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A millimetric droplet bouncing on the surface of a vibrating fluid bath can self-propel by
virtue of a resonant interaction with its own wave field (Couder et al. 2005a; Protière et
al. 2006). This system represents the first known example of a pilot-wave system of the
form envisaged by Louis de Broglie in his double-solution pilot-wave theory (de Broglie
1930, 1956, 1987). We here develop a numerical model of pilot-wave hydrodynamics by
coupling recent models of the droplet’s bouncing dynamics (Moláček & Bush 2013a,b)
with a more realistic model of weakly viscous wave generation and evolution. (Lamb
1932; Dias et al. 2008). The resulting model is the first to capture a number of features
reported in experiment, including the rapid transient wave generated during impact, the
Doppler effect, and walker-walker interactions.

1. Introduction

Louis de Broglie (1926, 1930, 1987) proposed that microscopic particles such as elec-
trons move in resonance with a guiding wave field centered on the particle and generated
by its internal vibration. The resulting pilot-wave theory represented the first example
of what are now widely known as hidden variable theories, attempts to underpin the
statistical theory of quantum mechanics with a rational dynamics. While de Broglie’s
pilot-wave theory was successful in rationalizing single-particle diffraction, on the basis
of which he won the Nobel prize in 1929, his theory was superseded by the Copenhagen
Interpretation, despite its inherent philosophical vagaries (Bacchiagaluppi & Valentini
2009). At the time that de Broglie proposed his pilot-wave theory of quantum dynamics,
there was no macroscopic analog to drawn from. A hydrodynamic pilot-wave system was
discovered a decade ago by Yves Couder and Emmanuel Fort (Couder et al. 2005a;
Protière et al. 2006; Eddi et al. 2011), and takes the form of millimetric fluid droplets
walking on the surface of a vibrating fluid bath. The relation between this system and
the modern extensions of de Broglie’s mechanics has recently been explored by Bush
(2015).

By virtue of its accompanying wave field, the walking droplet, or ‘walker’, is a spatially
extended object, and exhibits several features previously thought to be exclusive to the
microscopic quantum realm (Bush 2010). Central to the walker dynamics is the concept
of path memory (Eddi et al. 2011): the wave force imparted to the walker depends on
the pilot-wave field generated by its previous bounces. The more long-lived its waves,
the longer its path memory. The walker dynamics is thus explicitly non-local in time:
prediction of the walker’s future requires knowledge not only of its present state, but of
its past.
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Eddi et al. (2009b) demonstrated that the walkers can tunnel across submerged barri-
ers in a manner reminiscent of quantum tunneling. Fort et al. (2010) demonstrated the
emergence of orbital quantization for droplets walking in a rotating frame, and devel-
oped the dynamic analogy with Landau orbits. Most strikingly, this hydrodynamic pilot-
wave system has been shown to exhibit wave-like statistics in three separate geometries.
Couder & Fort (2006) examined the diffraction of walkers through single and double slit
geometries, and demonstrated a statistical behavior reminiscent of that of single-particle
diffraction of electrons and photons (Bach et al. 2013). Harris et al. (2013a) examined a
walker in a confined geometry, and demonstrated that the probability distribution func-
tion corresponds to the amplitude of the cavity’s Faraday wave mode, a result reminiscent
of electrons in a quantum corral (Crommie et al. 1993a,b). Harris & Bush (2014), Oza
et al. (2014a) and Oza et al. (2014b) reexamined walkers in a rotating frame, and
demonstrated that at the highest forcing examined, the orbital quantization gives way
to chaotic dynamics with wave-like statistics that emerge as the walker drifts between its
unstable quantized eigenstates. Similar behavior has been reported for walkers subjected
to a central force (Perrard et al. 2014): the chaotic dynamics emerging in the limit of
high vibrational forcing is characterized by the walker switching between unstable orbital
states quantized in energy and angular momentum. Labousse et al. (2014) rationalize
this behavior through consideration of the energy landscape associated with the walker’s
wave field.

When a horizontal fluid layer is subject to a sinusoidal vertical vibration with fre-
quency ω0, its free surface becomes unstable to a standing field of Faraday waves when
the acceleration amplitude Γ exceeds the Faraday threshold, ΓF . These waves have half
the frequency of the imposed vibration and a wavelength prescribed by the standard
water-wave dispersion relation (Benjamin & Ursell 1954). Below the Faraday thresh-
old, millimetric droplets may bounce on the bath surface provided an air layer is sus-
tained between drop and bath during impact (Walker 1978). Below a critical bouncing
threshold, the drops will merge with the underlying bath; above it, they will bounce
indefinitely (Couder et al. 2005b). Just above the bouncing threshold, the drops bounce
with the forcing frequency; however, as the forcing amplitude is increased progressively,
the bouncing amplitude increases until eventually the bouncing period matches that of
the subharmonic Faraday wave field. Resonance is thus achieved between the bouncing
droplet and its accompanying wave field, energy is most readily transferred between the
two, and one can view the bath as being a damped oscillator forced at resonance. In
certain parameter regimes, these resonant bouncers are destabilized by their wave field,
and give way to a regular walking state (Couder et al. 2005a; Protière et al. 2006).
The walking drop lands just off center of the descending central peak of its wave field,
thus acquiring at each impact a horizontal impulse that propels it forward. A millimetric
drop may thus walk steadily across the surface of a vibrating fluid bath by virtue of a
resonant interaction with its locally excited Faraday wave field.

Protière et al. (2005), Protière et al. (2006) and Eddi et al. (2008) presented a series
of regime diagrams indicating the observed dependence of the droplet behaviour on the
forcing acceleration and drop size. Moláček & Bush (2013a) pointed out that, for a given
fluid, there are two principal control parameters that prescribe the dynamical behaviour
of the system. The first, Γ/ΓF , is a parameter indicating the distance from the Faraday
threshold ΓF . The second, the vibration number,

Ω = ωo

√
ρR3

0/σ ,

indicates the relative magnitude of the imposed vibrational frequency ω0 and the nat-
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ural frequency of the drop of radius R0, density ρ and surface tension σ. Moláček &
Bush (2013a) and Moláček & Bush (2013b) developed a detailed description of the
dynamics accompanying droplet impact. To leading order, the droplet deformation may
be neglected, and the role of the interface may be treated as that of a linear spring with
a spring constant proportional to the surface tension (Gilet & Bush 2010ab). Through
building on a model of quasi-static droplet impact on a rigid superhydrophobic surface
(Moláček & Bush 2012), Moláček & Bush (2013a) developed a model that incorporates
the influence of droplet deformation and the inertia of the underlying fluid. The inter-
face may then be described in terms of a logarithmic spring whose stiffness increases with
depth of penetration. While the relatively low energy bouncing states can be rationalized
without considering the influence of the wave field generated by previous impacts, such
is not the case for the walking threshold, which depends critically on the destabilizing
influence of the wave field. The theoretical developments of Moláček & Bush (2013a)
and Moláček & Bush (2013b) have now rationalized the regime diagrams describing the
behavior of bouncing drops (Protière et al. 2006; Eddi et al. 2008; Wind-Willassen et al.
2013). Detailed regime diagrams indicating the behavior of the droplets in the Ω−Γ/ΓF
plane were presented in Moláček & Bush (2013a), Moláček & Bush (2013b) and Wind-
Willassen et al. (2013), who adopted the nomenclature defined in Gilet & Bush (2009b)
and Gilet & Bush (2009a). A periodic bouncing state is denoted by (m,n)p if it bounces
m times in n forcing periods. The superscript p represents an ordering of the modes with
the same periodicity according to mean mechanical energy, with the highest p denoting
the most energetic mode.

