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In some cases the state of a quantum system with a large number of subsystems can be approxi-
mated efficiently by the density matrix renormalization group, which makes use of redundancies in
the description of the state. Here we show that the achievable efficiency can be much better when
performing density matrix renormalization group calculations in the Heisenberg picture, as only the
observable of interest but not the entire state is considered. In some non-trivial cases, this approach
can even be exact for finite bond dimensions.

PACS numbers: 03.67.Mn,02.70.-c,75.10.Pq

Introduction – Quantum many-particle systems give
rise to a number of intriguing phenomena such as
quantum phase transitions, magnetic frustration, the
existence of rare-earth magnetic insulators or high-
temperature superconductivity. But as the size of the
Hilbert space grows exponentially with the number of
subsystems, the numerical simulation of such quantum
many-body systems is difficult and often intractable.

In some cases, however, a quantum system does not ex-
plore its entire Hilbert space and numerical approaches
like the density-matrix renormalization group (DMRG)
technique [1], become efficient tools. DMRG can be un-
derstood as a variation over the set of matrix product

states (MPS) [2, 3] whose size grows only polynomially
with the number of subsystems. Its success is linked to
the existence of an upper bound for the entanglement of
contiguous sub-blocks of the system under study [4, 5, 6].
This approach is therefore expected to work particularly
well for the ground state of one-dimensional gapped sys-
tems, in which correlation functions decay exponentially
and the entanglement entropy saturates, satisfying an
“area law” [6, 7]. There are of course situations in which
no upper bound to the entanglement in the system exists
or where it grows in time. In such cases the performance
of DMRG deteriorates. This is typically the case for the
dynamics of non-equilibrium states, as exemplified in re-
cent studies of sudden quenches to Bose-Hubbard Hamil-
tonians [8]. Due to its dynamical production, the entan-
glement per unit area may grow linearly in time in those
scenarios [9, 10]. To achieve a fixed precision DMRG al-
gorithms hence need to use matrix dimensions that grow
exponentially in time rendering them inefficient [10].

An increasing number of experimental settings, includ-
ing arrays of Josephson junctions [11], ultra cold atoms in
optical lattices [12], ion traps [13] and arrays of coupled
micro-cavities [14], offer the possibility to generate effec-
tive many-particle systems. Hence, dynamical studies of
quantum many-particle systems are expected to receive
increasing attention in the future. Moreover in real ex-

perimental situations, such systems will typically suffer
from decoherence and dissipation and hence evolve into
mixed states whose numerical description is even more
demanding. It is therefore desirable to develop new more
efficient methods for such problems or alternatively to
improve existing DMRG methods further.

In this letter we describe an approach to enhance the
performance of DMRG in time-dependent settings by
computing directly the observable of interest and prop-
agating its evolution in the Heisenberg picture. Our ap-
proach avoids calculating components of the quantum
states that are irrelevant to the observable of interest and
hence contrasts the standard DMRG approach, which
generates a quantum state for the entire quantum sys-
tem in the Schrödinger picture. DMRG performed in
the Heisenberg and Schrödinger picture are thus comple-
mentary. Whereas Schrödinger picture simulations cal-
culate the entire state and subsequently allow to com-
pute any observable of interest, Heisenberg picture cal-
culations only consider one operator whose expectation
value can in turn be computed for any initial state.

In the sequel, we demonstrate that DMRG performed
in the Heisenberg picture (H-DMRG) can have signifi-
cant advantages for numerical simulations of quantum
many-particle dynamics. These advantages become most
significant in open system dynamics described by mixed
states but can also be demonstrated rigorously for certain
exactly solvable systems. We find numerical indications
for a saturation of the block entanglement in the Heisen-
berg picture for increasing system size which suggest that
H-DMRG has superior efficiency in many cases.

Main part – For linear chains of interacting sub-
systems, we consider the evolution of operators such as
Xm(t) = U(t)

(

1
⊗m−1 ⊗X ⊗ 1

⊗N−m
)

U(t)†, where X is
a Hermitian operator acting on site m, and use a matrix-
product representation

Xm =
3

∑

i1,...,iN =0

tr
[

A
(1)
i1

. . . A
(N)
iN

]

Pi1 ⊗ . . . ⊗ PiN
(1)
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with suitable d × d-dimensional matrices A
(l)
il

and the
canonical operator basis {P0, P1, P2, P3} with (Pm)i,j =
δm,2i+j for i, j ∈ {0, 1}. We focus our study on dynamics
of the anisotropic Heisenberg Hamiltonian for a chain of
N spins,

