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We perform a systematic comparison of the finite-temperature structure and properties of four
bulk semiconductors (PbS, PbTe, ZnS, and ZnTe) predicted by eight popular exchange-correlation
functionals from quasi-harmonic lattice-dynamics calculations. The performance of the functionals
in reproducing the temperature dependence of a number of material properties, including lattice
parameters, thermal-expansion coefficients, bulk moduli, heat capacities, and phonon frequencies,
is evaluated quantitatively against available experimental data. We find that the phenomenolog-
ical over- and under-binding characteristics of the local-density approximation and the PW91 and
Perdew-Burke-Enzerhof (PBE) generalised-gradient approximation (GGA) functionals, respectively,
are exaggerated at finite temperature, whereas the PBEsol GGA shows good general performance
across all four systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) and revTPSS meta-GGAs
provide relatively small improvements over PBE, with the latter being better suited to calculating
structural and dynamical properties, but both are considerably more computationally demanding
than the simpler GGAs. The dispersion-corrected PBE-D2 and PBE-D3 functionals perform well
in describing the lattice dynamics of the zinc chalcogenides, whereas the lead chalcogenides appear
to be challenging for these functionals. These findings show that quasi-harmonic calculations with
a suitable functional can predict finite-temperature structure and properties with useful accuracy,
and that this technique can serve as a means of evaluating the performance of new functionals in
the future. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4928058]

I. INTRODUCTION

First-principles computation is well established as a
powerful tool in materials science. The most widely used
theoretical “workhorse” at present is the Kohn-Sham density-
functional theory (DFT) formalism,1,2 which recasts the prob-
lem of an interacting many-electron system as a system of non-
interacting particles experiencing an effective potential. The
ability to perform atomistic quantum-mechanical calculations
at a manageable computational cost not only facilitates the use
of theory to interpret experimental measurements but also the
characterization of new materials in silico, a capability which
has enabled ambitious undertakings such as the Materials
Project.3

The key technical parameter in DFT calculations, leaving
aside implementation details such as the basis set used to
expand the Kohn-Sham wavefunctions, is the functional form
used to calculate the exchange-correlation (XC) energy for
a given spatial electron density, n(r). Following Perdew and
co-workers,4 XC functionals are typically classified according
to a “Jacob’s ladder” of approximations, with each rung in the

a)Author to whom correspondence should be addressed. Electronic mail:
j.m.skelton@bath.ac.uk

hierarchy representing a better description of the true many-
electron physics.

The simplest functionals are based around the local (spin)-
density approximation (L(S)DA), in which the exchange and
correlation energies of the electron density at a point in
space are approximated by that of a homogenous electron gas
with the same density. For some systems, this approximation
benefits from a fortuitous cancellation of errors, but for most,
it does not yield satisfactory results.

The LDA can be improved upon by including the
density gradient, ∇n(r), which is the basis of the semi-local
generalised-gradient approximation (GGA) functionals. GGA
functionals tend to yield improved energetics and to lengthen
bonds, thereby increasing cell volumes and lattice constants
and softening phonon frequencies. GGA functionals thus
correct for the phenomenological over binding exhibited by
the LDA, but in many cases overcompensate and under bind,
overestimating lattice constants and underestimating phonon
frequencies.5 Perhaps the most widely used GGA at present
is the ubiquitous Perdew-Burke-Enzerhof (PBE) functional,6

which was devised as an improvement to the earlier PW91
GGA, with a simpler functional form and derivation. Other
well-known GGA functionals include the two revised PBE
functionals of Hammer et al. (revPBE and RPBE),7 which can
yield improved energetics compared to PBE, AM05,8,9 which
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was designed to better treat surface effects, and PBEsol, a
variant of PBE optimised for solids.5 It has been shown5,6 that
GGAs suffer from a fundamental limitation, in that a larger
dependence on the density gradient yields better atomisation
energies, but poorer lattice parameters and surface energies,
and vice versa, through differences in the description of the
exchange energy. As a result, GGAs optimised specifically for
solids can be constructed with a reduced density dependence,
which is the approach adopted in PBEsol.5

Building on the GGA, meta-GGA functionals include the
second derivative of the density, typically via the kinetic-
energy density τ(r). This family of functionals include
the original Perdew-Kurth-Zupan-Blaha (PKZB) functional10

along with the well-known Tao-Perdew-Staroverov-Scuseria
(TPSS)11 model and its subsequent revision,12 and the fitted
M06-L functional developed by Zhao and Truhlar.13 In
principle, the greater flexibility of the meta-GGA formalism
allows TPSS to describe both solids and molecules with good
accuracy, overcoming the trade-off inherent in the GGA,11

although applying the same principle used to construct PBEsol
to TPSS, which is the spirit of revTPSS, was found to improve
its description of solids.12

Hybrid functionals such as PBE014 and the HSE fam-
ily,15–17 which improve on (meta-)GGAs by including a frac-
tion of the non-local Hartree-Fock exact exchange energy, are
becoming increasingly affordable with modern computational
resources. Hybrids are routinely used for accurate electronic-
structure calculations, but at present are impractically expen-
sive for tasks such as structural optimisation, at least in the
general case.

One well-documented limitation of (semi-)local DFT
functionals is their poor description of the non-local electron
correlation which gives rise to dispersion (van der Waals)
forces. Since a theoretical treatment of these weak interactions
can be very challenging, several approximate approaches to
introduce dispersion corrections into (meta-)GGAs have been
developed.18–25 The vdW-DF method of Lundqvist et al.23

and its derivatives19,20,22 uses a parameterisation of the local
electron density and its gradient to correct the LDA correlation
energy, with the exchange energy being calculated using an
underlying GGA functional. However, while these functionals
perform well for systems where dispersion interactions are
significant, when used in calculations on bulk solids, they
tend to exhibit the same issues as the GGAs they are based
on.19

The Grimme DFT-D functionals adopt a semi-empirical
approach, adding damped dispersion corrections to the ener-
gies and forces obtained in DFT calculations with a scaling
factor adapted to the XC functional being used. In the popular
DFT-D2 scheme,24 the corrections are based on pairwise Lon-
don interactions parameterised by atomic ionisation potentials
and static dipole polarizabilities. The newer DFT-D3 scheme21

improves on this in several ways, including accounting for the
change in atomic polarizability as a result of bond formation,
allowing the dispersion correction to be varied based on the
atomic coordination environment, and including three-body as
well as pairwise interactions. An alternative scheme proposed
by Tkatchenko and Scheffler25 uses a similar principle to DFT-
D2, but with charge-density dependent dispersion coefficients

and damping functions, and a revised version of this DFT-TS
scheme accounts self-consistently for the screening effects of
neighbouring ions.18

Most DFT-based material studies have focussed on
investigating the “static” properties of athermal structures,
such as the equilibrium lattice parameters and bulk moduli,
the electronic structure and energy gaps, and the optical
properties. However, an increasing number of studies aim
to take into account the effect of temperature, for example,
through the use of ab initio molecular-dynamics (MD)26,27 and
lattice-dynamics calculations.28–30 The latter provide an easily
interpretable view of the microscopic motion of atoms in
solids31 and can also provide thermodynamic information such
as free energies32 and heat capacities,28,29 which can in turn
be used to predict finite-temperature properties.30,32 Lattice-
dynamics calculations can also be used to model and interpret
data from a range of routine experimental measurements with
near-quantitative accuracy,33,34 and thus can provide refer-
ences to, for example, aid the use of quantitative spectroscopic
techniques as a tool for characterising structural defects.34

