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Quantifying the Nonclassicality of Operations
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2Centre for Quantum Technologies, National University of Sngapore, 3 Science Drive 2, 117543 Singapore, Singapore
(Dated: February 25, 2013)

Deep insight can be gained into the nature of nonclassicatlations by studying the quantum operations
that create them. Motivated by this we propose a measurermiassicality of a quantum operation utilizing
the relative entropy to quantify its commutativity with thbempletely dephasing operation. We show that our
measure of nonclassicality is a sum of two independent ibatitons, thegenerating power — its ability to
produce nonclassical states out of classical ones, andigtieguishing power — its usefulness to a classical
observer for distinguishing between classical and nosidakstates. Each of these effects can be exploited
individually in quantum protocols. We further show that eneasure leads to an interpretation of quantum
discord as the difference in superdense coding capacitigelen a quantum state and the best classical state
when both are produced at a source that makes a classicatlariog transmission.

Introduction. Identifying the resources that underlie quan-with the environment, effectivelyneasuring certain observ-
tum advantages in quantum communication and informatiombles of the quantum syster29. We will denote this com-
processing is a crucial question of fundamental and tecigrol pletely dephasing process Bs By classicalizing the input
ical importance. Generally, quantum entanglementislsdri and output of a general operatifj a classical operation can
this role due to its necessity in a number of tasks exhibitingoe formed a® =T o Qol", whereo is the composition of op-
quantum advantages,[2]. However, quantum enhancements erations. Sinc&€2 = I, this implies the commutation relation
are possible in certain computations with limited amoutits 0@ o " = IN 0 ©. Taking this relation as the foundation of our
entanglement or even none at all when the involved quannotion of classicality will be justified by its implication¥Ve
tum state is mixed37]. Universal quantum computation consider classical statgg to be the fixed points of the eins-
with pure states also appears to be possible with littlerenta election operatoF so thatl (p;) = pc. Thus they are of the
glement B]. In addition to computational advantages, quan-form pc =y, g Pa g |a) (a| @ |B) (B|, where|a) ,|B) are the
tum communication can also exhibit advantages over clalssic complete orthonormal eigenbasis of the einselection epera
communication in the absence of entanglemént[]. which acted on both parties of the bipartite system. The op-

Recently, it has been suggested that correlations beyond
guantum entanglement might provide an explanation behind
guantum enhancements. One of the most common quanti-
ties is the quantum discord2-15. Quantum discord has
recently been interpreted as the difference in the perfooma
of the quantum state merging protocol between a state and its
locally decohered equivalent ], and secondly as quantify-
ing the amount of entanglement consumption in the quantum
state merging protocoll[/]. The role of quantum discord in a
more general family of protocols has also been studi€ [

An important difference between quantum discord and en-
tanglement is that the latter is non-increasing, on avenage
der local operations and classical communication. Thikes t
underlying principle of the resource theory of quantum en- >
tanglement. On the other hand, local operations can agtuall v
increase quantum discord9-22]. Discordant states can be T lassical states
created out of classical states by a local channel if and only
if the channel changes the local algebraic struct@8p fand  FIG. 1: lllustration of Thm. {). The solid lines represent operations,
several authors have studied the evolution of quantum diswhile the dashed lines represent relative entropies quoresing to
cord under various forms of dynamic4-28]. However, the the terms from Thml. Since the two curved dashed paths from
principles underlying the creation of nonclassical catiehs ~ the stateQol(p) to ' 0 Q(p) are equidistant in relative entropy the
from quantum operations are still lacking. triangle inequality does not apply. Instead quantitiesuigl (i) rep-

H . . h lassicali f resent the generating and the distinguishing power, réispsc We
ere we investigate the nonclassicality of quantum Operazqsiqer classical states to be the fixed points of the liageselec-

tions directly. Before presenting our results it is ess#nt  tion operator and as such is a simplex. This set is smaller than the
clarify our notion of what is classical. Our criterion is Bas set of separablel| 2] and zero-discord stateg][ Note that our no-

on einselection, or environmentinduced superselectipma  tion of classicality is stricter than that enforced by quamtdiscord
cess via which states of a quantum system become entangléiice there is no freedom to choose the classical basis.
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erationl” may also act only on one subsystem, in which cas€Theorem 1. The quantumness of an operation W(Q) is the
we get one-sided classicality with invariant states of trenf ~ sum of two independent contributions

