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Abstract 27 

 28 

Orally administrated iron is suspected to increase susceptibility to enteric infections among children in 29 

infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local 30 

immune responses in intestinal infection models. Mice were held on iron-deficient, normal-iron, or 31 

high-iron diets and after two weeks they were orally challenged with the pathogen Citrobacter 32 

rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced 33 

shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of 34 

inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but 35 

were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient 36 

diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival 37 

of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was 38 

prolonged after iron-deprivation. Together, these data show that iron limitation restricts disease 39 

pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory 40 

responses of mice fed on high-iron diets. Thus additionally, our study indicates that the effects of iron 41 

on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune 42 

status and gut microbiota composition.  43 
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Introduction 44 

Iron deficiency is highly prevalent among the world and has major health consequences [1, 2]. 45 

Oral iron administration programmes can effectively correct iron deficiency [3], but concerns have 46 

been raised regarding the safety of iron supplementation. There is evidence suggesting that untargeted 47 

oral iron supplementation in regions with high prevalence of malaria transmission and infectious 48 

diseases can cause an increase in infections, hospital admission and mortality in young children [4-6]. 49 

This might be at least partly ascribed to iron also being an essential requirement for the growth of most 50 

bacterial species [7]. Importantly, iron uptake by the upper intestine is generally limited [8], which 51 

results in a large fraction of unabsorbed iron entering the colon, being potentially available for the gut 52 

microbiota. It is therefore not surprising that iron has been shown to influence the gut microbiota 53 

composition in a number of studies, among which were two studies among African children and 54 

infants which showed that iron fortification caused a potentially more pathogenic gut microbiota 55 

profile [9-11].  56 

In the past few years it thus became apparent that supplementary iron can have a large impact 57 

on the gut microbiota composition, but the potential effects on host immune responses remained 58 

largely unexplored. Given the importance of the gut microbiota in shaping the host intestinal immune 59 

system [12] this issue however deserves further investigation as dietary iron could have an indirect 60 

effect on the responsiveness of the immune system via alteration of the gut microbiota [13]. 61 

Furthermore, host iron metabolism is largely intertwined with host immunity and it is known that host 62 

iron status affects the inflammatory response to pathogenic invaders [14]. We previously showed that 63 

the dysregulated iron metabolism in a mouse model of type I hemochromatosis resulted in an 64 

attenuated host immune response against Salmonella enterica serovar Typhimurium in the 65 

gastrointestinal tract [15]. Importantly, also iron deficiency is associated with an impaired immune 66 

response, but may remarkably increase the resistance against intracellular pathogens, probably due to 67 

increased nutritional immunity [6, 16, 17].  68 

As iron status can affect the immune response it is likely that also the array of antimicrobial 69 

defenses that is secreted from the intestinal mucosa gets affected. Enterocytes and Paneth cells secrete 70 
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antimicrobial peptides (AMPs) such as defensins, cathelicidins and lipocalin-2 (a.k.a. neutrophil 71 

gelatinase-associated lipocalin (NGAL) or siderocalin). Lipocalin-2 is a molecule of our special 72 

interest as it is involved in host iron homeostasis and because it can prevent bacterial iron uptake via 73 

iron-scavenging siderophores, which they produce under iron-limiting conditions [18]. The importance 74 

of lipocalin-2 based defense is demonstrated by a study showing that lipocalin-2 knockout mice had an 75 

increased susceptibility to bacterial infection [19]. In the intestine, lipocalin-2 is only weakly 76 

expressed under normal conditions, but increases markedly during intestinal inflammation mainly due 77 

to the influx of neutrophils which secrete large amounts of lipocalin-2 [20-23].  78 

The effects of supplementary iron have not yet been investigated during gastroenteritis caused 79 

by a bacterial pathogen in an animal model. This is now warranted as the last few years it became 80 

apparent that intestinal inflammation can be exploited by specific enteric pathogens, such as 81 

Salmonella spp. and Citrobacter spp., a process leading to dysbiosis [24] and which may be influenced 82 

by supplementary iron [11]. To get more insight in the effects of iron during gastroenteritis we here for 83 

the first time examined the effects of dietary iron depletion and supplementation on the mouse gut 84 

microbiome and on intestinal immunity and pathology. We focused on the expression of intestinal 85 

lipocalin-2, which may be affected either through direct effects of iron on mammalian cells or 86 

indirectly through an altered gut microbiota. To investigate the effects of these iron-related 87 

modulations on the outcome during gastroenteritis we orally challenged mice with the mouse pathogen 88 

Citrobacter rodentium. This well-established model for infectious gastroenteritis closely mimics the 89 

pathology caused by human food-borne bacterial pathogens [25-27]. We show that mice on an iron-90 

deficient diet as well as mice on a high iron-supplemented diet showed a decrease in fecal lipocalin-2 91 

levels during intestinal inflammation, which may have result in impaired host defence against 92 

siderophilic pathogens in these mice. We also show that iron limitation restrains the pathology of 93 

enteric infection in a simple gut nematode model.  94 
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Results 95 

General health and systemic responses to iron intervention and Citrobacter rodentium challenge 96 

Previous studies have shown that the intestinal infection after ingestion of C. rodentium by 97 

mice closely mimics human colitis caused by food-borne bacterial pathogens, such as 98 

enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC respectively) [25-27]. 99 