In addition to underscoring the importance of the vertical dynamics on the walking,
the theoretical developments of Moláček & Bush (2013a) and Moláček & Bush (2013b)
have yielded a trajectory equation (Oza et al. 2013) that has formed the basis of further
theoretical developments, such as the model to be developed herein. In a certain parame-
ter regime delineated and rationalized in Moláček & Bush (2013b) and Wind-Willassen
et al. (2013), the walking drops achieve perfect resonance with their Faraday wave field:
the combined impact time and time-of flight is precisely equal to the Faraday period,
2/ω0. Such resonant walkers are described in terms of the pilot-wave theory of Oza et al.
(2013), who explicitly assume the resonance between walker and wave. Doing so allows
them to recast the trajectory equation of Moláček & Bush (2013b) into an integral-
differential form that is amenable to analysis. The resulting ‘stroboscopic formulation’
allowed for an accurate assessment of the stability of various simple forms of motion,
including straight-line walking (Oza et al. 2013) as well as orbital motion in both a
rotating frame (Harris & Bush 2014; Oza et al. 2014a) and in the presence of a central
force (Perrard et al. 2014). It also captures much of the rich non-linear behavior arising
in the high memory limit, for example, the complex orbits arising in a rotating frame
(Oza et al. 2014b).

In the wave models of Eddi et al. (2011), Moláček & Bush (2012) and Oza et al.
(2013), the wave field created by each impact is described in terms of a standing Bessel
function J0(kF r) centered on the point of impact, and damped in time at a rate prescribed
by the system memory, which depends on both the proximity to the Faraday threshold,
and the fluid viscosity. This approximation is adequate to describe a droplet interacting
with its own wave field in an unbounded fluid domain, where the short-time (t � TF ,
where TF is the forcing period) behavior of the wave field is irrelevant, and the influence
of reflections off the boundaries is not considered. However, it explicitly neglects the
influence of the transient field generated by the impact, which travels at approximately
10 times the walker speed (Eddi et al. 2011) and may play a significant role in the
interaction of multiple walkers, or the interaction of single walkers with topography or
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boundaries. As such effects are central to the storyline of the walking drops arising in
bouncing lattices of walkers (Eddi et al. 2009a), tunneling (Eddi et al. 2009b), motion
in confined geometries (Harris et al. 2013a) and single-particle diffraction (Couder &
Fort 2006), we develop here a more sophisticated model of the wave field accompanying
walkers that explicitly captures several time-dependent wave-features generated by each
impact.

Our goal is to develop a hydrodynamic pilot-wave model, formulated from first prin-
ciples, that exhibits the behavior observed in the laboratory experiments. In describing
the wave field, our approach is inspired by the potential-flow description of Benjamin &
Ursell (1954), with viscous damping being incorporated in the manner outlined by Lamb
(1932) and Dias et al. (2008) and recently analysed by Ambrose et al. (2012). In §2, we
formulate this model, which allows for the self-consistent generation and propagation of
a Faraday pilot-wave field. In §3, we present our model results, demonstrating that our
system exhibits a number of features of the walking droplets that have not been captured
by previous models.

2. Formulation

We proceed by presenting a linear water wave model with viscous damping, along the
lines developed by Lamb (1932) and Dias et al. (2008). We then briefly review the
Faraday instability problem and conclude with a coupled model whereby Faraday waves
are generated by a localized, time-dependent surface pressure forcing that models the
impacting droplet.

2.1. Governing Equations

In modeling the wave field generated by the bouncing droplet, we consider the three-
dimensional free-surface water-wave problem with the following assumptions. We treat
the fluid as being of infinite depth, an approximation valid for depths greater than half
a wavelength, as is typically the case in the experiments of interest. We assume that vis-
cous dissipation is non-negligible, and explicitly consider both gravitational and surface
tension forces. We incorporate the vertical vibration of the bath in terms of a time-
dependent gravitational force. Finally, we model the effect of droplet impact in terms
of a time-dependent localised pressure applied at the free surface. With these assump-
tions, and letting (x, y) denote the horizontal plane and z the vertical direction, the fluid
motion is governed by the incompressible Navier-Stokes equations:

ut + u · ∇u = −1

ρ
∇p+ ν∆u + F(t), z 6 η(x, y, t) (2.1)

∇ · u = 0, z 6 η(x, y, t), (2.2)

where the force due to gravity and the vertical shaking of the fluid is expressed F =
(0, 0,−g+gΓ cos(ω0t)). These equations must be solved subject to the appropriate bound-
ary conditions. The condition of no motion at large depths requires that

u→ 0 as z → −∞. (2.3)

At the free surface, the stress balance and the kinematic condition require, respectively
that

p n− ρν τ · n = (σ κ+ PD(x, y, t)) n, z = η(x, y, t), (2.4)

ηt + u · ∇(η − z) = 0, z = η(x, y, t). (2.5)
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Here u = (u, v, w) and p are the velocity and pressure fields, ρ is the fluid density and ν
the kinematic viscosity. For simplicity we have assumed a laterally unbounded domain,
although we remark on boundary effects in the discussion of the Faraday problem below.
The free surface displacement is given by η, σ is the surface tension, and κ = ∇·n is the
free surface curvature and n the outward unit normal. The strain tensor τ is given by
(∇u+∇uT ). PD is the pressure exerted by the droplet as it impinges on the free surface.

Two approximations are now made. First, as the observed wave slope is small, we
linearize the equations. Second, following the approach of Dias et al. (2008) developed
originally in Lamb (1932), we derive a “weakly dissipative” surface wave model. Specif-
ically, we assume that the waves may be described to leading order as irrotational and
inviscid, but that they also have a small rotational component resulting from the van-
ishing tangential stress free-surface boundary condition.

Neglecting, for the time being, the externally applied pressure from the droplet, we
nondimensionalize the system using the wave period T and wavelength λ. The result is

ut = −∇pd + ε ∆u, z 6 0, (2.6)

∇ · u = 0, z 6 0, (2.7)

u→ 0, as z → −∞, (2.8)

(p−Gη +B∆Hη) n = ε τ · n, z = 0, (2.9)

ηt = w, z = 0, (2.10)

where F has been absorbed into the dynamic pressure, pd. Three nondimensional param-
eters have been introduced: a reciprocal Reynolds number ε = νT/λ2, a Bond number
B = σT 2/ρλ3 and G = gT 2/λ. ∆H denotes the horizontal Laplacian. For the current
experiments, characteristic values of the nondimensional parameters, based on the phys-
ical constants listed in Appendix B, T = (1/40)s and λ = 0.5cm (corresponding to the
most unstable Faraday wavelength) are ε = 0.02, B = 0.20 and G = 1.23.