P =5SaPapa@|a)(al. While all classical states have zero

discord, not all zero discord states are classical in theesen w(Q) = sup(S(roQo I'(p)HI'oQ(p))

used here. A classical observer is one who can measure only p

in the einselected basis, and for whom the quantum gtége

completely indistinguishable from the stdtép). Such states +S(QeT(p)[FoQo I'(p))) > (@
have identical diagonal elements in the einselected biasis,
differ in the off-diagonal elements. In contrast a quanturm o

server may be able to distinguish between the statesid The first term, which we call thelistinguishing power,
I(p), given enough copies. characterizes how well a classical observer can distihdgs

In this Letter, we introduce a measure of quantumness ofyeenQ o I(p) andQ(p). The second term, which we call
operations that applies to all completely positive mapsr Outhe generating power, measures the ability of the map to
approach does not rely on measures of nonclassicality fagenerate a nonclassical state out of a classical input. i¥his
states and is instead defined from first principles using thelepicted in Fig. {). Following Klein's inequalityW(Q) van-
fact that a classical map commutes with the einselection opishes if and only if the operatiof obeysQ,l =0andsois
erationl". The extent of non-commutativity is measured us-classical. An implication of Thm.1} is that an operatio®
ing the quantum relative entropy between two different orde is classical only if it has neither distinguishing nor geatarg
ings of the dephasing operatiéhand an operatiof2. We  power. The proof of Thm.1) follows from the monotonicity
show this measure to be composed of two independent comsf relative entropy under completely positive map#[and is
tributions — firstly, the ability of a nonclassical map to pro provided in the Supplementary Material.
duce non-classical states from classical ones, and sgcondl Crucially, the distinguishing and generating powers in
the degree to which it enables classical observers to distirgq. (2) can be independently zero. Given a quantum operation
guish states they could not otherwise distinguish claligica 3 where both these quantities are non-vanishing, we can con-
We highlight how these two contributions play key roles instruct an operatiofi o Z for which the second term in EcR)Y
quantum communication protocols. Our measure possess@anishes but the first term is unchanged_ ThNﬁr OZ) is
several intuitive properties such as being non-increasing the maximum distinguishing power & On the other hand,
der composition with classical maps and being convex. Weor the operatiotZ oI, the first term of Eq.Z) vanishes while
calculate our measure for entangling and correlating eperahe second one is unchanged and thereWit& o ') is the
tions and then apply it to interpret quantum discord via themaximum generating power &. By definition, both these

where the supremumis over all quantum states p.

capacity of superdense coding with noisy states. quantities are zero for a classical operai@®n
We define theguantumness of an operation Q as There are instances where both terms play essential and in-
dependent roles in a quantum protocol. As an example, con-
Wr(Q) = S;)JPS(QO F(p)|IFoQ(p)), (1) sider the BB84 quantum cryptograpt82]. In order to en-

gage in the protocol, Alice must be able to prepare states in

where S(p||o) = Tr[p(log(p) —log(0))] is the quantum WO non—orthogo_nal bases, _vvhich requires o_nly_the power to
relative entropy 30], and all logarithms in this paper are create non-classical states, implying non-vamshlngggm_rg _
base 2. The supremum in Ed) (s taken over all quantum POWer. Bob, on the other hand, ngeds to be gble to distinguish
states, but we will show shortly it is sufficient to maximize between classical and non-classical states in order taaxtr
over pure states only. The quantif thus intuitively ~the key and detect the presence of an eavesdropper, thus re-
measures the deviation of the commutd€@sT| from zeroby ~ 9uiring an operation with non-zero distinguishing power.
applying both orderings to the same state and comparing the 1he measure of quantumne&gQ) has some additional
outputs B7]. Since the relative entropy is not symmetric in its Properties which are physically intuitive, such as _
arguments the specific ordering used in Et).i¢ essential. ~ (P1) Extremality: Maximum in the supremum is attained
The choice of classicalizing the second argument is cetatral With & pure state. This similarly follows from the joint con-
all our subsequent results and is consistent with similasus VeXity of relative entropy. _

of relative entropy in measures of entanglement and discord (P2) Monotonicity: Given a general operatiOrand a clas-

