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ABSTRACT: This work aimed to understand the relationship between the physical properties of 

scattering particle layers in Dye Sensitized Solar Cells (DSSC) to their performance, to assist 

optimization of this component of the DSSC. Highly ordered anatase 2D-hexagonal mesoporous 

titania (meso-TiO2) nanoparticles with a high surface area and large pore size were fabricated. 

Meso-TiO2 was used as scattering particles and mixed with titania nanocrystallites at weight 

proportions ranging from 0 to 100%. Films made from the composites were used as scattering 

layers in DSSC. The influence of meso-TiO2 proportion on the structure, morphology and optical 

properties of the films were investigated. The results show that the films became more porous, 

with a larger surface roughness, had higher surface areas and greater light scattering effects when 

meso-TiO2 was incorporated. The performance of these scattering layers in relatively large, 1cm2 

area, DSSC was studied to link cell performance to the detailed physical properties of the meso-

TiO2/nanoparticle films. The optimum composition of scattering layers was obtained by mixing 

50 wt.% meso-TiO2 with titania nanoparticles. 

KEYWORDS: anatase membrane, mesoporous, nanowire, solution interface, solar cell. 

  



 2 

Introduction 

Dye sensitized solar cells (DSSC) are one of the promising clean energy harvesting devices and 

have been the subject of intensive studies currently achieving efficiencies over 12 %.1 By 

harvesting photons, dye molecules, absorbed on a titania photoelectrode surface, generate 

electrons that are injected into and diffuse through the titania network, while the charged dye 

molecules are regenerated by a redox couple (typically iodide/triiodide) in electrolyte solution. 

The iodide is reduced at a platinum electrode by the electrons that have travelled from the 

external circuit.2 It is obvious that many factors can affect the performance of DSSC but the 

structural and physical properties of the titania electrode are among the most important.3-4 

Compared with using only nanocrystalline TiO2 particle films, it has been demonstrated that the 

photocurrent density can be improved by mixing submicron-sized particles with nanocrystalline 

TiO2 in mono and/or bilayer structures composed of a light scattering layer and a nanocrystalline 

semitransparent TiO2 layer.5 The confinement of incident light by the light scattering particles 

causes more photons to be harvested.5-6 Since the particle size, surface area and position of the 

scattering particles plays an important role in light scattering and dye uptake of photoelectrode,7-8 

a suitable combination of nanoparticles and scattering particles is essential to improve the cell 

performance. 

Recently, mesoporous TiO2 (meso-TiO2) particle has been synthesized for DSSC in 

micron/submicron particle geometries with hierarchical structures, such as titania aggregates, 9-10 

beads,11-12 spheres,13-14 and inverse opal structures.15 These porous structures are composed of 

primary nano-crystallites that cluster together to form larger secondary particles, thereby 

functioning as light scatterers without sacrificing the internal surface area needed for effective 

dye–uptake when applying them in DSSC. These films were applied as a photoelectrode film 
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directly or as the scattering layer and showed an improved cell performance. However, the 

combination of nanocrystalline TiO2 particle and submicron titania aggregates as a scattering 

layer has not so far been discussed. The extra steps required to initially synthesise a larger porous 

TiO2 particle will contribute to a higher cost of these materials, so if the amount of this material 

can be optimised, in combination with cheaper nanocrystalline TiO2 building blocks, the benefits 

of the larger particle incorporation can be realised while the cost of the final device will be 

reduced. 

Here, we propose using ordered 2D-hexagonal meso-TiO2 aggregates and nanocrystalline TiO2 

particle composite films as the scattering layer of the DSSC. The weight ratio of the aggregates 

and nanocrystalline particles was adjusted to obtain an optimal mixture. Meso-TiO2 particles 

have large internal pores and an ultrahigh surface area to increase dye loading and the open 

spaces between large aggregates help ensure efficient electrolyte diffusion.9, 11, 16 Work has also 

suggested that surfactant templated mesoporous titanias have good intra-grain connectivity 

between crystallites in the walls between pores that promotes facile charge transport10. Ordered 

mesoporosity will ensure consistency of pore dimensions and wall structures throughout the 

