced to 18% by the 

use of DSM. Sansom and Strbac [9] synthesised heat demand from empirical data on daily national 

(UK) gas consumption and heat demand at 81 domestic sites. A similar approach was taken by 

Munuera and Hawkes [10], who estimated that a 33GW increase in peak demand could occur if half 

of UK dwellings use heat pumps. More recently, Boßmann and Staffell [11] analysed the contribution 

of different demands to future peak load, concluding that a million extra heat pumps could add 

1.5GW to peak demand. These top-down approaches offer a good level of confidence for results 

relating to similar conditions but are unable to capture the full effect of more fundamental changes in 

the way that the heat pumps operate.  



 

 

Other studies have used more detailed models to investigate the implications on the electricity supply 

system but have focussed on different issues.  Several studies ([12]–[17]) use bottom-up, detailed 

models to analyse impacts relating to a wide range of microgenerators but focus on power flows 

occurring within the distribution infrastructure rather than across the whole grid. Papadaksapopoulos 

et al. [18] demonstrated the potential for a pool market mechanism to deliver flexibility in heat pump 

operation. Their analysis captured the dynamic effect of altering the heating pattern, but focussed on a 

typical day with current grid conditions. Hedegaard and Balyk [19] found an optimised mix of heat 

pumps and thermal storage but did not model the variation in the performance of the heat pumps. 

Barton et al. [20] analysed the effect of a range of possible future demands and the potential of DSM 

by considering “equivalent electrical storage”. Similarly, Boait et al. [21] modelled the effectiveness 

of DSM but, in order to consider a wide variety of loads, these studies did not model the performance 

of the heat pumps in detail.  

However, the performance of heat pumps is highly dependent upon the conditions in which they 

operate [22], [23]. Detailed studies have highlighted challenges with the use of thermal storage that 

may limit the benefits of load shifting [24], [25]. Although fixed time-of-use strategies have the 

potential to reduce peak demands [26], there are advantages to more dynamic systems [27]. There are 

significant feedback loops between the operation of heat pumps and the management of the grid that 

should be modelled when analysing this challenge. 

1.3 Novel contribution of this study 

This paper quantifies what the increase in peak electrical demand might be in the UK. It is the 

increase in the peak demand, net of non-dispatchable generation (i.e. that which must be satisfied by 

dispatchable generating plant) that is of principal interest here. The analysis covers a wider set of 

conditions than previous studies in order to provide insights into the factors that affect the peak. These 

include: 

 Nominal performance and installation practises used with the ASHPs  

 Building insulation standards 



 

 

 Changes in climate  

 Interaction with wind generation variability 

 The potential for DSM to reduce the peak net-demand  

 The effect of introducing thermal storage 

The results of this study are specific to the context of hypothetical UK grid systems but the insights 

are relevant to many similar national grids that may face comparable challenges. The paper expands 

upon previous research by combining the insights from detailed dynamic thermal models of Air 

Source Heat Pumps (ASHPs) and buildings with assessment of their combined effect at the grid level. 

This approach enables the study to take account of the: 

 Extent to which heat pump operation is flexible; the potential for flexibility is an important 

feature of their operation but has limits and performance implications that are overlooked in 

simplified models.  

 Interaction of this flexibility with the net-demand for generation after wind generation. The 

results for 0.1% of the duration of the simulations are far more extreme than those which 

would be reported if the simulations only covered typical days. 

 The effect of the flow temperature from the ASHPs on their performance; this is affected by 

both the use of thermal storage and by changes in the heat delivery profile. This is relevant 

when analysing DSM interventions but is not modelled elsewhere.  

 The adverse effect that cold weather has on the performance of heat pumps; this is significant 

as it is possible that high electrical demands and low outside air temperatures will coincide. 

 The effect of changes in the level of diversity that may occur after DSM interventions 

discourage the operation of heat pumps.  

Several previous studies have taken a bottom-up approach and are able to take account of some of 

these factors (depending upon the detail used) but have not been used to assess the peak net-demand 

which might occur in the UK with diversity across the whole nation. Similarly, several studies have 



 

 

taken a top-down approach in assessing the peak demand which might occur. These provide good first 

estimations but the bottom-up approach used here provides additional insights. 

It is shown that the electrification of domestic heating will result in significant increases in the peak 

net-demand. This can be reduced but not entirely mitigated by thermal storage and DSM. Ensuring 

appropriate installation of high-performance heat pumps in dwellings with improved levels of 

insulation has the potential to significantly reduce the net-peak. 