[11, 30]. The definition oM implicitly depends on the fixed Sical operatior®, thenW(©0 Q) <W(Q) andW(Q0©) <
einselected basis throu@h however we will suppress this in W(Q) holds, showing that the measure is non-increasing un-

our subsequent discussions. We now present our main resulfl€r composition. . o
(P3) Convexity: The convexity follows from the joint con-

vexity of relative entropy. Thus, given two observers with
classical map®{*,@F at their disposal, and shared source
of randomness, they cannot create a nonclassical operation
In other words, ifW(@"® 1) = 0 andW(1® ©F) = 0 then
W(3;pef®ep) =0.
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The proofs of the above properties are given in the Supplefrom generating power only and is found (see Supplementary
mentary Material as Thm. 2-4. We next evaluate our measurklaterial) to beW(Q) = 1, confirming the map is indeed non-
for common decoherence channels, a local discord-gengrati classical.

and a nonlocal entanglement-generating operation. Next we look at an entangling operation, specifically a
Examples. Here we focus on qubits with a classical basiscNOT controlled in thé-+) basis which is capable of generat-
as|0),|1) andI" implementing two-sided einselection. For jhg a maximally entangled two-qubit state from a pure classi
unitary operationd) we have thatW(U) = 0 if and only if  calinput state0) or |1). As shown in Fig2 we find that when
U is a combination of a classical permutation matrix of thethis operation is followed by a joint two-qubit depolarigin
classical basis states with phase shifts, otherMigg) = channelA, for u < 2/3 quantumness is maximized by the
owing to the logarithm in the definition of relative entropy. generating power alone, while for > 2/3 it is maximized
This is proved in the Supplementary Material as Thm. 5. Folyrely by the distinguishing power. Thus, at this crossrove
a Hadamard gatél an infinite quantumness is attained for point the maximum composiny for this noisy CNOT oper-
input states+) = (|0) +[1))/v/2, for which the generating ation switches from being exposed by its ability to generate

power vanishes and the distinguishing power is infinite.sThi nonclassicality to its ability to distinguish nonclassiiga
therefore tells us that the Hadamard gate can be used to as-

certain with certainty that an input state is a classicaltomi
p = (]0) (0] + |1) (1])/2, and not|+), in a finite number of
measurements on avera@d.

For standard qubit error model3g], we similarly find that
if the errors occur in the classical basis then they havestani
ing W. Since Pauli matrices are permutations of the classic
basis up to a phase, such models include any Pauli channels
a single qubit, such as the depolarising, bit-flip, phageattid

An interpretation of quantum discord. Suppose Alice and
Bob would like to perform superdense coding, a well-known
protocol used to increase the encoding capacity of a single
qubit by exploiting entanglemen8®]. To do this they order
from a source either a quantum st@teor a cheaper com-

ailetely dephased versidn(p), to use in the protocol. How-

ver, they in fact receive stat®p) orQol (p), respectively,

RhereQ accounts for fixed imperfections in the transmission.

he bh q : h L Th i ishes f The question we now ask is how much additional informa-
the phase-damping channel. The mea SO VanISNes Ior ion can they transfer using the superdense coding protiocol

the amplitude-damping channd, (p) = FlpFIJr F.pFl, the ;

. y ordered the quantum staterather tharl (p). We will
whereF; = [0) (0 +v/1-y|1) (1| andF2 = \/y|0) (1], since g0 hat ifQ is classical, sW(Q) = 0, then the capacity
its Kraus operators porrespond to permutation matrice® Up i¢terence is precisely equal to the quantum discor@6p),

a phase. However, if we rotate away ffom the classical basig, o ey is evaluated with = 1® g acting on the receiver’s
for example by sandwiching an operation between Hadamar ob’s) side. This one-sided einselection operator is used

gatesl_-l ’I then (a]uantl;]mnezs m:ay a|_r|isg. In the SUp%Iem?ma%atch the definition of the standard quantum disca&i13].
I\_/Iat_erla we show t _aW( °=y° ) is non-zero, es_,plte While this result holds in general, for simplicity we assume
=y itself being classical and its removal (pr= 0) leaving that p = |®q) (Bg|, where|®g) = S |a) @ |a) /vd is the