particle to maximize these advantages. A bilayer photoelectrode was used in a DSSC with the 

underlying layer made from a commercial titania paste and the scattering layer from meso-TiO2 

aggregates, titania nanoparticles (P25) or their mixtures. The influence of film structure, 

morphology, optical properties and cell performance were investigated, in films prepared by 

adding meso-TiO2 into a paste containing P25 nanoparticles, with weight proportion ranging 

from 0 to 100%. We note that the cells were not optimised for the highest efficiencies as our 

emphasis was on studying the differences introduced by a mesostructured scattering layer. The 

results showed an improved photovoltaic performance of DSSC with meso-TiO2 and the best cell 
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was obtained by incorporating 50 wt.% meso-TiO2. Further optimization of these devices for 

higher efficiency was beyond the scope of this work. 

Experimental 

 Synthesis of ordered mesoporous titania and pastes 

All chemicals were used as supplied. Ordered mesoporous titania was prepared from titanium 

tetraisoproxide (TiPr, Acros, ≥ 98%) as a precursor, Pluronic P-123 (Sigmal-Aldrich, MW 

~5800) as a surfactant template and a mixture of HCl and H2SO4 as the acidic catalyst.17 1.0 g of 

P-123 was dissolved in 40 ml ethanol (AR, Sigmal-Aldrich), to which 1ml HCl (Fisher, 32%) 

and 0.2 ml H2SO4 (Fisher, 98%) were added. The solution was placed into a bottle sealed with a 

cap and stirred vigorously for 3 hrs at room temperature. 2.9 ml TiPr was added dropwise at 

room temperature followed by vigorous stirring for 20 hrs at 40 °C. The solution was poured into 

petri dishes and evaporated at 40 °C in air under relative humidity of 55 % for 6 days. The 

resulting membranes were crushed into powder and calcined in air at 350 °C for 3 hrs, followed 

by a further 3 hrs at 450 °C, the temperature was ramped at 1°C/min.  

The synthesized templated titania (meso-TiO2) powders were mixed with commercial P25 

nanoparticles (particle size ~21 nm, ≥ 99.5%, Sigma Aldrich) at different weight ratios. The 

mixtures were ground thoroughly before use and were named meso-X (X= 0, 25, 50, 75 or 100) 

where X represents the weight percentage of the meso-TiO2 in the mixture. 

Titania paste was prepared by mixing titania powder with ethyl cellulose (48% in ethoxy, 

viscosity 5-15 cp, Sigma Aldrich; 48% in ethoxy, viscosity 35-50 cp, Sigma Aldrich) as a binder 

and terpineol (≥ 99.5%, Sigma Aldrich) as the solvent. The final weight ratio of titania, ethyl 
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cellulose and terpineol was 3:2:10. The synthesis was done according to the procedure described 

in Scheme 1.  

 

Scheme1 Fabrication method for TiO2 pastes. 

FTO glass (Hartford, TEC 15) was cleaned with Milli-Q water (18.2 MΩcm resistance), DECON 

90 (Decon), Acetone (Fisher, LRG) and ethanol (Fisher, ARG). To prepare the photoanode, a 

blocking layer of TiO2 was applied to the conducting side of the glass by spray pyrolysis on a hot 

plate at 400 °C using a solution of 0.2 mol/dm3 titanium diisopropoxide bis(acetylacetonate) 

(Aldrich) in isopropanol. A bilayer nanocrystalline TiO2 photoelectrode was then prepared. The 

first layer of nanocrystalline TiO2 was deposited onto the FTO glass (7.5×2.5 cm2) on top of the 

blocking layer, using a commercial paste (Ti-Nanoxide T, Solaronix) and the doctor blade 

method. ‘Magic tape’ (Scotch) was used to mark out a 1 cm wide strip on the glass and control 

the film thickness. The slide containing the first layer was then placed on a hotplate for 30 min at 

100 °C. To minimize the effects of the first layer on the cells’ performance, the FTO glass slide 

with a single Ti-Nanoxide layer was cut into 5 small pieces (1.5×2.5cm2). Then the second layer 

was doctor bladed on top of each piece using one of five different home-made pastes. The 
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bilayer photoelectrodes were calcined. They were first heated to 130 ºC with a ramp speed of 2.5 

ºC/min and held at 130 ºC for 15 min; then heated to 300 ºC at 6 ºC/min and held for 15 min, and 

finally to 450 ºC at 3 ºC/min and held for 30 min. 