The small-viscosity dissipation model is obtained by introducing the Helmholtz de-
composition of the velocity field

u ≡ ∇φ+ ε ∇×Ψ, (2.11)

where φ results in a potential flow component, and Ψ = (ψ1, ψ2, ψ3) in a vortical compo-
nent. Specifically, the vortical components of the velocity field are (û, v̂, ŵ) = ∇×Ψ =
(ψ3,y − ψ2,z, ψ3,x − ψ1,z, ψ2,x − ψ1,y). Substitution into the system (2.6) -(2.10) leads to
the following set of equations, valid in the fluid bulk:

φt + p = 0, z 6 0, (2.12)

∆φ = 0, z 6 0, (2.13)

ψj,t = ε ∆ψj , j = 1, 2, 3, z 6 0, (2.14)

φ, ψj → 0 as z → −∞. (2.15)

The stress balance equations at z = 0 couple the potential and vortical velocity fields.
The normal balance yields

(p−Gη +B∆Hη) = 2ε (φz + ε(ψ2,x − ψ1,y))z , (2.16)

while the tangential stress balances yields

0 = 2φxz + ε(ψ3,y − ψ2,z)z + ε(ψ2,x − ψ1,y)x, (2.17)

0 = 2φyz + ε(ψ1,z − ψ3,x)z + ε(ψ2,x − ψ1,y)y. (2.18)
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Lastly, the kinematic condition is

ηt = φz + ε (ψ2,x − ψ1,y) . (2.19)

These equations are now simplified by using the boundary layer scaling ∂z = O(ε−1/2)
in Ψ and discarding higher order terms. Then, we eliminate Ψ in favour of φ and η.

Truncating (2.16) at order ε and using (2.12) and (2.13), we obtain the final form of
the dynamic boundary condition

φt = G η −B ∆Hη + 2ε ∆Hφ. (2.20)

The terms neglected are of order ε3/2. The tangential stress balance is now used to replace
the viscosity-induced vertical velocity in the kinematic boundary condition. First, we use
the boundary layer scaling to eliminate negligible contributions from the vortical flow
and so arrive at the approximation

2φzx = ψ2,zz = ψ2,t, (2.21)

2φzy = −ψ1,zz = −ψ1,t, (2.22)

where (2.14) was used in the second equality. Now, use the leading order term of the
kinematic condition ηt = φz +O(ε) to express ψ1, ψ2 in terms of η

ψ2 = 2ηx +O(ε), (2.23)

ψ1 = −2ηy +O(ε). (2.24)

Substituting into (2.19) yields the “damped” kinematic condition

ηt = φz + 2ε ∆Hη. (2.25)

Again, terms of order ε3/2 arising from the horizontal stress balance were neglected.
The damping term is merely the result of accounting for the leading order term of the
vertical component of vortical velocity at the free surface. Equations (2.20) and (2.25)
were also presented in Dias et al. (2008), but there were obtained through arguments
involving expanding the damped dispersion relation for the waves with 2νk2/|ω| as the
small parameter. An analysis of the well-posedness of this formulation was recently given
in Ambrose et al. (2012).

2.2. Faraday waves

When a vessel containing liquid is vibrated vertically, wave patterns will develop pro-
vided the Faraday threshold, ΓF , is exceeded. Both the Faraday threshold and the form
of the waves at the onset of instability will in general depend on both the fluid prop-
erties and the shape of the container. The first mathematical modeling of this Faraday
instability was presented in Benjamin & Ursell (1954), who considered an inviscid fluid
in a container of arbitrary cross section. The influence of viscosity was elucidated by
Kumar & Tuckerman (1994) and Kumar (1996), who demonstrate that for a given
configuration, the thresholds of the various modes of vibration depend explicitly on the
fluid viscosity. We proceed by sketching how the stability analysis can be carried out
with the equations derived above, through inclusion of weak viscous effects, in the case
of an unbounded domain. Our first objective is to find the forcing threshold at which
the planar free surface becomes unstable in our model. We note that all of the bouncing
droplet phenomena of interest occur below this threshold, and depend on the proximity
to the Faraday threshold (Eddi et al. 2011).
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Based on the developments of the previous section, we formulate the problem as

∆φ = 0, z 6 0, (2.26)

φt = g(1− Γ cos(ω0t)) η −
σ

ρ
∆Hη + 2ν ∆Hφ, z = 0, (2.27)

ηt = φz + 2ν ∆Hη, z = 0, (2.28)

together with ∇φ→ 0 as z → −∞. For a container of arbitrary cross section, and in the
inviscid limit (ν = 0), one needs to satisfy φn = 0 on the lateral walls of the container.
Hence in the inviscid case, one chooses (Benjamin & Ursell 1954) φ = am(t)Φm(x, y)ekmz

and km > 0, with eigenfunctions Φm satisfying

−∆HΦm = k2
mΦm,

∂Φm
∂n

= 0 on S, (2.29)

where S is the horizontal shape of the container i.e., the curve corresponding to the
intersection of the container boundaries with a horizontal plane. The amplitude equations
for the eigenfunction coefficients am can then be shown to satisfy the Mathieu equations

d2am
dt2

+
(
ω2
m − ω2

g Γ cos(ω0t)
)
am = 0, (2.30)

ω2
m = ω2(km) = gkm

(
1 +

σ

ρg
k2
m

)
, ω2

g = gkm. (2.31)

When Γ = 0, there are only free oscillations of the liquid surface. Their frequency is
given by the classical dispersion relation ω(km). Benjamin & Ursell (1954) delineate the
various instability regions of the Mathieu equation for Γ > 0, their emergence arising for
Γ > 0 at frequencies corresponding to integer multiples of half the driving frequency:

ωm = n
1

2
ω0, n = 1, 2, . . . (2.32)

In the inviscid case, the broadest instability tongue is the subharmonic mode, n = 1.
If one includes damping of the form we have discussed, and considers an unbounded

setting to avoid difficulties related to a lateral no-slip condition on cylinder walls, the
dynamics will be governed by a damped Mathieu equation. This will result in a finite
forcing threshold for the onset of instability. For this unbounded domain, there is a
continuum of wave numbers k = (k1, k2), and solutions of the form φ = a(k, t)eik·xe|k|z

where x = (x, y). The corresponding damped Mathieu equation takes the form

d2a

dt2
+ 2γ

da

dt
+
[
ω2 + γ2 − ω2

gΓ cos(ω0t)
]
a = 0, (2.33)

where k = |k|, γ(k) = 2νk2, ω2(k) = gk

(
1 +

σ

ρg
k2

)
and ω2

g(k) = gk.

(2.34)
For this equation, the relation between k and Γ for neutral stability of the n = 1 mode
(i.e. the subharmonic 1

2ω0 mode) is then given approximately (see Appendix A) by the
relation [

ω2 + γ2 − 1

4
ω2

0

]2

+ ω2
0γ

2 − 1

4
ω4
gΓ2 = 0. (2.35)

The most unstable wavenumber k can then be obtained by minimizing Γ with respect
to k. Figure 1 shows the curve Γ(k) for typical values used in experiments together
with a comparison to the numerically observed thresholds obtained from time-dependent
simulations of the system (2.26)-(2.28).
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Figure 1. Approximate Faraday subharmonic stability curve (black) as predicted by (2.35)
for the experimental parameters in Appendix B. The viscosity of the fluid ν was adjusted to
ν∗ = 0.8025 ν so that the minimum of Γ(k), as predicted by (2.35), matches the experimental
value Γ = 4.22 reported in Wind-Willassen et al. (2013) and shown by the horizontal line. The
minimum is achieved at kF = 12.64cm−1. The × indicates the numerically observed critical
value for instability of (2.33), specifically k∗ = 12.52 cm−1 at Γ = 4.22. The inverse Reynolds
number for this case, based on ν∗, the Faraday frequency of ω0/2 and the associated Faraday
wavelength λ∗, is ε ≈ 0.016.