Whereas the performance of different DFT functionals in
reproducing static properties has been well characterised,35–37

the ability of common functionals to model lattice dynamics
and finite-temperature structure and properties is poorly stud-
ied. In principle, lattice-dynamics calculations are a stringent
test of functional performance, since they probe not only
the predicted equilibrium structure but also the response to
atomic displacements. It has also been pointed out that lattice-
dynamical effects such as the vibrational zero-point energy
and thermal expansion should be taken into account when
comparing experimental results to theoretical predictions.38,39

Building on these previous studies investigating the effect
of the zero-point energy on the predicted 0 K structure
and properties of bulk materials obtained with different
functionals, we have carried out a systematic comparison
against experimental data of the finite-temperature properties
of four II-VI semiconductors, viz., PbS, PbTe, ZnS, and ZnTe,
obtained from quasi-harmonic lattice-dynamics calculations
with eight popular exchange-correlation functionals. Our
tests include the LDA, the PW91,40,41 PBE6 and PBEsol5

GGAs, the TPSS11 and revTPSS12 meta-GGAs, and the semi-
empirical PBE-D2 and D3 functionals,21,24 all of which are
well established in the theoretical literature.

The rocksalt and zinc-blende structures of the lead
and zinc chalcogenides, respectively, represent common
high-symmetry geometries adopted by a large number of
binary systems, and experimental data for comparison to
the calculations is readily available in data handbooks.42–44

Despite their simple structures, however, the four materials
display some interesting dynamical properties. PbTe has been
widely studied as a candidate thermoelectric material,45,46

and its thermoelectric efficiency has been attributed in part
to its low thermal conductivity, which arises from unusual
features in its lattice dynamics.47–49 Among these is a
possible low-temperature phase transition from the rocksalt
to a lower-symmetry structure,47 which is proposed also to
occur in PbS. However, the literature is currently divided
on this phenomenon, with different measurement techniques
giving conflicting results,47,50,51 and the conclusions of the
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original experiments recently being disputed.52 Both zinc
chalcogenides exhibit a small negative thermal expansion at
low temperature,53,54 a subtle feature that could potentially be
difficult to model.

Our work is organised as follows: Section II pres-
ents an overview of the quasi-harmonic lattice-dynamics
methodology, and Section III gives the technical details of
the calculations performed in this study. In Section IV,
we consider the equilibrium structure and harmonic lattice
dynamics of the four materials, and in Section V we compare
the temperature-dependent material properties obtained from
the quasi-harmonic calculations. The results are discussed in
Section VI, with particular focus on the ability of the func-
tionals to quantitatively reproduce structural and vibrational
properties at 300 K. We then close with some concluding
remarks in Section VII.

II. AB INITIO LATTICE-DYNAMICS CALCULATIONS

The theory of lattice dynamics provides a framework
for modelling the phonons in periodic solids.55 A crys-
tal of N atoms is modelled by sets of 3N independent
quantum-harmonic oscillators with associated reciprocal-
space wavevectors q, which define the wavelengths and
propagation directions of the atomic-displacement waves.

The central quantities required for a lattice-dynamics
calculation are the interatomic force-constant (IFC) matrices,
Φαβ, which capture the changes in force that arise in response
to the displacement of atoms from their equilibrium positions,

Φαβ (il, jl ′) = − ∂Fα(il)
∂rβ( jl ′) . (1)

The subscripts α and β denote the Cartesian directions,
while l and l ′ are the unit cells in which atoms i and j,
respectively, reside relative to one another. The IFCs can be
computed from numerical differentiation using the “direct”
finite-displacement approach, or from a perturbation-theory
technique such as density-functional perturbation theory
(DFPT). In the former approach, the Parlinski-Li-Kawazoe
supercell method56 is commonly used to include IFCs whose
range extends beyond a single unit cell, i.e., q-vectors away
from the centre of the Brillouin zone.

The phonon frequencies and eigenvectors are then ob-
tained from diagonalization of a 3N × 3N dynamical matrix,
Dαβ, which can be constructed from the force-constant
matrices, for a given q-vector, according to

Dαβ (i, j,q) = 1
√mim j


l′
Φαβ (i1, jl ′)

× exp[iq.(r ( jl ′) − r (i1))], (2)

where mi is the mass of atom i and r(il) is the position of atom
i in the lth unit cell.

In addition to providing access to the phonon density of
states (DOS) and band dispersions in q-space, the phonon
frequencies integrated over the Brillouin zone can also be
used to calculate the vibrational contributions to the constant-
volume (Helmholtz) thermodynamic free energy, A, according

to

A(T) = UL +UV(T) − T SV(T), (3)

where UL and UV are the lattice and vibrational internal
energies, respectively, and SV is the vibrational entropy. We
note that UL is the only quantity available from standard
total-energy calculations, and thus calculating the temperature
dependence of the free energy requires the contribution from
the lattice dynamics to be taken into account.

In practice, A is typically obtained via the bridge relation
from statistical mechanics, A(T) = −kBT ln Z (T), where the
partition function, Z (T), is defined in this model as follows:

Z (T) = exp(−UL/kBT)

qv

exp(−–hω(qv)/2kBT)
1 − exp(−–hω(qv)/kBT) . (4)

In this expression, the phonon frequencies ω are indexed by a
q-vector and a phonon (band) index, v .

The quasi-harmonic approximation (QHA) extends the
harmonic approximation to account for anharmonic effects
due the variation in lattice volume with temperature by
allowing the phonon frequencies, and hence the free energy,
to become volume dependent. In the QHA, harmonic-phonon
calculations are performed at a range of expansions and
compressions about the (athermal) equilibrium volume, and
the Gibbs free energy is obtained at a target temperature T and
pressure p from the expression

G (T,p) = min
V

[UL (V ) +UV (T,V )
−T SV (T,V ) + pV ] , (5)

where the notation min
V

[expr] indicates that, for each value
of T and p, expr is minimised with respect to the volume,
V , most commonly by fitting the free energy/volume curve
to an equation of state such as the Murnaghan or Vinte-Rose
expressions.57,58 The implicit assumption is that the phonons
remain harmonic at each temperature, an approximation
which, as a “rule of thumb,” is valid up to around 2/3 of
the melting temperature, Tm, before higher-order anharmonic
contributions dominate.59,60

From the temperature-dependent Gibbs energies, volumes
and bulk moduli obtained from the equation-of-state fits,
the temperature dependence of a number of derived prop-
erties can hence be calculated, e.g., expansion coefficients,
constant-pressure heat capacities, and the (average) Grüneisen
parameter. Under the assumption that the main effect of
temperature is captured by the volume of the lattice, the QHA
in principle allows the temperature dependence of a number of
other important material properties to be computed from first
principles, making it a powerful tool for the characterisation
of bulk materials.30,32

III. METHODS

Quasi-harmonic lattice-dynamics calculations were per-
formed according to the procedure used in our previous
work.30,32 The Phonopy package61 was used for the setup
and post-processing of supercell finite-displacement phonon
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calculations, with the Vienna ab initio Simulation Package
(VASP) code62 used as the force calculator.