2. Methodology 

2.1 Sets of scenarios 

Four sets of scenarios (25 in total) were simulated: 

 The first seven scenarios relate to 40%, 60% or 80% of dwellings using ASHPs, with or 

without DSM (plus a seventh scenario in which ASHPs are not used). Climate and grid 

parameters relating to the 2030s were used. Improvements to the building stock and advanced 

ASHPs (performance equivalent to the current state-of-the-art) were assumed. 

 Next, four scenarios illustrate the effect of the assumed improvements in the building stock 

and of using ASHPs with performance equivalent to the current mid-range. Climate and grid 

parameters relating to the 2020s were used. 

 A set of six scenarios explore the sensitivity to different DSM parameters. Climate and grid 

parameters relating to the 2050s were used. 

 A final set of eight scenarios explore the potential use of thermal storage. 60% of dwellings 

were taken to use ASHPs with climate and grid conditions relating to the 2030s. 

2.2 Overview of models 

A time-step modelling approach was applied with intervals of one minute. Several systems were 

modelled individually, as illustrated in Figure 1 and described in sections 2.3 through to 2.8. 

Additional details describing the thermal models and some aspects of the grid model are supplied in 

[28]. 



 

 

 

Figure 1: Interaction between elements of model 

2.3 Diversity of demands across country 

In order to adequately model the diversity exhibited by the demands, the heating demands of 960 

dwellings were simulated concurrently. Preliminary results in Figure 2 demonstrate that diversity is 

not fully captured if less than 400 individual dwellings are simulated but that 960 is adequate. The 

power demands from each of the 960 dwellings were increased by a factor according to the proportion 

of dwellings using ASHPs in each scenario and their regional distribution, see Table 1 [29].  



 

 

 

Figure 2: Effect of number of individual dwelling simulations on modelling results 

Climate data for eight regions across Great Britain were used, with 120 different dwellings modelled 

within each region. The 120 dwelling permutations were formed from five building archetypes, eight 

internal temperature control profiles and three occupancy levels.  

Table 1: Distribution of UK dwellings by region and type for 2011. Data from [28] 

Region  Dwelling type 

Midlands 4.22 million  Semi-detached 7.13 million 

SE England 3.59 million  Flat 7.74 million 

Wales and SW England 3.65 million  Terraced 5.58 million 

Greater London 3.34 million  Detached 4.56 million 

NE England and Yorkshire 3.42 million  Bungalow 2.40 million 

NW England 3.00 million    

East Anglia 2.50 million    

Scotland 2.37 million    

 



 

 

2.4 Building thermal model 

A discrete lumped-capacitance thermal simulation was performed for each of the 960 dwelling 

permutations, see Figure 3.  

 

Figure 3: Elements of each dwelling thermal model 

Five building archetypes were constructed: a semi-detached house, a detached house, a flat, a terraced 

house and a bungalow. Parameters for the thermal models were initially determined by calibration 

against data from detailed simulations [30] of dwellings selected as typical for the UK [31]. This 

provided realistic characteristics relating to thermal inertia. The inner and outer heat transfer 

coefficients were then adjusted to match the average heat loss coefficients for each building type [32]. 

The model was then run with climate data for 2011 and these characteristics were further adjusted to 

match the total annual heat demand for the entire population of buildings [29]. Radiator systems were 

scaled such that the design heat loss (inside air temperature 21°C, outside air temperature -1°C) was 

balanced with a flow temperature of 55°C. 



 

 

A set of improvements across the building stock were assumed for scenarios apart from the second set 

in which the effect of these improvements was explored. The average air infiltration rate was halved, 

the outer skin heat transfer coefficient was reduced by 20% and the radiator systems were upgraded 

such that the design heat loss would be met with a flow temperature of 45°C. These improvement 

levels are ambitious but less than those suggested as possible elsewhere [33]. 

Internal gains and the active occupancy of occupants were modelled using a derivation of Richardson 

et al.'s [34] active occupancy model. Hot water demands from an empirical study [35] were assumed 

to be drawn from a 70-litre tank supplied by the ASHP. 

In the scenarios involving DSM, some heat storage took place. In the scenarios in which thermal 

storage tanks were not used, this was achieved by raising the temperature of the fabric of the buildings 

by 2°C. In the final set of scenarios in which the effectiveness of using thermal storage tanks was 

analysed, two configurations were considered: 

 Series. Water storage tanks were arranged in series between the ASHPs and the heat emitters; 

typical of current installation practice.  