 

 Device fabrication 

After calcination, when films had cooled to 80 ºC, they were soaked in a solution of 0.3 

mmol/dm3 N719 dye (Dyesol, B2) in t-butanol (Sigma-Aldrich, 99.7%)/acetonitrile (Fisher, 

HPLC) solvent (volume ratio of 1:1) for 20 hrs at room temperature in blacked out containers. 

The dye-coated TiO2 films were washed with t-butanol/acetonitrile, dried and then assembled 

with a Pt-coated counter electrode prepared by thermal decomposition of 5 mmol/dm3 H2PtCl6 (

≥ 99.995 %, Sigma-Aldrich) solution in isopropanol which was spread onto an FTO glass slide 

at 390 ºC for 15 min. The two active electrodes were separated with a 25 µm thick Surlyn 

(Solaronix, SX1170-25PF) hot-melt gasket and sealed by heating. The internal space was filled 

with a liquid electrolyte using a vacuum backfilling system. A hole to inject the electrolyte was 

pre-drilled through the counter electrode and sealed after filling, with a Surlyn sheet and a thin 

glass cover slip by heating. The electrolyte used for fabrication of the device consists of 0.03 

mol/dm3 I2 (≥ 99.999%, Sigma Aldrich), 0.6 mol/dm3 3-propyl-1-methylimidazolium iodide (≥

99%, Merck), and 0.1 mol/dm3 guanidine thiocyanate (≥ 99.0 %, Fluka) and 0.5 mol/dm3 tert-

butylpyridine ( ≥ 99.0 %, Sigma Aldrich) in a mixture of acetonitrile (HPLC, Fisher) and 

valeronitrile (≥ 99.5%, Sigma Aldrich) (volume ratio of 85:15). The resultant cells with active 

area of 1cm2 were stored in the dark for 24 hrs prior to the measurement. Five sets of Meso-X 

solar cells were prepared and typical results are shown in this work. 

 



 7 

Characterization 

TGA was carried out to characterize the as-prepared meso-TiO2 powders using a Perkin Elmer 

TGA 7 thermogravimetric analyser. SAXS (Anton PaarSAXSess using CuKα radiation from a 

PANalytical PW3830 generator) was used to check the mesostructure of as-prepared and 

calcined meso-TiO2 powders. TEM images and diffraction pattern of calcined meso-TiO2 were 

measured using a JEOL 1200 EX. Wide-angle powder XRD was used to examine the crystal 

structure using a Bruker D8 powder diffractometer with CuKα radiation. N2 

adsorption/desorption isotherms were taken using a BELSORP-mini II after degassing at 150 ºC 

for 4 hrs. 

The morphology of the meso-X (X=0, 25, 50, 75 or 100) films was examined by SEM (JEOL 

JSM6480LV) and AFM (Nanosurf EasyScan 2 Flex). Cross-sectional images were also 

measured by SEM to estimate film thickness. Reflectance spectra were recorded using a UV-

VIS-NIR from Ocean Optics. To investigate the crystal structure and N2 adsorption/desorption 

isotherms of the P25/meso-TiO2 mixtures in the photoanode films, films were doctor-bladed onto 

glass without the Ti-Nanoxide underlayer and calcined using the procedure described above, 

then scratched from the substrates. Their crystal structure was examined by wide-angle powder 

XRD and N2 adsorption/desorption isotherms were taken after degassing at 150 ºC for 4 hrs. 

After calcination the photoelectrode was immersed in 0.3 mmol/dm3 dye N719 solution for 20 

hrs, washed with t-butanol/acetonitrile solvent and dried completely. Adsorbed dye molecules 

were desorbed using 0.1 mol/dm3 KOH aqueous solution. Quantification of the amount of 

adsorbed dye was carried out using an UV/Vis spectrometer (Varian, Cary 50 Probe). 