Here we used this mouse model to investigate the effect of dietary iron levels on disease pathology by 100 

placing mice for 28 days on diets with three different iron levels (deficient, normal, high), with a C. 101 

rodentium challenge 14 days after start of the dietary intervention (Figure 1A). As expected, dietary 102 

intervention was effective in changing tissue iron stores at day 14 and 28 and fecal iron concentrations 103 

among the three groups at day 14 (Figure 1B, C and Figure S1B). Dietary iron intervention had no 104 

effect on strictly regulated serum iron levels at day 14 (Figure S1A). 105 

 106 

Body weight as a measure for general health 107 

During the period of iron intervention alone, body weight as a measure for general health was 108 

similar for all three groups, but body weights of mice tended to differ rapidly among groups after 109 

initiation of infection at day 14 (p = 0.085) (Figure 1D). Interestingly, mice on the iron-deficient diet 110 

seemed to recover most quickly as only this group had at day 28 an average body weight that was 111 

above that of day 14, while mice on a diet with normal iron content tended to suffer most from the 112 

colitis. 113 

 114 

Lipocalin-2 levels in the circulation 115 

Dietary iron intervention for two weeks in uninfected mice had no effect on serum lipocalin-2 116 

levels, but systemic lipocalin-2 levels were markedly higher in the infected mice at day 28 compared 117 

to uninfected mice at day 14 (Figure 2A). Intestinal inflammation thus induces production of 118 

lipocalin-2 which can be detected systemically. In addition, systemic lipocalin-2 levels in infected 119 

mice were different among groups (p = 0.002) and highest in the mice on the normal-iron diet, which 120 

was significantly different from mice on the iron-deficient diet (p < 0.05) (Figure 2A). 121 
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 122 

Hepcidin as a marker for iron demand and inflammation 123 

As mentioned above, the iron diets did not affect systemic iron levels. Systemic iron levels are 124 

mediated by the key iron-regulatory peptide hormone hepcidin (Hep-1 in mice), which blocks the 125 

ferroportin transporter in macrophages and the duodenum. Among others, hepcidin expression is 126 

regulated by host iron status and inflammation [28]. We here aimed to assess the effect of dietary iron 127 

on Hep-1 induction by colitis. As shown in Figure 2B, nearly all mice on the normal and high-iron 128 

diets had plasma Hep-1 levels that were clearly above those found in an independent group of 129 

uninfected reference control mice [29] on a standard diet (p < 0.05 for both comparisons), but were not 130 

markedly different from each other. In contrast, a subset of mice on the iron-deficient diet had very 131 

low Hep-1 levels that were just below the hepcidin levels found in uninfected control mice. 132 

 133 

Intestinal responses to dietary iron intervention and Citrobacter rodentium challenge 134 

Colon histopathology 135 

Histological examination of colon sections at day 28 did not show statistical significant 136 

differences among groups, but did show a tendency for a linear trend towards a lower average 137 

histopathology score for mice on the iron-deficient diet compared to the normal and high-iron diets, 138 

with a large within-group variation (p = 0.087) (Figure 3A). Notably, this observation could fit with 139 

the observation that mice on the iron-deficient diet appeared to suffer less from the colitis as indicated 140 

by the outcome on body weights. However, based on the body weights, mice on a normal-iron diet 141 

seemed to suffer more from colitis than mice on the high-iron diet, something which is not evident 142 

from the histopathological examination. 143 

 144 

Colon pro-inflammatory cytokine secretion ex vivo 145 

To evaluate the effects of intestinal infection during dietary iron intervention on the intestinal 146 

cytokine response, colon sections were sampled at day 28 (14 days after C. rodentium challenge) and 147 

ex vivo secreted levels of IL-6, TNF-α and IL-17 were measured by ELISA. Figure 3B shows that 148 

secreted levels from animals on the iron-deficient diet were lowest for all three pro-inflammatory 149 
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cytokines. For IL-17 this was significantly different from the normal-iron diet (p < 0.01), but secreted 150 

IL-17 was also significantly lower in the high-iron group (p < 0.05). Secreted IL-6 levels showed a 151 

similar tendency. TNF-α tended to increase with increasing amounts of iron in the diet (not 152 

significantly). Together, these findings suggest that the intestinal cytokine response is about maximum 153 

at normal dietary iron levels, and which generally appears diminished at a low dietary iron level.  154 

 155 

Fecal levels of innate defense molecules lipocalin-2 and calprotectin 156 

Analogous to findings in serum/plasma, ELISA measurements in feces showed that lipocalin-2 157 

levels were low and not significantly different among groups after iron intervention alone at day 13. 158 

Lipocalin-2 levels were however markedly increased after infection at day 27, most prominently in the 159 

feces of mice on the normal-iron diet. After infection, fecal lipocalin-2 levels were significantly higher 160 

in the normal-iron group compared to both the iron-deficient and high-iron group (p < 0.01 and p < 161 

0.05 respectively) (Figure 4A).  162 

Fecal calprotectin is a common and validated marker for intestinal inflammation [30]. We 163 

therefore measured fecal calprotectin next to fecal lipocalin-2, to examine whether the effect of dietary 164 

iron on lipocalin-2 levels were also found on calprotectin levels and to examine the grade of 165 

inflammation. Interestingly, like lipocalin-2 levels, fecal calprotectin levels were increased at day 27 166 

compared to day 13 and most prominently in the normal-iron diet group, which was significantly 167 

different from the high-iron group (p < 0.05) (Figure 4B). Notably, although levels of lipocalin-2 were 168 

generally still higher in inflamed mice compared to non-inflamed mice, fecal calprotectin levels in 169 

inflamed mice on the high-iron diet were mostly not elevated compared to levels in non-inflamed 170 

mice. The similar response of lipocalin-2 and calprotectin is underscored by the finding that their fecal 171 

levels had a strong correlation (Pearson r = 0.50; p = 0.007) (Figure 4C). Together, these findings 172 

suggest that the intestinal inflammatory response was blunted in both the iron-deficient and high-iron 173 

diets.  174 

 175 

The combined effect of iron intervention and intestinal inflammation on the gut microbiome 176 

