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Dark solitons and vortices in the intrinsic bistability regime in exciton polariton
condensates
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We report on a class of dark solitons and vortices existing in the exciton-polariton condensates
and having discontinuity in their excitonic component. These solutions exist due to an intrinsic
bistability of the exciton density in the given optical field and for non-zero detuning between the
cavity and excitonic resonances. We specify a well defined energy boundary where they transform
into previously known polaritonic dark solitons and vortices.

PACS numbers: 71.35.Lk 42.65.Tg

I. INTRODUCTION

Photons in optical microcavities can strongly couple to
excitons and form new quasi-particles: exciton-polaritons
or simply polaritons [1, 2]. These unique half-light half-
matter states exhibit rich physical properties and attract
great interest from condensed matter and optics com-
munities. Inheriting a light effective mass from its pho-
ton component, microcavity polaritons demonstrate high
temperature Bose-Einstein condensation [3, 4] and su-
perfluidity [5, 6]. At the same time, due to their exci-
tonic component, microcavity polaritons interact much
stronger than photons and thus represent a competitive
low-energy platform for ultrafast signal processing appli-
cations. Indeed, a range of fundamental nonlinear ef-
fects has been investigated with microcavity polaritons,
including low threshold bistability [7, 8], polarization
multi-stability and switching [9-11], parametric scatter-
ing and pattern formation [12-16], excitation of dark-
[17-21] and bright solitons [22-28].

The existence of dark solitons is supported by the
combination of the positive effective mass of polaritons
with low momenta in the cavity plane, and the repulsive
nonlinear interaction of polaritonic condensates. These
two factors jointly ensure stability of the high amplitude
background supporting dark solitons [18]. In planar sys-
tems, such as polariton microcavities, these conditions
also favor formation of vortices [29]. Vortices can emerge
as a result of the transverse modulational instability of
dark solitons in repulsive condensates and nonlinear op-
tical systems [21]. Spontaneous parametric scattering in
resonantly driven microcavities can also lead to formation
of various types of vortex-antivortex lattices [14, 30-33].
Excitation of polaritonic vortices can be triggered either
by an external pulse or by the interaction with a scat-
tering center [34]. The latter mechanism underlines sim-
ilarities of polariton dynamics in microcavities with hy-
drodynamics of super-fluids [35]. This analogy has been
further developed in the recent theoretical and experi-
mental studies of hydrodynamical properties of vortices
and dark solitons in polariton condensates [36-39].

Despite the above analogies with hydrodynamics and

optics, polariton solitons and vortices have an important
distinctive feature: they are inherently two-component
states, and the effective masses of the photons and ex-
citons differ by many orders of magnitude resulting in
dramatically different healing lengthes. This fact is some-
what obscured, when photons and excitons are strongly
coupled into polaritons that can be well described by a
single order parameter function. However, as we show
below, nonzero detuning between photon and exciton
resonances can weaken the photon-exciton coupling to
the extend that for certain energies polaritonic approach
breaks down leading to new types of dark solitons and
vortices having no known analogues in hydrodynamics,
nonlinear optics and dynamics of atomic Bose-Einstein
condensates. These solutions exists due to specific type
of bistability of the system - so called intrinsic bistability,
which refers to the situation when material polarisation
is bistable in the presence of a constant applied field [40].
In our system, the intrinsic bistability manifests in mul-
tiple solutions of the excitonic wave function for a given
amplitude of the intracavity photon field. We show that
the intrinsic bistability provides a new and unique mech-
anism for localization of nonlinear excitations. Recently
it was noted that polariton vortices have two distinctive
characteristic lengths of localization in the photonic and
excitonic components [41]. However, solutions studied in
Ref. [41] can be described within the framework of the
polaritonic approach and are separated from the solitons
and vortices supported by the intrinsic bistability by a
well defined boundary.

