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GLOBAL BLOW-UP FOR A SEMILINEAR
HEAT EQUATION ON A SUBSPACE

C.J. BUDD (1), J.W. DOLD (2), AND V.A. GALAKTIONOV (3)

Abstract. We study the asymptotic behaviour, as t→ T−, near a finite blow-up time T > 0
of decreasing in x solutions to the following semilinear heat equation with a non-local term:

ut = uxx + u2 −
∫ 1

0
u2 dx in (0, 1)× (0, T ),

1∫
0

u(x, t) dx ≡ 0,

with Neumann boundary conditions and strictly decreasing initial function u0(x) with zero
mass. We prove sharp estimates for u(x, t) as t→ T−, revealing a non-uniform global blow-up:

u(0, t)→ +∞, u(x, t) ≈ −π
√

2(T − t)− 1
2 | log(T − t)| 12 → −∞

uniformly on any compact set [δ, 1], δ ∈ (0, 1).

1. Introduction: Main results

1.1. Statement of the problem. In this paper, we study the asymptotic behaviour of the
blow-up type solutions to the initial-boundary value problem for a semilinear heat equation
with an additional non-local term given by

(1.1) ut = A(u) ≡ uxx + u2 − h(t, u) in ωT ≡ (0, 1)× (0, T ),

where

(1.2) h(t, u) =
1∫
0

u2(x, t) dx.

The solution of this PDE satisfies the Neumann boundary conditions

(1.3) ux = 0 for x = 0, 1 and t ∈ [0, T ),

and the initial condition

(1.4) u(x, 0) = u0(x) in (0, 1),

where the initial function is such that

(1.5) u0(x) ∈ C1([0, 1]), u′0(x) < 0 in (0, 1), u′0(0) = u′0(1) = 0, u′′0(0) < 0,
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and

(1.6)
1∫
0

u0(x) dx = 0.

Problem (1.1)–(1.4) has applications to chemical and biological systems where mass or other
quantities are conserved. An original asymptotic study of blow-up behaviour in this problem
was given in [6] which gives more details of the applications of these type of systems. In [9] and
[31] analytical results for a general class of blow-up type nonlocal reaction-diffusion equations
are given. In [7] the effect of a further perturbation of (1.1) by a nonlinear non-local convective
term is considered in which the system models a certain similarity solution of the Navier–Stokes
equations in which the non-local term corresponds to pressure. The purpose of this paper is to
extend some of these results by obtaining rigorous estimates of the analytical structure of the
blow-up profiles of the solutions to (1.1).

By classic parabolic regularity theory, the solution remains smooth and unique until the first
blow-up time t = T . By integrating equation (1.1) over the interval (0, 1) and by using (1.6)
there is conservation of the mean value

(1.7)
1∫
0

u(x, t) dx = 0 for any t ∈ [0, T ).

The existence of a local in time solution u(x, t) satisfying the constrain (1.7) can be proved
by using a semi-group argument (see e.g., [24] and the references therein) or by a Galerkin ap-
proximation; see [28], where suitable techniques to prove uniqueness are also given. Regularity
of the solution, at least u ∈ C4,2(ωT ) ∩ C1,0(ω̄T ) under the hypotheses (1.5), follows from the
properties of heat operators, see [11]. In fact the regularity of the solution is much better than
these estimates.

1.2. Preliminaries. It was shown in [6] that, under some additional hypotheses on the initial
function u0(x), namely,

(1.8) u0(x) =
∞∑

n=−∞
Cn,0einπx,

where the Fourier coefficients {Cn,0} satisfy the conditions

(1.9) Cn,0 ≥ 0 for any n,

(1.10) C1,0 > C2,0 and either C1,0 > 4
√

2π2 or C2,0 > 4π2,

then the problem (1.1)–(1.6) does not admit a global in time solution. This means that there
exists a finite blow-up time T such that u(x, t) is a uniformly bounded classical solution in ωT ′
for any T ′ < T and (see also the comments in Section 2 of this paper)

(1.11) u(0, t)→∞ as t→ T,

(1.12) h(t, u)→∞ as t→ T.
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Notice that the blow-up hypotheses (1.8)–(1.10) are satisfies by the function u0(x) = 2C1,0 cos(πx)

for arbitrary C1,0 > 4
√

2π2.

The problem under consideration was intensively studied in [6] by a combination of formal
and numerical methods. In particular, it was shown that in this case there exists global non-
uniform blow-up where, together with (1.11), there holds

(1.13) u(x0, t)→ −∞ as t→ T for any x0 ∈ (0, 1].

This paper is devoted to a proof of the formal asymptotic results given in [6], namely, that
u(x, t)→ +∞ as t→ T at the single point x = 0 and that, for any fixed x ∈ (0, 1],

(1.14) u(x, t) ∼ −π
√

2(T − t)−
1
2 | log(T − t)|

1
2 → −∞.

The precise results are stated in Theorem 1.1 below.

It is interesting to compare the equation (1.1) with the well known semilinear heat equation

(1.15) vt = H(v) ≡ vxx + v2 in ωT ,

or

(1.16) vt = vxx + vp in ωT , p > 1, (v ≥ 0).

The asymptotic behaviour of the solutions to (1.15), (1.16), which blow-up, is now well estab-
lished; see the recent results in [2], [4], [10], [25], [26], [32], [31], [9], and the references in the
books [3], [23], [30].

Although the main differential operator in the equation (1.1) looks similar to (1.15), it has
a non-local perturbation and, hence, several useful properties of the heat equation (such as
the Maximum Principle, comparison techniques, and some kinds of a “monotonicity”) cannot
be applied to the problem (1.1). But of course there is a direct connection between these two
equations. More exactly, the non-local equation (1.1) is the semilinear heat equation (after a
proper projecting)

(1.17) ut = uxx + u2 in ωT with u(·, t) ∈ F0 for t ∈ [0, T ),

where F0 is the subspace of the Fourier space F of those functions with the zero mean condition
(1.7) , i.e.,

(1.18) F0 =
{
v ∈ L∞ : v =

∞∑
n=−∞

Cneinπx with C0 = 0.
}

Projecting the equation, as, actually, is done in (1.1), is necessary since F0 is an invariant
subspace for (1.17).
Thus, the non-local problem (1.1), (1.7) is equivalent to the initial-boundary value problem for
the semilinear heat equation (1.15) on the linear subspace F0 of co-dimension 1. That is why
almost all of the known methods and results being proved and obtained for the more usual
semilinear or quasilinear heat equations of the form (1.15), (1.16) and others (see the references
above) cannot be directly applied to the same equations when given on a subspace.

It was shown in [6] that, under the above hypotheses, the positive cone F+
0 ⊂ F0 given by

(1.8), (1.9) is an invariant set of the equation (1.1), i.e., if u0 ∈ F+
0 then u(., t) ∈ F+

0 for
3



all t ∈ (0, T ). This invariance property plays the role of a “weak maximum principle” for the
infinite dimensional dynamical system satisfied by the Fourier coefficients {Cn} of the solution
u(x, t). In Section 2 of this paper, we shall discuss some further comparison and monotonicity
results on F+

0 .

We have mentioned that the usual comparison techniques cannot be applied to the problem
(1.17). It is easily seen that the usual definitions of lower u− and upper u+ solutions satisfying
the corresponding partial differential inequalities

(1.19) u−t ≤ A(u−) and u+
t ≥ A(u+),

cannot be given for the heat equation on the subspace since the non-local term in (1.1) is not
monotone (or anti-monotone) in the parabolic sense. Notice also that the non-local operator
given in (1.1) has a certain monotone property which can be stated as follows. Assume that
there exists a pair of functions (u−, u+), u− ≤ u+ satisfying the Neumann boundary conditions
and the inequalities in (1.8)

(1.20) u−t ≤ u−xx + (u−)2 − h−(t, u−, u+), u+
t ≥ u+

xx + (u+)2 − h+(t, u−, u+) in ωT ,

where we define the functions

(1.21)

h−(·) =
1∫
0

max{s2 : s ∈ [u−(x, t), u+(x, t)]} dx,

h+(·) =
1∫
0

min{s2 : s ∈ [u−(x, t), u+(x, t)]} dx,

Then, by the usual comparison techniques based on the Maximum Principle [11], we have that

(1.22) u− ≤ u ≤ u+ in ωT ,

provided that these inequalities are valid for t = 0. Unfortunately, because of the blow-up
behaviour, the functions u− and u+ are expected, in general, to have different blow-up times,
and hence comparison (1.22) in the whole domain ωT is not possible. In other words (1.22)
implies that u− ≡ u ≡ u+.

The most sharp results on blow-up behaviour for the heat equations of the form (1.16) have
been proved via a centre manifold analysis [2], [4], [10] and similar techniques; see [25], [26] (see
also the formal approach in [32]). In particular, the following asymptotically sharp estimate
of the L∞-norm of negative decreasing in |x| solutions v = v(|x|, t) to (1.15) was proved to be
valid

(1.23) ‖v(., t)‖L∞ = (T − t)−1
[
1 + 1

4| log(T−t)|(1 + o(1))
]

as t→ T.

