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Abstract- The application of a newly developed algorithm is 
presented which allows the on-line measurement and tracking of 
the time-varying harmonic content of distorted voltage and 
current waveforms arising at the point of connection between 
HVAC and HVDC power systems.  A novel discrete Kalman 
filtering technique is used which is able to rapidly acquire and 
accurately track the values of harmonic amplitudes and phases.  
The effectiveness of the presented method is demonstrated by a 
simple test case.  Amplitude and phase acquisition is compared 
with that of an on-line FFT-based frequency scanner.  The 
proposed algorithm has been applied in the identification and 
tracking of the harmonic content of waveforms obtained at the 
point of HVAC/HVDC common coupling.  However, the 
technique is suitable for more general power system and power 
electronic applications where the rapid and accurate acquisition 
of harmonic properties is required.    

   
I.  INTRODUCTION 

One of the most important problems when HVAC and 
HVDC systems are connected is the interaction between these 
systems.  Of major concern are the disturbances arising from 
the generation of harmonics which often lead to serious 
operating problems in practical HVDC systems.  This issue 
has attracted significant attention in HVDC literature for 
reasons now briefly considered.  

The switched, non-linear behavior of HVDC 
phase-controlled thyristor converters causes the injection of 
the harmonic currents into the connected AC system. This 
generates characteristic harmonics under steady-state 
conditions and non-characteristic harmonic during transient 
changes [1].  The harmonic components produce undesirable 
effects both within the HVDC and HVAC systems, such as 
greater instability and loss of precision in the control and 
protection systems, greater heat production and power loss in 
components and conductors, and they generate greater noise 
and interference within local control and telecommunication 
systems.  For the reduction of undesirable effects, the 
accurate identification of voltage and current harmonic 
content is very important.  Having insight into the levels of 
harmonics and waveform distortion aids the design of 
appropriate filters for good steady-state operation, and the 
optimal adjustment of controller and compensation equipment 
parameters under transient conditions [1,2].   

With a steady HVDC-converter firing-angle, fixed 
commutation duration, and undistorted AC system voltage 
conditions, an AC/DC converter produces so-called 
characteristic harmonics, which are a multiple of the 
fundamental frequency.  However such idealized operation 

does not persist in practice and more complex current and 
voltage waveform spectra result.  Harmonic voltages and 
unbalance exist on the AC side, and current ripple will exist 
on the DC side.   Also, with constant–current control, the 
firing angle will not be steady and commutation period 
duration will also vary.  Therefore, not only are harmonic 
voltages and currents transferred though the converter but 
also their effects may be amplified through the variation of 
thyristor switching instants [1].  A fast, accurate method is 
required to carry out the identification process and accurately 
track time variations in current and voltage harmonic 
amplitude and phase. 

 

II.  HARMONIC ANALYSIS ALGORITHMS 

Most frequency-domain harmonic-analysis algorithms are 
based either on the Discrete Fourier Transform (DFT) or on 
the Fast Fourier Transform (FFT), and approximate the 
voltage and current frequency spectra from discrete time 
samples. The DFT and FFT algorithms have been usefully 
applied in power system phasor measurements and harmonic 
analysis [3,4]. However, misapplication of the FFT algorithm 
leads to inaccurate results [2,5]. The basic assumptions 
employed in the application of the DFT and FFT are that: (i) 
the signal is stationary (constant magnitude), (ii) the sampling 
frequency is equal to the number of samples multiplied by the 
fundamental frequency assumed by the algorithm, (iii) the 
sampling frequency is greater than twice the highest 
frequency in the signal to be analyzed, and (iv) each 
frequency in the signal is an integer multiple of the 
fundamental frequency. When these assumptions are satisfied, 
the results of the DFT or FFT are accurate.  However, 
accuracy suffers when these assumptions are not true because 
of three effects; aliasing, spectral leakage, and picket-fence 
effect [5]. Aliasing can be alleviated by increasing the 
sampling frequency. Data acquisition system sampling rate is 
usually set at a fixed value, of several kHz or more. If the 
sampled waveform does not contain an integer number of 
samples per integer number of cycles, the results of the DFT 
algorithm will include errors. The resulting error is known as 
spectral leakage [2,5]. The DFT and FFT of such a sampled 
waveform will incorrectly indicate non-zero values for all of 
the harmonic frequencies. Reference [6] reviews the problems 
associated with direct application of FFT to compute 
harmonic levels of non steady-state, distorted waveforms and 
presents various ways to describe recorded data in statistical 