II. MODEL EQUATIONS

We adopt the well established dimensionless mean-field
model describing dynamics of the exciton polariton con-
densate in an optical cavity [1, 2] in terms of coupled
complex amplitudes E and 1 of the photon and exciton
fields:
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where time is measured in the units of the inverse Rabi
frequency T = 1/wg, scaling of spatial coordinates L is
determined by the effective cavity photon mass m.: L =
VAi/(2m.wg), 71 and 2 are the attenuation coefficients
for the photon and exciton fields, respectively, 26 is the
detuning between the exciton resonance and the cavity
resonance, o is the coefficient describing the diffraction of
the exciton field (relative to the diffraction of photons):
0= Me/Mey ~ 107%, m.y is the exciton mass, E, and g,
are the amplitude and the detuning of the pump from the
center of the gap between lower- and upper polaritonic
branches. The coefficient of nonlinear interaction in the
excitonic field is set to unity by the appropriate scaling
of field amplitudes, see more details in Ref. [26].

III. INTRINSIC BISTABILITY AND
STATIONARY SOLUTIONS

In this section we consider stationary solutions, F =
Ae ' ) = We~* in the limit of negligible dissipation
and zero pump: y; = 72 = £, = 0. Here ¢ is the nor-
malised energy parameter or chemical potential. Real
amplitudes A and ¥ solve the following set of equations:

(024 0;) A+ (q+8)A+V¥ =0, (3)
a(8§+3§)\11+(q—5—\112)\11+/1:0. (4)
Neglecting nonlinearity, the spectrum of the linear zero

momentum polaritons E, v ~ ¢! is given by
qg=+vV1+62. (5)

This defines the energy gap between the lower and upper
polariton branches, see Fig. 1.

Egs. (3, 4) have three spatially independent (homo-
geneous) solutions: one is the trivial A = ¥ = 0 and
the other two are the nontrivial ones A(x,y) = Ap,
U(z,y) = ¥y, differing by the phase change by 7:

:|:|\I/h| q2—52—1
Ay = , U, =£4/ —F—. 6
" g+ ol g \/ g+ (6)

Since ¥y, is assumed real, the above solution exists either
for —v/1+ 62 < g < =6 or for ¢ > +/1 + 02. However this
solution is modulationally stable, i.e. stable with respect
to the spontaneous parametric generation, only in the do-
main touching the lower polariton branch. This domain
is shaded in green and black colors in Fig. 1. All the
discussion and results presented below are related only
to the region where the homogeneous solution is mod-
ulationally stable, since the absence of the spontaneous
instabilities of the background is essential for experimen-
tal observation of the dark solitons and vortices.

Neglecting the kinetic energy term in the excitonic
field, o = 0, Eq. (4) becomes the cubic algebraic equa-
tion:

(q— )T -+ A=0. (7)

Eq. (7) is guaranteed to have only one real solution for
any A providing ¢ < 6. However, for ¢ > §, Eq. (7)
can have either one or three real roots depending on the
value of A. The latter situation corresponds to the in-
trinsic bistability of the excitonic system. The range of
parameters where the intrinsic bistability coexists with
the stable homogeneous solution is shaded in green in
Fig. 1. Thus, for a given amplitude A of the photonic
component, Eq. (7) admits either one or three real so-
lutions: ¥ = ¥,,(A), m = 1,2,3. Note, that § = 0 in
Ref. [41], which excludes the intrinsic bistability near the
lower polariton branch from consideration.

upper branch
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o

FIG. 1: (Color online) Domains shaded in green and black is
the existence domain of the spatially homogeneous and mod-
ulationally stable background. The green part corresponds to
the parameters where a stable background coexists with the
intrinsic bitsability and the black one is where it does not.
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To describe localized solutions, we now consider spa-
tially nonuniform amplitudes A and ¥ and assume o = 0.
With the account of three possible solutions, ¥,,, of the
algebraic equation (7), Egs. (3, 4) can be written as the
three simultaneous equation for the photonic amplitude

A:
(02 + A+ (q+0)A+T,(A) =0, m=1,2,3. (8)
Let us first discuss the 1D case in which the fields are y

independent. Then, Eq. (8) is equivalent to the equation
describing dynamics of a particle in a potential:

