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Deep insight can be gained into the nature of nonclassical correlations by studying the quantum operations
that create them. Motivated by this we propose a measure of nonclassicality of a quantum operation utilizing
the relative entropy to quantify its commutativity with thecompletely dephasing operation. We show that our
measure of nonclassicality is a sum of two independent contributions, thegenerating power – its ability to
produce nonclassical states out of classical ones, and thedistinguishing power – its usefulness to a classical
observer for distinguishing between classical and nonclassical states. Each of these effects can be exploited
individually in quantum protocols. We further show that ourmeasure leads to an interpretation of quantum
discord as the difference in superdense coding capacities between a quantum state and the best classical state
when both are produced at a source that makes a classical error during transmission.

Introduction. Identifying the resources that underlie quan-
tum advantages in quantum communication and information
processing is a crucial question of fundamental and technolog-
ical importance. Generally, quantum entanglement is ascribed
this role due to its necessity in a number of tasks exhibiting
quantum advantages [1, 2]. However, quantum enhancements
are possible in certain computations with limited amounts of
entanglement or even none at all when the involved quan-
tum state is mixed [3–7]. Universal quantum computation
with pure states also appears to be possible with little entan-
glement [8]. In addition to computational advantages, quan-
tum communication can also exhibit advantages over classical
communication in the absence of entanglement [9–11].

Recently, it has been suggested that correlations beyond
quantum entanglement might provide an explanation behind
quantum enhancements. One of the most common quanti-
ties is the quantum discord [12–15]. Quantum discord has
recently been interpreted as the difference in the performance
of the quantum state merging protocol between a state and its
locally decohered equivalent [16], and secondly as quantify-
ing the amount of entanglement consumption in the quantum
state merging protocol [17]. The role of quantum discord in a
more general family of protocols has also been studied [18].

An important difference between quantum discord and en-
tanglement is that the latter is non-increasing, on average, un-
der local operations and classical communication. This is the
underlying principle of the resource theory of quantum en-
tanglement. On the other hand, local operations can actually
increase quantum discord [19–22]. Discordant states can be
created out of classical states by a local channel if and only
if the channel changes the local algebraic structure [23], and
several authors have studied the evolution of quantum dis-
cord under various forms of dynamics [24–28]. However, the
principles underlying the creation of nonclassical correlations
from quantum operations are still lacking.

Here we investigate the nonclassicality of quantum opera-
tions directly. Before presenting our results it is essential to
clarify our notion of what is classical. Our criterion is based
on einselection, or environment induced superselection, apro-
cess via which states of a quantum system become entangled

with the environment, effectivelymeasuring certain observ-
ables of the quantum system [29]. We will denote this com-
pletely dephasing process asΓΓΓ. By classicalizing the input
and output of a general operationΩΩΩ, a classical operation can
be formed asΘΘΘ = ΓΓΓ◦ΩΩΩ◦ΓΓΓ, where◦ is the composition of op-
erations. SinceΓΓΓ2 = ΓΓΓ, this implies the commutation relation
ΘΘΘ ◦ΓΓΓ = ΓΓΓ ◦ΘΘΘ. Taking this relation as the foundation of our
notion of classicality will be justified by its implications. We
consider classical statesρc to be the fixed points of the eins-
election operatorΓΓΓ so thatΓΓΓ(ρc) = ρc. Thus they are of the
form ρc = ∑α ,β pα ,β |α〉 〈α|⊗ |β 〉 〈β |, where|α〉 , |β 〉 are the
complete orthonormal eigenbasis of the einselection operator
which acted on both parties of the bipartite system. The op-

FIG. 1: Illustration of Thm. (1). The solid lines represent operations,
while the dashed lines represent relative entropies corresponding to
the terms from Thm.1. Since the two curved dashed paths from
the stateΩΩΩ◦ΓΓΓ(ρ) to ΓΓΓ◦ΩΩΩ(ρ) are equidistant in relative entropy the
triangle inequality does not apply. Instead quantities (i)and (ii) rep-
resent the generating and the distinguishing power, respectively. We
consider classical states to be the fixed points of the lineareinselec-
tion operatorΓΓΓ and as such is a simplex. This set is smaller than the
set of separable [1, 2] and zero-discord states [7]. Note that our no-
tion of classicality is stricter than that enforced by quantum discord
since there is no freedom to choose the classical basis.
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erationΓΓΓ may also act only on one subsystem, in which case
we get one-sided classicality with invariant states of the form
ρ = ∑α pα ρα ⊗ |α〉 〈α|. While all classical states have zero
discord, not all zero discord states are classical in the sense
used here. A classical observer is one who can measure only
in the einselected basis, and for whom the quantum stateρ is
completely indistinguishable from the stateΓΓΓ(ρ). Such states
have identical diagonal elements in the einselected basis,but
differ in the off-diagonal elements. In contrast a quantum ob-
server may be able to distinguish between the statesρ and
ΓΓΓ(ρ), given enough copies.