2.3. Droplet trajectory and fluid coupling

We now proceed to the fully coupled wave-droplet model. The fluid equations, pre-
sented above, must now include the pressure forcing PD generated by the impacting
droplet. The system takes the form

∆φ = 0, z 6 0, (2.36)

φ→ 0, as z → −∞, (2.37)

φt = −g(t) η +
σ

ρ
∆Hη + 2ν∆Hφ−

1

ρ
PD(x−X(t), t), z = 0, (2.38)

ηt = φz + 2ν∆Hη, z = 0, (2.39)

where g(t) = g(1− Γ cos(ω0t)).
The motion of the spherical droplet has two distinct stages, flight and impact. During

flight, the droplet of mass m is in ballistic motion corrected by the aerodynamic force
that may be described in terms of Stokes drag in the horizontal direction (Moláček &
Bush 2013b). The drop position is given by (x, y, z) = (X(t), Z(t)) where Z(t) is defined
as the vertical position of the base of the droplet. Thus, in a frame moving with the
vibrating container, the trajectory of the droplet in flight is governed by

m
d2Z

dt2
= −m g(t), (2.40)

m
d2X

dt2
= −6πR0µair

dX

dt
, (2.41)

where µair is the viscosity of air, and R0 is the drop radius. In the fluid equations, during
flight, the applied surface pressure is set to zero, i.e. PD = 0 in (2.38).

The impact on the free surface begins at time t = tI when η(X(tI), tI) = Z(tI) and
d(Z−η)
dt |x=X < 0. During impact, the vertical dynamics is modelled as a nonlinear spring

prescribed by the model of Moláček & Bush (2013b):1 +
c3

ln2
∣∣∣ c1R0

Z−η̄

∣∣∣
m

d2Z

dt2
+

4

3

πνρR0c2

ln
∣∣∣ c1R0

Z−η̄

∣∣∣ ddt (Z − η̄) +
2πσ

ln
∣∣∣ c1R0

Z−η̄

∣∣∣ (Z − η̄) = −m g(t), (2.42)
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while the horizontal trajectory is given by

m
d2X

dt2
+
(
c4
√
ρR0/σ F (t) + 6πR0µair

) dX
dt

= −F (t)∇η̄|x=X. (2.43)

Details of the derivation of these equations are given in Moláček & Bush (2013b). In the
equations for the vertical dynamics shown above, η̄ denotes the hypothetical free surface
elevation that would exist in the absence of the current droplet impact. Thus, during the
impact, two solutions to (2.38)-(2.39) are computed: the hypothetical one η̄, φ̄ (where φ̄
is the velocity potential of this hypothetical flow) with PD = 0 and “initial value” η̄ = η,
φ̄ = φ at t = tI ; and another, denoted η, φ, which does include the pressure forcing
due to the drop. This second solution is not explicitly used during the current impact,
but captures the wave generation that will affect subsequent impacts. We note that in
previous models (Oza et al. 2013, Moláček & Bush (2013b)), the free-surface geometry
is calculated without accounting for the current impact, whose effect on the wave field
is included after the impact. Our model thus goes beyond its predecessors in explicitly
computing the dynamic wave generation and propagation. A comparison between the
waveforms predicted by the various models will be presented in §3.3.

The constants c1, c2, c3, c4 are fixed: we carry out all single droplet experiments with
values similar to those used in Moláček & Bush (2013b) and Wind-Willassen et al.
(2013) (see Appendix B). Briefly, c1 prescribes the spring nonlinearity, c2 the vertical
component of damping, c3 the drop’s added mass induced during impact and c4 the
skidding friction. The right hand side of (2.43) represents the propulsive force induced
by the droplet’s impact on the inclined surface at the impact location X. This impact
force F (t) experienced by the droplet is extracted from the vertical dynamics equation
as

F (t) = max

[
m
d2

dt2
Z +m g(t), 0

]
. (2.44)

The thresholding to prevent negative (suction) forces (F (t) < 0) was introduced on
physical grounds in Moláček & Bush (2013b). The pressure is now given by

PD =
F (t)

πR(t)2
, (2.45)

for |x − X| < R(t) and PD = 0 otherwise. R(t) denotes the contact radius which we
model as

πR(t)2 = π min(2|Z − η̄|R0, (R0/3)2).

The lower bound is the leading order approximation of the area of the base of the spherical
cap resulting from intersecting the droplet with the horizontal plane of the unperturbed
free surface, and the upper bound is an approximation guided by experimental obser-
vations. In applying (2.45) we have made the further approximation that the pressure
forcing is spatially uniform over the impact area. We find that the model is not sensitive
to changes in these approximations.

The impact ends at t = tE , when η̄(X(tE), tE) = Z(tE) and d(Z−η̄)
dt |x=X > 0. At t = tE ,

the “bar” variables are discarded, then reinitialised at the beginning of the next impact.
In summary, the evolution of η̄ determines the drop dynamics, while the evolution of η
accounts for the wave generation. A verification of the consistency of our model is that
η(X(t), t) ≈ Z(t) during droplet impact, as is evident in the traces reported in figure 3.
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3. Numerical modeling and simulations

For numerical efficiency, the horizontally unbounded domain is approximated with a
large doubly periodic one, allowing the simple implementation of an accurate Fourier
spectral method. The main goals of the numerical simulations are to capture the pilot
wave-fields of single and interacting particles, and demonstrate the improvement in wave-
field modeling relative to prior Bessel-function-based methods.

The system (2.38)-(2.39) is essentially two-dimensional, requiring only φz(x, 0, t) (i.e.
the irrotational vertical velocity) from (2.36). This calculation is simple in the doubly pe-

riodic domain where φz(x, 0, t) = F−1
[
kφ̂(k, t)

]
, where φ̂ = F [φ(x, 0, t)] and F and F−1

denote the Fourier transform and its inverse respectively. This “Dirichlet-to-Neumann”
map amounts to calculating efficiently the vertical velocity at the free surface of a fluid
from the horizontal velocity, when the velocity potential satisfies Laplace’s equation in
the bulk. In addition, for accuracy and efficiency, the full evolution equations (2.38)-(2.39)
will be solved in Fourier space.

Through a numerical model and its corresponding computational simulations, we show
that the coupled wave-droplet system (2.38)-(2.39), (2.42)-(2.43) displays the key features
of pilot-wave dynamics, specifically, wave generation and a myriad of bouncing and walk-
ing states, reported in laboratory experiments.

3.1. The spectral method

An accurate spectral method is used following the strategy of writing the evolution
as a single complex equation used by Milewski & Tabak (1999) and Wang & Milewski
(2012). To sketch the method, consider the dimensionless form of the equations:

φt = −G(t) η +B ∆Hη + 2ε ∆Hφ−BPd(t), (3.1)

ηt = φz + 2ε ∆Hη, (3.2)

where the forcing pressure has been scaled with σ/λ, and time with the period of the
subharmonic Faraday mode, resulting in G = G+ Γ cos(4πt).