 Parallel. Water storage tanks were arranged in parallel with the ASHPs so that at any given 

time only one of them would be supplying the heat emitters. When not constrained by DSM, 

the ASHPs would switch to supplying the tanks as required in order to maintain their 

temperature at 50°C. 

Different sizes of thermal storage tanks were considered (320kg, 640kg, 1280kg, 2560kg water) and a 

final scenario combined the use of the 1280kg storage tank with the 2°C increase in the temperature of 

the fabric of the buildings. 

2.5 Control of ASHPs 

Eight internal temperature control profiles were selected such that the average, standard deviation and 

range for different time periods of the day matched those noted in [36]. Random time delays of up to 

one hour and temperature variations of up to ±1°C were applied to each of the 960 dwellings. 



 

 

Proportional controllers were used with each ASHP. That is, their target heat generation was 

proportional to the difference in temperature between the control target temperature at that time and 

the actual air temperature inside the dwelling. The control gain was selected for each dwelling such 

that at an outside air temperature of -1°C, a steady-state internal temperature of 21°C would be 

maintained. The offset for the proportional control was fixed at 1°C. The lack of a varying offset (i.e. 

an integrative element) to this control algorithm meant that the steady-state temperature achieved by 

the system varied by approximately 0.05°C for each 1°C change in the difference between the inside 

and outside air temperatures. This was considered acceptable for the current study though it is noted 

that actual control systems are likely to adopt a range of additional control elements. This control 

approach is only made possible by the use of the more recent ASHP models that are capable of 

modulating their output. In scenarios in which thermal storage was considered, on-off thermostatic 

control was used for heat delivery from the thermal storage tank to the dwellings, whilst the buffer 

tanks were maintained at 50°C. 

In the scenarios in which DSM was considered, the effect of the DSM signal was to (a) Determine 

preference for using heat from the storage tank or the ASHP and (b) Adjust the target control 

temperature for the dwelling. In these scenarios, it was assumed that temperature reductions down to 

2°C below the control temperature profile were acceptable. Although severe, these deviations 

occurred for a very small proportion of the time; the sum of the durations of all reductions in the 

target temperature, including those that were less severe than the full range, was set at 1% of the 

duration of the simulation by the way in which the DSM was applied. The maximum duration of 

individual DSM events and the minimum interval between them was not controlled. Although 

ISO7730 [37] suggests that long-term evaluation of thermal comfort can be achieved without 

reference to the duration of individual events (the total duration is used), it is clear that the conditions 

relating to the acceptability of DSM warrant research beyond the scope of the present study. It may be 

that further restrictions are appropriate and that these may further limit the effect that DSM could 

have on peak net-demand. 



 

 

2.6 ASHP model  

Standardised test data were obtained for two ASHP units [38], [39]. The test data provided the 

coefficient of performance (COP) of the ASHPs at different ambient air and flow temperatures, with 

other conditions standardised. The advanced (current state-of-the-art) unit was used in all simulations 

apart from those in the second set that explored the effect of using a mid-range ASHP. 

The exergy efficiency of each unit was calculated at each condition for which test data were available. 

The exergy efficiencies at the four nearest test conditions (i.e. ambient air and flow temperatures) 

were then interpolated, geometrically weighted towards the nearest conditions. This was used to 

calculate the instantaneous COP and electrical power demands of each ASHP. This approach 

improves accuracy when simulated conditions tend towards the more extreme test conditions.  

Thermal inertia was included in the ASHP model, in order to capture some of the dynamics of the 

operation of the units. The relevant coefficients were based upon the physical characteristics of the 

first unit [40]. 

2.7 Climate data 

Test Reference Year (TRY) climate data do not typically capture the correlation between the weather 

at different locations at the same time so a modified approach was taken in this study. Historic climate 

data covering twelve winters at hourly resolution were obtained for eight locations across the UK 

[41]. The air temperature data for each of these locations were then transformed such that the mean 

and standard deviation of each entire series matched those from TRY data for that location.  

In order to account for climate change, the relevant TRY data were obtained from the Prometheus 

project [42] which has projected data for the 2030s and 2050s. Median estimates based upon the 

“a1b” emissions scenario were used. 