A much weakened form of such an estimate plays a key role in studying the non-local problem
(1.1), (1.4).

We assume that (cf. (1.23))

(1.24) lim
t→T

sup | log(T − t)|{(T − t)u(0, t)− 1} <∞.
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We will show in Section 4 that the boundedness hypothesis (1.24) is equivalent to a traditional
problem in the theory of nonlinear evolution equations. Namely, to prove that under some hy-
potheses, any global solution to a particular nonlinear evolution equation is uniformly bounded
from above. For the non-local problem (1.1), (1.4), hypothesis (1.24) remains an open question
and will be considered in a future paper1.

This paper is devoted to the study the asymptotic behaviour of blowing up solutions to non-
linear parabolic equations. This scheme, which differs from the methods given in the above
mentioned papers, can be applied to the nonlinear equation (1.1), (1.2) as well as to the semi-
linear equations (1.15), (1.16). Since our approach is not based on a centre manifold analysis
or similar techniques (justifying these turned out to be very difficult) and we do not essentially
use the heat potentials corresponding to the linear heat operator ∂/∂t − ∂2/∂x2, this scheme
is expected to be useful for a wide class of quasilinear heat equations with nonlinear diffusion
terms where the behaviour as t → T is described by a semilinear Hamilton–Jacobi equation.
See some details in [4].

1.3. The main result. We now state the main result of this paper.

Theorem 1.1 Assume that (1.5), (1.6) hold and that T > 0 is a blow-up time. Assume that
the upper bound (1.24) is valid. If we define the new rescaled variable

η = x(T − t)
1
2 | log(T − t)|−

1
2 ,

then, as t→ T ,

(1.25) u(0, t) = (T − t)−1
[
1 + 1

4| log(T−t)|(1 + o(1))
]
,

(1.26) (T − t)u(η((T − t)| log(T − t)| 12 , t)→ θ∗(η) ≡
(
1 + η2

8

)−1

uniformly on compact subsets in η ≥ 0,

(1.27) u(x, t) = −π
√

2(T − t)−
1
2 | log(T − t)|

1
2 (1 + o(1))

uniformly on compact subsets {δ ≤ x ≤ 1} for arbitrarily small δ > 0,

(1.28) h(t, u) ≡
1∫
0

u2(x, t) dx = π√
2

(T − t)− 3
2 | log(T − t)| 12 (1 + o(1)).

The proof of Theorem 1.1 consists of several steps. In Section 2, by using a slight modification
[18] of the method [12], we prove a sharp upper bound on u(x, t) as t → T, x → 0 through
the value of u(0, t). We also prove that u(x, t) has a “flat” behaviour as t → T on compact
subsets [δ, 1] with small δ > 0, a sharp description of which is as given in (1.27). These
estimates imply that the value of h(t, u) ≡ ‖u(x, t)‖2

2 as t→ T depends only on the behaviour
of u(x, t) near the origin x = 0. This behaviour is finally shown to be almost independent of
the non-local term in (1.1). The proof of (1.25), (1.28) is based on several limits as t → T
on different compact subsets in x for different rescaled functions. The first limit as t → T

1As we have mentioned in Abstract of the present paper, instead, we will perform a difficult blow-up study
of the related higher-order parabolic problem coming from Burnett’s hydrodynamic model, [8].
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on small compact subsets {0 ≤ x ≤ c0(T − t) 1
2} is obtained in Section 3 by using a form of

Lyapunov-type analysis, see similar results for autonomous in time semilinear heat equations
in [16], [13], and also in [15]. The second limit on the same compact subsets establishing a
precise rate of growth of the solution (1.25) and its second x-derivative is based on the idea of a
weighted energy equation (see different applications in [15], [17], and [19]). The above estimates
make it possible to match such asymptotic behaviour with that on larger compact subsets of
the form {0 ≤ x ≤ c0[(T − t)| log(T − t)|] 12} which yields a precise asymptotic behavior of the
solution, (1.26) and hence (1.27), (1.28). This last step is based on general results on perturbed
dynamical systems; see [19] and also [23].

2. First estimates

In this section we prove some qualitative results on the behaviour of the solution.

2.1. Preliminaries. We begin with some simple results.

Proposition 2.1 Under the hypotheses (1.5),

(2.1) ux(x, t) < 0 in ωT .

Proof. Since by the regularity of the solution, the function z = ux solves the parabolic equation

(2.2) zt = zxx + 2uz in ωT

with a smooth coefficient bounded in ωT ′ with T ′ < T and z ≤ 0 on the parabolic boundary
∂ωT of ωT (see (1.3), (1.5)), and furthermore z < 0 for t = 0 by (1.5), the result (2.1) follows
from the Strong Maximum Principle [11]. �

It then follows from (2.1) that, for any t ∈ [0, T ),

(2.3) sup
x
u(x, t) = u(0, t) and inf

x
u(x, t) = u(1, t)

and by (1.7) we have that

(2.4) u(0, t) ≡ µ0(t) > 0, u(1, t) ≡ −µ1(t) on [0, T ).

We observe that we may construct some further non-monotone solutions by a process of suc-
cessive reflections and scalings.

Using Proposition 2.1, we also conclude that, for any t ∈ [0, T ), there exists exactly one zero
point x0(t) ∈ (0, 1) of the solution u(x, t) so that, for any t ∈ (0, T ),

(2.5) u(x, t) > 0 on I+(t) = (0, x0(t)), u(x, t) < 0 on I−(t) = (x0(t), 1).

Since ux(x0(t), t) < 0 for t ∈ [0, T ) by (2.1), the curve {x = x0(t), t ∈ [0, T )} is differentiable
and moreover x0(t) ∈ C∞((0, T )). We note that in [6] it is shown, formally, that

x0(t) ∼ 2
√

2
π

(T − t) 1
2 | log(T − t)| 12 as t→ T.

Hence, the domains ω+
T = I+(t)× (0, T ) and ωT− = I−(t)× (0, T ) have smooth lateral bound-

aries.
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For convenience, we denote

u+ = max{u, 0}, u− = min{u, 0},

so that

u+ = u, u− ≡ 0 on ω+
T , u+ ≡ 0, u− = u on ω−T ,

and, for any t ∈ [0, T ),

(2.6) h(t, u) ≡ ‖u(x, t)‖2
2 = ‖u+(t)‖2

2 + ‖u−(t)‖2
2, ‖u(x, t)‖1 = ‖u+(t)‖1 + ‖u−(t)‖1.

Proposition 2.2 If we presume that u(x, t) blows up at a time T , then

(2.7) u(0, t) > (T − t)−1 on (0, T ).

Proof. The function v(t) = (T − t)−1 > 0 is the uniform in space solution of the parabolic
equation

(2.8) vt = vxx + v2 in ωT .

Since u(x, t) satisfying

(2.9) ut = uxx + u2 − h(t, u) < uxx + u2

is a strict lower solution of the heat equation (2.8), the inequality (2.7) follows via the inter-
section comparison results in [30] (Chapter IV). Indeed, if (2.7) is false for some t′ ∈ (0, T )
then by (2.3) the profiles u(x, t′) and v(t′) do not intersect each other on [0, 1], by the Max-
imum Principle [11] we deduce that u(x, t) and v(t) have different blow-up times, giving the
contradiction. �

Proposition 2.3 There exists a t0 ∈ [0, T ) such that

(2.10) h′(t, u) > 0 on [t0, T ).

Proof. By multiplying equation (1.6) by u and ut ∈ F0 and using the well known embedding
inequality ‖ux‖2

2 ≥ π2‖u‖2
2 on F0, we have that (see also [6])

(2.11) d
dt
‖u(x, t)‖2

2 ≥ π2‖u(x, t)‖2
2 + 6H(u0) on (0, T ),

where

H(u) = −1
2
‖ux‖2

2 + 1
3

∫
u3 dx.

We have from (1.12) that there exists a t0 ∈ [0, T ) such that ‖u(x, t0)‖2
2 > 6H(u0)/π2 and hence

(2.10) follows. �

We now begin to estimate the non-local term h(t, u) in the equation (1.1).
7



2.2. Estimates in ω+
T . The following result plays an important role in the future analysis:

Lemma 2.4 There exist large positive constants A0 and B0 such that

(2.12) J(x, t) ≡ ux + u2 x
4B0+2 log(A0+u2)

≤ 0 in ω+
T .

Proof. Using the ideas in [12] we first set (c.f. (2.12))

(2.13) J(x, t) = ux + xF (u) in ω+
T

where F (u) is a smooth function to be determined later. Then J solves the parabolic equation

(2.14) Jt = Jxx + bJ + d in ω+
T

with coefficients given by

(2.15) b = 2u− 2F ′ − xF ′J + 2x2FF ′′

and

(2.16) d = x[2FF ′ + u2F ′ − 2uF − F ′h]− x3F 2F ′′.

Assume now that F (u) satisfies

(2.17) F (0) = 0, F > 0, F ′ > 0, F ′′ > 0 for u > 0.

It follows from (2.16) that

(2.18) d ≤ xF 2G(u, h) in ω+
T ,

where

(2.19) G(u, h) =
[
2 log(F )− u2

F

]′ − F ′

F 2h.