Effects of dietary iron intervention and colitis on the gut microbiome profile 177 
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On average, 4,875 bacterial 16S rDNA sequences per sample were analyzed by 178 

pyrosequencing. At baseline, the mouse gut microbiome consisted of the phyla Bacteroidetes (71.2% 179 

of the 16S rDNA reads), Firmicutes (27.3%), Tenericutes (0.8%) and Actinobacteria (0.6%). After 2 180 

weeks of dietary intervention the phylogenetic diversity index (a measure of α-diversity) was 181 

decreased in the iron-deficient group compared to baseline (p < 0.05), in the normal and high iron 182 

groups a significant decrease was only observable at day 27. Interestingly, the diversity was lower in 183 

the high-iron group compared to the normal-iron group at day 13 (p < 0.05) and at day 27 the diversity 184 

in the iron-deficient group was significantly higher compared to the high-iron group (p < 0.05) 185 

(Figure 5). This analysis shows that during infection mice that were held on the iron-deficient diet 186 

were able to maintain part of their gut microbial diversity. 187 

Multivariate Redundancy Analysis (RDA) shows that the gut microbiome of mice at baseline 188 

was similar for all dietary iron groups (p = 0.422), as expected. Clearly, after two weeks of dietary iron 189 

intervention, the mice had a distinct non-overlapping gut microbiome composition (p = 0.002)(Figure 190 

6A). Correspondingly, hierarchical clustering analysis clearly clustered the baseline microbiomes 191 

together and separated them from the later time points (Figure 6C). The most prominent change at 192 

day 13 appeared to be the shift from a Barnesiella dominated profile to an Allobaculum dominated 193 

profile in mice on the high-iron diet.  194 

After infection at day 27 the dietary iron intervention also elicited a distinct non-overlapping 195 

gut microbiome profile (p = 0.002). Additionally, the gut microbiome profile of each group at day 27 196 

did not overlap with the groups at day 13 (Figure 6A). Next, hierarchical clustering analysis indicates 197 

that the microbiomes of the mice on the normal-iron and high-iron diets had most extensively changed 198 

(Figure 6C). Again, the most prominent change was a shift from a Barnesiella dominated profile to an 199 

Allobaculum dominated profile. The microbiome of the mice on the iron-deficient diet also changed 200 

and was dominated by Parabacteroides at day 27. Together, these analyses show that dietary iron had 201 

a large impact on the mouse gut microbiome, especially during intestinal inflammation. In the 202 

subsequent section the differences among groups in both the dominant and subdominant taxa are 203 

shown in more detail. 204 

 205 
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Effects of dietary iron intervention and colitis on the relative abundance of gut microbial taxa 206 

The relative abundances of all detected bacterial taxa among groups at day 13 and day 27 were 207 

compared in an explorative manner. At day 13 the overall main differences between diets with a 208 

higher iron level compared to diets with a lower iron level were an increased abundance of 209 

Clostridium and a lower abundance of Dorea (Figure S2). Although the normal-iron group did not 210 

show a lower abundance of Lactobacillus and Bifidobacterium compared to the iron-deficient group, 211 

in the high-iron group there was a consistent relative lower abundance of these taxa compared to the 212 

iron-deficient and normal-iron groups. Furthermore, Peptococcus, Bacteroides and Allobaculum were 213 

consistently more abundant in the high-iron group (Figure S2), which is also indicated by multivariate 214 

RDA (Figure 6B). 215 

After infection at day 27, main differences were a higher abundance of Allobaculum and 216 

Enterorhabdus in the normal/high-iron groups compared to the iron-deficient group (p = 0.005 and p = 217 

0.004 respectively for both the normal-iron and high-iron groups vs the iron-deficient group). In 218 

addition, in the high-iron group a higher abundance of Bacteroides was found compared to both the 219 

iron-deficient and the normal-iron groups (p = 0.004 for both). For the taxa Bifidobacterium, 220 

Lactobacillales/Lactobacillus and Parabacteroides we consistently found a lower abundance in all 221 

comparisons, meaning that that their abundance was lower in the normal/high-iron groups compared to 222 

the iron-deficient group, as well as in the high-iron group compared to the normal-iron group (Figure 223 

7). Multivariate RDA also generally associates the taxa mentioned in this paragraph with the 224 

respective dietary iron groups (Figure 6B). 225 

Citrobacter was lowly abundant relative to all 16S rDNA reads at day 27, but was not detected 226 

at all in samples from baseline and day 13 by pyrosequencing. We therefore performed a qPCR 227 

specific for C. rodentium to be able to quantify this low-abundant pathogen which initiated the 228 

intestinal inflammation. This analysis showed that there were no differences in the abundance of C. 229 

rodentium among the dietary groups at day 27 (data not shown). This suggests that in vivo C. 230 

rodentium colonization was not influenced by the iron diets at this point. However, differences may 231 

have existed at an earlier time point after infection, which was not assessed in this study.  232 

 233 
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Iron limitation prolongs survival of Salmonella-infected nematodes 234 