We carried out calculations with eight well-known DFT
functionals implemented in VASP. As a baseline, we used
the Perdew-Zunger parameterisation of the local-density
approximation,63 which we compared against the PW91,40,41

PBE,6 and PBEsol5 GGA functionals. We also performed
calculations with the TPSS11 and revTPSS12 meta-GGA
functionals, and the dispersion-corrected PBE-D2 and D3
functionals.21,24 The elemental C6 and R0 PBE-D2 parameters
for S, Zn, and Te used were drawn from the VASP internal
database, and the value for Pb was taken from Ref. 64. The
values of the other parameters for PBE-D2 and D3 were left
at the VASP defaults for use with the PBE functional; we note
that the PBE-D3 calculations were performed with the original
formulation of the method, rather than the variant which uses
the Becke-Jonson damping scheme.65

For consistency, we kept other key technical parameters
as similar as possible. A kinetic-energy cutoff of 550 eV for
the plane-wave basis was adopted in all calculations. For
the calculations on the two-atom primitive cells, Γ-centred
Monkhorst-Pack k-point meshes with 8 × 8 × 8 subdivisions
were used to sample the Brillouin zone, with the grid being
reduced proportionally for the supercell finite-displacement
calculations. Convergence testing (see Section III of the
supplementary material102) showed that these settings were
generally sufficient to converge the absolute total energies to
within 1 meV per atom, and the stress tensor to within 1 kbar
(0.1 GPa). All simulations were performed with the LDA
projector augmented-wave (PAW)66,67 pseudopotential set
distributed with VASP, treating the outermost s and p electrons
in Pb, S, and Te, and the outermost s, p, and d electrons in
Zn, as valence states. The PAW projection operators were
applied in reciprocal space, and the precision of the charge-
density grid was chosen automatically to be sufficient to avoid
aliasing errors. Electronic wavefunctions were optimised to
a tolerance of 10−8 eV, and structural optimisations were set
to be converged when the magnitude of all forces was less
than 10−2 eV Å−1, although in practice, the relaxations were
invariably constrained by the high symmetry of the structures.

For the LDA and GGA functionals, the Born effective-
charge tensors and the electronic-polarisation components
of the macroscopic dielectric constants, needed to compute
the non-analytical corrections to the phonon frequencies to
account for long-range electrostatic interactions (longitudinal-
optic (LO)/transverse optic (TO) splitting), were obtained
using the DFPT routines in VASP.68 This functionality is
currently not available for the meta-GGA and PBE-D2/D3
functionals, so in these calculations the quantities were
computed by application of a finite electric field (10−3 eV Å−1)
according to the PEAD approach of Nunes and Gonze.69 This
technique requires that the systems are insulating, and the
small gap of PbS, when combined with the usual issue of the
Kohn-Sham bandgap obtained from (semi-)local functionals
being underestimated with respect to the electronic gap,70

meant that it was not possible to compute the corrections for
these systems with these functionals. It has previously been
found that convergence of the Born effective-charge tensors
and dielectric constants requires a denser k-point sampling

than is needed for electronic and force convergence,30,71

and so we employed Γ-centred meshes with 16 × 16 × 16
and 12 × 12 × 12 subdivisions in the DFPT and finite-field
calculations, respectively, with the reduced sampling used in
the latter due to the higher computational demand of these
calculations. When testing the two procedures with ZnS and
PBE (Table S3 in the supplementary material102), we found
that they gave appreciably different results, perhaps due to the
different convergence criteria employed. However, as LO/TO
splitting has only a very minor effect on the phonon density
of states, and hence on the finite-temperature properties
computed from the quasi-harmonic calculations, we did not
investigate this in detail. We also avoid using the Γ-point LO
frequencies, which depend strongly on the splitting correction,
to compare functionals in our analysis.

Force calculations were performed on 4 × 4 × 4 expan-
sions of the primitive cells. For the quasi-harmonic calcu-
lations, harmonic-phonon calculations on a set of eleven
expansions and contractions about the equilibrium volume
(∼±5%) were used in the free-energy equation-of-state fits,
which were performed using the Vinet-Rose functional
form.58 For calculating the phonon DOS curves and partition
functions, the Brillouin zone was integrated by sampling with
a 48 × 48 × 48 Γ-centred q-point mesh.

Finally, as discussed in Section IV, and also Section I
of the supplementary material,102 for the Born-charge and
supercell-force calculations on the zinc chalcogenides with
the meta-GGA functionals, we found it necessary to increase
the number of points in the charge-density grid by a factor of
1.5× along each dimension from the “High” default in VASP.

IV. EQUILIBRIUM STRUCTURE AND HARMONIC
PHONONS

The starting point for the discussion is the athermal
equilibrium primitive-cell volumes and bulk moduli obtained
from fits of the energy/volume curves computed with the eight
functionals to the Murnaghan equation of state57 (Fig. 1).
In keeping with the phenomenological over/under-binding
characteristics widely reported in the literature,35–37,72–74 the
LDA consistently predicts the smallest equilibrium volume for
all four materials, whereas PW91 and PBE, which yield very
similar results, invariably predict the largest; the expansion
predicted by the latter two generally amounts to a 5%-10%
increase in volume over the LDA. The volumes obtained
from PBEsol are intermediate between the two extremes. Both
meta-GGAs yield smaller volumes than PBE, with revTPSS
giving the lower of the two, but both predict equilibrium
volumes closer to the PBE values than to the LDA results.
Adding the Grimme D2 correction to PBE appears consistently
to give similar results to PBEsol, whereas the PBE-D3 results
tend to be more similar to PBE/PW91 than to PBE-D2, at least
in the case of the lead chalcogenides.

The smaller equilibrium volumes lead to larger bulk
moduli, which is mainly due to the factor of 1/V in the
definition—for a given material, the equations of state calcu-
lated with different functionals have very similar curvature
when shifted to the corresponding equilibrium volumes. The
variation in the moduli obtained from the eight functionals is
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FIG. 1. Athermal equilibrium-structural properties of PbS ((a) and (e)), PbTe ((b) and (f)), ZnS ((c) and (g)) and ZnTe ((d) and (h)), obtained from fits of
energy-volume curves computed with eight different exchange-correlation functionals to the Murnaghan equation of state (Ref. 57). The predicted equilibrium
volumes and bulk moduli are compared in plots (a)-(d) and (e)-(h), respectively. On each subplot, the dashed black lines show the low-temperature experimental
results from Refs. 43, 52, 54, and 75–77.

more pronounced than that in the equilibrium volume, with
PW91/PBE underestimating the LDA values by 10%-20%.

These comparisons provide a quantitative measure of the
variation in equilibrium structure that can be expected from
studies performed with different functionals, at least for the
simple bulk materials studied in the present work, and reflects
the variation in values frequently observed between different
modelling studies (e.g., for PbTe28–30,78–80).