2.8 Grid model 

In order to determine electrical demands net of non-dispatchable generation, it was necessary to 

employ models of total demand and of non-dispatchable supply. Historic grid generation data with a 



 

 

5-minute timestep for the winters of 2009 to 2011 [43] was adapted in a way consistent with the 

“Market Rules” (MR) pathway assumptions generated by the Transition Pathways project [1] for the 

future scenarios. The method used to model the temporal characteristics of the electrical grid was 

similar to that described in [44] but with differences reflecting underlying data and the significance of 

ASHP heating and dispatchable generation to the present study. The grid model was single-node and 

did not model power flows through the transmission and distribution networks. Transmission and 

distribution constraints are a significant consideration and may be a major driver for the use of DSM 

in other contexts (e.g. [7], [8], [12]–[17]) but the present study focusses on peak power demands. 

The MR pathway specifies a component of total demand relating to Electric Vehicle (EV) charging. 

This is unlikely to have the same profile as total demand and may be subject to DSM. However, to 

avoid ambiguity regarding the relative contribution of DSM used with EV charging, charging was 

assumed to follow a simple fixed profile with 25% occurring at a constant rate between 09:00 and 

22:00 and the remainder at night-time. The simplification was justified by the relatively low 

contribution that EV charging makes to overall demand in this pathway. Similarly, the potential effect 

of DSM on household appliance demands was not modelled. 

Table 2: Future annual generation assumed. Adapted from [42], [44]. 

 Historic 

[TWh] 

2020 

[TWh] 

2035 

[TWh] 

2050 

[TWh] 

Total Demand 320 370 450 512 

Wind 6 50 112 171 

Nuclear 63 49 89 125 

Other non-dispatchable 3 37 64 64 

Electric vehicle demand N/A 2 23 38 

Note that these totals are for comparison; they do not include the 

effect of the heating considered in the present study. 



 

 

Wind generation was assumed to follow a profile generated using algorithms developed by Sturt and 

Strbac [46]. Separate profiles with 30-minute timesteps were generated for twelve winter seasons and 

scaled to match the total wind generation corresponding to the MR pathway assumptions for each 

scenario. Nuclear generation was considered to be non-dispatchable and followed the historically 

observed profile, scaled to match the appropriate total. Tidal, non-pumped hydro and CHP generation 

were also assumed to be non-dispatchable.  

In the cases in which DSM was simulated, the objective of the DSM interventions was to reduce the 

peak net-demand (net of non-dispatchable generation). A threshold was set at the demand that was not 

exceeded for 99% of the duration of the equivalent simulation without DSM. When net-demand was 

above this threshold, the signal was progressively increased in order to discourage consumption (by 

decreasing the temperature control set-points in the dwellings and encouraging use of heat from 

thermal storage tanks). Section 3.4 explores the sensitivity of the results to this.  

When net-demand was below the threshold, the DSM signal was set to encourage storage of thermal 

energy (in either the fabric of buildings or storage tanks). By storing thermal energy whenever net-

demand was below the threshold, this approach produced optimistic results in terms of the potential of 

DSM to reduce peak net-demand but pessimistic results in terms of the impact on total consumption. 

3. Results and Discussion 

3.1 Overview 

Net-demand duration curves for each of the twelve winter periods in one scenario are illustrated in 

Figure 4 along with a darker curve derived from all twelve. The year-on-year results exhibit some 

variation; the extremes observed across the twelve winter periods are captured by the “all results” 

curve but it seems unlikely that the extremes that would occur over a longer period are reflected. The 

plots in Figures 5 to 8 correspond to all twelve of the 90-day winter seasons. 



 

 

 

Figure 4: Year-to-year variation in net-demand duration curves 

The peak net-demands for each scenario are given in Table 3. There is a small duration (around 30 

minutes, 0.002% of the duration of the twelve winter periods simulated) for which an extremely large 

net-demand occurs. Because of the possibility that some unmodelled mechanism would mitigate these 

peaks, the peak increase that occurs for 0.05% of the duration of the simulation is also given. 