To confirm the potential protective effect of iron limitation on the pathology of enteric 235 

infection as observed in our mouse model, we investigated the effect of iron on the pathogenicity of 236 

the human gut pathogen S. Typhimurium in a live nematode gut model. This has previously been 237 

shown to be a suitable model host for S. Typhimurium infection [31]. Survival of C. elegans that 238 

forages on S. Typhimurium decreased in the presence of increasing concentrations of iron. This was 239 

reflected in the nematode survival time (LT50), which was on average decreased by 1.3 and 2 days in 240 

the 10 and 100 µmol/L ferric ammonium citrate conditions respectively, compared to the no-iron 241 

condition (p < 0.01 and p < 0.001, respectively) (Figure 8). Furthermore, the AUCs of the survival 242 

curves of the conditions with 10 and 100 µmol/L ferric ammonium citrate were significantly lower 243 

compared to the no-iron condition over the course of the experiment (p < 0.05 and p < 0.001 244 

respectively) (Figure S3). At the same time this iron-dependency was absent when C. elegans foraged 245 

on a E. coli control strain. These data confirm a subtle, but reproducible, protective effect of low 246 

dietary iron intake on the pathology of enteric infection. Importantly, these data also confirm that iron 247 

can increase the virulence of an enteric pathogen as we previously showed in vitro [32].  248 
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Discussion 249 

It is well known that both oral iron administration and intestinal inflammation can alter the gut 250 

microbiota composition and that host iron status influences the inflammatory response [11]. 251 

Furthermore, oral iron administration has been associated with increased levels of fecal calprotectin 252 

(indicating increased gut inflammation) and with an increased incidence of diarrhea [9, 10, 33]. 253 

Nonetheless, little is known about the effects of nutritional iron on the gut microbiota composition and 254 

the host immunological response during periods of intestinal inflammation. We therefore investigated 255 

the effects of iron on pathology, gut microbiota composition and host intestinal immune responses in 256 

the non-inflamed and inflamed colon and we here for the first time show that dietary iron has profound 257 

effects on the gut microbiome composition and on the host immune response during colonic infection 258 

by common food-borne bacterial pathogens in a mouse model. 259 

Although iron diets by themselves had clearly effect on luminal iron content and tissue iron 260 

stores as expected, we found no effects on general health as reflected by body weights and the 261 

immunological parameters lipocalin-2 and calprotectin that we measured at this point. Remarkably, 262 

there were profound effects on the gut microbiome composition. Compared to the composition at 263 

baseline, all dietary groups had a changed microbiota after 2 weeks, which can probably be explained 264 

by the change in diet at the start of the intervention. The gut microbiomes shifted towards an 265 

Allobaculum dominated profile, which was most apparent for the high-iron diet group. This group also 266 

showed a lower relative abundance of the beneficial Bifidobacteriaceae and Lactobacillaceae families 267 

compared to the normal-iron and iron-deficient diets, which is one of the most consistent findings of 268 

dietary iron intervention studies so far [11].  269 

As expected, C. rodentium challenge clearly resulted in colonic inflammation as observed by 270 

colon histopathology and determination of the inflammatory parameters lipocalin-2 and calprotectin. 271 

Although iron intervention had only limited effect on the grade of inflammation as determined by 272 

histopathological examination, there appeared to be a minor trend towards a higher grade of 273 

inflammation with supplementary iron. This needs further confirmation, but it fits with previous 274 

studies showing that supplementary iron during IBD exaggerates colitis in animal models and 275 
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gastrointestinal complaints in IBD patients [34-39]. Our experiments also indicate that mice on the 276 

iron-deficient diet suffered slightly less from the colitis compared to the other groups as reflected by 277 

mouse body weights. Interestingly, previous studies showed that non-infected rats on an iron-deficient 278 

diet for 5 weeks gained less weight and ate less, while also mice on an iron-deficient diet had a lower 279 

body weight compared to control mice after 12 weeks of intervention [40, 41]. This suggests that an 280 

iron-deficient diet in a non-inflamed situation tends to decrease weight gain on the longer term, while 281 

it may prevent weight loss during intestinal inflammation. 282 

Another systemic effect of the colonic inflammation was an increase in hepcidin levels. 283 

Importantly, several infected mice on the iron-deficient diet had lower hepcidin levels compared to 284 

uninfected reference mice. These findings are in-line with previous human studies showing that 285 

severely anemic infants and children in Africa with elevated inflammatory markers did not always 286 

have concurrent elevated hepcidin levels [42, 43]. This suggests that also in mice, a threshold body 287 

iron level is required for a physiological Hep-1 upregulation upon intestinal infection. If body iron 288 

levels are below this threshold, the iron demand, which asks for low hepcidin, renders these animal 289 

non-responsive to the infection stimulus. Analogous to hepcidin, lipocalin-2 has a role in iron 290 

homeostasis and is involved in innate immunity by withholding iron from bacterial pathogens [44]. 291 

Iron withholding by lipocalin-2 is established by the direct sequestering of iron-containing bacterial 292 

siderophores, for example in the gut lumen [11]. It is known that systemic lipocalin-2 levels are 293 

elevated in patients with IBD, but the origin of circulating lipocalin-2 is not clear and could be 294 

attributed to the activation of both local and distant immune cells [45-47]. Notably, levels of lipocalin-295 

2 (secreted by intestinal epithelial cells and infiltrating immune cells) have also been shown to 296 

increase in the inflamed gut [48-50]. It has therefore been suggested that fecal lipocalin-2 can be used 297 

as a non-invasive marker for gut inflammation [49]. Remarkably, our study shows that both the iron-298 

deficient diet and the high-iron diet lowered lipocalin-2 production compared to the normal-iron diet 299 

and that the effects were very similar on the local and systemic level. Fecal calprotectin has been 300 

known as a marker for gut inflammation for a long time [30, 51] and contributes to innate immunity 301 

by binding of zinc and manganese, hereby preventing uptake of these micronutrients by bacteria [52]. 302 