IV curves were measured using a TS Space Systems solar simulator equipped with a 200W lamp 

and AM 1.5 filter, and a Keithley model 2601A digital source meter. They were calibrated with a 
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Si solar cell (Fraunhofer ISE, RS-OD-4) and tested under 1 sun illumination. The testing system 

was computer-controlled via a USB interface, using home written software. For IPCE 

measurements, a 150 W Xe lamp (Bentham 1L7S light source) was used as the light source to 

generate a monochromatic beam. Calibration was performed using a standard silicon photodiode 

(Thorlabs10102835). 

Results and Discussion 

The TGA curve of the as-prepared uncalcined meso-TiO2 is shown in Figure S1 (supporting 

information). Weight loss below 130 °C was due to the evaporation of volatile species. The 

combustion of the P123 template occurs in the range between 130 to 300 °C. Above 300 °C, a 

small mass loss occurred due to the continuous removal of residual organic and sintering of TiO2 

particles.18 After calcination, the meso-TiO2 form aggregates with diameters in the range from 

600 nm to several micrometers (Figure 1), which therefore can serve as scattering particles in a 

photoelectrode. 

 

Figure 1 SEM images of calcined meso-TiO2 at different magnifications. 
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Figure 2 (left) shows the SAXS patterns of the meso-TiO2 material before and after calcination. 

Both patterns display similar shapes with four diffraction peaks arising from their ordered 

mesoscale structure. A clear shift of the diffraction peaks to a higher q was observed suggesting 

shrinkage of the titania network after removal of the template.19-20 The peaks in the pattern for 

the calcined sample at q values of 0.59, 1.02, 1.18 and 1.56 nm-1 can be indexed to the 100, 110, 

200 and 210 reflections of an ordered 2D hexagonal (p6mm) mesostructure. The unit cell 

parameters of the as-prepared and calcined samples were 15.1 and 12.4 nm respectively, 

indicating a 17.9 % contraction of the titania network during calcination. From previous reports, 

SAXS results for calcined bulk 2D hexagonal meso-TiO2 usually display only two or one peaks, 

although the corresponding patterns for as-synthesized samples distinctly show three peaks.21-23 

Additionally, the contraction ratio of hexagonal titania after calcination at 450 ºC here was 

relatively low in comparison to that found by others.21, 24-25 Thus, this synthesis produced a very 

well-ordered stable meso-TiO2 which exhibited only a small shrinkage upon calcination.  

The TEM image in Figure 2 (right), shows a highly ordered degree of periodicity with a d-

spacing of 10.6 nm, viewed from the (100) direction, further confirming the 2D hexagonal 

(p6mm) mesostructure suggested by SAXS. The diffraction pattern reveals the sample has a 

nanocrystalline structure and is in the anatase phase. The clear crystal rings in the inset 

diffraction pattern are attributed to the (101), (004), (200), (211) and (204) planes of the anatase 

phase, respectively. 
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Figure 2 SAXS curves of as-prepared and calcined meso-TiO2 (left); TEM image and diffraction 

pattern inset of calcined meso-TiO2 (right). 

The crystallographic structure of the calcined meso-TiO2 powders was also confirmed by XRD 

analysis (Figure 3 (left)). All diffraction peaks can be unambiguously assigned to anatase TiO2 

(JCPDS card no. 21-1272), which is in agreement with the TEM diffraction pattern. Figure 3 

(right) shows the nitrogen adsorption–desorption isotherms and pore size distribution of the 

meso-TiO2. The isotherms can be classified as type IV with a pronounced H1 hysteresis loop and 

show a sharp capillary condensation step at a relative pressure of 0.7-0.9, suggesting a narrow 

pore size distribution and the existence of large mesopores with an open-ended cylindrical shape 

in this sample.26-27 The pore-size distribution of samples was analysed by the 

Barrett−Joyner−Halenda (BJH) method. The predominant pore size is around 8.33 nm and they 

are uniform and narrowly distributed. To the best of our knowledge, such pore size is one of the 

largest reported for ordered mesoporous titania synthesized from the P123 template without any 

swelling agents.28 The big pores improve the accessible pore volume, allowing improved 

adsorption of dye molecules on the internal surface.29 The Brunauer−Emmett−Teller (BET) 

surface area of the meso-TiO2 is 121 m2/g. 
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Figure 3 Wide-angle powder XRD curve (left) and N2 ads/desorption isotherms (right) and pore 

size distribution of meso-TiO2 (inset). 