 

 

Table 3: Peak net-demand occurring in each scenario 

Scenario Set Notes 

Peak for 

<0.002% 

duration 

[MW] 

Increase 

[MW] 

Peak for 

<0.05% of 

duration 

[MW] 

Increase 
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1280kg thermal storage in series, 

No DSM 
87100 35500 80200 30700 

1280kg thermal storage in series, 

DSM temperature range +0/-2°C 
71300 19700 69800 20300 

No thermal storage tank,  

DSM temperature range +0/-2°C 
59800 8200 56700 7200 

320kg thermal storage in parallel, 

DSM temperature range +0/-2°C 
58200 6600 55500 6000 

640kg thermal storage in parallel, 

DSM temperature range +0/-2°C 
57400 5800 54800 5300 

1280kg thermal storage in parallel, 

DSM temperature range +0/-2°C 
57200 5600 54700 5200 

2560kg thermal storage in parallel, 

DSM temperature range +0/-2°C 
57100 5500 54600 5100 

1280kg thermal storage in parallel, 

DSM temperature range +2/-2°C 
57300 5700 54600 5100 

 



 

 

The peak net-demands associated with the three scenarios without ASHPs are similar (51.6GW to 

54.3GW). This result is specific to the parameters associated with the MR pathway. The increased 

contribution from wind generation reduces the increase in peak net-demand that would result from the 

overall increase in demand but reduces the total electrical energy supplied by dispatchable generating 

plant (and therefore their capacity factors) by far more.  

The wide range of peak demands illustrates the sensitivity of these results to the assumptions and 

conditions of each scenario. Studies that suggest potential pathways to a low carbon energy system 

should apply caution in assuming a particular value for future generation capacity requirements. 

3.2 Results relating to central scenarios 

Figure 5 illustrates the net-demand duration curves for the first set of scenarios. 

 

Figure 5: Net-demand duration curves for central scenarios 



 

 

With 60% of dwellings using ASHPs, the increase in the peak net-demand is 11GW, changing to 

16GW or 6GW if 80% or 40% of dwellings use ASHPs, respectively. There is an approximately 

proportional relationship between the number of ASHPs and the increase in demand. DSM achieves 

reductions in the increase in peak net-demand of 37%, 29% and 29% for the scenarios involving 40%, 

60% and 80% of dwellings employing ASHPs, respectively.  

Of particular interest are the steep increases in the maximum net-demand that occur during the small 

proportion of time during which high heating demands and extended low wind generation coincide. In 

many cases, it is possible to use DSM to limit the increase in the net-demand to 20% of the increase 

which would otherwise occur for 99.9% of the duration of the simulations. However, if the remaining 

0.1% of the duration is considered then the increase can only be limited to 50%. Not accounting for 

these infrequent events will lead to an underestimation of the dispatchable generation capacity 

required. 

3.3 Effect of operating conditions 

Figure 6 illustrates results for the second set of scenarios, in which the effect of not improving 

building standards or the performance of the ASHPs which are widely used is explored. 



 

 

 

Figure 6: Net-demand duration curves for different operating conditions 

Using the mid-range ASHPs with present day building standards leads to an increase in peak net-

demand requirement associated with the heat pumps of 54GW (2.6kW per dwelling). This result is 

consistent with that suggested in [10]. Using advanced ASHPs reduces the increase to just over 

36GW; consistent with the “non-DSM” case in [7]. The advanced ASHP units achieve an average 

(heat demand weighted) COP of 3.60, compared to 2.59 for the mid-range units under the same 

conditions. 

By improving the insulation level of the building stock, electrical demand can be further reduced to an 

increase in peak net-demand of 21GW. Improved insulation levels reduce the absolute heat demand 

(from 155TWh to 101TWh, average for the 90 day period), but also reduce the rate at which heat 



 

 

must be delivered, enabling the use of lower flow temperatures. Along with the more effective heat 

emitter systems, the average COP achieved by the ASHPs is increased from 3.60 to 3.94. These 

modelled improvements across the building stock are not considered realistic for 2020 and are 

included for comparison purposes only.  

3.4 Effect of Demand Side Management 

Figure 7 shows the demand characteristics for the third set of scenarios, relating to conditions for the 

2050s. This includes four scenarios in which DSM is applied with different criteria. 

 

Figure 7: Net-demand duration curves for 2050 scenarios 

A reduction in the peak net-demand of over 4GW is achieved through the use of DSM. This is a 

significant proportion (28%) of the increase that would otherwise occur as a result of the use of 

ASHPs (15GW) but is less than earlier studies have suggested. These plots demonstrate a slight 



 

 

increase before a decrease in gradient below their peak net-demands, corresponding to demand being 

shifted to times when net-demand is lower.  