H =

N
∑

j=1

Bzσ
z
j +

N−1
∑

j=1

∑

α=x,y,z

Jασα
j σα

j+1 , (2)

as this model is known to exhibit dynamics that is nu-
merically hard to simulate. In eq. (2), Bz is an applied
magnetic field, Jx, Jy and Jz are spin-spin couplings and
σx

j , σy
j and σz

j the Pauli operators at site j.
Exact results – It is noteworthy that the time evo-

lution of certain operators can actually be represented
exactly by a matrix product operator with fixed finite
bond dimension. For Hamiltonians of the form of eq. (2)
with Jz = 0, all local operators that transform under the
Jordan-Wigner transformation [15] into local fermionic
operators remain exact matrix product operators with
fixed finite dimension for all times. Examples of such op-
erators are σz

m whose time evolution is an exact matrix
product operator for matrix dimension d = 4 and gener-
ally any product of Pauli-operators with an even number
of σx or σy operators and any number of σz operators.

To see this, let us first define the fermionic annihila-
tion and creation operators [15], cm =

∏m−1
j=1 σz

j (σx
m +

iσy
m)/2. In terms of cm and c†m, the Hamiltonian

(2) with Jz = 0 reads H = −B
∑N

j=1(2c†jcj − 1) +

Jx

∑N−1
j=1 (c†j −cj)(c

†
j+1 +cj+1)−Jy

∑N−1
j=1 (c†j +cj)(c

†
j+1−

cj+1). Given that the Hamiltonian is quadratic in cm

and c†m, the Heisenberg time evolution of an individual
Heisenberg operator such as cm(t) is found to be cm(t) =
∑N

j=1

(

αj(t)cj + βj(t)c
†
j

)

. In the fermionic picture this

may be written as matrix product operator with matrices
of dimension 2 as it is essentially the same as a W-state.
Rewriting the rhs in terms of Pauli operators we find

cm(t) =
∑N

j=1

(

αj(t)
∏j−1

l=1 σz
l σ+

j + βj(t)
∏j−1

l=1 σz
l σ−

j

)

,

where σ± = 1
2 (σx ± iσy). This in turn may be written

as a matrix product operator of the form eq. (1) whose

matrices have the structure A
(1)
0 = P1, A

(m)
0 = P0 +

P3, A
(N)
0 = P0, A

(1)
1 = α1(t)P0, A

(m)
1 = αm(t)P2, A

(N)
1 =

αN (t)P2, A
(1)
2 = β1(t)P0, A

(m)
2 = βm(t)P2, A

(N)
2 =

βN (t)P2, A
(1)
3 = −P1, A

(m)
3 = P0 − P3, A

(N)
3 = P0.

As every spin operator may be expressed as a sum
of products of fermionic operators we can now under-
stand the above observations. For example, because
σz

m = 2c†mcm − 1 we can write it as a product of two
matrix product operators each with dimension 2, so that
σz

k is a matrix product operator with dimension at most
4. This reasoning also holds for models with disorder,
i.e. where the magnetic field or the couplings depend on
the lattice site (Bz(j), Jx(j) and Jy(j)), which can not be
diagonalized via Fourier and Bogolubov transformations

[15]. Analogous conclusions hold for quasi-free bosonic
systems.

This observation demonstrates that a DMRG simula-
tion in the Heisenberg picture may be considerably more
efficient, even exact, in cases where the same approach
in the Schrödinger picture is provably inefficient [10]. In
contrast to the Schrödinger picture, the block entangle-
ment in the Heisenberg picture (considering the four op-
erators P0, P1, P2, P3 as basis-vectors of a 4-dim Hilbert
space for each site) is bounded for all times. This dif-
ference in entanglement scaling in the two pictures obvi-
ously can not hold for all settings [18]. Nonetheless we
find indications for a saturation in the scaling of block
entanglement in numerical simulations for more general
models.

Numerical results – We now turn to compare the nu-
merical efficiency of H-DMRG with that of DMRG in
the Schrödinger picture [1, 2, 3, 4]. For the dynamics of
pure states, we have seen that there are examples where
DMRG becomes exact thanks to a very favorable behav-
ior of entanglement. In general one expects the use of
H-DMRG to be advantageous only where the entangle-
ment scaling for the state is drastically worse than for
the operator to be evolved. This is due to the following
reason: If a quantum state has the matrix product repre-

sentation |Ψ〉 =
∑

i1...iN
tr

[

A
(1)
i1

. . . A
(N)
iN

]

|i1〉 ⊗ . . . ⊗ |iN 〉
with matrix dimension d, then the operator |Ψ〉〈Ψ| has
the matrix product representation

|Ψ〉〈Ψ| =

3
∑

i1,...,iN =0

tr
[

B
(1)
i1

. . . B
(N)
iN

]

|i1〉〈i1|⊗. . .⊗|iN〉〈iN |,

(3)

where B
(l)
il

= A
(l)
il

⊗
(

A
(l)
il

)†

and hence the B matrices

have dimension d2. The matrix product representation of
an operator is thus expected to require matrix dimension
d2 in situations, where the representation of a state only
requires d and is therefore much more efficient.

