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Abstract 

Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during 

vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-

catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling 

pathway, and promotes stable pluripotency independently of signalling. Although mES cells 

resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin 

signalling during mouse development has been reported at implantation. [1, 2][1, 2][1, 2]The 

relationship between ß-catenin and pluripotency and that of mES cells with epiblast 

progenitors suggests that ß-catenin might have a functional role during preimplantation 

development. Here we summarize the expression and function of Wnt/ß-catenin signalling 

elements during the early stages of mouse development and consider the reasons why the 

requirement in ES cells do not reflect the embryo. 
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The development of an organism results from the regulated convergence of two processes: 

the activity of genetic programmes that fuel the generation of different kinds of cells over 

time, and the organization of these into three dimensional structures that are the foundation of 

tissues and organs. Over the last twenty years, genetic analysis has revealed that the 

molecular underpinning of these processes relies on two interacting functional modules: a 

large palette of transcription factors that are used combinatorially to generate suites of tissue 

and organ specific cell types, and a small set of information processing devices, signal 

transduction networks, that have no inherent tissue specificity and work on the transcription 

factor palette to modulate the combinations and their temporal dynamics (Fig 1).  

 

Understanding the logic that configures interactions between the transcription factors palettes 

and the information processing devices during the development of an organism is an 

important challenge of modern biology that needs good experimental systems. While model 

systems like S. cerevisiae, C. elegans and Drosophila have provided deep insights into the 

structure of biological systems and the components of both modules. The early development 

of mammals is emerging as one in which it is possible to study how these modules self-

assemble and interact over time. Significantly, mammalian development has the added 

experimental value introduced by Embryonic Stem (ES) cells, clonal populations derived 

from preimplantation embryos which can be differentiated in culture under controlled 

conditions into all somatic and germ cells [3-5] and exhibit self-assembly properties [6-8]. 

These features, allow interrogation of basic processes of fate assignation in a simple system 

that can be related to the events taking place during embryogenesis. Hence. the comparison of 

data obtained from embryos and ES cells can be very enlightening. Here we explore this 

interface by reviewing what is known about the requirements for Wnt/ß-catenin signalling in 

embryos and ES cells and make some considerations about the relationship between both.  

 

An outline of early embryogenesis: laying down axes and primordia 

As is the case in all mammals, the early stages of the mouse embryo after fertilization are 

dedicated to the establishment of the extraembryonic lineages and their strategic organization 

[9-12]. After fertilization, the embryo undergoes 6/7 divisions over a period of 4 days during 

which the embryonic and extraembryonic lineages are separated from a pool of equipotent 

cells (Fig. 2A-B). At about day 4, as the embryo is about to implant, the precursor cells of the 

embryo (the epiblast, EPI) are located on one side of a cavity filled prolate spheroid bounded 

by the Trophectoderm (TE), which is the precursor of the foetal portion of the placenta. 

Between the EPI and the cavity is the primitive endoderm (PrE) which will give rise to 

extraembryonic membrane lineages. This cavitated preimplantation embryo is called 

blastocyst. After implantation, the PrE and EPI cells migrate to form a secondary cavity 

within the epiblast, the proamniotic cavity. At this time, the PrE will quickly differentiate two 

cell types: the visceral endoderm (VE), closely apposed to the embryo and together with 

extraembryonic mesoderm forms the visceral yolk sac, and the parietal endoderm that 

together with part of the TE will form the parietal yolk sac. 

 

The mammalian embryo is patterned without maternal inputs [10, 13, 14] and, after the 

segregation of extraembryonic lineages and implantation, the remaining cells form the 

epiblast, a columnar epithelium of about 200 cells, will expand and become patterned into the 

different organs and tissues [10, 15]. At about embryonic (E) day 6, the epithelium becomes 

subdivided into a broad anterior region and a posterior region (Fig. 2A-B). The anterior 

region will give rise to the anterior neuroectoderm (aNECT: the brain and parts of the head) 

and the surface ectoderm [16, 17]. From the posterior region, the mesoderm and the 

endoderm (pMSEND) will emerge through the Primitive Streak [13, 18, 19]. Clonal analysis 
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and cell transplantation experiments indicate that individual cells within the pre-streak 

(<E6.25) epiblast, are not committed and can give rise to any tissue of the organism [17, 20-