In this Letter, we introduce a measure of quantumness of
operations that applies to all completely positive maps. Our
approach does not rely on measures of nonclassicality for
states and is instead defined from first principles using the
fact that a classical map commutes with the einselection op-
erationΓΓΓ. The extent of non-commutativity is measured us-
ing the quantum relative entropy between two different order-
ings of the dephasing operationΓΓΓ and an operationΩΩΩ. We
show this measure to be composed of two independent con-
tributions – firstly, the ability of a nonclassical map to pro-
duce non-classical states from classical ones, and secondly,
the degree to which it enables classical observers to distin-
guish states they could not otherwise distinguish classically.
We highlight how these two contributions play key roles in
quantum communication protocols. Our measure possesses
several intuitive properties such as being non-increasingun-
der composition with classical maps and being convex. We
calculate our measure for entangling and correlating opera-
tions and then apply it to interpret quantum discord via the
capacity of superdense coding with noisy states.

We define thequantumness of an operation ΩΩΩ as

WΓ(ΩΩΩ) = sup
ρ

S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)) , (1)

where S (ρ‖σ) = Tr [ρ(log(ρ)− log(σ))] is the quantum
relative entropy [30], and all logarithms in this paper are
base 2. The supremum in Eq. (1) is taken over all quantum
states, but we will show shortly it is sufficient to maximize
over pure states only. The quantityWΓ thus intuitively
measures the deviation of the commutator[ΩΩΩ,ΓΓΓ] from zero by
applying both orderings to the same state and comparing the
outputs [37]. Since the relative entropy is not symmetric in its
arguments the specific ordering used in Eq. (1) is essential.
The choice of classicalizing the second argument is centralto
all our subsequent results and is consistent with similar uses
of relative entropy in measures of entanglement and discord
[11, 30]. The definition ofWΓ implicitly depends on the fixed
einselected basis throughΓΓΓ, however we will suppress this in
our subsequent discussions. We now present our main result.

Theorem 1. The quantumness of an operation W (ΩΩΩ) is the
sum of two independent contributions

W (ΩΩΩ) = sup
ρ

(

S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

+ S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)
)

)

, (2)

where the supremum is over all quantum states ρ .

The first term, which we call thedistinguishing power,
characterizes how well a classical observer can distinguish be-
tweenΩΩΩ ◦ΓΓΓ(ρ) andΩΩΩ(ρ). The second term, which we call
the generating power, measures the ability of the mapΩΩΩ to
generate a nonclassical state out of a classical input. Thisis
depicted in Fig. (1). Following Klein’s inequality,W (ΩΩΩ) van-
ishes if and only if the operationΩΩΩ obeys[ΩΩΩ,ΓΓΓ] = 0 and so is
classical. An implication of Thm. (1) is that an operationΩΩΩ
is classical only if it has neither distinguishing nor generating
power. The proof of Thm. (1) follows from the monotonicity
of relative entropy under completely positive maps [31] and is
provided in the Supplementary Material.

Crucially, the distinguishing and generating powers in
Eq. (2) can be independently zero. Given a quantum operation
ΣΣΣ where both these quantities are non-vanishing, we can con-
struct an operationΓΓΓ◦ΣΣΣ for which the second term in Eq. (2)
vanishes but the first term is unchanged. Thus,W (ΓΓΓ ◦ΣΣΣ) is
the maximum distinguishing power ofΣΣΣ. On the other hand,
for the operationΣΣΣ◦ΓΓΓ, the first term of Eq. (2) vanishes while
the second one is unchanged and thereforeW (ΣΣΣ ◦ ΓΓΓ) is the
maximum generating power ofΣΣΣ. By definition, both these
quantities are zero for a classical operationΘΘΘ.

There are instances where both terms play essential and in-
dependent roles in a quantum protocol. As an example, con-
sider the BB84 quantum cryptography [32]. In order to en-
gage in the protocol, Alice must be able to prepare states in
two non-orthogonal bases, which requires only the power to
create non-classical states, implying non-vanishing generating
power. Bob, on the other hand, needs to be able to distinguish
between classical and non-classical states in order to extract
the key and detect the presence of an eavesdropper, thus re-
quiring an operation with non-zero distinguishing power.

The measure of quantumnessW (ΩΩΩ) has some additional
properties which are physically intuitive, such as

(P1) Extremality: Maximum in the supremum is attained
with a pure state. This similarly follows from the joint con-
vexity of relative entropy.