HoloH |: 1 which is a]\clso classmzlé This (ljliqutratesdthat maximally entangled state. In this cd3p) is the maximally
in general quantum interference makésion-additive under ¢\ oy correlated state.

composition.
The non-classicality of two unitary operatiods andU
with infinite W can nonetheless be compared through the use 4.0
of regularization. For example, lim,1 W(Ay oU1) /W(Ay 0 ’
U>) can be evaluated, wherk,(p) = up+ (1—p)1/d is
the depolarising channel for & dimensional Hilbert space.
As such the depolarising channel acts as a regulator and the (Q)
correct ratio is obtained in the limit where the regulator be ’
comes the identity. This gives a physically motivated rafio
the quantumness of any two operations when@veliverges. /
An example of a local channel generating non-classical cor- 0.0
relations is given in Refs1p, 331(. The map is of the fornf = 0.0 H 1.0
1® Qp, whereQg(p) = E1pE; + E>pE; andE; = |0) (0],
E, = |+) (1], which conditionally and irreversibly drive4) FIG. 2: Quantumness of CNOT controlled in the) basis, followed
into a state non-orthogonal t®) [19, 33]. Applying the by the depolarizing channd,;, as a function ofi. We maximizedV

; _1 and split the expression into the generating power (saiig)liand the
mapQ to the classical stae 2 (10) (0[10) (0] +[1) (1] & distinguishing power (dashed line). Whgrs small the action of the

1) (1]) leads top = 3(|0) (0] @ [0) (0] + [1) (1| @ |+) (+]), depolarizing channel is to substantially degrade disiistrability to
which has non-zero discor@4], but vanishing entanglement sych an extent that the generating power dominates. Whem the
since it is a convex combination of product states. Giveh thal, on the other hand, generating power is fundamentally dieditoy
Qg(p) possesses diagonal elements which are independelag(d) and thus can no longer compete with the distinguishing power
of the off-diagonal elements g it has zero distinguishing Which experiences unbounded growth. The maximum changes fr
power for any input state. The quantumnes€adhus arises he 9enerating to the distinguishing poweyiat 2/3.




The capacity of superdense codirgp] using a statep is 20
given by F(p”B) = log(da) — S(p"B), where S(p”B) de- :
notes the conditional entropy of the staie[38]. Zurek’s
original definition of quantum discord3f] is Q,(p”B) =
Sa PaS(pF) — S(PB), wherepg is the marginal state on Al-
ice’s side given that outcome was obtained, correspond- F
ing to the rank-1 projectofl,. Using basic properties of
the von Neumann entropy3?], we have thatQ,(p"B) =
S(r (p~B)) — S(p”B). Assuming[l", Q] =0, then gives

QuAQ |Pg) (Py|P) = 0-00 = =0
F(Q[®g) (0g¥8) — F(Qo T ) (4B).  (3) ‘ H ‘

Extending this to the usual definition of quantum discQd FiG. 3: Superdense coding capacitigausing the maximally entan-
[12, 13|, which involves a minimization ovefly, Eq. @) gled state an& using the classical maximally correlated state when

transforms into Q(Q |®y) (Py |A\B) = F(Q|®y) (Pg |A\B) _ both pass through a depolarising char@et A ;. The performances

AB . . .« FgandF; correspond to the first and the second terms of the Eq. (
sug F(Qol |®g) (&g ™). Thus quantum discord is the dif Quantum discord is then the difference betwegandFc. The ver-

ference in the capacity of superdense coding using the maxji.o| dashed line indicates the value jofwhere all entanglement is
mally entangled state and the best possible classicallg€or |ost due to the depolarising channel.

lated state. Our results show that quantum advantage can be
gained over the initially classical state in the presenceidfe
even wherQ(|®q) (®q|) is unentangled. This is illustrated in - £pgpc/RDF/BIG/0612b/31), and the EU Integrated Project
Fig. (3) whereQ = A, is the depolarising channel. QESSENCE.
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Supplementary Material:
“Quantifying the Nonclassicality of Operations”

This Supplementary Material contains the proofs of the mesunlt Theorem 1 and Properties P1-P3, a derivation of thieva

of our nonclassicality measuv® for unitary maps, along with additional details of the céd¢ion of W for the examples given
in the main text.