22], while cells in the early streak (~E6.5) epiblast show certain degree of commitment based 

on the position of the cells within the epiblast [17, 20]. The regional subdivision of the 

epiblast depends, in part, on a symmetry breaking event that results from a sequence of 

inductive events that provide a proximodistal and an anteroposterior axes to the embryo. The 

TGF-ß family member Nodal signals from the epiblast to induce the expression of Lefty1 in 

the distal most part of the VE, which becomes the distal visceral endoderm, DVE [23], and to 

recruit additional cells, which will form the anterior visceral endoderm (AVE). These cells 

translocate to one side of the epiblast cup and towards the proximal part of the conceptus 

thereby defining the anterior region of the developing embryo. This event sets up AP polarity 

and distinguishes the anterior region from the site of initiation of gastrulation at the posterior 

side. Genetic analysis suggests that the combined activities of Nodal, BMP and Wnt mediate 

interactions between EPI, VE and TE/extraembryonic ectoderm that establish the AP axis 

(Fig. 2C) [15, 24-26].  

 

There is evidence to suggest that the epiblast has a primary aNECT and that the signals from 

the proximal posterior impose a posterior pMSEND fate on this substrate [27, 28]. Secretion 

of Cerberus, Lefty1 and DKK from the DVE antagonize BMP, Nodal and Wnt, respectively 

and protect the anterior epiblast from the posteriorizing signals [19]. Consistent with this, 

removal of Nodal, BMP or Wnt/ß-catenin signalling in the epiblast results in a premature 

adoption of anterior neural fates by all cells of the epiblast [27-31] and gain of function of 

some of these signals e.g Wnt/ß-catenin, result in reduced aNECT development [31]. This 

subdivision between pMSEND and aNECT can be modelled in ES cells upon controlled 

culture conditions, where the role of Wnt signalling becomes explicit and paramount during 

differentiation [32-34].  

 

Function of ß-catenin in perimplantation and early patterning of the mouse embryo 

An analysis of the function of Wnt/ß-catenin signalling during mouse development is 

complicated by the number of genes encoding Wnt proteins (19) and Frizzled receptors (12) 

(for details on the genes and phenotypes see the Wnt page: 

http://www.stanford.edu/group/nusselab/cgi-bin/wnt/ and [35]) which, in addition, exhibit 

dynamic and overlapping patterns of expression in the preimplantation embryo [36]. 

Fortunately, the number of genes encoding key elements of the transduction machinery is 

smaller (LRP (2), Axin (2), GSK3 (2) and Dishevelled (3)) and, in the case of ß-catenin, the 

main transcriptional effector, there is only one gene whose analysis thus provides a basal 

reference for the function of the Wnt/ß-catenin signalling event. 

 

ß-catenin has a dual function as a central component of the adherens junctions and the 

transcriptional effector of Wnt signalling, acting through pools with different subcellular 

localizations (plasma membrane vs cytoplasmic/nuclear pool, respectively, Fig. 3, reviewed 

in [37]). In the plasma membrane, ß-catenin associates with Cadherins, whose levels have 

been shown to affect (promoting or inhibiting depending on the cellular context) ß-catenin 

signalling activity. These observations have led to the notion that the junctional and 

transcriptional functions of ß-catenin are in equilibrium and therefore that the interactions 

between ß-catenin and Cadherins should be born in mind when thinking about the 

consequences of gain and loss of Wnt signalling. In mouse embryos, zygotic loss of ß-catenin 

does not affect preimplantation development nor the segregation of embryonic and 

extraembryonic lineages [38-40]. Although there have been reports of requirements for 

implantation [1], there is clear evidence that ß-catenin zygotic mutant embryos can implant 

http://www.stanford.edu/group/nusselab/cgi-bin/wnt/
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even if it is not efficiently. It is possible that an effect of ß-catenin in the patterning of the 

blastocyst is obscured by the maternal contribution and the compensation effect exerted by E-

Cadherin which will sequester some ß-catenin thus extending its function [41]. Although this 

study [38] does not report any defects in the very early stages of development or blastocyst 

formation, it would be important to revisit this situation paying attention to early patterning 

effects as there is evidence that an enhancer of Nodal responds to ß-catenin in the blastocyst 

[42], suggesting that ß-catenin might have early functions. 