Comparing the predicted equilibrium volumes and lat-
tice constants to low-temperature measurements, the best-
performing functionals are broadly those optimised for solids
(i.e., the PBE GGA and the revTPSS meta-GGA), with
the former yielding better predicted bulk moduli. For some
systems, the dispersion-corrected functionals also yield results
close to the experimental values, although not as consistently.
However, it is important to note that these comparisons do not
take into account dynamical effects (i.e., zero-point energy
corrections);38,39 this point is considered further in Sec. V.

Within the QHA, the key quantity is the volume depen-
dence of the phonon frequencies.30,32 It is therefore of interest
to compare the phonon frequencies predicted by the eight
functionals at the calculated equilibrium volumes, again to
see what sort of variation can be expected. Fig. 2 shows the
calculated equilibrium phonon dispersions and DOS curves for
PbS and PbTe; corresponding plots for the zinc chalcogenides
may be found in Fig. S12 in the supplementary material.102

The shapes of the dispersions and DOS curves are broadly
similar between functionals, but with some bands varying
in frequency by up to ∼0.5 THz (∼17 cm−1). In keeping
with the variation observed in Fig. 1, the phonon frequencies
predicted by the LDA and PBE/PW91 generally form upper
and lower bounds, respectively, with the other functionals
yielding intermediate values. The discrepancy in the phonon
dispersions between functionals is most pronounced at the
zone centre (Γ); this is due to the inclusion of LO/TO splitting,

which effectively incorporates the variation in the electronic-
polarisation component of the dielectric tensor and the Born
effective charges predicted by the different functionals into
the dispersions. We note that, as mentioned in Section III, due
to the small bandgap of PbS we were not able to compute
the LO/TO splitting for this material with TPSS, revTPSS,
PBE-D2 and PBE-D3.

During our calculations on the zinc chalcogenides, we en-
countered problems with numerical noise in the force constants

FIG. 2. Phonon-dispersion curves and densities of states for PbS (a) and PbTe
(b), computed with a set of different functionals at their predicted equilibrium
volumes. Imaginary frequencies are shown as negative values. Note that, for
reasons explained in the text, we were not able to include LO/TO splitting in
the TPSS, revTPSS and PBE-D2/D3 calculations on PbS.
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calculated with the GGA, meta-GGA and dispersion-corrected
functionals, which led to visible artefacts in the phonon disper-
sions and DOS curves, in particular unphysical negative rigid-
translation modes at the Γ point. After carefully verifying
the technical parameters, we linked the problem to the preci-
sion of the charge-density grid, which is used to calculate the
density derivatives required by the (meta-)GGA functionals.
This is discussed in detail in Section I of the supplementary
material.102

We were able to correct the artificial imaginary modes
in the GGA dispersions straightforwardly by symmetrising
the force constants within Phonopy. This procedure enforces
the acoustic-sum rule, and is performed by default in many
software packages. However, we were only able to obtain
satisfactory results with the meta-GGAs by increasing the
size of the charge-density grid by a factor of 1.5× (from
the “High” default in the VASP code). Increasing the plane-
wave cutoff and using a denser k-point sampling both made
no visible difference to the phonon dispersions, and while a
supercell expansion of the conventional cell appeared to yield
considerably better results, visible artefacts remained, and the
subsequent QHA calculations displayed clear anomalies when
compared to the results from the other functionals. It is worth
noting that increasing the precision of the charge-density grid
led only to sub-meV differences in the total energy (Table S1
in the supplementary material102) and, given that the geometry
of the zinc blende structure is completely constrained by
symmetry, would therefore not be expected to influence the
equilibrium volumes and bulk moduli in Fig. 1.

A second issue we encountered, detailed in Section II of
the supplementary material,102 is that the PBE-D2 calculations
on PbTe yielded obviously unphysical phonon band structures,
despite the same elemental C6 and R0 parameters for Pb and
Te working well for PbS and ZnTe, respectively. Our interpre-
tation of this is that the atomic-polarizability correction used
in the D2 method is a poor approximation for systems such
as PbTe with heteropolar bonding between highly polarisable
ions. We therefore opted also to exclude the PBE-D2 results
on PbTe from this study.

We found that PBE-D3, which attempts to correct for
interactions between atoms, gave better results, although the
calculated phonon density of states exhibited a discontinuous
lowering of the optic-mode frequencies under some of the
larger lattice expansions (Fig. S11 in the supplementary
material102), and these volumes had to be excluded from the
quasi-harmonic calculations in order to obtain physical results
(see Sec. V). This suggests that PbTe apparently represents a
problematic system for both the D2 and D3 corrections.

Finally, we noted that VASP does not enforce symmetry
in the Born effective-charge tensors. In the four two-atom
primitive cells studied here, the effective charge on the anion
should be equal and opposite to the charge on the cation.
In the present calculations, the Born charges computed with
DFPT were invariably close to being symmetric, whereas
those computed using the finite-field approach deviated
substantially. To test this further, we recalculated the ZnS
and ZnTe PBE Born charges with the finite-field approach and
found that these also required symmetrisation. We therefore
symmetrised the Born charges obtained with the finite-field

method, i.e., those calculated with the meta-GGA and DFT-D
functionals, using the approach implemented in Phonopy.81

As a basic check on the phonon frequencies and the gen-
eral computational setup, we verified that the constant-volume
heat capacity (CV) curves calculated with the various mate-
rial/functional combinations all tend to the high-temperature
Dulong-Petit limit of 6R per mole per formula unit (3R per
mole per atom, Fig. S13 in the supplementary material102).

A feature of note in the equilibrium phonon dispersions
is the presence of an imaginary mode at the X point in
the PbS/LDA curve (Fig. 2(a)). We found that this anomaly
was also present at additional lattice volumes close to the
predicted equilibrium, but was absent under larger expansions
and compressions (Fig. 3). After some investigation, we found
that this was due to the small bandgap of PbS (0.29 eV at
4 K experimentally44). Since the bandgap in this material
decreases with volume,82 and, as noted previously, the Kohn-
Sham bandgap obtained from DFT is typically lower than
the electronic gap,70 the LDA predicts the system to be on
the border of a metal-insulator transition at its equilibrium
volume. The negative frequency then arises due to deviation
from the expected linear-response behaviour during the finite-
displacement force calculations, i.e., small ionic displacement
leads to a disproportionately large change to the underlying
electronic structure and hence the calculated forces.