We here show that the calprotectin response of infected mice on the high-iron diet was blunted, which 303 
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was in line with fecal lipocalin-2 levels. As the histopathological score of these mice appeared not to 304 

be lower, these findings suggest that calprotectin and lipocalin-2 as a marker for gut inflammation may 305 

be less reliable during the provision of a high-iron-supplemented diet. The lower levels of these 306 

inflammatory markers may also indicate a reduced innate immune defense. From a functional point-307 

of-view, the consequences of lower lipocalin-2 levels during high-iron conditions might be limited as 308 

it is likely that no or less siderophores are produced by intestinal pathogens in that case. In contrast, 309 

during iron-limiting conditions, when there likely is siderophore production, it may be advantageous 310 

to intestinal pathogens that lipocalin-2 levels are lower. Notably, certain intestinal pathogens can 311 

exploit the host lipocalin-2 and calprotectin based defense to their own benefit [22, 53]. It may be 312 

envisaged that lower levels of lipocalin-2 and calprotectin abate these exploitation mechanisms. This 313 

is however subject for further investigations. 314 

It is difficult to explain why both the iron-deficient diet and the high-iron diet lowered 315 

lipocalin-2 production compared to the normal-iron diet. We hypothesized that local lipocalin-2 316 

production could be influenced by a combination of luminal iron concentration and bacterial 317 

siderophore production as it would make sense that expression of lipocalin-2 is highest when readily 318 

available iron is low and when siderophores are being produced. This does however not fit with the 319 

lower levels of lipocalin-2 in the iron-deficient group compared to the normal-iron group. In addition, 320 

pro-inflammatory cytokine secretion and fecal calprotectin levels generally showed the same trend, 321 

pointing at a more general mechanism. As already mentioned, both host iron deficiency and iron 322 

overload have been associated with an attenuated immune response [6, 15-17] and it might thus very 323 

well be that the iron status of mice contributed to a decrease in levels of pro-inflammatory cytokines, 324 

lipocalin-2 and calprotectin. Other explanations could lie in the effects of dietary iron and host iron 325 

status on the gut microbiome and whether C. rodentium and other intestinal pathogens were able to 326 

thrive in the intestinal lumen and trigger the host immune response. Interestingly, it has recently been 327 

described that the gut microbiota composition is an important factor in the susceptibility to C. 328 

rodentium infection and the subsequent immune response [54]. 329 

After 2 weeks of infection, C. rodentium abundance in the feces was not different among 330 

groups, but we cannot exclude that earlier during infection C. rodentium thrived best in the colonic 331 
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lumen of mice on the normal-iron diet. We nevertheless found profound effects of dietary iron and 332 

colitis on the gut microbiome composition, which may have contributed to the effects on the host 333 

inflammatory response. Allobaculum, that dominated the gut microbiome of mice on the normal-iron 334 

and high-iron diet, could play a role. However, very little is known about Allobaculum and its effects 335 

on the host inflammatory response. Of note, Enterorhabdus virtually only appeared after infection and 336 

its relative abundance was highest in the normal-iron group, in which also fecal lipocalin-2 and 337 

calprotectin levels were highest. Although further research to a potential causal relationship is needed, 338 

it could imply that Enterorhabdus spp., of which little is known, contributed to the effects on the host 339 

inflammatory response. It may be hypothesized that the gut microbiome profile of the mice on the 340 

iron-deficient diet was potentially less pathogenic compared to the diets with iron as the relative 341 

abundance of the beneficial Bifidobacteriaceae and Lactobacillaceae was highest in the iron-deficient 342 

group. For Lactobacillaceae this may be expected as they, unlike most bacteria, do not require iron for 343 

their growth, and have previously been shown to decrease upon C. rodentium infection [55, 56]. 344 

Interestingly, mice on the iron-deficient diet had a Parabacteriodes dominated gut microbiota profile. 345 

This could have contributed to a lower histopathology score and reduced inflammatory response, as it 346 

has been described that the abundance of Parabacteroides is lower in patients with IBD than in 347 

healthy volunteers [57], and that Parabacteroides antigens have been shown to exert anti-348 

inflammatory effects in DSS-treated mice [58]. It has previously been shown that C. rodentium 349 

infection in mice caused a temporal increase in the relative abundance of Enterobacteriaceae (of 350 

which C. rodentium itself is a member) 1 week after initiation of infection, with a decrease to 2 weeks 351 

after infection [59].. In the present study, we only analyzed the fecal gut microbiome 2 weeks after 352 

initiation of infection and found indeed a very low relative abundance of potentially pathogenic 353 

Enterobacteriaceae.  354 

Although our experiments provide leads for the possible mechanisms behind the net effects of 355 

the interventions, the design did not allow to dissect the complex interplay of dietary iron, host iron 356 

status and the gut microbiome on the host intestinal immune response. To dissect the underlying 357 

mechanisms further, and to address our thought-provoking findings, future studies are needed. For 358 

example a similar mouse study, but with a larger number of mice to increase power, could be 359 
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complemented with non-infected control mice that are more closely followed for 4 weeks. To allow 360 

exclusion of host iron status effects, mice that receive oral iron treatment during infection only, can 361 

also be included. In germ-free mice, effects of the gut microbiota can be excluded. Our analyses can 362 

be extended with measurements of other immune factors such as expression of AMPs, a larger panel 363 

of cytokines, and analysis of host gene expression by e.g. microarray. It remains however difficult to 364 

investigate the interplay between the gut microbiome and host iron status as both host iron status and 365 

dietary iron content have been reported to affect the gut microbiome composition, making it very hard 366 

to unravel the effects of host iron status on the gut microbiome composition and vice versa [11].  367 