In Fourier space, equations (3.1) and (3.2) are given by

φ̂t = −
[
G(t) +Bk2

]
η̂ − 2εk2φ̂−BP̂d(t), (3.3)

η̂t = kφ̂− 2εk2η̂. (3.4)

We perform the change of variables

û = η̂ + i
k

ω
φ̂, (3.5)

where

ω(k) =
√
k (G+Bk2). (3.6)

The system is then easily integrated, for each k, as a single linear, complex equation. The
part of the equation that has constant coefficients can be integrated exactly, and then
the evolution of the Fourier amplitudes amounts to

d

dt

[
û e(iω+2εk2)t

]
= −i k

ω

(
Γ cos(4πt)η̂ +BP̂D(t)

)
e(iω+2εk2)t. (3.7)

In the absence of both vibration (Γ = 0) and pressure forcing (PD = 0), no numerical
integration is needed. In the presence of these effects, equation (3.7) is solved using a
fourth-order Runge-Kutta method. The original variables are recovered from û by de-
composing expression (3.5) into its Hermitian and skew-Hermitian parts and inverting
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Figure 2. a) Evolution of the droplet’s horizontal velocity (V/Cp, black) and elevation above the
free surface (z/R0, gray), in the bath’s frame of reference. Following its release onto the surface
at a low speed, the droplet decelerates, then accelerates towards its steady walking speed. The
inset shows the velocity variations over the Faraday period, reflecting the two stages of the drop
motion, impact (grey) and free flight. b) Evolution of the walker dynamics from different initial
conditions. After an initial transient, all walkers converge on an identical walking state with the
same impact phase.

it. As explained earlier, during contact time, the averaged free surface η̄ and its slope
∇η̄ feed into the droplet dynamics (2.42)-(2.43) and are obtained by integrating the
wave equations with PD = 0. The vertical dynamics and trajectory ODEs (2.40)-(2.41),
(2.42)-(2.43) are also solved directly by a Runge-Kutta method, and provide the cou-
pling pressure PD through (2.44) and (2.45). To model accurately the full impact, we
must resolve a multiscale problem, with scales ranging from the penetration depth, of
O(0.1mm), to the characteristic wavelength of the pilot-wave, of O(1cm). In our single
drop computations we typically use 1024× 1024 Fourier modes in space.

In what follows, we present a series of numerical simulations confirming that the system
of differential equations (2.38)-(2.39), (2.40)-(2.41), (2.42)-(2.43), is capable of generating
much of the complex behavior reported in laboratory experiments.

3.2. Dynamics of single drops

We first investigate the bifurcations between different walking and bouncing states as
reported by Protière et al. (2006); Eddi et al. (2008); Protière et al. (2006); Moláček
& Bush (2013a,b) and Wind-Willassen et al. (2013). In the laboratory experiments,
a droplet is released onto a vibrating bath of silicone oil. Depending on the forcing
acceleration Γ, the droplet may coalesce, bounce or walk, propelled by its own pilot-
wave. We proceed by comparing the experimental observations with the predictions of
our model.

Following Moláček & Bush (2013a), we characterize the system in terms of the di-
mensionless driving acceleration, Γ/ΓF , and the vibration number, Ω. For given Γ/ΓF
and Ω values, we initialize a computation by releasing a particle onto the fluid surface
at a low horizontal speed. Below the walking threshold, for Γ < ΓW (Ω), the particle
quickly comes to rest, and settles into a stationary bouncing mode. When Γ > ΓW (Ω)
the particle accelerates and settles into a steady walking state (see figure 2). Our model
exhibits hysteresis which can be observed, for example, by choosing different values of
the initial particle speed. In the experiment shown in figure 2 (see right panel), the initial
velocity does not affect the final steady speed. For Ω = 0.8 and 3.55 < Γ < 3.7, however,
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Figure 3. Vertical dynamics of the (m,n)p bouncing and walking modes. The vertical position
of the droplet’s lowermost point is indicated by the solid line and the height of the underlying
bath by the dashed line. The figures indicate elevations relative to the non-vibrating laboratory
frame of reference. The horizontal axis is in units of forcing periods (TF = 1/80s), and the
vertical axis in units of drop radii. All experiments shown in this figure correspond to Ω = 0.8,
i.e. a drop radius of R0 = 0.38mm forced by a bath vibrating at 80Hz. (a) (1, 1) bouncing at
Γ = 1.6; (b) (2, 2) bouncing at Γ = 2.3; (c) (4, 3) bouncing at Γ = 2.9; (d) (2, 1)1 walking at
Γ = 3.4; (e) (2, 1)2 walking at Γ = 3.8; (f) chaotic walking at Γ = 4.15. The Faraday threshold
is ΓF = 4.22.
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Figure 4. Regime diagram indicating the form of the bouncing behavior in the Γ/ΓF − Ω

plane, where Ω = ωo

√
ρR3

0/σ is the vibration number. Squares (bouncing modes) and circles
(walking modes) are laboratory data reported by Wind-Willassen et al. (2013). The background
is tiled in rectangles of size 0.1 by 0.1, coloured according to the (m,n)p mode predicted to arise
at the centre of the tile. The square and round markers follow the same colour scheme as
the background. The red line indicates the predicted transition between bouncing and walking
predicted by our model. Black regions represent chaotic bouncing or walking, and grey regions
indicate that the period of droplet motion is equal to or greater than six forcing periods. The
changes in velocity and bouncing phase in the region delimited by the white dashed lines are
indicated in figure 5.

either the (2, 1)1 or (2, 1)2 state may emerge, depending on the initial velocity. Qualita-
tively similar hysteric effects were observed in the experiments of Wind-Willassen et al.
(2013), but not quantified. In the remainder of the paper, for simplicity, we consider only
the long time behaviour arising from low initial velocities. In certain cases, particularly
when Γ ≈ ΓF , the walking appears to be irregular and chaotic, at least over the times
that we compute. We recall that our wave model has only one adjustable parameter,
the effective viscosity of the fluid. Using the real viscosity of the fluid overestimates the
experimental Faraday threshold by approximately 20%. We thus adjust the viscosity in
order to match this threshold (see figure 1). The parameters cj governing the droplet
dynamics (2.42)-(2.43) are similar to those used in Moláček & Bush (2013b); Wind-
Willassen et al. (2013), but are slightly modified in order to match the experimentally
observed walking threshold, ΓW (see Appendix B). The walking threshold ΓW is most
sensitive to the skidding friction parameter c4 which was chosen such that the walking



14 P. A. Milewski, C. Galeano Rios, A. Nachbin and J. W. M. Bush,

0.75 0.8 0.85 0.9 0.95
0.2

0.4

0.6

0.8

Γ/ΓF

φ

2π

0

0.02

0.04

0.06

0.08

0.1

V

Cp

Figure 5. The dependence of impact phase φ and horizontal speed V on the vibrational forcing
Γ/ΓF for Ω = 0.8, along the region delimited by the dashed white lines in Figure 3. The blue
line indicates V/Cp, where Cp is the phase speed of a wave with the Faraday wavelength. The
black lines indicate the impact phase (φ/2π). The background colours correspond to the different
bouncing and walking modes, as indicated in figure 4. For Γ/ΓF / 0.75, the particle is bouncing
either in the (4,3) mode or the (2,1) mode. The bouncer then transitions to a walking state.
The phase curve takes multiple values in regimes with more than one bounce per period. A
characteristic jump in both phase and speed identifies the transition between the (2, 1)1 and
(2, 1)2 walking modes.

threshold matched that observed experimentally. For the other parameters, the dynamics
is most sensitive, in decreasing order, to c1, c3 and c2.

Detailed regime diagrams in the Ω − Γ/ΓF plane were presented in Moláček & Bush
(2013a), Moláček & Bush (2013b) and Wind-Willassen et al. (2013). We adopt their
nomenclature, labeling different bouncing and walking states with a triplet of integers
(m,n)p where m is number of forcing periods and n the number of bounces in one overall
bouncing cycle. If there is a multiplicity of (m,n) modes, p ranks them according to their
relative mechanical energies, p = 1 being the lowest. For example, (4, 2) signifies a motion
that repeats every 4 forcing periods and consists of two different bounces; otherwise, it
would be a (2, 1) mode.