PROOF OF THE MAIN RESULT

Theorem 1 relates to the decomposing our measloé non-classicality into two contributions. Specifically,

Theorem 2. The quantumness of an operation W(Q) is the sum of two independent contributions
w(Q) = Sll)Jp<S(r 0Qol(p)|IFoQ(p)) +S(Qol(p)||FoQo r(p))) , 1)

where the supremumis over all quantum states p.

Proof. We start with the relative entropy, defined®@| o) = Tr[p(log(p) —log(c))] [? ], featuring under maximization in
W(Q). Then we insert the sum of a complete set of orthonormal proijsy , My = 1, wherell, are the Kraus operators bf
We thus obtain

S(Qol(p)[FoQ(p)) = —S(Qol(p)) —Tr[QoT(p)log(F o Q(p))] ()
= —8(QoF(p)) —Tr[Y NaQoT (p)log(T o Q(p))]. ©)

whereS(p) = —Tr[plog(p)] is the von Neumann entropy. Next we use the fact the proggioperty(s 4 I'Io,)2 =5qMNa
together with the cyclic property of the trace and the faat fh, commutes witH o Q(p) and thus also with its logarithm. The
above is then transformed to

S(QoT(p)[FoQ(p)) = —S(QoF(p)) - Tr[; NaQol (p)Nalog(FoQ(p))] (4)
= —S(Qol(p)) —Tr[FoQol(p)log(T o Q(p))]. (5)
Next we add and subtra8{" o Qo (p)) to the righthand side to get to
S(QoT(p)|IFoQ(p)) =S(FoQol(p)) —S(QoT(p)) +S(FoQol(p)[F o Q(p)). (6)
We now expand the entrof®(l 0 QoI (p)) to give
S(Qol(p)|IFoQ(p)) = ~TrFoQol(p)log(FoQol(p))]—S(Qol(p)) +S(FoQol(p)|l o Q(p)). @)
Now we expand™ and insert back the orthogonal projective operalbgsyielding

S(QoT(p)[FoQ(p)) = ~Tr( MaQoT (p)Mglog(F o Qo (p))] - S(QoT (p)) + S(ToQoT (p)[IFoQ(p)).  (8)

Now becausé&l, commutes witH o Qo ", we find that

S(QoT (p)[F 2 Q(p)) = ~S(QoT (p)) ~ T[S MaQoT (p)log(F 0 Q0T ()] + S(FoQoT (p)[FoQ(p)).  (9)

The first two terms then form another relative entropy, legdis to
S(Qol(p)|FoQ(p)) =S(FoQol(p)|FoQ(p)) +S(Qol(p)FoQol(p)). (10)

Inserting the supremum overthen formsV(Q) and completes the proof. O



PROOFS OF PROPERTIES P1-P3

Here we give the proof of property P1 that the maximum in th&imiation forW is always attained for a pure state.

Theorem 3. Given sup, S(Qo T (p)|loQ(p)), there exists a pure state () (Y| such that the supremum in equation (1) is
attained when p = |¢) (Y.

Proof. Imagine that we have performed maximization over only theéeure states and found that the maximum is attained
for ). Then for some mixed stapewe can spectrally decompose it@s- ¥ ; y; \qq) <(pj \ Where\ qoj> are it eigenstates. Since
the relative entropy is jointly convex in its argumerg][this implies that

S(Qol(p)[FoQ(p)) <y uiS(QoT(lg) (@])IToQ(|@)(@]) < SQoF () (W) o Q(lw) (W)
J

This completes the proof. O

Next we will consider the property P2, stating that the meagu is non-increasing under the composition with classical
maps.