The situation is different if decoherence and dissipa-
tion is present as then the evolution of an operator must
be considered in both, Heisenberg and Schrödinger pic-
ture. Dissipation may be described by local Lindblad
terms leading to a master equation for the dynamics of
the density matrix ̺ of the form [17],

˙̺ = −i [H, ̺] +

N
∑

j=1

Γd

2

(

2σ−
j ̺σ+

j − σ+
j σ−

j ̺ − ̺σ+
j σ−

j

)

+

N
∑

j=1

Γu

2

(

2σ+
j ̺σ−

j − σ−
j σ+

j ̺ − ̺σ−
j σ+

j

)

, (4)

where Γd and Γu are the respective damping rates. When
the description is transferred into the Heisenberg picture,
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FIG. 1: The time evolution, 〈σz
5〉(t) for a model described by

eqs. (4) respectively (5) with parameters N = 10, Bz = 0.8,
Jx = 0.5, Jy = 0.4, Jz = 0.01, Γu = 0.1 and Γd = 0.1. a:
The exact solution, b: δDMRG for DMRG-simulations in the
Schrödinger picture for d = 20 (blue), d = 40 (green), d = 60
(red), d = 80 (cyan) and d = 100 (magenta), c: δH-DMRG for
DMRG-simulations in the Heisenberg picture.

the same dynamics is described by the equation,

Ẋ = i [H,X ] +

N
∑

j=1

Γd

2

(

2σ+
j Xσ−

j − σ+
j σ−

j X − Xσ+
j σ−

j

)

+

N
∑

j=1

Γu

2

(

2σ−
j Xσ+

j − σ−
j σ+

j X − Xσ−
j σ+

j

)

, (5)

for a Heisenberg picture operator X (t). In the following
we compare the results of numerical simulations in the
Schrödinger (eq. 4) [16] and Heisenberg picture (eq. 5).

In our first example we choose the parameters of the
model to be, N = 10, Bz = 0.8, Jx = 0.5, Jy = 0.4,
Jz = 0.01, Γu = 0.1 and Γd = 0.1 to allow for compari-
son with exact results. We simulate the time evolution
of the operator σz

5(t), where the initial state is all
spins pointing down in z-direction, |φ0〉 = | ↓, . . . , ↓〉
(σz | ↓〉 = −| ↓〉). Figure 1a shows the exact solution,
that is a 2nd order Runge-Kutta integration with time
steps dt = 0.01 of eq. (4). All our DMRG simulations
also use 2nd order integrations with dt = 0.01. The
errors of DMRG-simulations in the Schrödinger pic-
ture, δDMRG = log10 (|〈σz

5〉exact(t) − 〈σz
5〉DMRG(t)|),

and the Heisenberg picture, δH-DMRG =
log10 (|〈σz

5〉exact(t) − 〈σz
5〉H-DMRG(t)|), are shown in

figures 1b and c respectively (Calculations with time
steps dt = 0.001 produced indistinguishable results).
The Heisenberg picture simulations show a significantly
higher accuracy than the Schrödinger picture results.
Moreover the accuracy improvement with increasing
matrix dimension d is more pronounced in the Heisen-
berg picture, suggesting an unfavorable scaling of
entanglement in the Schrödinger picture.

In a second example we consider a chain of N = 100
spins, with slightly different parameters to show the gen-
erality of our findings, and compare DMRG results in
the Schrödinger and Heisenberg picture. Here, Bz = 0.8,
Jx = 0.5, Jy = 0.4, Jz = 0.01, Γu = 0.01 and Γd = 0.1.
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FIG. 2: Dynamics of a chain with N = 100 spins and
Bz = 0.8, Jx = 0.5, Jy = 0.4, Jz = 0.01, Γu = 0.01
and Γd = 0.1. a: 〈σz

50〉(t) as given by eq. (4) (DMRG)
for d = 20 (blue), d = 40 (green), d = 60 (red), d = 80
(cyan) and d = 100 (magenta). b: 〈σz

50〉(t) as given by
eq. (5) (H-DMRG) for d = 20, 40, 60, 80 and 100. c:
˛

˛[〈σz
50〉(t)]d1

− [〈σz
50〉(t)]d2

˛

˛ as given by eq. (4) (DMRG)
for (d1, d2) = (40, 20) (blue), (d1, d2) = (60, 40) (green),
(d1, d2) = (80, 60) (red) and (d1, d2) = (100, 80) (cyan). d:
˛

˛[〈σz
50〉(t)]d1

− [〈σz
50〉(t)]d2

˛

˛ as given by eq. (5) (H-DMRG) for
(d1, d2) = (40, 20), (60, 40), (80, 60) and (100, 80). With in-
creasing bond dimension, results converge much faster in the
Heisenberg than in the Schrödinger picture.