To explore this further, we plotted the volume depen-
dence of the Kohn-Sham bandgap of PbS with the eight func-
tionals (Fig. 4). All predict similar bandgap deformation, with
a shift of around 0.2 eV between the LDA, which appears to
predict the smallest gap, and PBE and TPSS, which predict
the largest. This qualitative similarity between the functionals
is also evident in the calculated volume dependences of the
bandgaps in PbTe and ZnS/ZnTe (Fig. S14 in the supplemen-
tary material102), although the range observed for a given vol-
ume depends on the size of the gap. It is also worth noting
that the PBE and PBE-D2/D3 bandgaps lie on overlapping
curves, reflecting the fact that the dispersion corrections adjust
the PBE forces, and hence equilibrium volume, but not the
underlying electronic structure. While only the LDA predicts a
zero gap at its equilibrium volume, PBEsol and PBE-D2 both
predict a crossover from a semiconducting to a metallic state

FIG. 3. Volume dependence of the phonon dispersion of PbS, calculated
within the LDA. As in Fig. 2, imaginary frequencies are shown as negative
values. The curves are coloured from dark to light, corresponding to compres-
sions and expansions, respectively, about the equilibrium volume.
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FIG. 4. Volume dependence of the Kohn-Sham bandgap of PbS, in the
8×8×8 Γ-centred k-point mesh used to sample the Brillouin zone of the
primitive cell, obtained with all the exchange-correlation functionals investi-
gated in this study. We note that this mesh does not include the L point, at
which the direct gap of PbS is observed experimentally.

under compression. We would therefore expect the dispersions
computed with PBEsol and PBE-D2 at these volumes to show
the same phenomenon as the equilibrium LDA band structure,
which we indeed observed to be the case (Figs. S15 and S16102).

In addition to this artefact, we also observed imaginary
modes in the phonon dispersions of the lead chalcogenides
calculated with PW91 and PBE (Figs. S9 and S17-S19 in
the supplementary material102) at large (∼3%-5%) expansions,
which we ascribed to the large equilibrium volume predicted
by these functionals. Similar phenomena are also observed
for both compounds with PBE-D3 (Figs. S11 and S20102).
While this may be responsible for the optic-mode softening
observed in the PbTe phonon density of states noted above, the
same problem did not occur in the PbS/PBE-D3 calculations.
In all cases, the imaginary modes do not make a significant
contribution to the overall phonon DOS (Figs. 3, S9, S11,
and S15-S20102), and therefore, at least to first approximation,
they are not expected to significantly influence the results of
the QHA calculations discussed in Sec. V.

As a final point, it is of interest to compare the compu-
tational cost of performing supercell-force calculations with
the eight different functionals. We thus performed the phonon
calculations on PbS presented in Fig. 2 with an identical set of
resources (96 cores, made up of six dual-CPU Intel Xeon E5-
2650v2 nodes with 128 Gb RAM and an Intel TrueScale QDR
Infiniband interconnect), and recorded the total time taken for
the calculation, plus the average time required for an electronic
SCF cycle (Table S4 in the supplementary material102). In these
calculations, the GGAs and PBE-D2/D3 took 1.2-1.5× longer
than LDA for a complete set of force calculations, while TPSS
and revTPSS took 5.17× and 4.6× longer, respectively. It is
apparent from comparing the total and SCF-cycle times that
the differences in performance are to a large extent due to
the calculations taking different numbers of SCF cycles to
converge, in particular those with the meta-GGAs; individual
SCF cycles with the GGAs and PBE-D2/D3 took a comparable
time to those run with LDA, while SCF steps with the meta-
GGAs took ∼2.5× longer. It is perhaps also worth noting that
the PBE-D2 and PBEsol calculations were slightly faster than
those run with PBE and PW91, which is perhaps strange given

their (notionally) comparable complexity, but may be due to
their being better optimised for use with bulk systems.

V. FINITE-TEMPERATURE STRUCTURAL
PROPERTIES FROM THE QUASI-HARMONIC
APPROXIMATION

In this section, we discuss the functional dependence
of the finite-temperature properties obtained from the QHA
calculations, and compare the calculations against available
experimental data.

As a starting point, it is of interest to quantify the
differences in equilibrium structure obtained when including
the vibrational zero-point energy in the equation of state
fits, i.e., to compare the 0 K cell volume, lattice constants,
and bulk moduli obtained from the QHA calculation to
the athermal parameters presented in Fig. 1. Across the 31
sets of QHA calculations performed in the present study,
we observed an average 0.4% variation in the cell volume,
with the minimum and maximum being 0.29% and 0.64%,
respectively. This translates to an average variation of 0.13% in
the lattice constant. Given its greater sensitivity to the volume,
we observed a larger variation in the bulk modulus, with
an average difference of −0.95% and a maximum absolute
deviation of 13.48%. The latter was observed in the PbTe
calculations using the PBE-D3 functional, and a similarly
large 7.38% difference was observed in the PbS/PBE-D3
calculation, suggesting that phonon calculations on both lead
chalcogenides may represent problematic cases for the DFT-
D3 functional. Excluding these outliers, the absolute deviation
observed between the athermal and 0 K bulk moduli across the
rest of the datasets was a considerably smaller 2.9%. Except
for the PBE-D3 calculations on PbTe, we found that including
thermal effects invariably increased the 0 K volume and hence
the lattice parameter; in most cases, this led to a corresponding
decrease in the bulk moduli, although not always. The raw data
from these comparisons is presented in Tables S5-S8 in the
supplementary material.102

Considering the temperature dependence of the lattice
constant (Fig. 5), the same trend as was observed for the
equilibrium volume is clearly evident, i.e., that the LDA
underestimates the lattice constant compared to experiment,
whereas PBE and PW91 both overestimate it. For the lead
chalcogenides, the overestimation with the two GGAs is
further exaggerated, such that for PbS the ±5% range of
volumes used in the QHA calculation was only sufficient
for structure predictions up to 390 K. PBE-D3 exhibits a
similar issue, and the overestimation of the PbS lattice constant
again suggests that this functional has problems describing the
dynamical properties of both lead chalcogenides The meta-
GGAs improve on PBE/PW91, with revTPSS matching the
experimental data better than TPSS, but neither comes as close
to experiment as PBEsol, which performs consistently well
across all four of the materials studied. In contrast, for the
zinc chalcogenides, the temperature dependence of the lattice
constants is best captured by revTPSS and PBE-D3.

PBEsol and PBE-D2 also perform quite well for these
systems, whereas TPSS appears to overestimate the lattice
constants in a similar manner to PW91 and PBE. Whereas

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.38.25.53 On: Fri, 14 Aug 2015 14:55:29



064710-8 Skelton et al. J. Chem. Phys. 143, 064710 (2015)

FIG. 5. Temperature dependence of
the lattice constants of PbS (a), PbTe
(b), ZnS (c), and ZnTe (d) from
0 to 500 K, obtained with different
exchange-correlation functionals. Ex-
perimental data from Refs. 43, 50, 52,
75, 76, and 83 is overlaid as black stars.
The data from Ref. 75 were digitized
with the Plot Digitizer software.84

PBE-D2 yields similar temperature dependences to PBEsol
for the zinc chalcogenides, for PbS, it predicts a result closer to
the LDA, i.e., tending to over bind with respect to experiment.
Taken together with the issues we had during the calculations
on PbTe using this functional, this suggests PBE-D2 may also
have problems with describing both lead chalcogenides.

Interestingly, while PBEsol best reproduces the absolute
value of the lattice constant, the linear-expansion coefficients
αL =

1
a

da
dT

are consistently reproduced extremely well by the
LDA (Fig. S21 in the supplementary material102), with PBE-
D3 also performing well for ZnS. All the functionals tested
successfully capture the subtle low-temperature negative
thermal expansion of ZnS and ZnTe, although again the LDA
does so most successfully.