In Figure 3, various simulated bouncing modes are displayed. The vertical position of
the lowermost point of the droplet and the free surface elevation beneath the droplet
centre are shown as a function of time for fixed Ω and several values of Γ. Both bouncing
and walking states are represented. At a few points we note a slight inconsistency between
the free surface elevation and the droplet position during impact; specifically, the droplet
appears to cross the interface. In reality, the droplet and the waves are separated by a
thin lubrication layer of air that transmits normal stresses between the two. In our model,
the fluid is free to respond to the pressure field of the droplet and we do not impose their
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relative positions. During most of the contact time the solid and dashed lines coincide.
The extent of this discrepancy, that is, the crossing of the drop and bath surfaces, thus
provides a measure of the consistency of our model.

Figure 3 also indicates how the system transitions between the various modes. For
example, a fundamental difference between the (2, 1)1 and (2, 1)2 modes (c.f. graphs d
and e) is the droplet impact phase. In figure 4, the behaviour of our model is shown in
the Ω−Γ plane and compared directly to the experimental results of Wind-Willassen et
al. (2013) (see their Figure 3). The vibration number Ω was varied in our simulations
by changing the droplet radius. The predicted dynamical states are indicated by the
background colour and the laboratory experiments are shown by the colour-coded points,
squares for bouncers and circles for walkers. Evidently, our numerical model is able to
adequately capture the diversity of bouncing modes and their transition points, with
only relatively small deviations from the experimental results. The main quantitative
differences are that the extent of our predicted walking region (as indicated by the red
curve) is relatively large, and that the (2, 1)1 to (2, 1)2 transition occurs at a slightly
higher forcing amplitude.

In figure 5, details of the dynamics for a horizontal slice through Figure 4 at Ω =
0.8 are shown. Specifically, it indicates the dependence of the walking speed, impact
phase and walking mode on the vibrational forcing. The impact phase and speed show a
characteristic decrease at the transition between the (2, 1)1 and (2, 1)2 modes, consistent
with the observations and theoretical predictions of Moláček & Bush (2013b). We recall
that the variations of the drop’s walking speed, arising over the Faraday period due to
its distinct phases of impact and free flight, are shown in Figure 2.

3.3. The walker-induced wave field

Previous theoretical models of the wave field have used a superposition of waves gen-
erated by preceding impacts:

η(x, t) =
∑
n

hn(x, t), (3.8)

where hn is the wave generated by the nth prior impact at time tn. Two models for hn
have been used for bouncing and walking studies. Eddi et al. (2011) proposed a cosine
form with both spatial and temporal damping:

hn(x, t) =
A

|x−X(tn)|
cos(kF |x−X(tn)|+ φ)e−|x−X(tn)|/δe−(t−tn)/TFMe , (3.9)

in which δ is a decay length parameter. They also introduce a Bessel function model for
the surface evolution. Moláček & Bush (2013b) derived a form valid in the small-drop
limit:

hn(x, t) =
A√
t− tn

J0(kF |x−X(tn)|)e−(t−tn)/TFMe cos(ω0t/2), (3.10)

where the memory parameter Me = Td/TF (1 − Γ/ΓF ) depends on the proximity to
threshold, as well as the decay time of the unforced waves, Td. We note that a memory
parameter does not arise in our formulation, since we solve explicitly for the full wave
field. However, an asymptotic value for the decay rate in our model, from which one
may infer an analogous to the memory parameter, is provided in Appendix A. The

√
t

decay factor arising in the narrow-band asymptotic analysis of Moláček & Bush (2013b)
is omitted in some other models of the surface waves (e.g. Oza et al. (2013)) for the
sake of simplicity. Asymptotic values for the amplitude parameter A and damping time
Td = TFMe appearing in (3.10) are given in Moláček & Bush (2013b).
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Figure 6. The computed wave fields generated by a single drop impact on a quiescent bath
(a1-a3), and a bath vibrating at f = 80Hz with Γ = 3.15 (b1-b3), Γ = 3.6 (c1-c3) and Γ = 4.15
(d1-d3). The wave field was generated by a single impact of a drop of R0 = 0.38mm and density
ten times that of the bath. The axes are labelled in units of Faraday wavelengths. Images are
taken at times t = 2TF (a1-d1), t = 6TF (a2-d2) and t = 11TF (a3-d3) after impact, where TF

is the Faraday period.
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Figure 7. a) Cross sections of wave fields generated by single impact corresponding to panels
b3 (black), c3 (grey), d3 (light grey) in figure 6, normalised to have the same height at the
origin. The thin line corresponds to a Bessel function J0(kF r). b) Cross sections of the single
impact free surface for Γ = 4.15 at times t = TF , 2TF , . . . , 8TF scaled so as to have the same
height at the origin. The line indicates the leading edge of the disturbance. The horizontal axes
show distance form the point of impact.

Figure 6 illustrates the numerically predicted wave fields generated by a drop impacting
the surface in the absence and presence of vibrational forcing. It may be compared
directly to the wave fields reported in Figure 4 of Eddi et al. (2011). In the absence of
vibrational forcing, a transient wave sweeps radially outward from the point of impact.
With vibrational forcing, this transient serves to trigger a standing field of Faraday
waves that persists in its wake, decaying with time. In the forced experiments, both the
transient wave speed and the spatial form of the excited standing wave are independent
of the vigor of the vibrational forcing. The spatial form is very close to the Bessel function
J0(kF r), particularly for later times (see figure 7). The measured speeds of the sweeping
front for the experiments shown in figure 6 are 18.59, 19.45, 19.73 and 20.04 cm/s for
Γ = 0, 3.15, 3.6, 4.15, respectively. For the cases with vibrational forcing, the speed is
very close to the Faraday phase-speed of 20.07 cm/s. For the unforced experiment, the
speed is somewhat less, and is set by least slowly damped waves excited by the impact.
In this case, the speed is bounded below by the minimum gravity-capillary wave speed,√

2 (σg/ρ)
1/4 ≈ 17.1cm/s.

Figure 8 shows the cross-sectional free surface height of a (2, 1)1 bouncer at the moment
before impact, as predicted by a number of theoretical models. Figure 9 shows a com-
parison between our numerical wave profile, and the Bessel approximations of Moláček
& Bush (2013b) without and with a spatial damping term. The spatial damping fol-
lows from expression (3.10) in Moláček & Bush (2013b) (see their equations (A46) for
β1 and (A47)), which has an O(r2/4β1τ) correction term arising from an expansion of
exp(−r2/4β1τ). When this correction is applied, each Bessel function is multiplied by a
Gaussian radial profile. These results highlight the role of exponential spatial decay on
the walker’s wave field.

In Figure 10, we show the dependence of the spatial decay length of the bouncers
and walkers on Γ, as computed by factoring out the r−1/2 spatial decay factor of the
J0(kF r) Bessel function. Specifically, we took the modulus of every maxima and minima
transverse to the walking direction and fit it to a curve of the form A r−1/2 exp(−r/Ld).
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Figure 8. Different model predictions of the free surface cross section of a (2, 1)1 bouncer at
the moment before impact with Γ = 3.1. (a) The cosine wave model (3.9) of Eddi et al. (2011)
with a spatial damping with decay length 1.6 λF reported by the authors. Note the singularity
at r = 0. (b) The Bessel model (3.10) of Moláček & Bush (2013b). (c) The result of our
computation.
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Figure 9. Comparison between the wave-field predictions of the present model (black curve)
with those of Moláček & Bush (2013b) without (dotted curve) and with (grey dashed curve) the
higher order spatial damping correction suggested by Moláček & Bush (2013b) to the Bessel
model (3.10).

The spatial decay length increases between 1.5 and 4 λF as Γ is increased progressively.
We note that the only experimental spatial decay length reported in the literature is the
1.6 λF mentioned by Eddi et al. (2011).