In summary, our descriptive data suggest the existence of a maximum in the inflammatory 368 

response with regard to dietary iron content, with the peak lying around the normal daily intake of 369 

iron, something which has not previously been described in literature. Mainly the iron-deficient diet 370 

dampened the intestinal inflammatory response, and which also seemed to lower intestinal pathology. 371 

The latter was however more evident in our simple nematode gut model, in which iron-limitation 372 

restrained pathology as reflected by a prolonged survival of C. elegans that foraged on the intestinal 373 

pathogen S. Typhimurium under iron-limitation. Furthermore, it confirms that supplementary iron can 374 

enhance the virulence of S. Typhimurium as we previously have shown in vitro [32]. These findings 375 

underscore an undesired combination of a possible increase in the virulence of intestinal pathogens, 376 

and a decrease of host intestinal defenses at the same time. This undesired combination may provide 377 

intestinal pathogens with increased opportunities to evade the host immune response during oral iron 378 

therapy and strengthens the idea that oral iron administration programs in developing countries need to 379 

be set up with the highest amount of care, with close monitoring until the remaining questions about 380 

the actual effect of iron at the intestinal host-microbiota interface have been unraveled. Future research 381 

should also be directed at finding iron formulations that do not affect the gut microbiome to a large 382 

extent. Together, our data support the hypothesis that low iron intake is predictive against intestinal 383 

infection and inflammation, but also suggest that the clinical outcomes of oral iron administration may 384 

highly depend on the iron status, immune status and the gut microbiota composition of children that 385 

receive oral iron treatment.  386 
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Materials and methods 387 

 388 

Animals, iron diets and Citrobacter rodentium challenge  389 

The mouse trials were performed in four separate experiments, allowing the analysis of an 390 

increased number of different parameters. For all experiments, female, 4-6 weeks old C57BL/6 mice 391 

from Jackson Laboratories were group-housed and placed on diets with different concentrations of 392 

iron (iron-deficient, normal-iron, and high-iron). The iron-deficient diet (Harlan laboratories) 393 

contained 2-6 mg of iron per kg chow. The normal-iron diet (control diet; 45 mg/kg iron) was either 394 

obtained pre-prepared from Harlan (experiments 1-3), or was prepared by adding ferrous sulfate to the 395 

iron-deficient diet to give a total of 45 mg/kg iron (experiment 4). To obtain the high-iron diet, enough 396 

ferrous sulfate was added to either the pre-prepared normal-iron diet (experiments 1-3) or iron-397 

deficient diet (experiment 4) to provide a total of 225 mg iron per kg chow. We note that rodent diets 398 

with natural ingredients may contain up to ±200 mg iron per kg chow, but for widely used 399 

standardized diets the recommended normal iron content is about 35 mg/kg [60]. Mice in experiments 400 

1 (n=3 per group) and 2 (n=3-4 per group) were placed on the iron diets for 2 weeks after which they 401 

were euthanized to investigate the local and systemic effects of dietary iron intervention alone. For 402 

animals in experiment 3 (n=5 per group) and experiment 4 (n=5 per group) these two weeks were 403 

followed by a challenge with C. rodentium (strain DBS100; from the American Type Culture 404 

Collection) through oral gavage. To this purpose, bacteria were grown overnight in Luria broth (LB) 405 

and resuspended in PBS before administration to the mice (0.2 mL/mouse; ~5*108 CFUs). Diets were 406 

continued during infection. Body weights were monitored during the course of infection and stool 407 

samples were sampled at appropriate time points. Animals were euthanized 2 weeks after starting the 408 

C. rodentium challenge after which colon, liver, spleen, serum/plasma and fecal samples were 409 

collected for several analyses. The design of these experiments is depicted in Figure 1. 410 

 411 
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Full descriptions of the materials and methods, i.e. colon histopathology, iron measurements, ELISA 412 

measurements, hepcidin quantification and gut microbiome analysis are available in the 413 

Supplementary materials and methods. 414 

 415 

Nematode viability assay 416 

For nematode infection assays, Caenorhabditis elegans glp-4(bn2) sek-1(km4), a pathogen-417 

sensitive strain with temperature-sensitive sterility [61] was maintained at 15oC on nematode growth 418 

medium, using E. coli DH5α (Life Technologies Inc.) as a source of food. Nematodes were age-419 

synchronised by isolating eggs through treatment with hypochlorite/NaOH, and L1 hatchlings were 420 

deposited on lawns of E. coli DH5a grown on NGM agar. Plates were incubated at 25°C (at this 421 

temperature adult nematodes of the strain used do not produce any progeny), and when the nematodes 422 

reached the L4 stage they were collected from the plates and washed at least three times using M9 423 

buffer (3 g/L KH2PO4, 6 g/L Na2HPO4, 5 g/L NaCl and 0.25 g/L MgSO4·7H2O). Agar plates of 424 

Iscove’s Modified Dulbecco’s Medium (does not contain iron in its formulation) (IMDM, Invitrogen) 425 

were prepared as follows. Firstly, IMDM medium was briefly warmed to 45 oC and mixed with 5% (in 426 

water) melted ultra pure agar (Difco Noble Agar) that was cooled to 45 oC, to give a final 427 

concentration of 1.2% agar. Ferric ammonium citrate to final concentrations of 0, 1, 10 or 100 µmol/L 428 

were added and plates (55 mm) were poured immediately. Cultures of S. Typhimurium NTB6 [32] or 429 