(P2) Monotonicity: Given a general operationΩΩΩ and a clas-
sical operationΘΘΘ, thenW (ΘΘΘ ◦ΩΩΩ) ≤ W (ΩΩΩ) andW (ΩΩΩ ◦ΘΘΘ) ≤
W (ΩΩΩ) holds, showing that the measure is non-increasing un-
der composition.

(P3) Convexity: The convexity follows from the joint con-
vexity of relative entropy. Thus, given two observers with
classical mapsΘΘΘA

i ,ΘΘΘ
B
i at their disposal, and shared source

of randomness, they cannot create a nonclassical operation.
In other words, ifW (ΘΘΘA

i ⊗ 111) = 0 andW (111⊗ΘΘΘB
i ) = 0 then

W (∑i piΘΘΘA
i ⊗ΘΘΘB

i ) = 0.
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The proofs of the above properties are given in the Supple-
mentary Material as Thm. 2-4. We next evaluate our measure
for common decoherence channels, a local discord-generating
and a nonlocal entanglement-generating operation.

Examples. Here we focus on qubits with a classical basis
as |0〉 , |1〉 and ΓΓΓ implementing two-sided einselection. For
unitary operationsUUU we have thatW (UUU) = 0 if and only if
UUU is a combination of a classical permutation matrix of the
classical basis states with phase shifts, otherwiseW (UUU) = ∞
owing to the logarithm in the definition of relative entropy.
This is proved in the Supplementary Material as Thm. 5. For
a Hadamard gateHHH an infinite quantumness is attained for
input states|±〉 = (|0〉 ± |1〉)/

√
2, for which the generating

power vanishes and the distinguishing power is infinite. This
therefore tells us that the Hadamard gate can be used to as-
certain with certainty that an input state is a classical mixture
ρ = (|0〉〈0|+ |1〉〈1|)/2, and not|+〉, in a finite number of
measurements on average [30].

For standard qubit error models [32], we similarly find that
if the errors occur in the classical basis then they have vanish-
ing W . Since Pauli matrices are permutations of the classical
basis up to a phase, such models include any Pauli channels on
a single qubit, such as the depolarising, bit-flip, phase-flip and
the phase-damping channel. The measureW also vanishes for
the amplitude-damping channel,ΞΞΞγ (ρ) = FFF1ρFFF†

1 +FFF2ρFFF†
2,

whereFFF1 = |0〉〈0|+√
1− γ |1〉〈1| andFFF2 =

√γ |0〉〈1|, since
its Kraus operators correspond to permutation matrices, upto
a phase. However, if we rotate away from the classical basis,
for example by sandwiching an operation between Hadamard
gatesHHH, then quantumness may arise. In the Supplementary
Material we show thatW (HHH ◦ ΞΞΞγ ◦ HHH) is non-zero, despite
ΞΞΞγ itself being classical and its removal (orγ = 0) leaving
HHH ◦ 111◦ HHH = 111 which is also classical. This illustrates that
in general quantum interference makesW non-additive under
composition.

The non-classicality of two unitary operationsUUU1 andUUU2

with infinite W can nonetheless be compared through the use
of regularization. For example, limµ→1W (ΛΛΛµ ◦UUU1)/W (ΛΛΛµ ◦
UUU2) can be evaluated, whereΛΛΛµ(ρ) = µρ + (1− µ)111/d is
the depolarising channel for ad dimensional Hilbert space.
As such the depolarising channel acts as a regulator and the
correct ratio is obtained in the limit where the regulator be-
comes the identity. This gives a physically motivated ratioof
the quantumness of any two operations wheneverW diverges.

An example of a local channel generating non-classical cor-
relations is given in Refs. [19, 33]. The map is of the formΩΩΩ=
111⊗ΩΩΩB, whereΩΩΩB(ρ) = EEE1ρEEE†

1 +EEE2ρEEE†
2 andEEE1 = |0〉〈0|,

EEE2 = |+〉〈1|, which conditionally and irreversibly drives|1〉
into a state non-orthogonal to|0〉 [19, 33]. Applying the
mapΩΩΩ to the classical stateσc =

1
2(|0〉〈0|⊗ |0〉〈0|+ |1〉〈1|⊗

|1〉〈1|) leads toρ = 1
2(|0〉〈0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |+〉〈+|),

which has non-zero discord [34], but vanishing entanglement
since it is a convex combination of product states. Given that
ΩΩΩB(ρ) possesses diagonal elements which are independent
of the off-diagonal elements ofρ it has zero distinguishing
power for any input state. The quantumness ofΩΩΩ thus arises

from generating power only and is found (see Supplementary
Material) to beW (ΩΩΩ) = 1, confirming the map is indeed non-
classical.