Since F (0) = 0, we have by (1.3) and (2.1) that J ≤ 0 on the lateral boundary of ω+
T . Hence,

by applying the Maximum Principle [11] to the linear parabolic equation (2.14), we conclude
that

(2.20) J ≤ 0 in ω+
T

provided that

(2.21) J(x, 0) = u′0 + xF (u0) ≤ 0 in I+(0),

(2.22) G(u, h) ≤ 0 for u > 0.

Set

(2.23) F (u) = u2

4B0+2 log(A0+u2)
for u ≥ 0,

so that the function

F0(u) = u2

4 log(u)
≡ F (u)(1 + o(1)) as u→∞

is an approximate asymptotic solution of the algebraic equation

2 logF (u)− u2

F (u)
= 0.

8



This function, for u� 1, is the best possible (with respect to the growth as u→∞) solution
of the ordinary differential inequality

(2.24)
[
2 log(F )− u2

F

]′ ≤ 0 for u� 1,

(cf. (2.22) with h ≡ 0; see [18]). Then, under the assumed hypothesis (1.5), we have that (2.12)
is valid for any sufficiently large A0 > 1. The same is true for assumptions (2.17).

Now, consider the inequality (2.22) with the function (2.23). By Proposition 2.3, we may
suppose that h(t, u) ≥ h0 > 0 for every t ∈ (0, T ). Then, we have from (2.19) that G(u, h) ≤
G(u, h0) and substituting function (2.23) yields

G(u, h0) ≡ 4
u(A0+u2)

[
A0 − 2F (u)− u(A0+u2)

4
F ′

F 2h0

]
.

Hence, since F ′/F 2 ≥ 1/uF (u) for u > 0 if A0 ≥ 3 and B0 > 1, we have that

G(u, h0) ≤ 1
u(A0+u2)

[4A0 − h0(4B0 + 2 log(A0 + u2))] < 0 for u > 0,

provided that B0 > A0/h0. Thus, (2.21), (2.22) with the function (2.23) are valid, and, hence,
(2.20) yields (2.12), whence the result. �

As a straightforward consequence of (2.12), we now prove an explicit, uniform in time, upper
bound on u+(x, t) which shows that u+ blows up as t→ T at the single point x = 0.

Corollary 2.5. There exists a small constant ε0 such that

(2.25) u+(x, t) ≤ 16x−2| log(x)|
[
1 + log(| log(x)|)+B0+log(16)

2| log(x)|

]
in (0, ε0]× (0, T ).

Proof. For a fixed t ∈ (0, T ), integrating the inequality (2.12) over the interval (0, x) yields
the inequality

(2.26) x2

8
≤

u(0,t)∫
u(x,t)

z−2
(
B0 + 1

2
log(A0 + z2)

)
dz = P (u(x, t))− P (u(0, t)) in ω+

T ,

where the function P (z) is given by

(2.27) P (z) = z−1[log(z) + (B0 + 1)z−1(1 + o(1))],

with A0 � 1, and is strictly decreasing for z � 1. Denote by P−1(s) the corresponding inverse
function satisfying, for small s > 0,

(2.28) P−1(s) = 1
s

[
log
(

1
s

)
+ log

(
log
(

1
s

))
+ (B0 + 1)(1 + o(1))

]
.

It then follows from (2.26) that

(2.29) u(x, t) ≤ P−1
[
x2

8
+ P (u(0, t))

]
.

Hence, u ≤ P−1(x2/8) and (2.25) follows from (2.38). �

Remark. Notice that (2.25) implies some estimate of the growth of u(0, t) as t → T . In
particular, it can easily be seen that if a ≤ (T − t)−nu(0, t) ≤ A as t → T for some n < 0
with a < A positive constants, then (2.25) and (2.7) yield that the unique possible value of the
parameter n is n = −1. Indeed, if n < −1 then (2.25) cannot be valid, cf. asymptotic properties
of solutions of the heat equation with blow-up boundary functions given in [30] (Chapter III).
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By using (2.12) we can also derive an explicit lower estimate of u(0, t).

Corollary 2.6. There exists t1 ∈ (0, T ) such that, on (t1, T ),

(2.30) u(0, t) > (T − t)−1
[
1 + 1

4
| log(T − t)|−1 − B0

16
| log(T − t)|−2

]
.

Proof. Since J(0, t) ≡ 0, we conclude from (2.12) that

(2.31) Jx = uxx + xF ′(u)ux + F (u) ≡ uxx + F (u) ≤ 0 for x = 0, t ∈ (0, T ).

It follows from (1.1) that uxx = ut − u2 + h and, hence, (2.31) implies that

(2.32) ut ≤ u2 − F (u)− h ≤ u2 − F (u) ≡ u2
[
1− 1

4B0+2 log(A+u2)

]
for x = 0, t ∈ (0, T ). Integrating this inequality over (t, T ) and using (1.11) yield, as t→ T ,

T − t ≥
∞∫

u(0,t)

dz
z2−F (z)

≥
∞∫

u(0,t)

z−2
[
1 + 1

4B0+2 log(A+u2)

]
dz.

By estimating the integral in the right-hand side we arrive at (2.30). �

We now derive a sharp evolution estimate for u+(x, t) as t→ T.

Proposition 2.7 There exist t2 ∈ (0, T ) and K1 > 0 large enough such that, for any t ∈ [t2, T ),

(2.33) u+(x, t) ≤ u(0, t)
[
1 + η2

8

]−1
(1 + γ(t)),

where

(2.34) η = x
[ u(0,t)

log(u(0,t)

] 1
2 , γ(t) = 3 log(log(u(0,t)))

log(u(0,t))
,

on the set Ω1(t) ⊂ [0, 1) given by

(2.35) 0 ≤ η ≤ c∗(t) ≡ 2
√

2
[
K−1

1
u(0,t)

log(u(0,t))
− 1
] 1

2 →∞ as t→ T,

and

(2.36) u+(x, t) ≤ K2 = P−1(K−1
1 ) on [0, 1] \ Ω1.

Proof. It follows from (2.7) and (2.27) that for any t ∈ (t2, T )

(2.37) P (u(0, t)) ≥ log(u(0,t))
u(0,t)

,

provided that t2 is close to T . Using now the fact, by (2.38),

(2.38) P−1(s) ≤ R(s) ≡ 1
s

[
log
(

1
s

)
+ 2 log

(
log
(

1
s

))]
for 0 ≤ s ≤ 1/K1,

where K1 > 0 is large enough, and substituting (2.37), (2.38) into (2.29), we obtain that

(2.39) u(x, t) ≤ R(Y −1), Y = u(0,t)
log(u(0,t))

[
1 + η2

8

]−1

provided that Y ≥ K1. Then (2.39) yields (2.33), and (2.36) then follows by the monotonicity
(2.1). �

10



Remark. It follows from the lower estimate (2.7) that (2.33) is valid with

η = x/[(T − t)| log(T − t)|]
1
2 .

The following upper estimates of ‖u+(t)‖2
2 and ‖u+(t)‖1 are direct consequences of the above

proposition.

Corollary 2.8. There exists t3 ∈ (t2, T ) such that, on [t3, T ),

(2.40) ‖u+(t)‖2
2 ≤ π2−

1
2φ(t, u)(1 + 3γ(t)),

(2.41) ‖u+(t)‖1 ≤ π2
1
2ψ(t, u)(1 + γ(t)),

(2.42) φ(t, u) = [u3(0, t) log(u(0, t))]
1
2 , ψ(t, u) = [u(0, t) log(u(0, t))]

1
2 .

Proof. Since
1∫
0

u2
+ dx =

∫
Ω1(t)

u2
+ dx+

∫
[0,1]\Ω1(t)

u2
+ dx,

it follows from (2.33) and (2.34) that, as t→ T ,∫
Ω1(t)

u2
+ dx ≤ φ(1 + γ)2

c∗(t)∫
0

(
1 + η2

8

)−2
dη ≤ φ

(
1 + 5

2
γ
)
π
√

2
2
,

∫
[0,1]\Ω1(t)

u2
+ dx ≤ K2

2(1−meas(Ω1)) ≤ K2
2 ,

whence (2.40). The proof of (2.41) is similar. �

Notice that, since ‖u+‖1 ≡ ‖u−‖1 by (1.7), from (2.6), (2.41), we have the estimate on [t3, T ):

(2.43) ‖u(t)‖1 ≤ π2
1
2ψ(t, u)(1 + γ(t)).

2.3. Estimates in ω̄T . First, we notice that, if u−(x, t) is bounded from below, i.e.,

(2.44) inf
ωT
u(x, t) = −C1 > −∞,

then for any t ∈ [0, T )

(2.45) ‖u−(t)‖2
2 ≤ C2

1 .

(We will denote by Ci > 0 different positive constants.) Hence, by (2.6), (2.40) we arrive at
the following estimate of the non-local term:

(2.46) h(t, u) ≤ π2−
1
2φ(t, u)(1 + 4γ(t)) on [t3, T ).