E. coli DH5α were grown in IMDM medium with 0.5 µmol/L ferric ammonium citrate until the end of 430 

the exponential growth phase. 10 µl of these cultures was used to seed the IMDM-agar plates, which 431 

were then incubated for 18 hours at 37oC. 30-40 L4 stage nematodes were deposited on the lawns of S. 432 

Typhimurium or E. coli DH5α. 5 plates were used for each iron concentration. Survival of nematodes 433 

during co-incubation was scored regularly during 13 days and was expressed as the LT50 (defined as 434 

the time to kill 50% of the population) and the area under the curve (AUC) was determined as another 435 

measure for survival time. Observations were carried out using a standard dissecting microscope; 436 

nematodes were scored as dead when they lost their normal sigmoidal shape and failed to move in 437 

response to gentle touch with a platinum wire. Viability of the bacterial lawns was not affected by iron 438 

concentration (data not shown). 439 
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 440 

Statistics and data representation 441 

 442 

Analysis of mouse responses and nematode survival 443 

To compare means, one-way ANOVA with Tukey’s post-hoc test (to compare all means) or 444 

with Bonferroni’s post-hoc test (for comparison of selected means) was performed. To analyze the 445 

effect of dietary iron intervention and intestinal infection on body weights, the area under the curve 446 

(AUC) for each mouse was determined, after which groups were compared as described above. Colon 447 

histopathology data was also analyzed by one-way ANOVA with a post-test for linear trend. The 448 

correlation between fecal lipocalin-2 and calprotectin levels was assessed by Pearson correlation test 449 

and linear regression was used to plot the best-fit line (with 95% confidence interval). Statistical tests 450 

were performed using GraphPad Prism version 5.03 for Windows, GraphPad Software, San Diego 451 

California USA. P-values < 0.05 were considered statistically significant and P-values < 0.10 were 452 

considered as an important significance level.  453 

 454 

Analysis of 16S rDNA pyrosequencing data 455 

Full descriptions are available in the Supplementary materials and methods. 456 
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FIGURE LEGENDS 653 

 654 

Figure 1. Trial profile, tissue iron content and body weight of the mice during the time course of 655 

the experiment 656 

A) Mouse trials which were performed in four separate experiments. 4-6 weeks old , female, C57BL6 657 

mice in experiment 1 (n=3 per group) and 2 (n=3-4) were sacrificed after 14 days of dietary iron 658 

intervention and were analyzed for serum / stool / tissue iron content, or lipocalin-2. Mice in 659 

experiment 3 (n=5) and 4 (n=5) were orally infected with C. rodentium, while the diets were continued 660 

for another 14 days. Diets contained 2-6 mg Fe/kg (iron-deficient), 45 mg Fe/kg (normal-iron), or 225 661 

mg Fe/kg (high-iron). Samples were analyzed for stool / tissue iron content, hepcidin, lipocalin-2, 662 

calprotectin, or colon histopathology. Gut microbiome analysis was performed on mice in experiment 663 

4. B) Tissue iron stores (mean + SE) of uninfected mice of experiment 2 after 14 days of dietary iron 664 

intervention (n=3-4) and C) of infected C57BL6 mice of experiment 4 after 28 days of dietary 665 

intervention (n=5). Means without a common letter differ significantly, p < 0.05 (Tukey’s post-hoc 666 

test). D) Body weights (mean ±SE) of mice in experiment 4 (n=5) were monitored during 28 days. 667 

Until infection at day 14 (indicated by the arrow) body weights were similar, but tended to differ 668 

among the dietary groups after infection (p = 0.085; one-way ANOVA). 669 

 670 

Figure 2. Systemic lipocalin-2 in uninfected and infected mice, and hepcidin (Hep-1) in infected 671 

mice and uninfected reference mice 672 

A) Systemic lipocalin-2 levels (mean) during dietary iron intervention in uninfected C57BL6 mice of 673 

experiment 1 (serum; n=3), or in infected mice of experiments 3 (serum; n=4-5) and 4 (plasma; n=5)). 674 

Solid lines indicate comparisons with significant outcome between dietary groups at one time point 675 

(Tukey’s post-hoc test). Dashed lines indicate significant comparisons between uninfected and 676 

infected mice (only mice of the same dietary intervention group were compared; Bonferroni’s post-hoc 677 

test). B) Hepcidin levels (mean + SE) in infected C57BL6 mice (day 28) in serum of mice in 678 

experiment 3 (n=4-5) and in plasma of mice in experiment 4 (n=5). Hepcidin levels in plasma of an 679 
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independent group of (uninfected) control mice (C57BL/6 mice on a standard diet) were included to 680 

show reference Hep-1 levels in healthy mice (n=7). * p < 0.05; ** p < 0.01; *** p < 0.001.  681 

 682 

Figure 3. Colon histopathology and ex vivo secretion of pro-inflammatory cytokines by mouse 683 

colon explants 684 

A) Histopathological score (mean) of colon sections of infected C57BL6 mice that were on the 685 

different iron-diets in experiment 3 (n=3) and experiment 4 (n=4-5) at day 28. There was a tendency 686 

for a linear trend from the mean in the iron-deficient group, towards the mean in the high-iron group 687 

(p = 0.087; post-test for linear trend). 688 

B) Colon explants of infected C57BL6 mice (day 28) in experiment 4 (n=3-5) that were on the 689 

different iron-diets and were challenged with C. rodentium, were incubated overnight in culture 690 

medium, after which secreted pro-inflammatory cytokines IL-6, TNF-α and IL-17 were measured by 691 

ELISA. Cytokine levels were normalized for total colon protein. Levels (mean + SE) of IL-6 and 692 