Figure 11 shows the time evolution of the free surface arising from the same (2, 1)1

bouncer as in Figure 8 over the course of a Faraday period. While the Bessel model is
constructed as a standing wave, our solution clearly generates a wave that propagates
away from the impact centre as evidenced by the V-shaped furrow in Figure 11b and
Figure 11c. We note that the full temporal wave field of the Bessel approximation has
been used in a variety of situations, for example in chaotic bouncing (Moláček & Bush
2013b).

The Doppler shift along a walker’s wave field is displayed in Figure 12a. The solid line
shows the free surface along the direction of motion, and the dashed line that in the
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Figure 10. Computed dependence of the dimensionless decay length (Ld/λF ) on the vibrational
forcing Γ. Here, Ω = 0.8. As Γ is increased, the bouncer evolves into a walker with the gaits
indicated.

Figure 11. The time evolution of the free surface through the course of a Faraday period for
the same bouncer as in figure 8. (a) The model of Moláček & Bush (2013b), as described by
equation (3.10). The discontinuity arises when the surface is updated by the addition of a new
Bessel function. (b) Our model’s prediction, η̄, for the free surface in the absence of the current
impact. The dark curves correspond to wave forms arising when the drop is in contact with the
bath, the lighter curves to times when the drop is in flight. (c) Our model prediction for the free
surface when the current droplet impact is included.

transverse direction. The Doppler shifting is evidenced by the changing distance between
crests on the two curves. Figure 12b shows the dependence of the Doppler shift on the
walker’s mean velocity, along with the experimental results of Eddi et al. (2011). While
the Bessel-function-based models have been successful in describing certain aspects of
the problem, they cannot capture the Doppler shift due to the moving wave maker. This
arises from the fact that the Bessel function J0(kF r) can be written as the superposition
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Figure 12. (a) The Doppler effect arising at Ω = 0.8,Γ = 3.6. The solid line shows the surface
along the direction of motion, the dashed line that in the transverse direction. The horizontal
axis is in units of Faraday wavelengths, and the vertical axis in units of drop radii. (b) The
Doppler effect displayed ahead and behind the walker, with λ/λF (vertical axis) in terms of
V/Cp. The × markers depict the wavelength ahead of the walker, the + markers the wavelength
behind it. The lines indicate the magnitude of the Doppler effect reported by Eddi et al. (2011).
V is the mean walker speed and Cp the phase speed.

Figure 13. Amplitude of the Fourier spectrum of the computed wave field for a walker imme-
diately before the drop impacts the surface. A superposition of Bessel functions J0(kF r) would
have a spectrum only on the dashed circle of radius kF . It is the frequency spread of the spec-
trum about this circle that allows for a Doppler shift in the wavefield. Axes are in units of inverse
Faraday wavelengths.

of plane cosines of fixed wavelength 2π/kF in every direction, centered at the origin:

J0(r) =
1

π

∫ π/2

−π/2
cos(r cos θ)dθ.

Therefore the function J0(kF r) in the (x, y) plane does not contain wavelengths other
than 2π/kF . Physically, this is the wavelength observed in all directions as r becomes
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large. Alternatively, the spectrum Ĵ0(k/kF ) is nonzero only on the circle k = kF in the
(k1, k2) plane.

The free surface elevation of a (2, 1) walker with straight-line trajectory X = (V (t −
φ), 0) with impacts at tn = −2nTf + φ and observed immediately before an impact at
t = φ is

η = A

∞∑
n=1

e−2n/Me√
2nTf

cos

[
π
φ

Tf

]
J0(kF |(x+ 2nV Tf , y)|). (3.11)

Its Fourier transform is given by

η̂ = A cos

[
π
φ

Tf

]
Ĵ0(k/kF )

∞∑
n=1

e−2n/Me√
2nTf

e−ik12nV Tf . (3.12)

where Ĵ is the Fourier transform of J , and k = (k1, k2). This formula shows that according
to this Bessel-function model, the spectrum of the full wavefield is equal to the spectrum
of the single Bessel function J0(kF r) multiplied by a function of k1. The wavefield thus
contains energy only at the wavelength 2π/kF , and the mathematical form (3.11) cannot
capture a Doppler shift. Figure 13 shows the Fourier spectrum of the numerical wave
field for a walker immediately before the drop strikes the surface. By way of comparison,
the spectrum of (3.11) would lie only on the circle in the figure.

Finally, typical wave fields computed from our single droplet simulations are shown
in figure 14. These are consistent with the laboratory images presented in Eddi et al.
(2011), as well as the stroboscopic model predictions of Oza et al. (2013). Figure 14d
shows that when the walker moves rapidly to the right, an interference pattern appears
in its wake.

3.4. Two-particle interaction

The generalization of our model to numerous walkers is straightforward, so we do not
present it in detail. The additional ingredient is the computation of a mean free surface
elevation η̄j for each particle during the fluid impact. This elevation incorporates the
waves due to the impact of all other particles. Hence, in computing η̄j , we take the
pressure in (2.38) to be: ∑

i 6=j

PD,i(x−Xi(t), t).

We proceed by investigating the interaction between a pair of walkers, as was examined
experimentally by Protière et al. (2006), Protière et al. (2008) and Eddi et al. (2012).
We confine our attention to two special cases, where the walkers are initially antiparallel
and parallel. Protière et al. (2008) report that when the walkers are initially antiparallel,
and so approach each other, they may either scatter or lock into orbit, depending on their
relative bouncing phase, and the perpendicular distance between their original paths, the
so-called impact parameter, dI .

In the scattering regime, wave forces on the droplets causes them to repel. Conversely,
in the orbiting regime, the droplet pair forms a stable and well-defined association bound
together by their superposed pilot waves. In figure 15, orbiting and scattering of in-phase
droplets are shown. Orbital states obtained by varying Γ for in- and out-of-phase walkers
are shown in figure 16. The orbits are stable (i.e. persistent after extended computa-
tions) and can have different forms (circular, periodic wobbling or chaotic wobbling)
depending on the system parameters, particularly the forcing amplitude Γ. Note that
the in-phase orbiters have an orbital diameter of approximately 0.8λF ; the out-of-phase
orbiters approximately 1.3λF . This difference may be roughly understood on the grounds
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Figure 14. Wave fields accompanying bouncing and walking drops. (a) At Γ = 3.1, the axisym-
metric wave field of a bouncer arises. At (b) Γ = 3.3, (c) Γ = 3.8, and (d) Γ = 4.15, walkers
of progressively increasing speed arise, their wave fields being progressively more fore-aft asym-
metric. Axes are in units of Faraday wavelengths, and the surface elevation (sidebar) is in units
of drop radii. In all figures, the drop is at the origin and (except for a) moving to the right. The
simulations where performed with drops of Ω = 0.8 (i.e. R0 = 0.38mm), for ΓW = 3.15.

that orbiters are more stable when bouncing in the troughs than on the crests of their
partner’s wave field.

When the walkers are initially parallel, they may lock into a ‘promenade mode’, in
which they walk in unison, but the distance between them oscillates periodically (fig-
ure 17). After an initial transient, a well-defined periodically oscillating walking state
emerges. This promenade mode and the characteristic oscillations in speed are both
readily observed in the laboratory, and have recently been investigated by Borghesi et
al. (2014).