Next we look at an entangling operation, specifically a
CNOT controlled in the|±〉 basis which is capable of generat-
ing a maximally entangled two-qubit state from a pure classi-
cal input state|0〉 or |1〉. As shown in Fig.2 we find that when
this operation is followed by a joint two-qubit depolarising
channelΛΛΛµ , for µ < 2/3 quantumness is maximized by the
generating power alone, while forµ > 2/3 it is maximized
purely by the distinguishing power. Thus, at this cross-over
point the maximum composingW for this noisy CNOT oper-
ation switches from being exposed by its ability to generate
nonclassicality to its ability to distinguish nonclassicality.

An interpretation of quantum discord. Suppose Alice and
Bob would like to perform superdense coding, a well-known
protocol used to increase the encoding capacity of a single
qubit by exploiting entanglement [32]. To do this they order
from a source either a quantum stateρ , or a cheaper com-
pletely dephased versionΓΓΓ(ρ), to use in the protocol. How-
ever, they in fact receive statesΩΩΩ(ρ) orΩΩΩ◦ΓΓΓ(ρ), respectively,
whereΩΩΩ accounts for fixed imperfections in the transmission.
The question we now ask is how much additional informa-
tion can they transfer using the superdense coding protocolif
they ordered the quantum stateρ rather thanΓΓΓ(ρ). We will
show that ifΩΩΩ is classical, soW (ΩΩΩ) = 0, then the capacity
difference is precisely equal to the quantum discord ofΩΩΩ(ρ),
whereW is evaluated withΓΓΓ = 111⊗ΓΓΓB acting on the receiver’s
(Bob’s) side. This one-sided einselection operator is usedto
match the definition of the standard quantum discord [12, 13].
While this result holds in general, for simplicity we assume
that ρ = |Φd〉 〈Φd |, where|Φd〉 = ∑α |α〉 ⊗ |α〉/

√
d is the

maximally entangled state. In this caseΓΓΓ(ρ) is the maximally
classically correlated state.

FIG. 2: Quantumness of CNOT controlled in the|±〉 basis, followed
by the depolarizing channelΛΛΛµ , as a function ofµ. We maximizedW
and split the expression into the generating power (solid line), and the
distinguishing power (dashed line). Whenµ is small the action of the
depolarizing channel is to substantially degrade distinguishability to
such an extent that the generating power dominates. When theµ →
1, on the other hand, generating power is fundamentally bounded by
log(d) and thus can no longer compete with the distinguishing power
which experiences unbounded growth. The maximum changes from
the generating to the distinguishing power atµ = 2/3.
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The capacity of superdense coding [35] using a stateρ is
given by F(ρA|B) = log(dA)− S(ρA|B), whereS(ρA|B) de-
notes the conditional entropy of the stateρ [38]. Zurek’s
original definition of quantum discord [36] is Qz(ρA|B) =
∑α pα S(ρα

A )−S(ρA|B), whereρα
A is the marginal state on Al-

ice’s side given that outcomeα was obtained, correspond-
ing to the rank-1 projectorΠΠΠα . Using basic properties of
the von Neumann entropy [32], we have thatQz(ρA|B) =
S
(

ΓΓΓ(ρA|B)
)

− S(ρA|B). Assuming[ΓΓΓ,ΩΩΩ] = 0, then gives

Qz(ΩΩΩ |Φd〉 〈Φd |A|B) =
F(ΩΩΩ |Φd〉〈Φd |A|B)−F(ΩΩΩ◦ΓΓΓ |Φd〉〈Φd |A|B). (3)

Extending this to the usual definition of quantum discordQ
[12, 13], which involves a minimization overΠΠΠα , Eq. (3)
transforms intoQ(ΩΩΩ |Φd〉〈Φd |A|B) = F(ΩΩΩ |Φd〉〈Φd |A|B) −
supΓ F(ΩΩΩ◦ΓΓΓ |Φd〉 〈Φd |A|B). Thus quantum discord is the dif-
ference in the capacity of superdense coding using the maxi-
mally entangled state and the best possible classically corre-
lated state. Our results show that quantum advantage can be
gained over the initially classical state in the presence ofnoise
even whenΩΩΩ(|Φd〉 〈Φd |) is unentangled. This is illustrated in
Fig. (3) whereΩΩΩ = ΛΛΛµ is the depolarising channel.

Discussion. In this Letter we have proposed a measure of
nonclassicality of quantum operations. The measure is a sum
of two independent contributions, the generating power and
the distinguishing power, which characterizes an operation as
non-classical if and only if the operation can be used by clas-
sical observers to distinguish between quantum and classical
states or creates nonclassical states out of classical states.