The properties of the meso-TiO2/P25 composite films were also investigated by wide angle 

powder XRD (Figure 4). Only the anatase phase was found in the meso-100 sample, while the 

other films contained both anatase and rutile phases as small amount of the rutile phase is present 

in the P25 nanoparticles. According to the following equation 30: 

𝑊! =
𝐼!

0.886𝐼! + 𝐼!
 

the mass fraction of rutile (WR) in the samples can be calculated by measuring the intensities of 

the strongest (110) and (101) diffraction peaks of rutile (IR) and anatase (IA), respectively. The 

results are listed in Table 1. It can be seen that the mass fraction of rutile phase decreases with 

increasing weight ratio of meso-TiO2. 
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Figure 4 XRD curves of meso-X (X=0, 25, 50, 75 and 100). 

Table 1. Textural properties of meso-TiO2/P25 composite films. 

Sample Meso-0 Meso-25 Meso-50 Meso-75 Meso-100 

Anatase and rutile phase ratio 80:20 85:15 90:10 95:5 100:0 

RMS roughness (nm) 31 100 160 220 301 

SBET (m2/g) 46±2 69±2 127±2 127±2 157±2 

Pore volume (cm3/g) 0.39±0.01 0.26±0.01 0.70±0.01 0.65±0.01 0.33±0.01 

Adsorbed Dye (nmol/cm2) 141±2 151±2 172±3 174±3 188±3 

 

Figure 5 shows a SEM image of the top view of the films with inset cross-sectional images of 

meso-X (X=0, 25, 50, 75 and 100) films. SEM showed that films were homogenous on the 

micron-scale. With the increase in weight ratio of meso-TiO2, the films became rougher as a 

result of the growing number of these larger titania particles. By adding meso-TiO2, the films 

look more porous than the meso-0 film according to the magnified SEM surface images. 



 13 

However, the meso-100 layer can be easily peeled off the ITO glass substrate after calcination, 

while others are more robust. This is because the films made entirely from meso-TiO2 contained 

large aggregates with open space between them, leading to a weaker and less compact film. 

From the inset cross-sectional images, it can be seen that the first layer of the five 

photoelectrodes has exactly the same thickness (5 µm) and morphology, which should remove 

effects arising from the first layer when comparing the solar cell performance using different 

bilayer electrodes. The thickness of the meso-X films is around 5 µm and it is also easily seen 

that they have a smooth edge except in the case of the meso-100 film, due to its loosely 

compacted structure. AFM images of meso-X (X=0, 25, 50, 75 and 100) films were measured to 

further confirm the SEM results, and can be found in Figure S2 (supporting information). With 

the increase of weight ratio of meso-TiO2, films became rougher with larger surface aggregates 

visible. The root mean square (RMS) roughness of the films is summarized in Table 1. The RMS 

roughness increased from 31 to 301 nm when the weight ratio of introduced meso-TiO2 was 

varied from 0 to 100, which is in accordance with the SEM results. 
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Figure 5 Top view with inset cross-sectional images of meso-X (X=0, 25, 50, 75 and 100) films 

from top to bottom by SEM. Left: low magnification, right: higher magnification. 
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Table 1 reports results from nitrogen adsorption–desorption isotherms and pore size distribution 

of meso-X (X=0, 25, 50, 75 and 100, see also Figure S3 in supporting information) As the meso-

TiO2 was already calcined at 450 ºC for 3 hrs prior to mixing with the P25 in pastes to form the 

films, the isotherms of meso-100 films look very similar to those of the meso-TiO2 powder, 

although the pore size distribution is a little wider due to the collapse of pores during the 

grinding and ultrasonication processes of paste preparation. The BET surface area of the meso-

100 film is 157 m2/g, which is more than 3 times higher than that of the meso-0 films (46 m2/g). 