Theorem 4. If Q is some map and W(Q¢) = 0then W(Q:0 Q) <W(Q) andW(Qo Q;) <W(Q).
Proof. Notice that
W(Qco Q) = supS(Qco Qo (p)| Qo 2Q(p)) < SUpS(Q<T (p) 72 Q(p)) ~W(Q) (11)
where the last inequality is due to the monotonicity of fie&entropy under completely positive operations (and #iss the
strong subadditivity of the von Neumann entropy, which igiegjent to monotonicity31]). For the reverse order
W(QoQc) = sgpS(Q ol oQc(p)||[F o QoQc(p))

— supS(QsT(p)[FoQ(p))
Qc(p)

SUpS(QeT (p) [ o Q(p)) =W(Q), (12)

IN

where going from second to the third line we changed the satwkiich we take supremum from all states to the set of stdites o
the formQ(p). Since this set is entirely contained in the set of all statesinequality follows. O

Finally, the property P3 is proved in the following theorem.

Theorem 5. Given a set of local operations Q%, Q2 such that W(Q{y© 1) = 0 and W (1® QE) = 0 thenW(Q) = 0 for any local
operation with shared randomness of the form Q = 5, yw Q) © Q5.

Proof. Notice that since we required thEthe composed of local orthonormal projectors we can writs It & M @ B in the
bipartite case. Given thé)vAV andQ\'?V commute with™ andr B, respectively, we also have tH@tcommutes witH™, establishing
the result. O

QUANTUMNESS OF UNITARIES

Now we turn our attention to the proof of the statement reiggrthe quantumness of unitary operations.

Theorem 6. When I" acts on the entire joint Hilbert space, selecting a complete orthonormal classical basis |k), we have for
any unitary operation U that W(U) = 0if and only if U = S €% |k) (k| P, where P is a permutation of the classical basis and
¢ are phases. Otherwise W (U) = o.

Proof. We proceed by computing the relative entrc$(jd ol (p)|l oU(p)). First we show that iJ is not of the required
form, thenW(U) = . Under such assumption, there exists a non-classical|gigtsuch thatl |@) = |j), where|]) is any
classical basis state. The relative entr&dp||o) is infinite due to the term Tplog(o)] when the kernel o& has a non-zero
overlap with the support gb. So supposém) = Y ax |K) is the expansion dfg) in the classical basis. Thd|@) (@) =
il a2 k) (K| # |@) (@, since|@) is not classical by assumption. This (| @) (@|)U T will in general have support across
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numerous classical states besitigsj|. However, the second argument of the relative entropyi$ | @) (@w|U™) =|j) (j| and
thus is a state with a kernel overlapping the suppot bf | @) <qb|)UT, making the relative entropy infinite.

Secondly, we show that W (U) = «, then some classical state is mapped to a non-classical state. Since the generating
power is the einselected relative entropy of discord of tiigpuat state, we know that it must be bounded by(thgwhered is
the dimension of the joint Hilbert space. Therefor&)\ifU) = o, the distinguishing power is infinite. There exists a stdtge
such that

S(FUT(g) (WHUHIF (U ) (Y|UT)) = . (13)

Now |) cannot be classical, otherwise the above would vanish.t$ge= 5 y ), T (|@) (@]) = Sk|w|? |K) (k], and label the
mapping of classical statestdgk) = |¢x). Then we have thdt(UT (|@) (@)U ") = S| wl?F (|¢) (@]) andl (U @) (w|uUT) =

Sk WY T ([we) (dn]). Thus we see that if for ak the statesyy) were classical, then the distinguishing power would vanish
Therefore, we must have that at least one of the stgigsis not classical, showing thét is not of the form in the theorem
statement. We have thus shown tblais not a permutation matrix up to a phase if and onWvifu ) = . Conversely, wheb

is a permutation matrix up to a phase, we know tWatanishes. This completes the proof. O

FURTHER DETAILS FOR EXAMPLE APPLICATIONS

Here we provide additional details for the examples givethénmain text.