TNF-α are on the left y-axis, and IL-17 levels on the right y-axis. Means without a common letter of 693 

the same cytokine differ significantly, p < 0.05 (n=3-5; Tukey’s post-hoc test). 694 

 695 

Figure 4. Fecal lipocalin-2 and calprotectin levels in infected and uninfected mice 696 

Fecal lipocalin-2 levels (mean) in uninfected C57BL6 mice on the iron-diets of experiment 4 (day 13; 697 

n=4-5), or in infected mice of experiment 3 and 4 (day 27; n=6-10) are depicted in panel A. Panel B 698 

shows fecal calprotectin levels (mean) in uninfected (day 13; n=4-5) and infected (day 27; n=4-5) 699 

C57BL6 mice of experiment 4. * p < 0.05; ** p < 0.01; *** p < 0.001. Solid lines indicate 700 

comparisons with significant outcome between dietary groups at one time point (Tukey’s post-hoc 701 

test). Dashed lines indicate significant comparisons between uninfected and infected mice (only mice 702 

of the same dietary intervention group were compared; Bonferroni’s post-hoc test). 703 

C) The (Pearson) correlation between fecal calprotectin and lipocalin-2 levels in C57BL6 mice of 704 

experiment 4 (day 13 and day 27), plotted by linear regression (best-fit line with 95% confidence 705 

interval), is shown in panel C. 706 

 707 
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 708 

Figure 5. Phylogenetic diversity of the mouse gut microbiome during iron intervention and 709 

intestinal inflammation  710 

The phylogenetic diversity (PD) index of the C57BL6 mice gut microbiomes of the dietary iron 711 

groups over time are given (min-max whiskers with median). Statistically significant differences 712 

between groups (n=5, except for mice on the iron-deficient diet at day 1 with n=4) at the same time 713 

point are indicated with solid lines; comparisons between groups were made at the same time point 714 

only (Bonferroni’s post-hoc test). Differences within groups over time are indicated with dashed lines 715 

(Tukey’s post-hoc test). * p < 0.05, ** p < 0.01. 716 

 717 

Figure 6. Multivariate redundancy analysis (RDA) of the microbiota composition and 718 

hierarchical microbiome clustering 719 

A & B) RDA was performed using Canoco 5.0. Taxonomic composition at the genus level was used 720 

as response data and dietary iron groups over time as explanatory variable. Red symbols represent 721 

dietary iron intervention groups at day 1, 13 and 27 (experiment 4; n=5 per group (n=4 for iron-722 

deficient C57BL6 mice at day 1)). Other symbols are the individual samples. The colored lines are 723 

envelopes connecting samples of the same group. Length of arrows reflects significance and the 724 

direction shows to what group(s) of mice the genus is associated with most. A) Classified sample 725 

diagram. B): Taxa – metadata biplot. To test the significance of the links between dietary intervention 726 

and sample clustering, separate RDAs were done for each individual time point. Clustering by 727 

treatment was not significant at baseline (p = 0.422), while they significantly differed at day 13 (p = 728 

0.002) and at day 27 (p = 0.002) (permutation tests).  729 

C) The microbiomes of fecal samples at day 1, day 13 and day 27 (experiment 4; n=5 per group (n=4 730 

for iron-deficient C57BL6 mice at day 1)) were clustered using UPGMA with weighted UniFrac as a 731 

distance measure. The figure was generated using iTOL [62]. Sample names with the same color are 732 

within the same dietary group at the same time point. Colored bars represent the relative abundance of 733 

a bacterial genus (the number of reads assigned to a genus divided by the total number of reads 734 
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assigned up to the phylum level) in the sample. Mice within a group had no individual ID (indicated as 735 

`x`). 736 

 737 

Figure 7. Combined effect of dietary iron and intestinal inflammation on the mouse gut 738 

microbiome 739 

Nodes represent taxa; edges link the different taxonomic levels. The fold difference between dietary 740 

iron groups at day 27 is calculated as the 2log of the ratio of the relative abundance in the C57BL6 741 

mice on the iron-deficient and normal-iron conditions (A) or in the iron-deficient and high-iron 742 

conditions (B) or in the normal-iron and high-iron conditions (C) (0 = no difference between groups, 1 743 

= twice as abundant, etc.). In this explorative analysis, the significance is expressed as the p value of a 744 

Mann-Whitney U test, n=5 per group (experiment 4). The node-size corresponds to the relative 745 

abundance. Taxa (that is, nodes) most likely to play important roles are therefore brightly colored (a 746 

large difference between treatment groups), have a thick border (the effect is significant) and may be 747 

relatively large (abundant). Taxa were included in this visualization when the fold difference met a 748 

significance level of p < 0.1 and when the relative abundance was > 0.05%, or when the taxon had a 749 

child (that is, more specific taxonomic classification) meeting this criterion.  750 

1 These taxa were not detected in one of the dietary groups and have therefore an estimated 2log fold 751 

difference of 10. 752 

 753 

Figure 8. Survival of C. elegans decreases upon bacterial infection with increasing iron levels 754 

Survival of the nematode C. elegans glp-4(bn2) sek-1(km4) on S. Typhimurium NTB6 and E. coli 755 

DH5α, which was used as a simple in vivo gut model, was monitored during 13 days and the LT50 756 

(defined as the time to kill 50% of the population) was determined. Whiskers without a common letter 757 

and representing nematode survival on S. Typhimurium that was pre-incubated with increasing 758 

amounts of iron, differ significantly, p < 0.01 (single experiment with n=5; Tukey’s post-hoc test). 759 

Whiskers are displayed with median and min to max. 760 