After the introduction of P25 particles into the meso-TiO2 film, the shape of the sorption 

isotherms changed and the hysteresis loop became smaller. The surface area decreased because 

P25 is a non-porous material and as a result has a much lower surface area than meso-TiO2. The 

predominant internal pore size of meso-100 films is around 8.33 nm arising from the internal 

pores of meso-TiO2, while the larger pores in P25 films arise from the space within nanoparticle 

aggregates and open space between aggregates.16 No macropores were observed in meso-100 

films because the open space between aggregates are too big to be analysed using BJH models.31 

The change in composition of the films caused variation in the pore size distribution and pore 

volumes in the films (Table 1). Obviously, the meso-100 film has the highest surface area but 

also the lowest pore volume due to the lack of macropores. Meso-50 and meso-75 films shared a 

very similar surface area but the meso-50 film had a higher pore volume. Considering the surface 

area and porosity, the optimum composite is likely to be the meso-50 film with a pore volume of 

0.70 cm3/g and surface area of 127 m2/g. 

Dye uptake into the composite films was measured and dye coverage is also listed in Table 1. 

The meso-100 photoelectrode contained the most dye, while the meso-0 film (100% P25) shows 

the lowest dye coverage. By adding the meso-TiO2, more dye was absorbed by the films. 



 16 

Scattering layers prepared from commercial paste or large particles normally have a low surface 

area < 30 m2/g, 15, 32-34 but the meso-TiO2/P25 composite films have a much higher surface area, 

which increases the dye loading. 

To investigate the light scattering effects of the meso-X (X=0, 25, 50, 75 and 100) films for 

DSSC photoanodes, the reflectance spectra of the five photoanodes, shown in Figure 6 were 

compared. The meso-100 electrode had the highest reflectance, as it is composed of large 

secondary particulates with a strong light scattering effect, while the meso-0 film showed the 

lowest scattering due to the much smaller size of P25 particles. When adding the meso-TiO2 into 

the nanoparticle film, the reflectance greatly improved due to the scattering effects of these large 

particles. The meso-50 film shares a similar value with that of the meso-75 film, despite the 

meso-75 film containing more large aggregated particles. This is because the meso-50 film had a 

higher number of macropores than the meso-75 film (refer to the BJH pore distribution in Figure 

S3) which could also serve as scattering centres.35 The inset in Figure 6 shows the appearance of 

the meso-X photoanodes. For the meso-0 film, the words on the sheet beneath the photoanode 

can still be identified, whereas the words under other samples became gradually less clear as the 

weight ratio of meso-TiO2 was increased, and are completely obscured by the meso-100 film 

because of the intense light scattering effect of the micrometre sized aggregates of meso-TiO2. It 

is worth mentioning that the transparency of the meso-50 and meso-75 films is quite similar.  
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Figure 6 Reflection spectra and photographs of meso-X films. 

Figure 7 shows the IV curves for DSSC prepared with meso-X. In total five sets of DSSC with 

the 5 different amounts of meso-TiO2 were prepared, and typical results are shown here. 

Incorporation of the meso-TiO2 increased the short current (Jsc) 10-15 %, while the fill factor 

(FF) was not appreciably changed. In contrast, the open circuit voltage (Voc) was decreased 

slightly by 10–20 mV, possibly because the higher surface area of these films provides more 

recombination sites.7, 36 It is also possible that some of the dye adsorbed within the mesopores is 

not easily accessible to the electrolyte, increasing geminate recombination with the dye.37 IPCE 

curves are also shown in Figure 7. DSSC containing ≥ 25 % meso-TiO2 showed a better 

photoelectrical response, with IPCEs that were higher than for the meso-0 cell over the entire 

wavelength range 400–800 nm. This is also in good agreement with the enhanced light scattering 

and dye adsorption as discussed above. 
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Figure 7 IV curves  (left) and IPCE (right) of meso-X film DSSC. 