We will prove that (2.46) is always valid, including the case

(2.47) inf
ωT
u(x, t) = −∞.

We begin with the following preliminary result:
11



Proposition 2.9 Assume that (2.47) holds. Then, as t→ T ,

(2.48) u(x, t)→ −∞ uniformly on any compact subset [δ, 1], δ ∈ (0, 1),

and

(2.49) x0(t)→ 0 as t→ T.

Proof. Firstly, we notice from evaluating equation (1.1) at the point x = 1 that

ut = uxx + u2 − h(t, u) ≥ −h(t, u),

and hence

(2.50) u(1, t) ≥ u(1, 0)−
t∫

0

h(s, u) ds on (0, T ).

Therefore, we deduce from (2.3) that, if assumption (2.47) is valid, then

(2.51)
τ∫
0

h(s, u) ds = +∞.

Now, fix an arbitrarily small ε > 0 and a large constant Mε > 0 such that, by Corollary 2.5,

(2.52) u(x, t) ≤Mε in [ε, 1]× [0, T ).

Consider the function

(2.53) ū(x, t) = Mε − ρ(t)wε(x), wε(x) = 1− (x−1)2

(1−ε)2 ,

where a suitable function ρ > 0, ρ′ > 0 on some small interval (tε, T ), ρ(tε) = 0, will be
determined later. The function ū satisfies

(2.54) ū(ε, t) = Mε, ūx(1, t) = 0 on [tε, T ), ū(x, tε) = Mε on [ε, 1].

We now choose the function ρ so that

(2.55) ūt ≥ ūxx + ū2 − h(t, u) in qε = (ε, 1)× (tε, T ).

(Of course ū is not an upper solution to (1.1) which cannot be constructed independently.)
Substituting (2.53) into (2.55) yields

−ρ′wε ≥ 2ρ
(1−ε)2 + (Mε − ρwε)2 − h(t, u),

and, hence, it is valid if ρ(t) solves the ordinary differential equation

(2.56) ρ′ = − 2ρ
(1−ε)2 −max{M2

ε ), (ρ2}+ h(t, u) ≡ Tε(ρ, t).

By Proposition 2.3, h(t, u) is increasing as t→ T . We have that Tε(ρ, t) = 0 on the zero curve
{ρ = ρ0(t), t ∈ (0, T )} given by

ρ0(t) = (1−ε)2
2

[h(t, u)−M2
ε ] for 0 ≤ t ≤ t∗ε ,

(2.57) ρ0(t) = [h(t, u) + (1− ε)−4]
1
2 − (1− ε)−2 for t∗ε ≤ t ≤ T,

where t∗ε is the unique root of the equation

(2.58) h(t, u) = M2
ε + 2Mε

(1−ε)2 � 1.
12



Then, ρ0(t) is strictly increasing on [t∗ε , T ). Let t̄ε be the unique root of the equation h(t, u) = Mε.
Fix an arbitrary tε ∈ (t̄ε, T ). Then by (2.51), the solution ρ(t) of equation (2.56) on (tε, T ) with
the boundary condition ρ(tε) = 0 satisfies

(2.59) ρ′ > 0 on (tε, T ), ρ→ +∞ as t→ T.

Finally, since ū(x, tε) ≡Mε it follows from (2.55), (2.52), (2.54) that, by the Maximum Principle
[11],

(2.60) u ≤ ū in qε.

It then follows from (2.53), (2.60) that, as t→ T ,

(2.61) ū(x, t)→ −∞ uniformly on [2ε, 1],

and hence (2.48) with δ = 2ε follows from (2.61). Condition (2.61) also implies that there exists
a t̃ε ∈ (0, T ) such that ū(2ε, t) ≤ 0 for t ∈ (t̃ε, T ). Then (2.1), (2.60) yield that x0(t) ≤ 2ε on
(t̃ε, T ). Since ε > 0 is arbitrary, we obtain (2.49), completing the proof. �

We now give a more precise description of the “flat” behaviour of u(x, t) as t→ T on compact
subsets bounded away from zero. We first need to establish a rough estimate of h(t, u).

Proposition 2.10 There exists t4 ∈ (0, T ) such that

(2.62) |u(1, t)| ≤ sup
s∈(0,t)

u(0, s) ≡ ū(0, t) on [t4, T ),

and hence

(2.63) h(t, u) ≤ ū2(0, t) on [t4, T ).

Proof. It follows from (2.1) that

(2.64) h(t, u) ≤ max{u2(0, t), u2(1, t)} on [0, T ),

and hence equation (1.1) at the point x = 1 yields that µ1(t) ≡ −u(1, t) > 0 satisfies

µ′1 ≤ −µ2
1 + max{u2(0, t), µ2

1}, µ1(0) = −u0(1) > 0.

By comparison, µ1(t) ≤ ρ(t) where ρ solves

(2.65) ρ′ = −ρ2 + max{u2(0, t), ρ2}, ρ(0) = −u0(1).

Therefore ρ(t) ≤ ū(0, t) on [t4, T ), where t4 is such that |u0(1)| = u2(0, t4) (if |u0(1)| ≤ u2(0, t)
for every t ∈ [0, T ) then t4 = 0). Hence, (2.62) holds and (2.63) follows from (2.64). �

Remark: on some properties of solution on F+
0 . It is interesting to notice that sharper

estimates than (2.62), (2.63) are always valid if u(., t) ∈ F+
0 = {v ∈ F0 : v satisfies (1.8),

(1.9)}. It was formally shown in [6] that if v0 ∈ F+
0 then u(·, t) ∈ F+

0 for any t ∈ (0, T ). The
proof of such a weak maximum principle is based on a finite-dimensional approximation of the
infinite-dimensional dynamical system

(2.66) C ′n = −n2π2Cn +
∞∑

m=−∞
CmCn−m, Cn(0) = Cn0, n ∈ (−∞,∞),
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which is equivalent to the equation (1.1), where Cn are the coefficients of the Fourier expansion

(2.67) u(x, t) =
∞∑

n=−∞
Cn(t)einπx,

and from the Neumann boundary conditions, we conclude that Cn(t) ≡ C−n(t) for any n. Now,
using the Galerkin approximation

uN(x, t) =
N∑

n=−N
C

(N)
n (t)einπx,

where {C(N)
n } solves the system (2.66) with C

(N)
n ≡ 0 for |n| > N , we have from (1.9) that,

by comparison for ODE’s, C
(N)
n ≥ 0. Since by known results uN → u as N → ∞ in the space

L∞((0, T ′) : H1((0, 1))), T ′ < T [28], the weak convergence uN(·, t) → u(·, t) in L2((0, 1))

implies that, for any fixed t ∈ (0, T ), C
(N)
n → Cn(t) as N →∞, whence

(2.68) Cn(t) ≥ 0 for any n and t ∈ (0, T ).

Therefore, we have from (2.68) that, for any t ∈ [0, T ),

|u(1, t)| = 2
∣∣ ∞∑
n=1

(−1)nCn
∣∣ ≤ u(0, t) = 2

∣∣ ∞∑
n=1

Cn
∣∣,

(2.69)
1∫
0

u2 dx = 2
∑
C2
n ≤ 1

2
u2(0, t) = 2

(∑
Cn
)2
.

The above weak maximum principle is a direct consequence of the comparison result for the
equation (1.1) on F+

0 . Indeed, if u(·, t) and ū(·, t) ∈ F+
0 with coefficients {Cn(t)} and C̃n(t)}

given by (2.67) are two different solutions to (2.66) and Cn(0) ≥ C̃n(0) for any n, then Cn(t) ≥
C̃n(t) for all n and t > 0. In order to prove that, we notice that the difference {Bn(t) ≡
Cn(t)− C̃n(t)} satisfies a system of similar type to (2.66), with non-negative coefficients in the
quadratic terms

(2.70) B′n = −n2π2Bn +
∑

(BnCn−m + C̃mBn−m)

and Bn(0) ≥ 0. By using a similar Galerkin approximation of the solution w(x, t) ≡ u(x, t) −
ũ(x, t) to the linear parabolic equation for this difference, wt = wxx + (u + ũ)w, after passing
to the limit, we obtain that Bn(t) ≥ 0 for any n, whence the result.

Notice also that the same construction can be used to prove some monotonicity results on F+
0 .

Namely, given u ∈ F+
0 set Bn = Cn+1 − Cn for n ≥ 0. Then {Bn} solves the problem (cf.

(2.70))
B′n = −n2π2Bn − (1 + 2n)π2Cn+1 +

∑
CmBn−m,

and since Cn ≥ 0 we have that

B′n ≤ −n2π2Bn +
∑
CmBn−m.