 

Zygotic ß-catenin mutant embryos exhibit defects in anterior posterior (AP) patterning by 

stage E7.0 [38, 40]. Mosaic analysis shows that these defects are due to embryonic 

requirements and that ß-catenin is first required for the expression of Cripto and the Nodal 

signalling event that will define the DVE (Fig. 2C) [39]. In the absence of ß-catenin, the DVE 

is still specified, though with some abnormalities, but it does not migrate and leads to a 

defective AP patterning [43, 44]. The same phenotype is observed in Cripto mutants [45] 

suggesting that ß-catenin mutant defects might be related to its requirement to activate Nodal 

signalling via Cripto [39]. At E7.5 it is not possible to find much embryonic tissue in ß-

catenin mutant embryos and it is not known whether this is due to the loss of the adhesive 

function or a failure to specify the different tissues, though there is evidence that plakoglobin 

can and does substitute for ß-catenin in the adherens junctions [40] [38] [46]. Embryos with 

very reduced, but some, levels of ß-catenin exhibit an excess neural tissue and no endoderm 

or mesoderm [29], which is consistent with the requirement for ß-catenin in the specification 

of the primitive streak and with the observation that gain of function mutations or loss of 

function of Wnt antagonists result in an expansion of the posterior pMSEND fates [31]. Gain 

of function studies provide additional insights into the functions of ß-catenin and mutations 

that stabilize ß-catenin result in premature expression of mesoderm markers such as Snail1 

and T/Brachyury and defects in DVE specification [47].  

 

Wnt/ß-catenin signalling in early development 

The Wnt/ß-catenin signalling pathway is built in such a manner that the activation of the 

signal at the membrane via the Frizzled receptors leads to the disassembly of a ‘ß-catenin 

destruction complex” that shuttles between the membrane (recruited by Dishevelled, Dvl) and 

the cytosol. The core of this complex are the scaffolding proteins Axin and APC and the 

enzyme GSK3 (Fig. 3) which are encoded by multiple genes. There are 19 genes encoding 

Wnt proteins, many of which are expressed in preimplantation stages [36]. This situation 

makes it not feasible to assay the function of Wnt by mutating the ligands, however the study 

of the loss of Wnt chaperone Porcupine can be enlightening. Porcupine is required for 

secretion of all Wnt proteins and its absence is, effectively, a loss of function of all Wnt 

signalling. This allows to distinguish the ß-catenin activities during embryogenesis that are 

Wnt signalling dependent, from the Wnt-independent. Embryos mutant for Porcupine exhibit 

a phenotype of loss of primitive streak and no defects in AP patterning [48, 49], which is 

similar to that of LRP5/6 double mutants [50]. This confirms the requirement for Wnt/ß-

catenin signalling in the specification of the primitive streak and that the function of ß-catenin 

in the specification of DVE is independent of Wnt [39, 43, 51].  

 

Although there are multiple Wnts, genetic screens have shown that most, if not all, of the 

zygotic functions of Wnt/ß-catenin signalling are mediated by Wnt3 as Wnt3 mutants have a 

phenotype similar to that of Porcupine mutant embryos [52, 53]. Wnt3 is initially expressed 

in the posterior visceral endoderm (PVE)[54], then, as gastrulation begins, in the posterior 

proximal epiblast and loss of function shows that it is required for the formation of the 

primitive streak. However, a careful mosaic analysis of the mutant phenotype revealed that 
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Wnt3 develops an autoregulatory loop between the PVE and the epiblast which is involved in 

the maintenance and not the initiation of the primitive streak. Studies of the effect of Wnt/ß-

catenin signalling on Brachyury expression support this possibility [55, 56] and indicate that, 

as suggested earlier, ß-catenin has more to do with the stabilization of transcriptional 

programmes than with their induction [57, 58]. 

 

There are 10 genes encoding members of the family of the transmembrane Wnt receptors 

Frizzled which are expressed during early postimplantation development [59, 60]. However 

loss-of-function studies of Fzd receptors (Fzd3, Fzd4, Fzd5, Fzd6, and Fzd9) up to now do 

not show gastrulation phenotypes, suggesting a functional redundancy among these receptors, 

which would mirror the situation in Drosophila [61]. 