Our measure satisfies several intuitive properties such as
convexity and monotonicity under composition of classical
maps. In addition, our results show that the einselected rela-
tive entropy of discordQg(ρ)= S

(

ρ‖ΓΓΓ(ρ)
)

, is non-increasing
under the action of classical maps. This is seen by observ-
ing that for a classical operationΘΘΘ, we haveQg

(

ΘΘΘ(ρ)
)

=
S (ΘΘΘ(ρ)‖ΓΓΓ◦ΘΘΘ(ρ)) = S (ΘΘΘ(ρ)‖ΘΘΘ◦ΓΓΓ(ρ)) ≤ S (ρ‖ΓΓΓ(ρ)) =
Qg(ρ) by monotonicity of relative entropy.

Furthermore, it is interesting to note that there is a natu-
ral complementarity between quantumness of operations and
quantumness of states. Specifically, if we denoteΩΩΩρ as any
operation capable of generating a stateρ from a classical in-
put then, from Thm. (1), we see that quantumness must satisfy
W (ΩΩΩρ) ≥ Qg(ρ). This provides a readily computable lower
bound forW . Moreover, throughW , it suggests a measure of
the quantumness of states asQW (ρ) = infΩΩΩρ W (ΩΩΩρ), where
the minimization is over all operationsΩΩΩρ . We conjecture
thatQW (ρ) = Qg(ρ). If true, this provides a remarkable con-
nection between our measure and quantum discord as well as
deepening the link between the nonclassicality of operations
and states.

SM would like to thank EPSRC for financial support.
SRC thanks the National Research Foundation and the Min-
istry of Education of Singapore for support. AD was sup-
ported in part by the EPSRC (Grant Nos. EP/H03031X/1 and

FIG. 3: Superdense coding capacitiesFq using the maximally entan-
gled state andFc using the classical maximally correlated state when
both pass through a depolarising channelΩΩΩ=ΛΛΛµ . The performances
Fq andFc correspond to the first and the second terms of the Eq. (3).
Quantum discord is then the difference betweenFq andFc. The ver-
tical dashed line indicates the value ofµ where all entanglement is
lost due to the depolarising channel.
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Supplementary Material:
“Quantifying the Nonclassicality of Operations”

This Supplementary Material contains the proofs of the mainresult Theorem 1 and Properties P1-P3, a derivation of the value
of our nonclassicality measureW for unitary maps, along with additional details of the calculation ofW for the examples given
in the main text.

PROOF OF THE MAIN RESULT

Theorem 1 relates to the decomposing our measureW of non-classicality into two contributions. Specifically,

Theorem 2. The quantumness of an operation W (ΩΩΩ) is the sum of two independent contributions

W (ΩΩΩ) = sup
ρ

(

S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

+ S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)
)

)

, (1)

where the supremum is over all quantum states ρ .

Proof. We start with the relative entropy, defined asS (ρ‖σ) = Tr [ρ(log(ρ)− log(σ))] [? ], featuring under maximization in
W (ΩΩΩ). Then we insert the sum of a complete set of orthonormal projectors∑α ΠΠΠα = 111, whereΠΠΠα are the Kraus operators ofΓΓΓ.
We thus obtain

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

= −S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

−Tr
[

ΩΩΩ◦ΓΓΓ(ρ) log(ΓΓΓ◦ΩΩΩ(ρ))
]

(2)

= −S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

−Tr
[

∑
α

ΠΠΠα ΩΩΩ◦ΓΓΓ(ρ) log(ΓΓΓ◦ΩΩΩ(ρ))
]

. (3)

whereS(ρ) = −Tr [ρ log(ρ)] is the von Neumann entropy. Next we use the fact the projective property(∑α ΠΠΠα)
2 = ∑α ΠΠΠα

together with the cyclic property of the trace and the fact thatΠΠΠα commutes withΓΓΓ◦ΩΩΩ(ρ) and thus also with its logarithm. The
above is then transformed to

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

= −S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

−Tr
[

∑
α

ΠΠΠα ΩΩΩ◦ΓΓΓ(ρ)ΠΠΠα log(ΓΓΓ◦ΩΩΩ(ρ))
]

(4)

= −S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

−Tr
[

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ) log(ΓΓΓ◦ΩΩΩ(ρ))
]

. (5)

Next we add and subtractS
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)
)

to the righthand side to get to

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

= S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)
)

− S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

+ S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

. (6)

We now expand the entropyS
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)
)

to give

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

=−Tr[ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ) log(ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ))]− S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

+ S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

. (7)

Now we expandΓΓΓ and insert back the orthogonal projective operatorsΠΠΠα yielding

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

=−Tr[∑
α

ΠΠΠα ΩΩΩ◦ΓΓΓ(ρ)ΠΠΠα log(ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ))]− S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