This raises the interesting question of whether the
differences between the functionals in Fig. 5 are primarily due
to differences in the equilibrium volume rather than the thermal
expansion. To test this, we replotted Fig. 5 with the curves for
the eight functionals shifted to their respective equilibrium
volumes (Fig. S22102). For the zinc chalcogenides, the main
contributor to differences in the temperature dependence of
the lattice constant is indeed the athermal starting point, with

the difference between the thermal expansion predicted by the
functionals being on the order of 10−2 Å at 500 K. On the other
hand, for the lead chalcogenides, which display a considerably
larger thermal expansion, the difference between functionals
is more of a balance between both the athermal starting point
and the predicted expansion, although the former still plays a
significant role.

In principle, one could use a more sophisticated functional
to evaluate the equation of state and then a cheaper functional
(e.g., LDA) to perform the phonon calculations to obtain the
temperature dependence of the lattice constant using the QHA.
However, the present results suggest that both components can
be obtained fairly accurately using a GGA functional opti-
mised for solids, which does not require much more computing
power than the LDA. Moreover, for more complex systems
with a larger number of degrees of freedom (e.g., internal
ion positions or the cell shape), simpler functionals may not
capture the volume dependence of the structure correctly.

The temperature dependence of the bulk moduli of the
four materials is shown in Fig. 6. As remarked in previous
work,30 the temperature dependence of this property can
be particularly strong, which implies that, if an athermal

FIG. 6. Predicted bulk moduli of PbS
(a), PbTe (b), ZnS (c), and ZnTe (d)
as a function of temperature from 0 to
500 K, obtained with several exchange-
correlation functionals. For compar-
ison, experimental data taken from
Refs. 42, 43, 54, 77, and 85–89 is
overlaid as black stars; moduli from
Refs. 77, 88, and 89 were calculated
from the relevant elastic constants, and
the data from Refs. 77 and 89 was
digitized using the Plot Digitizer soft-
ware.84
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calculation gives a good reproduction of a bulk modulus
measured at 300 K, and the material undergoes moderate
thermal expansion, the functional may not be describing the
structure well. For example, for PbTe, the 300 K bulk modulus
of 39.8/40 GPa85,86 is well matched by the equilibrium moduli
predicted by PBE and PW91, whereas the 300 K values
predicted from the QHA calculations with these functionals
are too soft.

For PbTe, the temperature dependence is best reproduced
by PBEsol. For PbS, the spread among different 300 K
experimental values is a significant fraction of that among
the eight functionals, but if these data points are taken to be
reliable then the LDA, PBEsol, and PBE-D2 yield the best
reproduction of the finite-temperature moduli for this system.
For ZnS, PBEsol and the two DFT-D functionals perform very
well. For ZnTe, none of the functionals yield values as close
to the experimental measurements as for PbTe and ZnS, but
the finite-temperature moduli, and the shallow temperature
dependence, appear to be best reproduced by PBE-D2/D3 and
the LDA, with PBEsol also performing well up to ∼200 K.

Finally, we also calculated the constant-pressure heat
capacity (Cp) curves obtained with the eight functionals (Fig.
S23 in the supplementary material102), as well as the tempera-
ture dependence of the Gibbs free energy (Fig. S24102). Aside
from the divergence in the heat capacities of PbS and PbTe pre-
dicted by PW91, PBE, and PBE-D3 at moderate temperatures,
most of the functionals are able to produce the experimentally-
measured values of Cp with good accuracy. The Gibbs energy
curves likewise display only subtle differences in curvature;
while this may be important if free energies for different
phases calculated with different functionals were compared, it
is difficult to see when such a situation would arise.

VI. DISCUSSION

We have shown that the differences in athermal properties
predicted by the different exchange-correlation functionals are

in effect magnified at finite temperature within the quasi-
harmonic approximation. We now consider the ability of
the functionals to predict quantitatively the room-temperature
(300 K) structure and properties of the four chalcogenides;
we note that, for all four, this temperature is well below the
validity limit of the QHA (∼2/3 Tm).59,60

The 300 K lattice constants, linear-expansion coefficients,
bulk moduli, and constant-pressure heat capacities obtained
from the QHA calculations are collected together with
experimental data in Table I. The lattice constants of the
lead chalcogenides are best reproduced by PBEsol, whereas
for the zinc chalcogenides, revTPSS and the two dispersion-
corrected functionals also perform well. The reproduction
of the linear-expansion coefficients is more variable, but the
experimental values are consistently well reproduced by the
LDA. This functional also yields a reasonable reproduction
of the finite-temperature bulk moduli, while PBEsol performs
consistently well across all four materials. The dispersion-
corrected PBE-D2 and D3 functionals give good results
for the zinc chalcogenides, while revTPSS, which gives a
reasonable reproduction of the 300 K lattice constants of
ZnS/Te, performs less well. For the zinc chalcogenides, most
functionals predict constant-pressure heat capacities in good
agreement with experiment. We were unable to obtain room-
temperature measurements for the lead chalcogenides, but
comparing the functionals shows a similar consistency, except
in the case of PBE, PW91, and PBE-D3, where the larger
thermal expansion leads to higher values.

Since phonon frequencies can be strongly volume depen-
dent,30 it is a common practice to perform phonon calcula-
tions with the unit-cell volume fixed at the experimentally-
determined value (e.g., Refs. 72 and 91–95), or to explicitly
investigate the volume dependence (e.g., Refs. 74 and 96).
For a given functional, the QHA calculations yield the 300 K
lattice volume on the DFT free energy surface, which would, in
principle, allow finite-temperature phonon calculations to be
performed without a priori knowledge of the corresponding

TABLE I. 300 K structural properties of PbS, PbTe, ZnS, and ZnTe predicted with a range of exchange-correlation functionals and compared to experimental
data from the literature. The bulk moduli of PbS, PbTe, and ZnTe, taken from Refs. 77, 88, and 89, respectively, were calculated from the relevant elastic
constants.