 

There are three dishevelled genes encoded in the mouse genome (dvl1, dvl2 and dvl3) with 

high degree of redundancy in their function. Although the phenotype of the single and double 

heterozygotes have been studied during late embryonic development , very little is known 

about the triple mutant or dvl2;dvl3 double mutant phenotype, only that they die before E8.5 

[62] with gastrulation defects [63]. 

 

Regarding the genes encoding for elements of the destruction complex (Axin, APC and 

GSK3), there are two genes for each of these and one would expect that their mutations 

would mimic, for the most part, phenotypes of ß-catenin gain of function in mouse embryonic 

development. This is the case for the APC mutants which show defects during DVE 

specification and gastrulation [64, 65]. Mutations in the Axin1 gene cause axis duplication 

[66], the same as a mutation stabilizing Axin2 that leads to enhanced Wnt signalling in the 

primitive streak, while a null Axin2 mutation induces malformations in the skull [67, 68]. 

Gsk3β is lethal at mid-gestation with no apparent axis duplication [69] and Gsk3a is viable 

[70]. There are no reports of the double Gsk3a ; Gsk3β mutant. 

 

Tcf factors 

In the nucleus, ß-catenin interacts with several proteins [71] but most notably with members 

of the Tcf family of DNA binding proteins [72, 73]. There are four members of this family. 

Tcf4 is not expressed in the early development and genetic analysis reveals a degree of 

redundancy between Lef1 and Tcf1 mutants which do not show early defects but the double 

mutant mimics the Wnt3 mutant [74]. Tcf3 is different: a large body of evidence suggests that 

it cannot activate transcription and acts largely as a repressor of the signalling event. Loss-of-

function results in phenotypes that resemble, but are different of, gain of function of ß-catenin 

[75] but this phenotype might be independent of a direct interaction with ß-catenin as 

embryos homozygous for a mutation in the ß-catenin binding domain of Tcf3 undergo normal 

gastrulation [76].  

 

Function of Wnt/ß-catenin signalling in Embryonic and Epiblast stem cells 

Embryonic stem (ES) cells are derivatives from early mammalian embryos that can be 

cultured indefinitely and differentiated into most cell types of an organism i.e. they are 

pluripotent [4, 77]. In the case of mouse, there are two kinds of pluripotent stem cells derived 

from, and representing, epiblast at different embryonic stages. Naïve ES cells, which are 

derived from preimplantation blastocysts, and which do not exhibit lineage bias and give rise 

to chimeras when injected into preimplantation embryos [5], and epiblast stem cells (EpiSC) 

derived from the postimplantation epiblast [78, 79], which exhibit lineage bias towards 

pMSEND and only form chimeras when injected in hosts of the same age [80, 81]. 
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The observation that GSK3ß inhibition stimulates self-renewal in mouse ES cells under 

standard culture conditions raised the possibility that Wnt/ß-catenin signalling was involved 

in pluripotency. In the wake of these reports, a flurry of experiments indicated that the most 

significant effect of the inhibition of GSK3 on pluripotency is mediated by ß-catenin [82-86]. 

The effects of ß-catenin on ES cell culture were reinforced by its central role in the activity of 

the 2i cocktail [87]. These experiments demonstrated a potent effect of Wnt/ß-catenin 

signalling on the self-renewal of ES cells and on the derivation of ES cell lines from 

recalcitrant mouse strains [88-91] and even rats [92] [93]. However, the effect of Wnt 

signalling is different on ES and EpiSC: whereas in ES it promotes pluripotency, in EpiSCs it 

promotes differentiation [94].  

 

The generally accepted linear pathway associated with Wnt/ß-catenin signalling [95] led to 

the conclusion that the function of ß-catenin in the maintenance of ES cells was mediated 

through its transcriptional activity [95-97]. This conclusion was supported by the effects of 

mutations in APC where a correlation was demonstrated between the levels of ß-catenin, its 

transcriptional activity and the degree of pluripotency [98-100]. However, further 

experiments challenged the two simplest conclusions from these studies: that ß-catenin is 

required for pluripotency and that this function acts via its transcriptional activity. ß-catenin 

is not required for the establishment of pluripotency as ES cells can be derived from ß-

catenin mutant blastocysts [101] and, more significantly, ß-catenin mutant cells can be 

maintained in culture, albeit with a certain degree of instability [29, 33, 85, 102-104]. In 

addition, functional analysis of ß-catenin activity in ES cells revealed that its transcriptional 

activity is dispensable for pluripotency [33, 102, 103]. This is corroborated by the 

observation that Tcf1, Lef1 and Tcf4 are also dispensable [87, 105] and that Tcf3 represses 

rather than promotes pluripotency [106, 107]. Despite this, although ß-catenin is not required 

for pluripotency, it does help its maintenance as the detailed quantitative analysis of ß-catenin 

mutant ES cells revealed that they are highly unstable and difficult to maintain in culture [29, 