Figures 2a and 2b show 〈σz
50〉(t) as calculated in the

Schrödinger (2a) and Heisenberg picture (2b). Since it is
not possible to compare these values to exact results for
N = 100, we test the convergence of the obtained results
with increasing matrix dimension, d. This convergence is
shown in figure 2c for the Schrödinger and in figure 2d for
the Heisenberg picture, where we plotted the differences
between results that were obtained with different matrix
dimensions d1 and d2, |[〈σz

50〉(t)]d1 − [〈σz
50〉(t)]d2|. The

convergence is found to be much faster in the Heisenberg
than in the Schrödinger picture. We found the advantage
of the Heisenberg picture to be of a comparable signif-
icance as in figure 2 already for a chain with the same
parameters but N = 40 spins.

In our simulations we use the time evolved block deci-

mation (TEBD) algorithm introduced in [4]. This algo-
rithm, at each step, truncates the reduced density ma-
trices of all considered bipartitions by only keeping the
states corresponding to their d largest eigenvalues (Here
d is the dimension of the employed matrices.). We com-
pute the truncation error by summing up all truncated
eigenvalues of the reduced density matrices [4] at each
time step. The truncation errors at each time step, ǫt,
are then cumulatively summed up. The resulting quan-
tity, ǫ =

∑

t ǫt, is thus an upper bound to approximation
errors due to matrix truncation.

To enable a comparison of the accuracies of the matrix
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FIG. 3: Truncation errors ǫ at t = 10 for Schrödinger picture
DMRG (blue) and H-DMRG (green) for N = 20, 40, 60 and
80 and fixed bond dimension d = 60. Bz = 0.8, Jx = −0.5,
Jy = 0.4, Jz = 0.1, Γu = 0.1 and Γd = 0.2. H-DMRG
truncations saturate at ǫ ≤ 0.96.

truncations, we set Heisenberg and Schrödinger represen-
tations on the same footing by normalizing the represen-
tations of eqs. (3) and (1) in the Frobenius norm, i.e.
for a m × m matrix X we set

∑m

i,j=1 |Xi,j |
2 = 1. With

this normalization, the matrix representations of ̺ and X
both have the structure of Matrix Product States where
the eigenvalues of reduced matrices sum up to unity and
can be interpreted as Schmidt coefficients[19].

Since we compare truncation errors in two different
representations it is not obvious that lower truncation
errors in one representation imply a better approxima-
tion for the expectation value of an observable or vice
versa. Indeed, for the short chains used in the exam-
ple in figure 1 we found comparable truncation errors in
both approaches even though the error in the relevant
observable is much smaller when using H-DMRG[20].

On the other hand, the truncation errors appear to
be significantly lower in H-DMRG for longer chains. We
have therefore investigated the scaling of the truncation
error with the system size for fixed bond dimension d.
Importantly, we observe that in contrast to Schrödinger
picture DMRG, the truncation errors ǫ are found to
saturate in H-DMRG for fixed bond dimension if the
system size is increased. Figure 3 shows the trunca-
tion errors ǫ at t = 10 for Schrödinger picture DMRG
(blue) and H-DMRG (green) for d = 60 and chain length
N = 20, 40, 60, 80 and 100. For the remaining param-
eters we chose a set, that is again different from those
in figures 1 and 2 with Bz = 0.8, Jx = −0.5, Jy = 0.4,
Jz = 0.1, Γu = 0.1 and Γd = 0.2.

This clear difference in the scaling further corroborates
the idea that the Heisenberg and Schrödinger picture are
qualitatively different in regards to their entanglement
scaling even beyond the exactly solvable models discussed
earlier. In fact, this feature hints at a saturation of the
entanglement of bipartitions in the Heisenberg picture. It
will be an interesting challenge for future work to provide
analytical arguments to support the numerical findings
presented here and to demonstrate more rigorously the
superior efficiency of H-DMRG when applied to mixed
state evolutions beyond the numerical findings here.
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[5] T. Prosen and M. Žnidarič, Phys. Rev. E 75, 015202R
(2007); T. Prosen and I. Pižorn, Phys. Rev. E 76, 032316
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