Assume now that Bn(0) ≤ 0 for all n ≥ 0. Then, by comparison, we may conclude that
Bn ≤ B̃n, where {B̃n} solves the system

(2.71) B̃′n = −n2π2B̃n +
∑
CmB̃n−m
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with the same non positive initial data. Hence, by the weak maximum principle for (2.71),
which is proved by the Galerkin approximation w̃(x, t) to the parabolic equation (cf. (2.71))
w̃t = w̃xx + uw̃, we conclude that B̃n(t) ≤ 0. Thus, we have that for a given u(·, t) ∈ F+

0 the
sequence

(2.72) {Cn(t)} is decreasing in n ≥ 0 for any fixed t > 0

provided that {Cn(0)} is decreasing. Hence, under such an assumption the first coefficients
which blow up are C1(t) and C2(t). Unfortunately, in this case the ordinary differential in-
equalities

C ′1 ≥ −π2C1 + C1C2, C ′2 ≥ −4π2C2 + C2
1 for t > 0

established in [6] for u ∈ F+
0 under assumptions (1.10) do not give a suitable upper bound for

the rate of growth of u(0, t) as t→ T <∞. In particular, if by (2.72) C1 ≥ C2, it can be easily
proved that C2(t) ≤ const.(T − t)−1. �

We now continue to study the case of (2.47). Hypothesis (1.24) implies that

(2.73) u(0, t) ≤ C2(T − t)−1 on [0, T )

and hence, by Proposition 2.10,

(2.74) |u(1, t)| ≤ C3(T − t)−1,

(2.75) h(t, u) ≤ C4(T − t)−2 on [0, T ).

Denote now by ρ(t) the solution to the ordinary differential equation

(2.76) ρ′ = −ρ2 + h(t, u) on (0, T ), ρ(0) = 0.

We have, from Proposition 2.3 and equation (1.12), that

(2.77) ρ(t) > 0, ρ′(t) > 0, ρ(t) < h
1
2 (t, u) as t→ T.

Therefore, if (2.73) holds then by (2.77)

(2.78) ρ(t) ≤ C5(T − t)−1 on [0, T ).

Notice again that (2.51) is valid under the assumption (2.47) and then equation (2.76) yields

(2.79) ρ(t)→ +∞ as t→ T.

We now state the result on the flat behaviour of u(x, t) in ω−T .

Lemma 2.11 Assume that (2.47) and (2.73) hold. Then uniformly on any compact subset [δ, 1]
with arbitrarily small δ > 0

(2.80) u(x, t) = −ρ(t)
[
1 +Oδ

(
1
ρ(t)

)]
as t→ T,

and

(2.81) |ux|+ |uxx| ≤ C6, |ut| ≤ ρ′(t) + C7 as t→ T.

Proof. Set
u(x, t) = −ρ(t)− U(x, t) in ω−T .
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Then, using (2.76), we deduce that U solves the problem

(2.82) Ut = Uxx − U(U + 2ρ) in ω−T ;

(2.83) U = −ρ(t) for x = x0(t), Ux = 0 for x = 1, t ∈ [0, T );

(2.84) U = −u0(x) for x ∈
[
x0(0), 1

]
, t = 0.

Notice that by (2.1)

(2.85) Ux > 0 and U ≥ −ρ(t) in ω−T .

Then the lower order term Q(U, t) ≡ −U(U + 2ρ(t)) in (2.82) satisfies

(2.86) Q(U, t) ≤ 0 for U ≥ 0, Q(U, t) ≥ 0 for U ≤ 0,

and hence, by the Maximum Principle [11], it follows from (2.82), (2.85), (2.86) that U(x, t) is
uniformly bounded from above,

(2.87) U ≤ C8 in ω−T .

We now prove the lower bound on U . Fix an arbitrary small δ > 0. From (2.49) we deduce
that there exists a tδ ∈ (0, T ) such that x0(t) ∈ (0, δ/2) on [tδ, T ). Now, consider the function
U(x, t) satisfying

(2.88) U t = Uxx in qδ = (δ/2,∞)× (tδ, T ),

(2.89) U = −ρ(t) for x = δ/2, t ∈ (tδ, T ),

(2.90) U = U δ(x) for x ∈ [δ/2,∞), t = tδ,

where the initial function is assumed to satisfy

(2.91) U ′δ < 0 in [δ/2,∞), U δ(δ/2) = −ρ(tδ), U δ(+∞) = −2ρ(tδ).

Since, by (2.77) U ≤ −ρ(tδ) on the parabolic boundary of qδ, by the Maximum Principle [11]

(2.92) U ≤ −ρ(tδ) < 0 in qδ.

It follows from (2.83), (2.84) that

(2.93) U δ(x) ≤ U(x, tδ) on [δ/2, 1].

By the linear superposition principle, U = U1 + U2, where

(2.94) U1(x, t) = −(4π)−
1
2y

t∫
tδ

exp
(
− y2

4(t−τ)

)
ρ(τ)

(t−τ)
3
2

dτ,

(2.95) U2(x, t) = (4πt′)−
1
2

∞∫
0

[
exp

(
− (y−y′)2

4t′

)
− exp

(
− (y+y′)2

4t′

)]
U δ

(
y′ + δ

2

)
dy′,

with y = x − δ/2, t′ = t − tδ, are the solutions to (2.88) with zero initial and boundary data
respectively. It follows from (2.91), (2.95) that

(2.96) −2ρ(ts) ≤ U2 ≤ 0, (U2)x < 0 in [δ/2, 1]× [tδ, T ) = Ωδ.
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The function U1 is uniformly bounded from below in [δ, 1)×[tδ, T ). Indeed, we have from (2.78),
(2.94) that

(2.97) 0 ≥ U1 ≥ F (x, t) ≡ −(4π)−
1
2C5(x− δ/2)

t∫
tδ

exp
(
− (x−δ/2)2

4(t−τ)

) (T−τ)−1

(t−τ)
3
2

dτ,

where the function F satisfies

(2.98) F (x, t) ≥ F (x, T ) in Ωδ.

It follows from (2.97) that (see [30] (Chapter III))

(2.99) F (x, T ) ≥ −C9|x− δ/2|−2 on (δ/2, δ),

(2.100) |F (x, T )| ≤ C10(tδ), |Fx(x, T )| ≤ C11(tδ),

where the constants C10 and C11 depending on tδ satisfy

(2.101) C10(tδ), C11(tδ)→ 0 as tδ → T.

By using (2.96)–)2.101), we conclude that

(2.102) Ux(1, t) < 0 on [tδ, T )

provided tδ is close enough to T and that |U ′δ| is large on [δ/2, 2]. It also follows from (2.91)
that U ≥ −2ρ in Ωδ. Hence, we deduce from (2.92) and (2.86) that Q(U, t) ≥ 0, i.e.,

(2.103) U t ≤ Uxx − U(U + 2ρ) in Ωδ.

Then, by the Maximum Principle [11], U ≥ U ≡ U1 + U2 in Ωδ and therefore (2.96) and
(2.98)–(2.100) yield that

(2.104) U ≥ −C12 in [δ, 1]× [tδ, T ) = Ω′δ.

Finally, since u+ ρ = −U , by (2.87) and (2.104), we have that

(2.105) |u(x, t) + ρ(t)| ≤ C13 in Ω′δ,

where C13 > 0 depends on δ ∈ (0, 1), and (2.80) follows.

The uniform estimate of the first derivative

(2.106) |ux| ≤ C6 in Ω′δ

follows from a similar analysis of the semilinear parabolic equation for ux ≡ v,

(2.107) vt = vxx + 2uv,

First, since v ≤ 0, using (2.73) we have that vt ≥ vxx + 2C2(T − t)−1v in ωT and hence
infx v(x, t) ≥ −(T − t)−α1 as t→ T with α1 = 2C2. It then follows that u ≤ 0 in Ωδ and hence,
by (2.107), vt ≥ vxx in Ωδ with v ≥ −(T − t)−α1 for x = δ/2. Hence, by the same comparison
as for the problem (2.82)–(2.84), we have that v is uniformly bounded from below in Ω′δ. In
order to finish the proof of (2.81) we consider the equation for uxx ≡ w,

(2.108) wt = wxx + 2uw + 2(ux)
2.

Since wx ≡ 0 for x = 1 and u ≈ −ρ(t) and (ux)
2 are bounded on Ω′δ, we have from (2.108) that

w is bounded from above. Since by (2.73) infxw(x, t) ≥ −(T − t)−α1 as t → T , by the same
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comparison technique in Ωδ as above, we conclude that w is bounded from below in Ω′δ. The
last estimate in (2.81) then follows from (2.80) and (2.76):

|ut| ≡ |uxx + u2 − h| ≤ C6 + ρ2
(
1 +O

(
1
ρ

))
− h ≤ ρ′ + C7.

This completes the proof of Lemma 2.11. �

We now state the main sharp upper estimate on h(t, u).

Lemma 2.12 Assume that (2.73) holds. Then, as t→ T ,

(2.109) h(t, u) ≤ π2−
1
2 [u3(0, t) log u(0, t)]

1
2 (1 + 4γ(t)),

where γ(t) is given in (2.34),

(2.110) h(t, u) ≤ C14(T − t)−
3
2 | log(T − t)|

1
2 ,

and also

(2.111) u(x, t) ≥ −π2
1
2 [u(0, t) log(u(0, t)]

1
2 (1 + o(1)),

(2.112) u(x, t) ≥ −C15(T − t)−
1
2 | log(T − t)|

1
2 (1 + o(1))

uniformly on any compact subset [δ, 1], δ > 0.