33, 108, 109]. The instability of ß-catenin mutant cells is associated with altered levels of 

Nanog and Oct4 protein [33, 108]. Several studies have been conducted to investigate the 

mechanism by which ß-catenin is involved in the maintenance of pluripotency [102, 105, 

110, 111]. These studies have led to the conclusion that the main role of ß-catenin in 

pluripotency is to neutralize the repressive activity of Tcf3 on the pluripotency network and 

that it does it through a non-transcriptional activity (Fig. 4A-B’).  

 

Besides the effects of ß-catenin on Tcf3, there is a clear link between ß-catenin and Oct4 [33, 

112-114]. The situation may be intricate as defined Oct4 levels are key for the establishment 

of pluripotency and altered levels induce differentiation [115-117]. The effect of ß-catenin on 

Oct4 is clear: there is evidence that ß-catenin sequesters Oct4 to prevent its prodifferentiation 

activities [34]. Some of these interactions might be associated with the association of ß-

catenin with Cadherins [33].  

 

But the controversy on the exact mechanism by which ß-catenin is involved in pluripotency 

still remains: a new study using conditional ß-catenin null cells indicates that some of the 

defects observed in previous studies are due to the use of long term cultured cells [118]. The 

short term effect of ß-catenin absence is related to cell death and chromosome segregation 

with no effect on pluripotency markers expression. 

 

The relationship between ß-catenin and pluripotency in ES cells is mirrored in EpiSCs, where 

there is a low level requirement for their establishment and maintenance but where the most 

clear requirement is for their differentiation [94, 119]. In human ES cells, which closely 
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resemble mouse EpiSCs, similar requirements for ß-catenin have been found and 

transcriptional activity is associated with differentiation [120, 121]. These conclusions have 

been recently confirmed in mouse EpiSCs [94]. Further studies on reprogramming mouse 

EpiSCs to ES cells show that inhibition of Wnt/ ß-catenin signalling enhances the conversion 

[122]. 

 

In summary, the situation in culture is clear: ß-catenin plays a central role in balancing 

differentiation and self-renewal. As part of a protein complex promotes self-renewal in ES 

cells while its transcriptional activity as part of canonical Wnt signalling promotes 

differentiation both in ES and EpiSCs.  

 

In summary: The relationship between ES cells and embryos from the perspective of ß-

catenin 

The first requirement for Wnt/ß-catenin signalling in the mouse embryo has been reported in 

the differentiation of the epiblast, which develops a neural fate in the absence of ß-catenin. A 

similar phenotype can be observed during the differentiation of ES cells and suggests that the 

ES cells are a good model for the events in the embryo and that Wnt/ß-catenin signalling is 

required for the development of the mesoderm and the endoderm during differentiation. 

 

The situation is different in preimplantation blastocysts, from where the ES cells are derived 

and are most closely associated with [123]. The requirement for ß-catenin or inhibition of 

GSK3 in the maintenance of ES cells is underscored by the observation that GSK3 inhibitors 

increase the efficiency of ES cells derivation from different mouse strains and rats. However, 

this requirement contrasts with the lack of obvious phenotype associated with loss of ß-

catenin in preimplantation embryos even though ß-catenin, other components of the pathway 

and multiple Wnt ligands are expressed in early mouse development. This is surprising and 

suggests two possible explanations. The first one is that a role for ß-catenin in the 

establishment of the epiblast is obscured by its maternal component and its stability in the 

adherens junctions (Fig. 4C-D). This cannot be ruled out and will have to be tested with some 

attention to quantitative parameters as the resulting phenotype might lead to quantitative 

changes in the dynamics of the development of the epiblast or the balance between different 

cell types. For example, loss of ß-catenin activity in ES cells leads to an increase in the 

frequency of differentiation [33, 34] and an equivalent phenotype in the blastocyst might only 

be observed in quantitative studies as for example those performed in the role for Oct4 role in 

the segregation of the EPI [124]. A second possibility is that despite many suggestions and 

efforts, ES cells might not represent a stage in the embryo but a culture artefact and results 

obtained in both systems are not comparable.  