terms. Recently DFT and FFT methods have been improved.  
For example, [7] proposes the optimization of spectrum 
analysis to reduce the restrictions on FFT input and 
consequently the picket-fence and leakage effects are reduced.  
Reference [8] implements a least square (LES) parameter 
estimation algorithm for the identification and measurement 
of power system harmonics. Reference [9] presents a dynamic 
filter based on the least absolute value algorithm for on line 
tracking of power system harmonics. Reference [10] presents 
a comparative study for power system harmonic estimation.  
It compares the results obtained using DFT, the LES 
algorithm, and the least absolute value (LAV) parameter 
estimation algorithm.  It concluded that the three algorithms 
produce the same estimate, if the signal under study is free of 
noise.  However, if some data samples are missed, the least 
absolute value produces a better estimate than the DFT and 
LSE algorithms.   

The proposed harmonic amplitude and phase identification 
algorithm gives further improvement over the previously 
discussed methods and is based on Kalman filtering.  
Reference [11] reviews the applications of linear Kalman 
filter algorithms for electric power quality analysis and 
discusses the potential improvement possible. These 
applications include the measurement of harmonics and 
voltage sags.  In this paper, a Kalman filter algorithm has 
been developed for the identification of harmonics associated 
with HVDC systems, and the output of this is directly 
compared with an FFT method to quantify its superior 
steady-state and tracking accuracy. 

 

III.  OPTIMAL ON-LINE IDENTIFICATION 

Different state-variable models have already been derived 
for phasor representation.  They can be divided into two 
different categories: (a) models with a variable measurement 
matrix and constant transition matrix, and (b) models with 
variable transition matrix and constant measurement matrix. 
Modeling based on (b) involves greater calculation and 
consequently takes longer to solve, because the variable 
transition matrix is a full matrix.  In this study, the modelling 
uses a variable measurement matrix, and is now considered. 
The AC voltage or current input is assumed to comprise N 
harmonics and may be expressed as: 

( ) ( ) ( ) ( ) ( )[ ]∑
=

−=
N

n
ninr tntStntSts

1
sincos ωω       (1) 

The discrete system to be estimated is described at the kth time 
sample by the state equation: 

( ) ( ) ( ) +
+ ℵ∈=+= kkTttwtxtx sfkkkk ,1     (2) 

In (2), Tsf is the sampling period, πω 2=f  is fundamental 
frequency, and x(tk) is the 2N dimension state-variable vector 
of real and imaginary components of the fundamental and 
harmonic phasors where: 

( ) ( ) ( ) ( ) ( )[ ]TkNikNrkikrk tStStStStx ...,11=      (3)     
Also in (2), ( ) N

ktw 2ℜ∈  is the random variable vector that 
allows for time variation of the state variables. It is described, 

noting its zero mean and no time correlation, by its 
covariance matrix as: 

( ) ( )[ ]k
T

kkw twtwEQ =,               (4)    
The measurement equation is given by: 

( ) ( ) ( )kk
T
kk ttxHtz υ+=              (5) 

In (5), z(tk) is the kth sampled measurement of s(t), and Hk is 
the following 2N vector: 

( ) ( ) ( ) ( )[ ]Tkkkkk tNtNttH ωωωω sin,cos,...,sin,cos −−=   (6) 
Also in (5), )( ktυ  is the measurement noise, which is 
assumed to be a white sequence with known kQυ  covariance 
and to be uncorrelated with the )( ktw  sequence. 
The Kalman filter state estimation ( )ktx̂  at the kth step is 
based on the recursive equation: 

( ) ( ) ( ) ( )( )11 ˆˆˆ −− −+= k
T
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where Kk, the Kalman gain, is obtained from the following 
recursive equation: 
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In (8), kR~  is the prediction error covariance matrix which is 
obtained from: 