Proof. We have shown that if (2.44) holds then these estimates follow from Corollary 2.8.
Assume now that (2.47) is valid. Then using (2.80) yields that as t→ T

(2.113) ‖u−(t)‖1 = ρ(t)(1 + o(t)).

Since ‖u−‖1 ≡ ‖u+‖1, we conclude from (2.113) and (2.41) that

(2.114) ρ(t) ≤ π2
1
2 [u(0, t) log(u(0, t))]

1
2 (1 + o(1)).

Hence, by (2.80), as t→ T ,

(2.115) ‖u−(t)‖2
2 = ρ2(t)(1 + o(1)) ≤ 2π2u(0, t) log(u(0, t))(1 + o(1)),

and (2.109) follows from (2.40). Estimate (2.110) is then the result of (2.73) . Uniform estimates
(2.111), (2.112) follow from (2.114) and (2.80). �

3. Analysis near the origin: the first limit

In this section, we study the behaviour of u(x, t) near to the origin corresponding to the
rescaled variables

(3.1) θ(ξ, τ) = (T − t)u(ξ(T − t)
1
2 , t), ξ = x(T − t)−

1
2 ,

and τ = − log(T − t) : [0, T ) → [τ0,∞), τ0 = − log(T ). Then the rescaled function θ solves
the equation

(3.2) θτ = B1(θ)− ψ(τ, θ) ≡ θξξ − 1
2
θξξ − θ + θ2 − ψ(τ, θ)

in q0 = Bl(τ) × (τ0,∞), Bl(τ) = {0 < ξ < l(τ) ≡ e
τ
2 }, where ψ denotes the non-local term

(3.3) ψ(τ, θ) = e−
τ
2

l(τ)∫
0

θ2(ξ, τ) dξ.
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We shall determine the large τ behaviour of θ by using Lyapunov type techniques. The bound-
ary and initial conditions for θ have the form

(3.4) θξ = 0 for ξ = 0, l(τ) and τ ≥ τ0,

(3.5) θ(ξ, τ0) = θ0(ξ) in
[
0, l(τ0)

]
.

Under the hypothesis (1.5), we have that (cf. (1.7), (2.1), and (2.7))

(3.6) θξ < 0 in q0,
∫
θ dξ = 0 and θ(0, τ) > 1 for τ ≥ τ0.

We now state the main result of this section which looks quite similar to those which have been
proven for the semilinear heat equation (1.15), cf. [12], [16], [18], [14].

Lemma 3.1 Assume (2.73) holds. Then, as τ →∞,

(3.7) θ(ξ, τ)→ 1 uniformly on compact subsets in ξ.

Firstly, we give some estimates on θ. It follows from (3.6), (2.73), and Lemmas 2.11, 2.12 that,
for large τ � 1, say, for τ > τ ∗,

(3.8) 0 < ψ(τ, θ) ≤ C14τ
1
2 e−

τ
2

and

(3.9) −C15τ
1
2 e−

τ
2 ≤ θ ≤ C2 in q∗ = (0, e

τ
2 )× (τ∗,∞).

Estimates (2.81) and (2.112) yield

(3.10) |θ| ≤ C15τ
1
2 e−

τ
2 , |θξ| ≤ C6e−3 τ

2 , |θξξ| ≤ C6e−2τ near to ξ = e
τ
2 ,

and since by (2.76), (2.110) ρ′ ≤ C14(T − t)−
3
2 | log(T − t)| 12 , we have from (2.81) that θτ ≡

(T − t)2ut − θ − 1
2
θξξ satisfies

(3.11) |θτ | ≤ C16τ
1
2 e−

τ
2 near to ξ = e

τ
2 for τ > τ∗.

By using known regularity results (see [11]) for linear uniformly parabolic equations satisfied
by the derivatives θξ and θξξ, we deduce using (3.10) that

(3.12) |θξ|+ |θξξ| ≤ C17 in q∗.

Hence it follows from the equation (3.12) that

(3.13) |θτ | ≤ C18(1 + ξ) in q∗.

We now introduce the ω−limit set to problem (3.2)-(3.5):

(3.14) ω
(
θ0

)
= {f ∈ C(R+) : ∃{τk} → ∞ such that

θ(·, τk)→ f(·) as k →∞ uniformly on any compact subset [0, L]}.
Then (3.9) and (3.12) yield that ω

(
θ0

)
6= ∅. One can see from (3.6) and (3.9) that

(3.15) if f ∈ ω
(
θ0

)
then f ′ ≤ 0 and f ≥ 0 in R+, f ′(0) = 0, f(0) ∈ [1, C2].
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Lemma 3.1 is equivalent to the equality

(3.16) ω
(
θ0

)
= {f ≡ 1},

which is a straightforward consequence of the following:

Proposition 3.2 There holds

(3.17)
∞∫
τ∗

ds
es/2∫
0

ρ̄θ2
τ (s) dξ <∞ (ρ̄(ξ) = e−ξ

2/4).

Proof. As in [15], [16], and [13], we write (3.2) in the divergence form

(3.18) ρ̄θτ = (ρ̄θξ)ξ + ρ̄(θ2 − θ)− ρ̄ψ.
Multiplying expression (3.18) by θτ and integrating over (0, l(τ)) yields

(3.19)
∫
ρ̄θ2

τ dξ = ∂
∂τ

{ ∫
ρ̄
[
− 1

2
θ2
ξ + θ3

3
− θ2

2

]}
+ I1,

where in the last term

I1(τ) = −ψ(τ)
∫
ρ̄θτ dξ − 1

2
e
τ
2

{
ρ̄
[
θ3

3
− θ2

2

]}∣∣
ξ=e

τ
2

satisfies |I1| ≤ C19τ
1
2 e−

τ
2 ∈ L1((τ∗,∞)), see (3.8),(3.9) and (3.13). Integrating (3.19) over the

interval (τ∗, S) using (3.19) and passing to the limit S →∞ yields (3.17). �

Proof of Lemma 3.1. Denote by W 1
S the set of stationary solutions g(ξ) satisfying properties

(3.15) of the equation B1(g) = 0 in R+ where B1 is given in (3.2). Then passing to the limit
τ →∞ in (3.2) and using (3.8),(3.17) yield

(3.20) ω
(
θ0

)
⊂ W 1

S ,

cf. [27] and [4]), ([17]. It was proved in [1] (see also [13]) that

(3.21) W 1
S = {f ≡ 1},

and hence both (3.16) and (3.7) follow from (3.20), (3.21) which completes the proof. �

4. Improved analysis close to the origin: the second limit

According to Lemma 3.1, we introduced the new rescaled function

(4.1) z(ξ, τ) = τ(θ(ξ, τ)− 1) in q∗,

which solves the following equation:

(4.2) zτ = B2z + 1
τ
C2(z)− ψ̃(τ, z),

where B2 is the linear stationary operator

(4.3) B2z =
1

ρ̄

[
(ρ̄zξ)ξ + ρ̄z

]
,

and

(4.4) C2(z) = (z2 + z), ψ̃(τ, z) ≡ τψ(τ, 1 + z/τ).
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The function z satisfies the boundary conditions

(4.5) zt = 0 for ξ = 0, l(τ) and τ ≥ τ∗,

and some initial condition z(ξ, τ∗) = z∗(ξ). From (3.6) zξ < 0 in q∗. It follows from (1.24) and
(2.30) that

(4.6) 1
4

[
1− B0

4τ

]
≤ z(0, τ) ≤ C20 for τ ≥ τ∗.

It is in the upper bound in (4.6) we use for the first time the hypothesis (1.24). Notice that
for the equation (4.2) this hypothesis is equivalent to the following theorem which looks like a
typical result in the theory of quasilinear parabolic equations: any global solution to the problem
(4.2)–(4.5) is uniformly bounded from above. For equations of the type (4.2) with ψ̄ ≡ 0 arising
after rescaling the semilinear parabolic equations (1.15) and (1.16), this result has been proven
(see the references in the Introduction). For the equation (4.2) with the non-zero non-local
term this problem remains open.

It follows from the estimates (3.8)–(3.13) that, for τ > τ∗,

(4.7) 0 < ψ̃(τ, z) ≤ C14τ
3
2 e−

τ
2 ,

(4.8) −2τ ≤ z ≤ C20 in q∗,

(4.9) |zξ| ≤ C6τe−3 τ
2 , |zξξ| ≤ C6τe−2τ near ξ = e

τ
2 ,

(4.10) zτ = −1 + o(1) near ξ = e
τ
2 (since zτ ≡ θ − 1 + τθτ ).

It follows from Lemma 2.11 that the estimates (4.9) are valid on any set [δe
τ
2 , e

τ
2 ] × (τ∗,∞).

We need also some uniform estimates of the solution z(ξ, τ) in q∗. Using the Bernstein method
[5, 29], and setting z = φ(v), w = vξ, where φ is a smooth function, φ(1) = C20, φ

′ > 0 for
v ≤ 1, yields the following semilinear parabolic equation for the function w:

wτ = wξξ +
[
w
(
φ′′

φ′

)
− ξ

2

]
wξ +

(
φ′′

φ′

)
w3 +

[(
φ
φ′

)′ − 1
2

+ 1
τ

(
φ2+φ
φ′

)′
+ φ′′

(φ′)2
ψ̃
]
w.