 

A variety of studies suggest that while not all the events in embryos can be modelled in ES 

cells, the reverse is true i.e. what is found in ES cells usually can be observed in embryos in a 

very transient manner. However, there are significant differences between the control of gene 

expression in embryos and cells. Recent work on Nanog expression during embryogenesis 

has indicated that contrary to the events in ES cell culture, the levels of Nanog do not 

undergo large scale fluctuations in the embryo and cells will express Nanog stably on the 

basis of their gene expression trajectories [125]. It is possible that ß-catenin plays a role in 

this process by altering the dynamics of the event and facilitating cell fate decisions. On this 

premise, there might be an early function of ß-catenin and this function might be linked to the 

dynamics and coordination of the events, in a manner which has been suggested to be a 

general feature of Wnt/ß-catenin signalling [57]. In this case only a quantitative analysis of 

the dynamics of the process will reveal its function and this will have to be analysed in the 
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absence of both, maternal and zygotic contributions. A hint that Wnt/ß-catenin might be 

involved in the dynamics of early events can be gauged from the phenotype of mutants in 

APC which result in increased Wnt/ß-catenin signalling and in which fate decisions, most 

notably the acquisition of mesodermal and endodermal fates is anticipated [126].   

 

Wnt/ß-catenin signalling is associated with the maintenance of stem cells in many systems 

[127] and the role revealed in the case of ES cells might reflect the fact that epiblast cells in 

the blastocyst are in a very poised state to become stem cells and susceptible to be captured 

by ß-catenin. Thus the differences between embryos and cells might be telling us something 

about how stem cells are set up and the role that ß-catenin plays in this process. 
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Figure legends 

Figure 1: Information processing devices modulate the dynamics and combination of 

transcription factors to generate tissues and organs. During embryonic development, different 

transcription factors (TF1-TF7) are (co-)expressed to specify several fates. As development 

progresses, an information processing device or signal transduction network (STN in the 

figure) coordinates specific subsets of transcription factors. Once they are coordinated, they 

are regulated by signalling pathways (SP1-3 in the figure) to promote the cellular fates 

observed in tissues and organs. 

 

Figure 2: (A) Binary cell fate decisions made during early mouse development from the 

totipotent blastomeres to the extraembryonic tissues and the three germ layers at the end of 

gastrulation. (B) Schematic representation of the early mouse development from zygote (E0) 

to gastrulation (E6.5). Sagital views are shown, except the last one that shows a tranversal 

section across the primitive streak from the E6.5 embryo. (C) Schematic representation of 

Wnt/ß-catenin signalling domains in E5.5 and E6.5 embryos, these include the VE, posterior 

epiblast, the primitive streak, mesoderm and definitive endoderm. 

 

Figure 3: Wnt/ß-catenin signalling. In the absence of Wnt (left), ß-catenin phosphorylated by 

casein kinase 1 (CK1) is further phosphorylated by glycogen synthase kinase 3 (GSK3) 

within the ‘destruction complex’ which also includes adenomatous polyposis coli (APC). The 

phosphorylated ß-catenin is recognized by a E3 ubiquitin ligase (not shown) which targets it 

for proteasome degradation. In the nucleus, the target genes of the pathway are kept in an 

‘OFF’ state by TCF family members. During Wnt activation (centre), the destruction 

complex is sequestered to the cell surface via Dishevelled (Dvl), this leads to ß-catenin 

stabilization, which enters into the nucleus, interacts with TCF family members and promotes 

the transcription of target genes. Right: ß-catenin can also be found as part of the adherens 

junctions where it interacts with E-Cadherin, this interaction can regulate the availability of 

ß-catenin for signalling. 

 

Figure 4: (A-B) Under self-renewing conditions ß-catenin localizes at the membranes (A), 

and it translocates to the nucleus when cells Wnt/-catenin is activated under differentiation 

culture conditions in the presence of the GSK3 inhibitor Chi for 48h (B) or 96h (B’). The 

white arrows indicate some cells with nuclear ß-catenin. (C-D) ß-catenin localization in 

E4.0d (C) and E5.5d (D) embryos. Scale bars, 50m. 
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