+ S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

. (8)

Now becauseΠΠΠα commutes withΓΓΓ◦ΩΩΩ◦ΓΓΓ, we find that

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

=−S
(

ΩΩΩ◦ΓΓΓ(ρ)
)

−Tr[∑
α

ΠΠΠα ΩΩΩ◦ΓΓΓ(ρ) log(ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ))]+ S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

. (9)

The first two terms then form another relative entropy, leading us to

S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

= S
(

ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)
)

+ S
(

ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ◦ΓΓΓ(ρ)
)

. (10)

Inserting the supremum overρ then formsW (ΩΩΩ) and completes the proof.
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PROOFS OF PROPERTIES P1-P3

Here we give the proof of property P1 that the maximum in the maximization forW is always attained for a pure state.

Theorem 3. Given supρ S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)), there exists a pure state |ψ〉〈ψ | such that the supremum in equation (1) is
attained when ρ = |ψ〉〈ψ |.

Proof. Imagine that we have performed maximization over only the set of pure states and found that the maximum is attained
for |ψ〉. Then for some mixed stateρ we can spectrally decompose it asρ = ∑ j µ j

∣

∣φ j
〉〈

φ j
∣

∣, where
∣

∣φ j
〉

are it eigenstates. Since
the relative entropy is jointly convex in its arguments [32] this implies that

S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ))≤ ∑
j

µ jS
(

ΩΩΩ◦ΓΓΓ(
∣

∣φ j
〉〈

φ j
∣

∣)‖ΓΓΓ◦ΩΩΩ(
∣

∣φ j
〉〈

φ j
∣

∣)
)

≤ S (ΩΩΩ◦ΓΓΓ(|ψ〉 〈ψ |)‖ΓΓΓ◦ΩΩΩ(|ψ〉 〈ψ |)) .

This completes the proof.

Next we will consider the property P2, stating that the measure W is non-increasing under the composition with classical
maps.

Theorem 4. If ΩΩΩ is some map and W (ΩΩΩc) = 0 then W (ΩΩΩc ◦ΩΩΩ)≤W (ΩΩΩ) and W (ΩΩΩ◦ΩΩΩc)≤W (ΩΩΩ) .

Proof. Notice that

W (ΩΩΩc ◦ΩΩΩ) = sup
ρ

S (ΩΩΩc ◦ΩΩΩ◦ΓΓΓ(ρ)‖ΩΩΩc ◦ΓΓΓ◦ΩΩΩ(ρ))≤ sup
ρ

S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)) =W (ΩΩΩ), (11)

where the last inequality is due to the monotonicity of relative entropy under completely positive operations (and thusalso the
strong subadditivity of the von Neumann entropy, which is equivalent to monotonicity [31]). For the reverse order

W (ΩΩΩ◦ΩΩΩc) = sup
ρ

S (ΩΩΩ◦ΓΓΓ◦ΩΩΩc(ρ)‖ΓΓΓ◦ΩΩΩ◦ΩΩΩc(ρ))

= sup
ΩΩΩc(ρ)

S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ))

≤ sup
ρ

S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)) =W (ΩΩΩ), (12)

where going from second to the third line we changed the set over which we take supremum from all states to the set of states of
the formΩΩΩ(ρ). Since this set is entirely contained in the set of all states, the inequality follows.

Finally, the property P3 is proved in the following theorem.

Theorem 5. Given a set of local operations ΩΩΩA
w,ΩΩΩ

B
w such that W (ΩΩΩA

w⊗111) = 0 and W (111⊗ΩΩΩB
w) = 0 then W (ΩΩΩ) = 0 for any local

operation with shared randomness of the form ΩΩΩ = ∑w γwΩΩΩA
w ⊗ΩΩΩB

w.

Proof. Notice that since we required thatΓΓΓ be composed of local orthonormal projectors we can write it as ΓΓΓ = ΓΓΓA ⊗ΓΓΓB in the
bipartite case. Given thatΩΩΩA

w andΩΩΩB
w commute withΓΓΓA andΓΓΓB, respectively, we also have thatΩΩΩ commutes withΓΓΓ, establishing

the result.

QUANTUMNESS OF UNITARIES

Now we turn our attention to the proof of the statement regarding the quantumness of unitary operations.

Theorem 6. When ΓΓΓ acts on the entire joint Hilbert space, selecting a complete orthonormal classical basis |k〉, we have for
any unitary operation UUU that W (UUU) = 0 if and only if UUU = ∑k eiφk |k〉 〈k|PPP, where PPP is a permutation of the classical basis and
φk are phases. Otherwise W (UUU) = ∞.