Choosing the function φ so that (φ′′/φ′) ≥ α1, (φ
′′/(φ′)2 ≤ −α2, α3 ≤ φ′ ≤ α4, (φ/φ

′)′ ≤ α5,
where αi are some positive constants (cf. [29]), and using the boundary estimates (4.9) and
(4.7),(4.8), we have that w = −Aξ is a lower solution of the above equation provided that
A > 0 is large enough. This yields the lower estimates:

(4.11) −C21(1 + ξ) ≤ z1 ≤ 0 in q∗,

(4.12) −C22

(
1 + ξ2

)
≤ z ≤ C20 in q∗.

Hence, the corresponding ω−limit set, ω(z∗) 6= ∅, to the problems (4.2)-(4.5), see the definition
given in (3.14), satisfies

(4.13) if f ∈ ω(z∗) then f ′ ≤ 0 in R+, f ′(0) = 0, f(0) ∈ [1
4
, C20].
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Denote by W 2
S the set of stationary solutions g(ξ) satisfying the hypotheses given in (4.13) and

(4.11), (4.12),

(4.14) B2g = 0 in R+,

which can be derived as a formal limit in (4.2) as τ →∞ by using the estimates (4.7)–(4.12).
Then, we can see from (4.3) and (4.6) that

(4.15) W 2
S = {g(ξ) = αH2(ξ), α ∈ [1

8
, 1

2
C20]},

where H2(ξ) = 2− ξ2 is the second Hermite polynomial.

We can now state the main result of this section.

Theorem 4.1 Assume that (1.24) holds. Then, as τ →∞,

(4.16) z(ξ, τ)→ 1
8
H2(ξ) uniformly on compact subsets in ξ,

(4.17) zξξ(0, τ)→ −1
4
.

We begin with the following preliminary result:

Proposition 4.2 There holds

(4.18) ω(z∗) ⊆ W 2
S .

Proof. Result (4.18) follows from the estimate

(4.19)
∞∫
τ∗

ds
es/2∫
0

ρ̄z2
τ (s) dξ <∞

which is derived by a similar technique as in (3.17). By multiplying (4.2) by ρ̄zτ and integrating
over (0, l) we deduce that (cf. (3.19))

(4.20)
∫
ρ̄z2

τ = ∂
∂τ

{ ∫
ρ̄
[
− 1

2
z2
ξ + 1

2
z2 + 1

τ

[
z3

3
+ z2

2

]]
− ψ̃z

}
+ I2,

where the term

I2(τ) = 1
τ2

∫
ρ̄
[
z3

3
− z2

2

]
− e

τ
2 ρ̄
2

{
1
τ

[
z3

3
+ z2

2

]
+ z2

2
− ψ̃z

}∣∣
ξ=e

τ
2

+ ψ̃′
∫
ρ̄z

has been proven in (4.7)–(4.12) to satisfy |I2(τ)| ∈ ((τ∗,∞)). A suitable estimate on the deriv-

ative ψ̃′ follows from the inequality
1
2
(‖u(t)‖2

2)′ ≡ −1
2
‖ux(t)‖2

2 +
∫
u3 ≤

∫
u3

(see the proof of Proposition 2.3) and estimates (2.33) and (2.80). Integrating (4.20) over (τ∗, S)
and passing to the limit S →∞ yields (4.19), which as before leads to (4.18). �

Theorem 4.1 is then a straightforward consequence of the following result:

Lemma 4.3 There holds

(4.21) ω(z∗) =
{
f = 1

8
H2

}
.
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Proof. We have proved in Proposition 4.2 that

(4.22) ω(z∗) ⊆ {g = αH2 where α ∈ [1
8
, C20/2]}.

Thus, (4.21) implies that the only value of α existing in the ω-limits is

(4.23) α∗ = 1
8
.

The unique choice of α depends on the first perturbation term 1
/
τ C2(z) in the right hand side

of (4.2), since the function 1
/
τ describing the decay rate of the perturbation is not integrable at

infinity.

According to the idea given in [15] (see also [30] (Chapter II) and other applications in [17],
[19]), we introduce the weighted energy

(4.24) E(τ) =
∫
ρ̄H2z(τ) dξ for τ ≥ τ∗

corresponding to the stationary operator B2 in (4.2) which is “approximately” self-adjoint in
L2
ρ̄(0, l(τ)). Indeed, one can see by integrating by parts that

(4.25)
∫
ρ̄H2B2z =

∫
ρ̄zB2H2 + I3,

I3(τ) = −zρ̄H ′2|ξ=e
τ
2
,

so that by (4.8)

(4.26) |I3(τ)| = o
(
e−τ/4

)
∈ L1((τ∗,∞)).

Notice also that

(4.27) E ′(τ) ≡
∫
ρ̄H2zτ + I4,

where
I4(τ) = 1

2
e
τ
2 ρ̄H2z

∣∣
ξ=e

τ
2
,

and hence I4 also satisfies (4.26).

Finally, multiplying equation (4.2) by H2 in L2
ρ̄ and using (4.25)–(4.27) and (4.7) yield the

weighted energy equation

(4.28) E ′(τ) = 1
τ

(
E(τ) + F (τ, z)

)
+ o
(
e−τ/4

)
for τ > τ∗,

where F is the functional

(4.29) F (τ, z) =
∫
ρ̄H2z

2.

The energy trajectory {E(τ), τ > τ∗} has been proved in (4.12) to be uniformly bounded:

(4.30) |E(τ)| ≤ C23 for τ > τ∗.

The rest of the proof of (4.21) by using the energy equation (4.28) is quite similar to that given
in [17] and [19]. Assume first that there exists a finite limit

(4.31) E(τ)→ E0 as τ →∞.
Then it follows from (4.22) that

(4.32) ω(z∗) =
{
f = α0H2 : α0 = E0/

∫
ρ̄H2

2

}
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and hence

(4.33) z(·, τ)→ α0H2(·) as τ →∞ uniformly on any compact subset.

Using (4.33) in passing to the limit τ →∞ in the equation (4.28), (4.29) yields

(4.34) E ′(τ) = α0

τ

[ ∫
ρ̄H2

2 + α0

∫
ρ̄H3

2

]
+ o
(

1
τ

)
for τ � 1.

Since α0 6= 0 by (4.33) and (4.22), we conclude that the unique possible value is

(4.35) α0 = −
[ ∫

ρ̄H2
2/
∫
ρ̄H3

2

]
= 1

8
.

Indeed, if (4.35) is not valid then integrating (4.34) over (τ∗,∞) contradicts (4.30).

We have to consider only the case where the limit in (4.31) does not exist, i.e., E(τ) is a function
oscillating as τ →∞. This implies that there exists, e.g.,

E1 > E∗ = 1
8

∫
ρ̄H2

2

such that the set {τj > τ∗ : E(τj) = E1} is not bounded. Obviously, the increasing sequence
{τj} can be chosen so that

(4.36) E ′(τj) ≥ 0 for j = 1, 2, . . . .

By (4.22) we have that

(4.37) z(·, τj)→ α1H2(·) as j →∞,
where α1 = E1/

∫
ρ̄H2

2 > α∗ = 1
8
. By passing to the limit in (4.28), (4.29) with τ = τj → ∞

and using (4.37) we arrive at the inequality

(4.38) E ′(τj) = α1

τj
(1− 8α1)

∫
ρH2

2 + o(1/τj)

and hence E ′(τj) < 0 for large τj contradicting (4.36). Thus (4.21) holds completing the
proof. �

Proof of Theorem 4.1. The expression (4.16) follows from (4.21). In order to prove (4.17),
we notice that, by (4.19), B2(z)→ 0 in the weak sense as τ →∞ and hence using (4.3) yields
zξξ = 1

2
zξξ + z + o(1) and hence (4.17) again follows from (4.21). �

5. Final analysis near the origin: the third limit and convergence to the
Hamilton–Jacobi profile

In this section, we again consider the function θ = θ(η, τ), which was introduced in Section 3,
with the new rescaled spatial variable

(5.1) η = ξ/τ
1
2 for τ ≥ τ∗ � 1.

We shall extend the estimates in Section 4 from compact subsets in ξ to compact subsets in η.
Then θ solves the equation (cf. (3.2) and (4.2))

(5.2) θτ = B3(θ) + 1
τ
C3θ − ψ(τ, θ)

in q∗ = Bm(τ) × (τ∗,∞),m(τ) = τ−
1
2 e

τ
2 , where the nonlinear stationary first-order operator B3

has the form

(5.3) B3(θ) = −1
2
θηη − θ + θ2,
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and the first perturbation term is linear,

(5.4) C4θ = θηη + 1
2
θηη.

The function θ satisfies the Neumann boundary conditions θη = 0 for η = 0 and θ = m(τ) for
τ ≥ τ∗. Set θ0(η) ≡ θ(η, τ∗). Since θ is uniformly bounded in q∗, by applying Bernstein-type
estimates [29] to equation (5.2) (see also Section 4) we have that

(5.5) |θη| ≤ C24, |θηη| ≤ C25, |θηηη| ≤ C26 in q∗.