Details of the photoelectrical properties are displayed in Table 2. The other four sets of meso-X 

solar cells share the same trend, however only one typical result was shown here. The efficiency 

found in our work is around 4-5 %, which is not as high as that reported in literature, 9-10, 15-16, 38 

where other types of meso-TiO2 secondary particles were applied in DSSC. However, the 

previous studies all used small area cells (0.16-0.36 cm2) and had some post-treatment such as a 

TiCl4 treatment which has been demonstrated to improve efficiency of DSSC. In this work, we 

focused on larger 1 cm2 cells without any post-treatment to compare only the effects of using the 

meso-TiO2 aggregates and P25 nanoparticles mixtures as the scattering layer. Larger test cells, as 

used here, typically result in lower efficiencies than are observed for very small area cells or 

those where extensive optimization has been carried out. Five cells for each meso-TiO2-P25 

mixture were prepared, so that reproducible trends in behavior could be ascertained. No further 

optimization of the cells was carried out since the purpose of the work was to study the influence 

of film structure, morphology, optical properties and cell performance to obtain a suitable 

combination of nanoparticles and scattering particles rather than to aim for high efficiency as an 

end goal in itself.  
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The total efficiency of the cells increased when meso-TiO2 was added. The efficiency is 

expected to increase due to the presence of the scattering particles, however in this case the 

relative increase is greater as the mesoporous particles can themselves hold dye molecules. The 

observed increase in efficiency thus is due to both the increased surface area and hence increased 

dye loadings in the composite films as well as the increased light scattering. However, the meso-

100 cell with the highest surface area and strongest scattering effects did not show the highest 

efficiency. This could be attributed to the fact that the meso-100 films had the highest dye 

loadings but a low porosity, suggesting that losses could be incurred due to poor infiltration of 

the electrolyte into the large aggregates.39 In addition the meso-100 aggregates may not provide 

efficient electron transfer pathways for electron extraction. It is reasonable that the meso-25 cell 

has the second lowest efficiency out of the five cells, which results from its lower surface area 

and the smaller quantity of big particulates, which means lower dye loading and weaker 

scattering effects. The highest efficiency obtained for meso-50 might be attributed to the 

following facts: firstly, meso-50 films have the highest pore volume, which allows the electrolyte 

to penetrate into macropores and directly contact dye molecules. Secondly, it shows high dye 

loadings and strong scattering. It is interesting that the meso-75 cells showed a lower efficiency 

than meso-50 cells. Meso-75 cells show similar dye loading and scattering effects, and only 

slightly reduced porosity when compared to meso-50 cell. The issue may be the increase in the 

number of large aggregates in the meso-75 films, which do not provide good pathways for 

electron extraction. 
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Table 2. Photoelectric properties of meso-X film solar cells. The uncertainties in these values 

were calculated from the maximum difference from values for a total of 5 cells prepared in an 

identical manner. 

Sample Meso-0 Meso-25 Meso-50 Meso-75 Meso-100 

Jsc 

(mA/cm2) 

8.36±0.01 9.82±0.01 11.96±0.01 10.26±0.01 9.32±0.01 

Voc (mV) 706±1 688±1 680±1 687±1 684±1 

FF (%) 65±1 62±1 62±1 62±1 65±1 

η (%) 3.85±0.26 4.26±0.29 4.93±0.32 4.38±0.36 4.21±0.38 

IPCE at 

530nm (%) 

48±1 61±1 73±1 69±1 68±1 

 

Conclusion 

Highly ordered anatase 2D-hexagonal mesoporous titania powders with high surface area and 

large pores were synthesized. The introduction of meso-TiO2 into P25 titania films, caused the 

films to become more porous, rougher and have higher surface area. Moreover, aggregates of 

meso-TiO2 in films increases the amount of light scattering. Most importantly the amount of dye 

that could be adsorbed onto the photoanode increased with the fraction of meso-TiO2. These 

contributed to an improvement of the photovoltaic performances when meso-TiO2 was added to 

a P25 layer in DSSCs. Although the meso-100 cell has some superior properties such as surface 

area and scattering effects, it did not show the best cell performance mainly due to the poor 

connectivity of micron-sized meso-TiO2 aggregates that increase the electron diffusion 
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resistance. Considering the porosity, surface area, scattering effects and the degree of 

compactness of the film, the optimum cell was obtained by introducing 50 wt.% meso-TiO2, 

which shows an increase of short current from 8.36 to 11.96 mA/cm2 and an increase in 

efficiency from 3.85 to 4.93 % compared to an equivalent cell prepared with the P25 film. 
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