( ) ( )( ) ( ) ( )( )[ ] 1,111
ˆˆˆ~

−−−− +=−−= kwk
T

kkkk QRtxtxtxtxER   (9) 

In (9), kR̂  is the estimation error covariance matrix at the kth
 

step and is evaluated using the following recursive equation 
in which I is identity matrix: 

( ) k
T
kkkkk RHkIRFR ~~ˆ −==            (10) 

The value and changing rate of the kR̂  matrix depends on its 
initial value, 0R̂ .  The matrix kR̂  has a stable asymptotic 
behavior if the system is observable [12].  Since it is 
apparent that all the states are not asymptotically stable, then 
to assure that the sequence of kR̂  is upper-bounded it must 
be proved that all the states are observable [12,13].  To show 
the observability, reference must be made to the behavior of 
the Kalman filter every 2N steps.   
The discrete system (2) and (3) is equivalent to the following 
system with 2N-times smaller sampling frequency: 
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All the states of the discrete system (11) and (12) are  
observable if and only if Nk

T
Nk CC 2,2,  is full rank; that is, the 

rows of Ck,2N are independent vectors in N2ℜ  (observability 
condition). In the following it is assumed that the 
observability condition is satisfied, and the sequence Qw,k  
and Qv,k are constant matrixes qw and qv, respectively.  From 
(8) and (10) it can be easily proved that matrices kR~ and kR̂  



asymptotically reach constant values in any frame of 
orthogonal coordinates that jointly rotates with Hk. 

The asymptotic matrices ∞,
~

kR  and ∞,
ˆ

kR can be obtained, 
from the solution of (13) the steady–state Riccati Equation 
(SSRE), and (14), respectively. In (13), A is the rotation 
matrix such that Hk+1 =  AHk. 
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For analyzing the asymptotic performance of the Kalman 
filter state estimation when starting from the initial estimate 

0x̂ , the discrete system (2) and (3) with a constant expected 
value ( )[ ] xtxE k =  is first estimated using (15). 

  ( )[ ] ( )[ ]1ˆˆ −−=− kkk txxEFtxxE            (15) 
Then the expected value of the estimation error at the kth step 
can be derived from (7) and (10). It is apparent that Fk causes 
a reduction along the observable direction Hk, because: 
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If the observability condition is satisfied so that all the 
directions are observable, then the sequence of expected 
values of estimation errors cannot diverge.  Moreover, Fk 
being asymptotically constant in a frame of coordinates that 
jointly rotates with Hk, the sequence (15) must asymptotically 
tend to a constant value in such a form.  That is, it must be 
given by: 

  ∞−∞ = ,1, ˆˆ kk eAe                   (17) 
where ∞,ˆke and ∞− ,1ˆke  are the asymptotic values of 

( )[ ]ktxxE ˆ−  and ( )[ ]1ˆ −− ktxxE  , respectively. By combining 
(15) and (17), the following steady-state equation is obtained: 

  ∞−∞−∞ = ,1,1, ˆˆ kkk eAeF               (18) 
where ∞,kF  is the asymptotic value of Fk. 
Starting from the definition of Fk, (10), and from the solution 

∞,
~

kR  of SSRE, (13), it may be shown that any non-zero 
solution of (18) is invalid.  That is, the expected value of the 
estimates asymptotically tends to be unbiased. 

The correlation between subsequent estimation errors can 
be obtained from (7) and (10): 
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and asymptotically: 
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Since each term ∞+ ,ikF  of the product in (20) causes a 
reduction along the observable direction ikH + , then the 

sequence of matrices ∏
=

∞+

n

i
ikF

1
,  tends to zero as ∞→n .  

Consequently, the smallest data window, sfnT , can be defined 
in such a way that the correlation between two different 
estimates of the Kalman filter is negligible. 

IV.  VALIDATION AND APPLICATION 

A. Validation  
The accuracy of the proposed optimal on-line identification 

algorithm was investigated by applying a test signal.  The 
test signal has known harmonic content and its general form 
is given by the following equation. 