4. Conclusions

We have developed a model of pilot-wave hydrodynamics that utilizes a self-consistent
treatment of the generation and propagation of the walker’s Faraday wave field. Specif-
ically, the walker is described through coupling the droplet and its wave, the vertical
motion of the former serving as the source of the latter. The waves are described as
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Figure 15. Collisions of in-phase droplet pairs. (a) With impact parameter of dI = 0.5λF ,
the pair are captured in a periodic orbit with a diameter of approximately 0.5λF . (b) With an
impact parameter dI = λF , the droplets scatter. Vertical and horizontal length scales are in
units of λF .

deep-water Faraday waves wherein the dissipation occurs in a viscous boundary layer
at the free surface. Like the model of Molacek & Bush (2013ab), it explicitly consid-
ers the bouncing phase through consideration of a vertical dynamics; thus, it is able to
reproduce the observed dependence of the bouncing and walking modes on the system
parameters. This gives it a marked advantage over the stroboscopic model presented by
Oza et al. (2014), wherein the effects of variable bouncing phase are not considered. Its
additional advantage over the model of Molacek & Bush (2013b) is that it captures more
accurately the wave field, including the transient wave field that serves as the precursor
to the stationary wave field, as may play a significant role in the interaction of walkers
with boundaries or other walkers.

We have demonstrated that the model reproduces certain features of walker-walker
interactions that have not been comprehensively studied with previous models, including
orbiting, scattering and the promenade mode. For these interactions, the dependence of
the system behavior on the impact phase has been highlighted. In particular, we have seen
that the scattering behavior of a pair of walkers depends on both the impact parameter
and the relative phase of the walkers. A quantitative comparison between our model
predictions and an ongoing experimental investigation of walker-walker interactions will
be presented elsewhere.

Through its relatively complete treatment of the wave field, our model provides a plat-
form for examining the interaction of walkers with boundaries which in experiments are
modeled by a transition between deep and shallow regions. The required extension of
our model to the case of variable bottom topography is currently underway. This exten-
sion will ultimately allow us to explore a number of quantum analog systems, including
single-particle diffraction, corrals and tunneling.
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Figure 16. Orbital modes arising through walker-walker interactions, specifically from a pair
of identical walkers launched with antiparallel velocity. Bouncing in phase with (a) c4 = 0.32,
Ω = 0.8, Γ = 3.7 and (c) c4 = 0.3, Ω = 0.7, Γ = 4. Bouncing out of phase with (b) c4 = 0.32,
Ω = 0.8, Γ = 3.6 and (d) c4 = 0.3, Ω = 0.7, Γ = 4. Axes are in units of the Faraday wavelength.
Note the offset of orbital radii between the in- and out-of-phase walkers.
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Figure 17. Droplet pair forming a stable ‘promenade mode’. Two identical droplets propagate
together in a given direction while oscillating in the transverse direction. Axes are in units of the
Faraday wavelength. Two walkers bouncing (a) in-phase, and (b) out of phase. The instantaneous
speed V/Cp is color-coded according to the underbar. The mean speeds of the promenading pair
in (a) and (b) are 0.88 and 0.63 of the single-walker free walking speed, respectively.

Appendix A. Stability analysis for the vibrating bath

We here present a short calculation that leads to an accurate prediction of the stability
threshold and most unstable wave-number for our parametrically driven flow. We shall
find the approximate conditions for neutral stability of the subharmonic mode corre-
sponding to 1

2ω0 in the undamped case. The main idea is to truncate the infinite Hill
matrix for the modes arising from the Floquet analysis of the damped Mathieu equation
(see Holmes (1995)) restricted to neutrally stable modes. Consider the damped system
of equations for the waves in Fourier space

ηt = kφ− 2νk2η, (A 1)

φt = −gΓ(t)η − σ

ρ
k2η − 2νk2φ, (A 2)

where gΓ = g(1 + Γ sinωot). Proposing a solution of the following neutrally stable form

η ≡ N+eiω0t/2 eikx + N−e−iω0t/2 eikx,

φ ≡M+eiω0t/2 eikx + M−e−iω0t/2 eikx,
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and substituting into the equations yields the truncated system

iω0

2
N+ = kM+ − 2νk2N+, (A 3)

iω0

2
M+ = −gN+ +

igΓ

2
N− +

σ

ρ
(−k2N+)− 2νk2M+, (A 4)

− iω0

2
N− = kM− − 2νk2N−, (A 5)

− iω0

2
M− = −gN− − igΓ

2
N+ +

σ

ρ
(−k2N−)− 2νk2M−. (A 6)

Terms proportional to e3iωot/2 and higher harmonics have been neglected. However, as
we shall see, this approximation is sufficient to obtain accurate predictions. A non-trivial
solution [N+,M+, N−,M−]T will arise for nonzero determinant of the truncated Hill
matrix:

∣∣∣∣∣∣∣∣
(
iω0

2 + 2νk2
)

−k 0 0

g + σ
ρ k

2
(
iω0

2 + 2νk2
)

− igΓ2 0

0 0
(
− iω0

2 + 2νk2
)

−k
igΓ
2 0 g + σ

ρ k
2

(
− iω0

2 + 2νk2
)
∣∣∣∣∣∣∣∣ = 0.

We note that the infinite block diagonal Hill matrix is obtained when all harmonics are
included. Hence, neutrally stable oscillations must satisfy

[(
iω0

2
+ 2νk2

)2

+ k

(
g +

σ

ρ
k2

)][(
−iω0

2
+ 2νk2

)2

+ k

(
g +

σ

ρ
k2

)]
− g2Γ2

4
k2 = 0,

(A 7)
which simplifies to the expression (2.35) in the text. If we fix ω0, this gives Γ as a function
of k, the neutral curve in the Γ− k plane as shown in figure 1.

Below the minimum at (k∗,ΓF ) shown in figure 1, one can estimate the temporal decay
rate of the Faraday modes, specifically s < 0 in a uniform decay of the form est. This can
be found by replacing 2νk2 by 2νk2 + s in (A7) and making a suitable approximation
for s near (k∗,ΓF ). For small s, the result is

s =
g2ΓF δΓ

16ν
[
ω2(k∗) + (2νk2

∗)
2 + 1

4ω
2
0

] ,
where δΓ = Γ− ΓF . One may express this decay rate in terms of a memory parameter,
usually written Me = 1/|s|TF , which is then given by:

Me =
64πν

[
ω2(k∗) + (2νk2

∗)
2 + 1

4ω
2
0

]
ω0g2Γ2

F

(1− Γ/ΓF )−1.

These formulae apply to the decay rate of a spatially extended standing wave (or of a
Bessel function), but may not reflect the decay rate of more complex transient waves,
such as those set up by a localised droplet impact.
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Appendix B. Physical parameters and constants used in the
simulations

Physical parameters:

σ = 20.6 dyne/cm = 20.6 · 10−3 kg/s2 (B 1)

ρ = 0.949 g/cm3 = 949 kg/m3 (B 2)

ν = µ/ρ = 0.2 St = 0.2 cm2/s = 2 · 10−5 m2/s (B 3)

µair = 1.8 · 10−4g/(cm · s) = 1.8 · 10−5Kg/(m · s) (B 4)

g = 980 cm/s2 = 9.8 m/s2 (B 5)

ω0 = 80 · 2π s−1 (B 6)

(B 7)

The system parameters used for the singe-drop simulations were

c1 = 0.7, c2 = 8, c3 = 0.7, c4 = 0.13. (B 8)

For the numerical experiments involving two drops, it was only possible to observe the
more complex patterns of interactions (i.e. orbiters and promenaders) by using higher
values of c4 (i.e. c4 = 0.3, c4 = 0.32).
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