Expt. LDA PW91 PBE PBEsol TPSS revTPSS PBE-D2 PBE-D3

PbS a/Å 5.93643 5.874 6.057 6.061 5.922 6.008 5.978 5.890 6.008
αL/10−6 K−1 20.0,52 19.8,50 20.2 (313 K)90 20.19 74.09 78.88 25.98 35.42 29.32 32.92 55.55

B/GPa 62.8,42 53-70,86 52.8888 57.91 26.74 25.91 48.21 40.70 44.63 45.12 31.61
Cp/J K−1 mol−1 . . . 50.22 62.01 63.26 51.14 53.05 51.82 52.44 57.25

PbTe a/Å 6.46243,50,83 6.417 6.607 6.608 6.467 6.571 6.519 . . . 6.552
αL/10−6 K−1 20.1,50 20.477 19.63 34.95 39.44 22.35 29.01 25.83 . . . 41.75

B/GPa 39.8,85 40,86 41.1377 43.34 30.19 28.32 39.44 34.13 34.63 . . . 27.22
Cp/J K−1 mol−1 . . . 51.18 53.84 54.68 51.59 52.81 52.07 . . . 54.91

ZnS a/Å 5.405343 5.318 5.458 5.457 5.369 5.456 5.425 5.380 5.396
αL/10−6 K−1 6.987 6.35 8.23 6.39 4.96 9.08 7.50 5.34 6.60

B/GPa 7543 86.42 66.60 59.37 75.91 62.51 62.78 73.90 73.08
Cp/J K−1 mol−1 45.35843 45.01 45.80 45.64 45.20 46.03 45.70 45.18 45.24

ZnTe a/Å 6.088243 6.020 6.193 6.194 6.080 6.178 6.123 6.088 6.116
αL/10−6 K−1 8.19 (283 K),54 8.3043 8.31 8.74 8.21 7.04 9.64 9.34 7.57 6.28

B/GPa 50.8289 54.68 41.88 39.37 46.55 40.61 40.98 48.34 46.82
Cp/J K−1 mol−1 46.4454 48.36 48.66 48.60 48.35 48.76 48.63 48.39 48.34
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FIG. 7. Phonon dispersion of PbS (a) and PbTe (b) between the symmetry
points X , Γ, and L, computed with different exchange-correlation function-
als. The left part shows the dispersions calculated with the 300 K lattice
constants predicted from quasi-harmonic calculations with the respective
functionals, while the right part shows dispersions computed using the same
experimental lattice constant for all the functionals. The values used in the
latter calculations were 5.936 Å (Ref. 43), and 6.462 Å (Refs. 43, 50, and
83) for PbS and PbTe, respectively. Imaginary frequencies are shown as
negative values. Experimental measurements of the phonon frequencies at
the symmetry points from Refs. 43 and 83 are overlaid as black stars.

lattice parameters. It is therefore an interesting exercise to
compare these two approaches, to see which gives the better
agreement with experimental data.

Fig. 7 compares the PbS and PbTe phonon dispersions
between the symmetry points X , Γ, and L, calculated with

the different functionals at the experimental and QHA 300 K
lattice constants, to experimental measurements.

As might be expected given the variation in the predicted
300 K lattice constants in Table I, the calculations performed
at the experimental volume yield more consistent phonon
frequencies. This is in line with the findings of van de Walle
and Ceder (Ref. 72). The largest variation in the fixed-volume
calculations is seen in the frequency of the LO modes at the Γ
point, which, as noted in Section IV, is mainly due to the fact
that the size of the LO/TO splitting depends on the underlying
electronic structure predicted by the different functionals. In
keeping with this, the variation between functionals is far
more pronounced for PbS than for PbTe, which is consistent
with the small gap in the former causing small perturbations
to lead to disproportionately large electronic responses with
some functionals (i.e., the same phenomenon that led to the
appearance of an imaginary mode at the X point in the
equilibrium-structure LDA phonon dispersion).

Aside from the PbS LO modes, all the functionals
tested appear to perform qualitatively well at predicting the
phonon frequencies. For a more quantitative comparison, we
calculated the average and standard deviation of the differences
between the various sets of calculated frequencies and the
experimental measurements (Table S9 in the supplementary
material102), excluding the Γ-point LO frequencies to avoid the
comparison being skewed by the large differences in the size of
the LO/TO splitting. From this analysis, we found that, at the
fixed 300 K volumes, PBEsol gave the most quantitative results
for both materials, while the LDA performed well for PbTe
but not for PbS. Given the near-quantitative prediction of the
300 K lattice constants obtained with PBEsol, the frequencies
obtained with this functional at its QHA volume were similarly
good, while in these calculations, the LDA, revTPSS, and
PBE-D2 functionals performed very well for PbS, and both
meta-GGAs gave good results for PbTe. PBE-D3 gave better
results than PBE-D2 for PbS at the experimental lattice con-
stant, but the large thermal expansion predicted by the former
leads to a higher deviation at the predicted QHA volume.

The agreement in the phonon frequencies predicted in the
fixed-volume calculations implies that the phonon frequencies

FIG. 8. Volume dependence of the fre-
quency of the Γ-point transverse-optic
mode (vTO) of PbS (a), PbTe (b),
ZnS (c), and ZnTe (d) with several
exchange-correlation functionals. As in
Fig. 7, imaginary frequencies are shown
as negative values.
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may be more strongly volume dependent than they are
functional dependent. This is evident in a plot of the calculated
Γ-point TO frequencies of the four materials against volume
(Fig. 8, a corresponding plot showing the volume depen-
dence of the Γ-point LO-mode frequencies is presented in
Fig. S25102). The calculated frequencies for the zinc chalco-
genides are generally more consistent between the functionals
than for the lead systems, which may account for the smaller
variation in the predicted temperature dependence of the lattice
constant when shifted to the athermal equilibrium volume
(see Fig. S22 in the supplementary material102). Hence,
while the different functionals predict different equilibrium
volumes, for a given volume/structure, they appear to predict
a similar restoring force in response to displacement of the
ions from their equilibrium positions, at least in the high-
symmetry systems modelled here. This being the case, and
as evident in Fig. 7, the practice of calculating the phonon
frequencies at (fixed) experimental volumes, where avail-
able, will generally give better agreement with experiment
for most DFT functionals, provided the internal strain is
minimized.

Finally, another noteworthy observation is that at the
QHA-predicted 300 K volumes, both PW91 and PBE predict
imaginary optic modes at the Γ point, which would correspond
to a permanent displacement of the ions from their ideal
positions in the rocksalt structure. In the absence of LO/TO
splitting, the imaginary modes are triply degenerate, while
including this correction causes one mode to become real,
leaving two degenerate modes with the same (imaginary)
frequency as that calculated without the splitting.

To confirm the presence of these instabilities, we mapped
out the total energy of the primitive cell as a function of
displacement along the two imaginary-mode coordinates.
Within the harmonic approximation, the displacement of the
jth atom in the lth unit cell at time t is given by the following:

u ( j, l, t) = 1
Nm j


q, v

Q(q, v) exp[−iq.r( j, l)]e( j,q, v), (6)

where N is the number of unit cells, Q(q, v) is the normal-
mode coordinate, which absorbs the time dependence, and

FIG. 9. Potential-energy surface as a function of the normal-mode coordinate
along the two Γ-point imaginary modes in the PBE phonon calculation on PbS
at the predicted 300 K quasi-harmonic volume.

e( j,q, v) is the component of the phonon eigenvector on atom j.
Considering only Γ-point modes (q = (0,0,0)) within a single
primitive cell, Eq. (6) simplifies to

u ( j, t) = 1
√m j


v

Q(Γ, v)e( j,Γ, v). (7)

The potential surface obtained by mapping the imaginary
modes in the PbS/PBE calculation is shown in Fig. 9; a
similar plot for PbTe with PBE is shown in Fig. S26 in the
supplementary material.102

The eigenvectors of the imaginary modes correspond to
a mixture of offsite displacements along the three Cartesian
directions, which is superficially similar to the polar rhom-
bohedral distortion seen in the binary chalcogenides GeTe
and SnTe; however, in this case, following both soft modes
simultaneously would not lead to a “clean” displacement
of an ion at (0.5, 0.5, 0.5) in the undistorted structure to
(0.5 + x, 0.5 + x, 0.5 + x), as happens in the germanium and
tin tellurides. The maps indicate a symmetric double-well
potential, with the rocksalt structure lying <1 meV above the
distorted structure in all cases, which is substantially less than
the value of kBT at 300 K of approximately 25 meV.