A= o)
Fo(a) = Sl @O | @404

In the derivation of Eq. (10) we used OF,,/0A =
OF,, /0%, - (0A)8%,,)”", where dA/OW,, is obtained



by the direct differentiation of Eq. (7). The potentials
F,,(A) for the parameters inside the the green area in
Fig. 1 are shown in the top two panels of Fig. 2 (the in-
trinsic bistability case). The single potential existing in
the black area, i.e. outside the intrinsic bistability range,
is shown in the bottom panel. Maxima or minima of
these potentials corresponds to the stationary homoge-
neous solution of our system. In general, in the intrinsic
bistability case, when the three potentials coexist over
the interval of A around zero, |A|> < (¢ —4)/3/(q + 0)?,
the two nontrivial homogeneous solutions (6), can either
belong to the two different potentials F5 3, as in the top
panels in Fig. 2, or to the potential F}. The latter sit-
uation can exist only outside the stability domain of the
homogeneous solution and therefore is not shown here.
The trivial solution in all the cases belongs to the Fj
potential. As parameters cross the border ¢ = § of the
intrinsic bistability range, the potential changes its shape
from the one with cusps (inside the intrinsic bistability
range) to the smooth one, as illustrated in Fig. 2.

q=-2.2
0.05

-0.05 0
A

FIG. 2: (Color online) Potential functions F,,, Eq. (10), for
the intrinsic bistability (¢ = 0, ¢ = —1.8) and no intrinsic
bistability (¢ = —2.2) cases. The detuning is fixed to § = —2.

Conventional dark solitons are the heteroclinic trajec-
tories connecting two saddle points of the potential in the
bottom panel of Fig. 2 and crossing the point A = 0 in
an obvious way. There are two possible ways for a sim-
ilar heteroclinic connection to exist for the potentials in
the two top panels. First, is when the trajectory jumps
straight from the branch m =2 tom =3 at A =0, i.e.
at the only point where F5 crosses with F5. The phase
planes and the resulting solution corresponding to this
case are shown in the left column of Fig. 3. U-field un-
dergoes a discontinuous jump at the soliton core, which is
mathematically allowed, since the equation for ¥ is alge-
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FIG. 3: (Color online) The phase planes for the potentials
F>3 (a) and for F1 23 (b): ¢ =0, 6 = —2. Bold full and
dashed lines show possible heteroclinic connections and jumps
between the different potentials corresponding to the dark
solitons with one (a) or two (b) discontinuities.

braic. At the same point, continuity of the A field and its
derivative 0, A is preserved, since the phase trajectories
intersect if the phase planes are overlapped. The second
possible case, is when the trajectory switches from the
branch m = 2 to m = 1, crosses A = 0 while on m = 1,
and then jumps to m = 3, see the right column in Fig. 3.
Switching to and from the m = 1 branch can happen for
the values of A, where F} < 0, so that there is always
a required intersection of the phase trajectories to keep
both A and its derivative continuous. In this case the
distance along = between the two discontinuities can be
varied as a soliton parameter.
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FIG. 4: (Color online) The soliton solutions corresponding to
the phase trajectories shown in Fig. 3

Note, that, for the soliton with ¥(z) discontinuous at



x = 0, the || is continuous and has the different from
zero minimum at x = 0, see Fig. 5(a). Approaching the
intrinsic instability boundary ¢ = § from above, i.e. by
reducing ¢, the soliton background and the minimum of
|| decrease, see Fig. 5(b). At the point ¢ = 4, the min-
imum of |¥| hits zero, for ¢ < ¢ the intrinsic bistability
cease to exist and the dark solitons with discontinuities
transform into the conventional ones for which the min-
imum of |¥| stays at zero. The boundary of the range
of the energy parameter ¢, where the novel type of dark
solitons exists is detuned from the lower polariton energy
by v1+ 62 — || (for ¢,0 < 0) and spreads all the way
towards the energy corresponding to the upper polariton
branch, see Figs. 5(b) and 1.
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FIG. 5: (Color online) Transition from the intrinsic bista-
bility dark solitons to the conventional ones. (a) shows the
excitonic density profiles of the dark solitons with discontinu-
ities at * = 0 (q=-1.7, q=-1.9) and of the conventional one
(g = —2.1): 0 = 0. (b) shows how the background exci-
tonic density (maz|¢|, red solid line) and the density at the
center of the dark soliton (max|vy|, black dashed line) vary
with the energy parameter g for § = —2. The transition be-
tween the two types of solitons happens at ¢ = . The dashed
vertical lines mark the ¢ values at the lower and upper polari-
ton branches. Full vertical line marks the intrinsic bistability
boundary.
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FIG. 6: (Color online) (a) Exciton density profiles for the dark
soliton solutions. Parameters are the same as in Fig. 5(a),
but ¢ = 0.0025. (b) Line 1 is the width of the photonic
core for the dark soliton solutions across the full range of the
soliton existence. Line 2 is the width of the broad part of
the excitonic density in the soliton core. The dashed red line
shows the width of the narrow part of the excitonic density in
the soliton core. The dashed vertical lines mark the ¢ values
at the lower and upper polariton branches. Full vertical line
marks the intrinsic bistability boundary.