Proof. We proceed by computing the relative entropyS
(

UUU ◦ΓΓΓ(ρ)‖ΓΓΓ ◦UUU(ρ)
)

. First we show that ifUUU is not of the required
form, thenW (UUU) = ∞. Under such assumption, there exists a non-classical state|φ0〉 such thatUUU |φ0〉 = | j〉, where| j〉 is any
classical basis state. The relative entropyS (ρ‖σ) is infinite due to the term Tr[ρ log(σ)] when the kernel ofσ has a non-zero
overlap with the support ofρ . So suppose|φ0〉 = ∑k αk |k〉 is the expansion of|φ0〉 in the classical basis. ThenΓΓΓ(|φ0〉 〈φ0|) =
∑k |αk|2 |k〉 〈k| 6= |φ0〉〈φ0|, since|φ0〉 is not classical by assumption. Thus,UUUΓΓΓ(|φ0〉 〈φ0|)UUU† will in general have support across
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numerous classical states besides| j〉 〈 j|. However, the second argument of the relative entropy isΓΓΓ(UUU |φ0〉 〈φ0|UUU†) = | j〉 〈 j| and
thus is a state with a kernel overlapping the support ofUUUΓΓΓ(|φ0〉 〈φ0|)UUU†, making the relative entropy infinite.

Secondly, we show that ifW (UUU) = ∞, then some classical state|k〉 is mapped to a non-classical state. Since the generating
power is the einselected relative entropy of discord of the output state, we know that it must be bounded by log(d), whered is
the dimension of the joint Hilbert space. Therefore, ifW (UUU) = ∞, the distinguishing power is infinite. There exists a state|ψ〉
such that

S
(

ΓΓΓ(UUUΓΓΓ(|ψ〉〈ψ |)UUU†)‖ΓΓΓ(UUU |ψ〉 〈ψ |UUU†)
)

= ∞. (13)

Now |ψ〉 cannot be classical, otherwise the above would vanish. So let |ψ〉=∑k γk |k〉, ΓΓΓ(|ψ〉〈ψ |) =∑k |γk|2 |k〉 〈k|, and label the
mapping of classical states asUUU |k〉= |ψk〉. Then we have thatΓΓΓ(UUUΓΓΓ(|ψ〉〈ψ |)UUU†)=∑k |γk|2ΓΓΓ(|ψk〉〈ψk|) andΓΓΓ(UUU |ψ〉〈ψ |UUU†) =

∑k,l γkγ∗l ΓΓΓ(|ψk〉〈ψl |). Thus we see that if for allk the states|ψk〉 were classical, then the distinguishing power would vanish.
Therefore, we must have that at least one of the states|ψk〉 is not classical, showing thatUUU is not of the form in the theorem
statement. We have thus shown thatUUU is not a permutation matrix up to a phase if and only ifW (UUU) = ∞. Conversely, whenUUU
is a permutation matrix up to a phase, we know thatW vanishes. This completes the proof.

FURTHER DETAILS FOR EXAMPLE APPLICATIONS

Here we provide additional details for the examples given inthe main text.

Quantumness of a composition of operations

Given a sequence of operations, the quantumnessW is not additive under the composition of operations so that

W (AAA◦BBB◦CCC) 6=W (AAA)+W(BBB)+W(CCC), (14)

for three operationsAAA, BBB andCCC. This is most easily demonstrated and explained by using a counter-example as described in
the main text. ConsiderΩΩΩ = HHH ◦ΞΞΞγ ◦HHH in which we use the amplitude damping channelΞΞΞγ sandwiched between Hadamard
gatesHHH. A key observation is that the output stateΩΩΩ(ρ), for all values ofγ, has diagonal elements which are independent
of the off-diagonal elements of the input stateρ . This immediately implies that in this caseΩΩΩ has no distinguishing power
for any input state and its quantumness comprising only of generating power. Using this and property P1 the maximizationof
S (ΩΩΩ◦ΓΓΓ(ρ)‖ΓΓΓ◦ΩΩΩ(ρ)) is therefore achieved for classical pure input states|0〉 and/or|1〉. It is straightforward to show that both
are maxima. Using|0〉 we compute directly

HHH ◦ΞΞΞγ ◦HHH(|0〉〈0|) = 1
2
(1+

√

1− γ) |00〉〈00|+ γ
2
(|10〉〈00|+ |00〉〈10|)+ 1

2
(1−

√

1− γ) |10〉〈10| (15)

ΓΓΓ◦HHH ◦ΞΞΞγ ◦HHH(|0〉〈0|) = 1
2
(1+

√

1− γ) |00〉〈00|+ 1
2
(1−

√

1− γ) |10〉〈10| . (16)

Here we see that in going from Eq. (15) to Eq. (16) the nonclassical off-diagonal terms are erased by the decoherence operator
ΓΓΓ. Overall this yields