It is worth noting that as there is no macroscopic
polarization exactly at the zone center, and the magnitude
of the LO/TO splitting depends on the direction of approach,
it would technically be more correct to map out the three
Γ-point modes obtained in the absence of the splitting.
Furthermore, with degenerate phonons, as here, the choice of
the eigenvectors defining the basis set used to map the potential
surface is somewhat arbitrary, since any linear combination of
the eigenvectors would also be valid, and the maps in Figs. 9
and S26 in the supplementary material102 could thus be rotated
into different bases. The present analysis is, however, sufficient
to verify the presence of structural instabilities implied by the
dispersions in Fig. 7.

The possible existence of instabilities is of particular
interest because it would evidence the widely disputed low-
temperature phase transition initially postulated by Bozin
et al.47,50–52 In the present case, however, when set against the
results obtained from the other functionals, it appears to be an
artefact of the anomalously-large thermal expansion predicted
by PW91 and PBE. In support of this, the imaginary modes are
not observed with any of the functionals at the experimental
300 K lattice volume.

We note that this result also has potential implications for
constant-pressure MD simulations. If such modelling were to
be performed using functionals that predict similarly anom-
alous thermal expansion, this could manifest in unrealistic
average structures, or unexpected results such as the onset
of melting at a low temperature. On the other hand, since
performing variable-cell MD calculations with plane-wave
codes frequently involves additional complications related
to the changes in basis-set quality as the cell shape and/or
volume change, MD calculations are often performed with the
volumes constrained to values obtained from experimental
measurements (e.g., in the theoretical literature on the
dynamics of chalcogenide glasses97–100), which the present
findings suggest may largely mitigate this issue.
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VII. CONCLUSIONS

In summary, we have performed a quantitative compar-
ison of the finite-temperature material properties of PbS,
PbTe, ZnS, and ZnTe obtained from quasi-harmonic lattice-
dynamics calculations with eight exchange-correlation func-
tionals to experimental data.

The overarching trend is that the GGAs parameterised to
favour energetics (PW91 and PBE) yield too large equilibrium
volumes and too soft phonon frequencies, issues which
are magnified in the QHA calculations. PBEsol, for which
the GGA parameterisation is biased in favour of structural
properties, yields a much better correction to the LDA and
is the best general-purpose functional among those tested for
these calculations. TPSS partially compensates for the PBE
under binding, although revTPSS, which is optimised for bulk
materials, generally performs better. However, neither meta-
GGA functional displays better general-purpose performance
than PBEsol in these calculations, and both are significantly
more computationally expensive than GGAs. It is debatable
whether dispersive interactions are important in the four
chalcogenides studied here, but we do find that the D2
and D3 corrections generally offer an improvement over
bare PBE. However, the improvement is inconsistent, and so
these functionals may not be as generally applicable to bulk
materials as standard GGAs or meta-GGAs.

In our QHA calculations, we found PBEsol to be the
most capable at predicting finite-temperature lattice constants,
with revTPSS and PBE-D2/D3 also performing well for
the zinc chalcogenides, whereas the LDA best reproduced
the experimentally-measured expansion coefficients. Accurate
heat capacities could be obtained using all the functionals
tested, except in the calculations on PbS and PbTe with PW91,
PBE, and PBE-D3, where the anomalous thermal expansion
predicted by these functionals led to a divergence of the heat
capacity at moderate temperature. The variation between func-
tionals is due in part to differences in the predicted athermal
equilibrium geometries, although the relative importance of
this and the predicted thermal expansion is system depen-
dent.

All eight functionals predicted reasonable 300 K phonon
frequencies, with the best consistency being observed when
the calculations were performed at the cell volume given by the
experimentally-measured lattice constants. Again, however,
PBEsol showed the best general performance, both in the
fixed-volume calculations and in those performed at the QHA
volumes. The imaginary modes obtained for PbS and PbTe
with PBE and PW91 at the QHA volumes were found to
correspond largely to offsite displacements of the Pb cation;
although this is interesting in light of the disputed low-
temperature phase transition in these materials, when set
against the results of the other calculations it appears to be
an artefact of the anomalous thermal expansion predicted by
these two functionals.

The results presented here reinforce previous studies
showing that quasi-harmonic lattice-dynamics calculations
represent a powerful and economical means of modelling the
finite-temperature properties of bulk solids. This possibility
may be of considerable value to general materials modelling

and contemporary materials-discovery projects alike and could
also act as a means of benchmarking the performance of
electronic-structure methods. In light of its balance between
computational cost and performance, we recommend PBEsol
as a good starting point for lattice-dynamics calculations on
bulk materials. We note, however, that the other functionals
tested, e.g., the two meta-GGAs, the dispersion-corrected
GGAs, or indeed other techniques such as PBE(sol) +U , may
of course be more suitable for specific cases, for example, in
systems with substantial dispersive interactions or strongly-
correlated systems such as transition-metal oxides.

Aside from our main findings, the present study has
also yielded a handful of other noteworthy observations. A
reduction of the lattice constant in narrow-gap semiconductors
can cause the system to undergo a metal-to-insulator transition,
which for PbS appears to lead to the appearance of an
imaginary phonon mode at the X point. For the LDA,
which predicts the smallest lattice constants among the seven
functionals tested, this occurs at the predicted equilibrium
volume. For electronic-structure codes which evaluate the
exchange-correlation potential from an electron-density grid,
accurate calculations with meta-GGAs may require a finer grid
than lower-level functionals, which would further increase
the computational cost associated with using them. Finally,
the PBE-D2 functional gives spurious phonon frequencies for
PbTe, at least with the parameter combination used in these
calculations, which we ascribe to the fact that a dispersion
correction based on atomic polarizabilities may be insufficient
to describe covalent bonding between highly-polarisable ions.
The newer PBE-D3 correction rectifies this issue, but the lead
chalcogenides nonetheless appear to represent challenging
cases for both PBE-D2 and PBE-D3.

A final remark is that, in the interests of future benchmark-
ing studies, it would be highly desirable to build a systematic
database of the properties of a representative set of solids,
and their temperature dependence, obtained from high-quality
experimental measurements and/or state-of-the-art theoretical
techniques.101 This would provide a reference against which
new and existing functionals, and also technical methods such
as the quasi-harmonic approximation, could be quantitatively
evaluated.
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APPENDIX: DATA-ACCESS STATEMENT

The raw data discussed in this work is available in
a repository accessible at https://github.com/WMD-Bath/
Phonons. This data includes all of the structures used in
the calculations, the force sets used as input to the phonon
calculations, the data obtained from post processing, including
the calculated phonon dispersions, densities of states, and
thermal properties for each structure, and the temperature-
dependent properties from the quasi-harmonic calculations.
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