Restoring the kinetic energy term in the equation for
¥, and using that ¢ << 1, one can assume that A =0
around the excitonic core in the leading order approxi-
mation and hence recover the Gross-Pitaevskii equation
for ¥ only. For the dark solitons in this model the density
drops all the way to zero at the soliton core and the core
size scales as /o << 1. In order to confirm that this is
indeed the case we have found the soliton profiles with
o # 0 numerically, see Fig. 6(a). Comparing the latter
with Fig. 5(a) one can see that the dark soliton core
now have two spatial scales. The large one is determined
by the polaritonic healing length, which is ~ 1, and the
small one is by the excitonic healing length ~ /o. The
transition between the two happens at the |¥| value close
to the one corresponding to the discontinuity of ¥ in the
o =0 case.

The dependencies of the widths of the photonic core
and of the large scale part of the excitonic core on the
energy parameter ¢ are shown in Fig. 6(b) with the full
lines. One can see that these two widths are approxi-
mately the same inside and outside the intrinsic bistabil-
ity range. The dashed line shows the much smaller width
of the additional deep developing in the excitonic compo-
nent inside the intrinsic bistability range. Photonic and
excitonic components of the dark soliton in the intrinsic
bistability range and for o # 0 are shown for comparison
in Fig. 7(a). Thus the main physical signature of a new
type of dark solitons should be sought through the direct
or indirect measurements of the excitonic density, which
will require development of new experimental techniques,
since the existing ones focus on the photonic part of the
polaritonic field.

(b)
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FIG. 7: (Color online) (a) Photonic and excitonic components
of the intrinsic bistability dark solitons with o # 0. The
other parameters are: § = 1.55, ¢ = —0.45. (b) The dark
soliton instability growth rate (full lines) as a function of ¢
for o = 0.25,0.025,0.0025, and the same for the soliton with
two discontinuities separated by a distance 1, o0 = 0 (dashed
curve).

The intrinsic bistability dark solitons with discontinu-
ities can be generalized to two dimensional vortices. In-
troducing polar coordinates (r,6), and looking for radi-
ally symmetric solutions in the form A = f(r) exp(im#),
U = p(r) exp(im@), where m is the topological charge of
the vortex, it is easy to write the analogue of Eq. (8) for
the functions f(r) and p(r). Numerical solutions of this
equation corresponding to the vortices (m = 1) localized



FIG. 8: (Color online) Radial profiles of intrinsic bistability
vortices with m = 1 (solid curves) and m = 2 (dashed curves).
In panel (a) vortex solitons with the discontinuity in ¥ field
in the centre (r = 0) are shown. The vortex solitons in panel
(b) have discontinuity along the ring (r = 1). The parameters
arec =0,g=0,0 =—2.

at discontinuities in ¥ field are shown in Fig. 8.

IV. STABILITY ANALYSIS AND DYNAMICAL
EVOLUTION

To observe dark solitons and vortices in experiments,
the solutions must also be dynamically stable. We have
studied the stability of the solitons by solving the corre-
sponding spectral problem and by direct numerical simu-
lation of Egs. (1)-(2) with the noise added to the soliton
profiles. The dependencies of the instability growth rates
on the soliton parameter ¢ are shown in panel (d) of Fig. 7
for different values of o.