W (ΩΩΩ) = log(a)+ (a/2) log
[

(1+ a)/(1− a)
]

+(b/2) log
[

(1+ b)/(1− b)
]

, (17)

wherea =
√

1− γ and b =
√

γ2− γ +1. For γ = 1 the maximum possible quantumness ofW (ΩΩΩ) = 1 is attained. At the
opposite limitγ = 0, corresponding to the removal of the amplitude damping channel, we haveW (ΩΩΩ) = 0, since the remaining
sequence of operationsHHH ◦111◦HHH = 111 is classical. For 0< γ < 1 the quantumnessW (ΩΩΩ) varies monotonically between these
values. Given thatW (HHH) = ∞, and hence is maximally quantum, whileW (ΞΞΞγ) = 0 is classical, we see thatW (HHH ◦ΞΞΞγ ◦HHH) 6=
W (HHH)+W (ΞΞΞγ )+W (HHH). This non-additivity ofW is an expected consequence of the quantum interference between the different
operations in a composition. Moreover, this example illustrates that adding a classical operation between two nonclassical
operations can be used to activate quantumness.

Discord generating map

In the main text we consider the mapΩΩΩ = 111⊗ΩΩΩB, whereΩΩΩB(ρ) = EEE1ρEEE†
1+EEE2ρEEE†

2 andEEE1 = |0〉〈0|, EEE2 = |+〉〈1|. Being
a local mapΩΩΩ cannot generate entanglement, yet intriguingly when it is applied to a classical inputσc =

1
2(|0〉〈0|⊗ |0〉〈0|+
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|1〉〈1| ⊗ |1〉〈1|) it can generate an output state with non-zero discord [19]. Focusing on the non-trivial single-qubit channel
ΩΩΩB we again observe that the diagonal elements ofΩΩΩB(ρ) are independent of the off-diagonal elements ofρ , leading to zero
distinguishing power for any input state. As suchW (ΩΩΩB) is exclusively composed of generating power and its maximization
is attained by a pure classical input. This is readily verified to be|1〉, as might be expected. The value ofW (ΩΩΩB) is then
S (ΩΩΩB ◦ΓΓΓ(|1〉〈1|)‖ΓΓΓ◦ΩΩΩB(|1〉〈1|)) = 1 which is the maximum possible. For the extension ofΩΩΩB to a two-qubit map we have
W (111⊗ΩΩΩB) =W (ΩΩΩB) which is maximized by input states of the form|ψ〉⊗ |1〉, where|ψ〉 is an arbitrary single-qubit state.

Depolarised rotated CNOT gate

Next we consider a CNOT with its control rotated into the|±〉 basis, followed by a two-qubit depolarizing channelΛΛΛµ , which
gives a complete operationΩΩΩ = ΛΛΛµ ◦ (HHH ⊗111) ◦CCCNNNOOOTTT ◦ (HHH ⊗111). We find that for all values of the depolarizing probabilityµ
the maximum generating powerW (ΩΩΩ ◦ΓΓΓ) is attained by the classical input state|0〉⊗ |0〉, while the maximum distinguishing
powerW (ΓΓΓ ◦ΩΩΩ) is attained by the entangled input state|Ψ〉 = (|0〉⊗ |−〉+ |1〉⊗ |+〉)/

√
2. As a function ofµ the generating

and distinguishing power are given by the relative entropies

S (ΩΩΩ◦ΓΓΓ(|00〉〈00|)‖ΓΓΓ◦ΩΩΩ(|00〉〈00|)) =−3
4

log(1− µ)+
1
4

log(1+3µ), (18)

and

S (ΩΩΩ◦ΓΓΓ(|Ψ〉 〈Ψ|)‖ΓΓΓ◦ΩΩΩ(|Ψ〉〈Ψ|)) = 3
4
(1− µ) log(1− µ)+

1+3µ
4

log(1+3µ), (19)

respectively. Performing the maximization forW (ΩΩΩ) reveals that there exists a certain thresholdµc, such that wheneverµ < µc

we haveW (ΩΩΩ) = W (ΩΩΩ ◦ ΓΓΓ), while for µ > µc we haveW (ΩΩΩ) = W (ΓΓΓ ◦ΩΩΩ). The maximum therefore switches between the
generating and distinguishing power at the transition point µ = µc, which is found by direct substitution to beµc = 2/3, where
both Eqs. (19) and (18) evaluate to log(3)/2. Note that unlike the previous examples, whereW (ΩΩΩ) being composed purely of
generating power coincides with a vanishing distinguishing power, here both the generating power and distinguishing power are
non-zero for all 0< µ ≤ 1.