The effect of using different thresholds at which the DSM starts to discourage the operation of ASHPs 

is relatively small for the alternatives considered in this study. This implies that there are periods 

during which net-demand is high (e.g. low wind generation, high demands) that exceed the duration 

that dwellings can remain above the minimum acceptable temperature without heating. The reduced 

peak net-demand observed when the DSM system is used is due to the lower steady-state heat 

demands when the internal air temperature in almost all of the dwellings is lower, not due to the 

condition in which the temperatures of some dwellings are still cooling and there is still scope for 

flexibility.  The DSM system’s main scope of influence is exhausted before net-demand drops back 

below the threshold value.  A DSM system that reduces the demand from ASHPs irrespective of 

dwelling temperatures would almost certainly be counter-productive as occupants would inevitably 

turn to other sources of heating. In an all-electric system, these sources of heating would include 

electrical resistive heating that would increase demand more than if the ASHP had not been 

constrained, exacerbating the problem.  

3.5 Effect of thermal storage 

Figure 8 compares the net-demand duration curves with thermal storage options. 



 

 

 

Figure 8: Net-demand duration curves with different thermal storage options 



 

 

Arranging thermal storage in series with ASHPs carries a performance penalty. This more than offsets 

the increased flexibility, resulting in an increase in peak net-demand of 20GW, (1.2kW per dwelling). 

This is 11GW more than the equivalent scenario without thermal storage.  Modulating an entire 

population of ASHPs to run continuously at half power is generally more effective than cycling 

though the same population of ASHPs, continuously operating half of them at full power. 

Arranging the thermal storage tanks in parallel with the ASHPs is more promising. Using 640kg tanks 

enables the increase in peak net-demand to be reduced by over 2GW (i.e. a reduction of 5GW relative 

to the scenario in which DSM is not used). A performance penalty, averaging around 400MW results 

from the need to supply heat to the storage tanks at a higher temperature than to the dwellings. It is 

possible that this could be reduced by optimised scheduling but cannot be eliminated. Reducing the 

tank size below 640kg reduces the extent to which the peak net-demand can be mitigated but it is not 

clear that tank sizes above 640kg are beneficial. 

The additional thermal energy stored in the fabric of the buildings by raising their temperature by 2°C 

is insufficient to make a significant difference to the peak net-demand which occurs, given the 

potential duration of low wind, high demand events. Options to increase the thermal inertia in the 

fabric of buildings through heavier construction or more novel methods such as phase change 

materials are not explored here. 

Given the large potential for an initial response to DSM signals applied to ASHPs but the challenges 

involved in using it to alleviate longer term increases in net-power demand, it seems likely that DSM 

of ASHPs is more suited to objectives with a shorter time frame such as reducing the rate at which 

dispatchable generating plant is required to vary its output. 

4. Concluding Remarks 

The increase in the peak demand, net of non-dispatchable generation, that may arise due to the 

operation of heat pumps has been investigated for the UK.   In order to investigate this issue, an 

integrated modelling approach was developed in which dynamic thermal models of archetype 

dwellings and heat pumps were combined with a model of the electrical grid supply mix. The increase 



 

 

in the peak net-demand caused by 60% of dwellings using ASHPs could be as low as 11GW, or 

5.5GW if thermal storage is used with DSM designed to reduce it. However, without improvements to 

the building stock, the increase (due to 80% of dwellings using current mid-range ASHPs) could 

exceed 54GW. The peak net-demand only occurs for a small fraction of the time; ignoring these 

outlying results (e.g. by selecting a shorter or less severe simulation period) would cause an 

underestimation of generation capacity requirements.  

In conjunction with appropriate thermal storage, DSM has the potential to halve the increase in the 

peak net-demand that would occur (for the range of ASHP adoption rates considered). This is a 

significant reduction but not as great as might otherwise be assumed; the effect of occasional extended 

cold low wind events is hard to mitigate. It is possible that the DSM of ASHPs is better suited to 

achieving other objectives such as reducing the rate at which the output from dispatchable plant needs 

to be ramped. Although an increase in thermal storage could achieve better flexibility, suitable 

configuration is necessary in order to ensure that the performance penalty of such an approach does 

not outweigh its benefits.  

The electrification of domestic heating is likely to increase peak net-demand. However, the actual 

extent of this increase is sensitive to the conditions in which the heating takes place. There are various 

options for decreasing the electrical power demands of ASHPs. These include improved insulation in 

buildings, more effective heat emitter systems, control systems that are optimised to the operating 

characteristics of ASHPs along with appropriate advice to users and the increased use of higher 

performing ASHPs. With these measures, the actual increase in the peak net-demand due to the use of 

ASHPs will be far more manageable. 
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