The linear stability analysis of the conventional dark
solitons reveals that they become unstable with respect
to the drift instability when ¢ is increasing and is ap-
proaching ¢ = § boundary of the intrinsic bistability. The
same instability is inherited by the dark solitons with dis-
continuities. Increasing dispersion in the exciton model
tends to suppress this instability, see Fig. 7(d). Due to
weakness of the above instability we are expecting that it
should not prevent observations of the solitons and vor-
tices in the experiments where polaritons have a finite life
time of ~ 10 ps. We performed numerical simulations of
the 2D polariton system excited by a vortex beam and
observed the intrinsic bistability vortices. The instability
growth rate appears to be further suppressed by the dis-
sipation and the observation time limited by the lifetime
of polaritons is sufficient for the soliton observation.

In our numerical experiment we have excited the sys-
tem by an optical vortex beam with the topological
charge one:

Ep = Epo(t) X

y [manh(r—m) "~ tauh <+)] vty
Wy Wy 2r

0 100 200 300 400 500
t

FIG. 9: (Color online) The variation of the pump amplitude
Epo(t) in the numerical experiment. The inset shows the spa-
tial distribution of the intensity of the pump.
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FIG. 10: (Color online) Field evolution in the numerical
experiment: fields E and W, panels (a) and (b), and re-
normalized fields ¢ = |E|/max |E| and ® = |¥|/max |¥|,
panels (c¢) and (d). Parameter values are: ¢ = 0, ¢, = 0,
0 = —2, 71 = 2 = 0.1. The inset in panel (b) shows profiles
of | U] field at t—to = 6 and t —to = 15, the curves are marked
correspondingly.

where r = /22 + 32, and we chose 1o = 1, w, = 0.25.
The corresponding spatial profile of the pump intensity
is shown in the inset of Fig. 9. The pump frequency was
set to ¢, = 0. We switched the pump on at ¢t = 0 and
took the initial amplitude large enough to create high
polariton density in the vortex background, which subse-
quently decayed through the losses towards its stationary
value. At ¢ = 100 we started to decrease adiabatically the



pump until at tg = 400 it reached the value E,o = 0.43,
see Fig. 9, bringing the values of E and W close to the
solution (6). Then we switched the pump off, which has
led to the formation of the intrinsic bistability vortex, see
Fig. 10. The structure of the vortex is better seen in the
re-normalised representation, see Fig. 10 (c), (d).

(b)
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FIG. 11: (Color online) Field profiles in the numerical exper-
iment for the times ¢t —to = 6 (a) and t —to = 15 (b). Dashed

curves show the stationary vortex solution for the conserva-
tive problem.

Initially, the vortex core in ¥ has discontinuity at a
certain distance from the center, see Figs. 10(b,d). With
the decay of the background the g-parameter slides down
towards ¢ = § boundary and at some time moment these
discontinuities disappear and the usual continuous vortex
is emerging. Further examples of the transverse profiles
of the discontinuous vortex at ¢t — tg = 6 and of the con-
tinuous one at t — typ = 15 are shown in Fig. 11, where
they are also compared with the exact solutions.

V. CONCLUSION

We have demonstrated that the intrinsic bistability of
excitons leads to the existence of a new type of dark

solitons and vortices. Without dispersion of the exciton
field these structures have discontinuities in the exciton
field. Adding small, but non-zero dispersion in the ex-
citonic field removes these discontinuities and results in
dark solitons and vortices, which have very different core
sizes in the optical and excitonic fields. This class of vor-
tices and solitons exists for the exciton densities higher
than required for the previously studied ones, that can
be well described by the polaritonic order parameter and
have comparable core sizes in the excitonic and optical
components [41]. The densities required are however,
very realistic, since they should merely lead to the up-
wards polariton energy shifts exceeding the energy off-
set between the excitonic and cavity resonances by any
amount. We have also shown that the formation of the
intrinsic bistability vortices in the decaying condensate
under the realistic excitation conditions takes place de-
spite dynamical instabilities having characteristic time
larger than the typical life time of the polariton conden-
sate.
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