Quantumness of a composition of operations

Given a sequence of operations, the quantunwesssnot additive under the composition of operations so that
W(AoBoC) #W(A) +W(B) +W(C), (14)

for three operation#, B andC. This is most easily demonstrated and explained by usingiatec-example as described in
the main text. Conside® = H o=, 0H in which we use the amplitude damping chanBglsandwiched between Hadamard
gatesH. A key observation is that the output st&¥p), for all values ofy, has diagonal elements which are independent
of the off-diagonal elements of the input st@te This immediately implies that in this cas® has no distinguishing power
for any input state and its quantumness comprising only oégating power. Using this and property P1 the maximizabibn
S(Qol(p)||lF oQ(p)) is therefore achieved for classical pure input stéeand/or|1). It is straightforward to show that both
are maxima. Using0) we compute directly

HoZ,0H(|0)(0]) = %1+\/ —y)|00) (00| + £ (|1o><00|+|oo> 10)) + 1 V1-y)|10) (10| (15)
FoHoZ,0H(|0)(0]) = 1+\/ ~y)|00) 00|+ 1—\/1—y)|10><10|. (16)

Here we see that in going from Eq.&) to Eq. (L6) the nonclassical off-diagonal terms are erased by thel#geace operator
. Overall this yields

W(Q) = log(a) + (a/2)log|(1+a)/(1—a)] + (b/2)log[(1+b)/(1-b)], (17)

wherea= /I—yandb = /y2—y+1. Fory= 1 the maximum possible quantumness/fQ) = 1 is attained. At the
opposite limity = 0, corresponding to the removal of the amplitude dampingchh we hav&V(Q) = 0, since the remaining
sequence of operatio$o 1o H = 1 is classical. For & y < 1 the quantumned#(Q) varies monotonically between these
values. Given thatV(H) = o, and hence is maximally quantum, whil(=,) = 0 is classical, we see tht(Ho=,0H) #
W(H)+W(Z))+W(H). This non-additivity ofV is an expected consequence of the quantum interferencedethe different
operations in a composition. Moreover, this example itatsts that adding a classical operation between two naictds
operations can be used to activate quantumness.

Discord generating map

In the main text we consider the m&= 1® Qg, whereQg(p) = ElpEI+ Esz; andE; = |0) (0], E2 = |+) (1]. Being
a local mapQ cannot generate entanglement, yet intriguingly when ipjsliad to a classical input, = %(|O> (0| ®10) (0] +
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|1) (1] ®|1) (1]) it can generate an output state with non-zero discagjl [Focusing on the non-trivial single-qubit channel
Qg we again observe that the diagonal elementQgfp) are independent of the off-diagonal elementppfeading to zero
distinguishing power for any input state. As suttiQg) is exclusively composed of generating power and its maation

is attained by a pure classical input. This is readily vetifie be|1), as might be expected. The valueWfQg) is then
S(Qgol(|1)(1])||l o Qg(|1) (1])) = 1 which is the maximum possible. For the extensiofgfto a two-qubit map we have
W(1® Qg) =W(Qg) which is maximized by input states of the fofgh) ® |1), where|) is an arbitrary single-qubit state.

Depolarised rotated CNOT gate

Next we consider a CNOT with its control rotated into the basis, followed by a two-qubit depolarizing chanAgl, which
gives a complete operatid® = Ay o (H® 1) oCNOT o (H ® 1). We find that for all values of the depolarizing probability
the maximum generating powd/(Q o IN) is attained by the classical input staf © |0), while the maximum distinguishing
powerW(I o Q) is attained by the entangled input stété = (|0) ® |-) +|1) ® |+)) /v/2. As a function ofu the generating
and distinguishing power are given by the relative entr®pie

S(QoT(|00) (00])||IF o Q(|00) (0Q])) = —%Iog(l— H) -i-%log(l—i— 3u), (18)
and
S(Qo T (1) (W)IT o QW) (W) = & (1 )log(1— )+~ 2 log(1+3u) (19)

respectively. Performing the maximization #{Q) reveals that there exists a certain threshgldsuch that whenever < i

we haveW(Q) = W(QoT), while for u > e we haveW(Q) = W(I 0 Q). The maximum therefore switches between the
generating and distinguishing power at the transition ppie: L, which is found by direct substitution to he = 2/3, where
both Egs. {9) and (L8) evaluate to lo¢3)/2. Note that unlike the previous examples, whé&fQ) being composed purely of
generating power coincides with a vanishing distinguighiower, here both the generating power and distinguishimgepare
non-zero forall O< p < 1.