The main result of Section 4, given in Theorem 4.1, can now be restated as follows. Since
θηη ≡ τθξξ, we can see that (4.16) and (4.17) yield the estimates

(5.6) θ(0, τ) = 1 + 1
4τ

(1 + o(1)) as τ →∞,

(5.7) θηη(0, τ) = −1
4

+ o(1) as τ →∞.
Notice that (2.33) and (3.7) with ξ = 0 yield the sharp upper estimate of the profile as τ →∞

(5.8) θ(η, τ) ≤
(
1 +

η2

8

)−1
(1 + o(1)) uniformly on compact subsets in η.

Hence, by (5.5) the corresponding ω−limit set, ω(θ0), is such that

(5.9) if f ∈ ω(θ0) then f ∈ C(R+), f ′ ≤ 0, 0 ≤ f ≤
(
1 +

η2

8

)−1
in R+,

f(0) = 1, f ′(0) = 0, f ′′(0) = −1
4
.

We denote this set of functions as M0.

We now state the main result of this section.

Theorem 5.1 Assume that the estimate (1.24) holds. Then

(5.10) ω(θ0) = {f = θ∗}, θ∗(η) =
(
1 +

η2

8

)−1
,

and hence, as τ →∞,

(5.11) θ(η, τ)→ θ∗(η) uniformly on compact subsets in η.

Proof. We now use some general results on the ω-limits of a perturbed dynamical system
proved in [23], Section 3. Fix an arbitrary sequence {τj} → ∞ so that θ(·, τj)→ f(·) ∈ ω(θ∗).
Then, using estimates on the function θ and its derivatives, and of the perturbation terms in
(5.2) given above, we conclude that θ(·, τj + s) → g(·, s) as τj → ∞ in L∞loc([0,∞) : C(R+)),
where the function g ≥ 0 solves the first order semilinear Hamilton–Jacobi equation

(5.12) gs = B3(g) in R2
+ = R+ × R+.

The corresponding initial function has the form

(5.13) g(η, 0) = f(η) in R+, f ∈M0.

According to [19, 23], the proof of (5.10) will be completed if the ω-limit set, Ω, to equation
(5.12) is uniformly stable in a suitably complete metric space. In fact, using the idea of [20],
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Section 7, we have to study the uniform stability of a reduced ω-limit set to equation (5.12), the
set of all ω-limits occurring for an arbitrary initial datum f in (5.13) satisfying f ∈ M0. We
will easily show that M0 is the invariant set for the Hamilton–Jacobi equation (5.12) so that
Ω ⊆M0. Let us now introduce the Banach space Cρ(R+), ρ(η) = η−2, generating the following
distance on M0:

(5.14) d(g1, g2) = supη>0
1
η2
|g1(η)− g2(η)|,

which will be shown to be directly associated to the Hamilton–Jacobi equation (5.12) on M0.
See more general results in [21].

Proposition 5.5 (i) The ω−limit set Ω, of equation (5.6) on M0 has the form

(5.15) Ω = {g = θ∗}.
(ii) Ω is uniformly stable in Cρ(R+) ∩M0: if d(f, θ∗) ≤ ε for a given initial function f ∈ M0

in (5.13), then

(5.16) d(g(s), θ∗) ≤ ε for all s > 0.

Proof. Equation (5.12) after the transformation

(5.17) v = log[(1− g)/g]

is reduced to the first order linear equation

(5.18) vτ = −1
2
vηη + 1,

which can easily be solved explicitly using the method of characteristics. This yields the explicit
general solution to the problem (5.12), (5.13)

(5.19) g(η, s) =
(
1 + es

[
1

f(ηe−s/2)
− 1
])−1 ≤ θ0(η) in R2

+,

and (5.15) follows immediately by passing to the limit s → ∞ in (5.19) and using (5.9). One
can see from (5.19) that M0 given by (5.9) is the invariant set of the Hamilton–Jacobi equation
(5.12).

In order to prove (ii), consider for s > 0

(5.20) d(g(s), θ∗) ≡ supη>0
1
η2

([
1 + η2

8

]−1 −
[
1 + es 1−f(ηe−s/2)

f(ηe−s/2)

]−1)
.

If we set ζ = ηe−s/2 on the right-hand side, we deduce that

(5.21) d(g(s), θ∗) ≡ supζ>0
e−s

ζ2

((
1 + 1

8
esζ2

)−1 −
[
1 + es 1−f(ζ)

f(ζ)

]−1)
≡ supζ>0

1
ζ2

1−f(ζ)−f(ζ) ζ
2

8

(1+ 1
8

esζ2)(f(ζ)+es(1−f(ζ)))
.

Since 1 + esζ2/8 ≥ 1 + ζ2/8 and fes(1− f) ≥ 1, we deduce that

(5.22) d(g(s), θ∗) ≤ supζ>0
1
ζ2

1−f(ζ)−f(ζ) ζ
2

8

1+ 1
8
ζ2

≡ d(g(0), θ∗) ≤ ε,

which completes the proof. Notice that the above uniform stability in Cρ(R+) ∩M0 can be
proved directly from equation (5.12), see also [4]. �
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Finally, we notice that the distance (5.14) on M0 is generated by the norm in the weighted
space Cρ(R+), which consists of continuous functions h(η) having the first derivative h′(0) = 0,
such that η−2(h(η)− h(0)) ∈ L∞. The norm in Cρ(R+) then has the form

(5.23) ‖h‖Cρ(R+) = |h(0)|+ sup
η>0

1

η2
|h(η)− h(0)|.

One can see that Cρ(R+) is a Banach space, see a general analysis in [21]. Indeed, it is easily
seen that

(5.24) Cρ(R+) = {h : ∃ w ∈ L∞ and a constant A such that h = A+ η2w}.
It follows from (5.24) and (5.5) and a standard compactness argument, that setting θ(η, τ) =
θ(m(τ), τ)/η for η ≥ m(τ), τ ≥ τ∗, and using the uniform upper estimate (5.8) and the lower
one given in (3.9), yields that the orbit {θ(·, τ), τ ≥ τ∗} is relatively compact in Cρ(R+). By
passing to the limit in equation (5.2) as τ = τj + s→∞, we have as above that θ(·, τj + s)→
g(·, s) as τj → ∞ in L∞loc([0,∞) : Cρ(R+)), where g solves equation (5.12). Hence, hypotheses
(H1) and (H2) in [19, 23] are valid. Then Proposition 5.2 implies that the last hypothesis (H3)
in [19] about the uniform stability of the reduced ω-limit set of equation (5.12) on M0 (see [20])
holds. Using Theorem 3 in [19] completes the proof of Theorem 5.1. �

6. The Proof of Theorem 1.1

The asymptotically sharp equality (1.25) follows from Theorem 4.1, see also (5.6). Asymp-
totic behaviour (1.26) is the result of Theorem 5.1, see (5.11). In order to prove (1.27) we
notice that integrating the estimate (1.26) for u2 over x ∈ (0, x0(t)) yields that

(6.1) ‖u+(t)‖2
2 = π2−

1
2 (T − t)−

3
2 | log(T − t)|

1
2 (1 + o(1)).

Then (2.115) and (2.114) yield the sharp estimate (1.28). Hence, if follows from (2.76) and
(1.28) that

(6.2) ρ(t) = π
√

2(T − t)−
1
2 | log(T − t)|

1
2 (1 + o(1)),

and then (1.27) follows from (6.2) and Lemma 2.10. This completes the proof of Theorem
1.1. �

7. Final remarks

The techniques used in the present paper can be applied directly to study a natural gener-
alisation of the equation under consideration (cf. (1.16)

(7.1) ut = uxx + |u|p −
∫ 1

0
|u(x, t)|p dx,

where p > 1 is a fixed constant. Then under the hypothesis (1.5) we can prove that (cf. (2.25))

(7.2) u+(x, t) ≤ 8p
(p−1)2

|x|−2/(p−1)| log x|1/(p−1)(1 + o(1)) for small x > 0.

Since the behaviour as t → T on compact subsets [δ, 1] with a small δ > 0 is “flat”, u(x, t) =
−ρ(t)(1 + o(1)) (cf. (2.80)), the function ρ(t) can be easily calculated from the identity

(7.3) ‖u−(t)‖1 ≡ ‖u+(t)‖1,
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i.e.,

(7.4) ρ(t) = ‖u+(t)‖1(1 + o(1)) as t→ T.

Then (7.2) yields that there exists a critical value of p = 3 such that for any p > 3 the function
ρ(t) is bounded, and hence the solution u(x, t) is bounded from below. This means that if p > 3
then u(x, t) blows up as t → T at the single point x = 0. If p ∈ (1, 3] then we have global
non-uniform blow-up on the interval x ∈ [0, 1]. In the critical case of p = 3, (7.3) and (7.4)
yield the logarithmic rate of divergence of the solution as t→ T on subsets x ∈ [δ, 1].
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