 )cos()( ,, hTest
h

hTestTest thFtf ϕω += ∑        (21) 

where: fπω 2= , and f  is the fundamental frequency of 
the test signal. Fig. 1 shows comparison of the test signal, 

)(tfTest  and its identified signal, )(ˆ tf .  
The agreement between them is good and the output of the 
algorithm faithfully tracks the test signal after a short settling 
interval that is shown in Fig.1a. The ongoing estimation of the 
magnitudes of several harmonics of the test signal in Fig. 1 
(i.e. 1, 5, 7 and 11) is shown in Fig. 2. The short time taken 
for the algorithm to acquire an accurate estimate (about 5 ms 
for Fig.1) is evident. 
Also, within the PSCAD/EMTDC software package [14], a 
test signal is derived and applied to the available On-line 
Frequency Scanner (OFS) FFT algorithm. Figure 3 gives 
superimposed fundamental harmonic magnitude and phase 
estimates provided by the Kalman filter and OFS FFT 
algorithms over time. The figures show that with similar 
sampling (10 kHz) the time taken by the Kalman filter 
algorithm to reach an accurate estimate of both magnitude 
and phase (TSKM, TSKP) is consistently smaller than that of the 
FFT (TSFM, TSFP). The steady-state accuracy of the Kalman 
filter algorithm is also consistently better. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Source test signal (bold line) and estimated values (feint line, +) at (a) 
the beginning of sampling and (b) over a line-frequency period. 
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Fig. 2.  Harmonic magnitudes of the Fig.1 test signal, estimated using the 
proposed algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Harmonic (a) magnitudes and (b) phases of the Fig.1 test signal, 
estimated using the OFS FFT (feint), and proposed algorithms (bold). 
 
This is evident from the graphs of magnitude error against 
time shown in Fig.4.  A residual error remains in the OFS 
FFT algorithm output; whereas the Kalman filter algorithm 
output settles within 1% of the actual value in half the time of 
the FFT algorithm and gives an exact value after 20 ms.   
The faster settling and better steady-state accuracy are 
critically important when attempting very precise regulation 
or fault discrimination, especially during the dynamic 
operation of a power system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Harmonics magnitude errors for the (a) OFS FFT, and (b) proposed 
algorithms. 

B.  Application 
 The proposed algorithm is applied in the identification of 

harmonic content of voltage and current waveforms at point 
of common coupling between HVAC and HVDC power 
systems.  The system examined in this application was the 
CIGRE benchmark system (±500 kV, 1000 MW, 12-pulse) 
[15]. The rectifier converter is operating in constant-current 
control mode and the inverting converter is operating in a 
constant-extinction-angle-control mode. The current was 
sensed at the rectifier-transformer secondary. The voltage and 
current waveforms obtained under these conditions are shown 
in Fig. 5.  The effect of commutation periods is evident in 
the waveforms, and the results show that the estimated signals 
are in good agreement with the original signals. 
The acquired voltage and current harmonic properties are 
shown in Fig. 6 and Fig. 7. These figures show that all the 
magnitudes of the harmonics are time varying because of the 
continuous regulation of the firing angle of the HVDC 
converters to maintain a constant-current output. 
 

V.  CONCLUSION 

A fast algorithm based on discrete Kalman filtering has 
been developed and its performance is presented.  It is 
applied to the on-line identification and tracking of the 
time-varying harmonic content of distorted voltage and 
current waveforms at the point of common coupling between 
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HVAC and HVDC power systems.  The success of the 
procedure in accurately estimating dynamic harmonic 
properties has been illustrated.  An accurate estimation has 
been shown to be possible using the proposed algorithm with 
a small data window size.  The output of the algorithm is 
compared with output of an OFS FFT algorithm. The results 
show that the algorithm output converges to a low error 
significantly faster than the FFT and has a lower steady-state.             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Voltage and current waveforms (line) and their identification (+) at the 
point of common coupling between HVAC and HVDC systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Voltage harmonic identification at the point of common coupling 
between HVAC and HVDC systems.   

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Current harmonic identification at the point of common coupling 
between HVAC and HVDC systems.   

 
These benefits are very important for harmonic identification 
during transient and dynamic operation to allow timely and 
effective HVDC converter regulation or remedial action.  
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