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Abstract 

On the basis of discussions emerging from a workshop and discussions at the 7th meeting 

of the European Society for Pigment Cell Research in Geneva in 2012 this manuscript 

outlines useful criteria for defining the bona-fide pigment cells as a functional entity of 

the vertebrate body plan and differentiating them from “pigmented” cells in general. It 

also proposes a nomenclature for the various types of pigment cells of vertebrates. 

 

Pigment cells and their pathological derivatives are the focus of a large and active 

research community whose work impacts on many areas of biology and medicine. 

However, if one looks for a definition of what constitutes a pigment cell, one has to go back 

to the sixties of the last century. As a result of the Sixth International Pigment Cell 

Conference, held in 1965 in Sofia, Bulgaria, a nomenclature committee, headed by Thomas 

Fitzpatrick and Walter Quevedo, put forward a definition (Levine et al., 1966) that 

reflected the actual knowledge at this time. It centred around the presence of 

melanosomes within the cytoplasm. Melanosomes were defined and classified in the early 

1960s by Seiji and colleagues (Seiji et al., 1961). The nomenclature included melanocytes, 

melanoblasts, the pigment dispersing melanophores of poikilothermal vertebrates, and 

the Langerhans cells. Cells containing other types of pigment were not considered. 

 

Since then our knowledge has increased enormously. Thanks to the advent of molecular 

biology in pigment cell biology, the outstanding analytical power of modern imaging 

techniques and the functional insights from animal model studies we now have a much 

better understanding of the structure and physiology of normal and malignant pigment 

cells. The remarkable progress in the field should be motivation enough to put forward 

an updated definition and terminology for pigment cells that might guide the research 

community to ensure that we all mean the same thing when we use certain terms and that 

a lot of the inconsistencies and confusion in the current and past literature can be clarified. 

As all attempts to make definitions and nomenclature suggestions naturally can only 

reflect the personal view and knowledge of the authors, we hope that this paper will evoke 

lively discussion in the community and, where appropriate, further research, to improve 

the criteria and descriptions given below. 

 

Definition of “Pigment Cell” 
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Ideally, such a definition should be applicable to all animals, but given that our knowledge 

about pigmentation in invertebrates remains far less complete than in chordates (and 

even for those, data are only collected for a handful of species), we will restrict the 

following considerations to the latter group. We propose the following definition: 

 

“A pigment cell is a primarily pigmented cell that actively generates membrane-bound 

organelles to impart color by containing chromophoric substances or structures, as well 

as the lineage specific non-pigmented precursors specified to develop into such a pigmented 

cell, and the pathological derivatives of pigment cell lineages” (Table 1).  

 

By ‘primarily pigmented’, we mean that the cell synthesises or assembles the pigment, 

rather than being pigmented due to transfer of pigmented organelles from another cell 

(secondary pigmentation). Pigment cells as so defined will often have one of two primary 

functions, in absorbing stray light to enhance the acuity of a visual apparatus, or in 

providing pigmentation visible to other organisms. However, in many cases the extant 

function of pigmented cells will often be unknown (e.g. pigmented cells of internal 

organs), and in some cases (e.g. melanocytes in the stria vascularis) may not involve their 

pigmentation per se. Nevertheless, where their developmental (and evolutionary) origin 

is shared with that of integumentary pigment cells, in which coloration is (or is likely to 

be) the functionally important feature, they should clearly be classified the same way.  

Indeed, we suggest that in vertebrates the common developmental origin, where known, 

provides a useful supporting criterion, since wherever developmental origin has been 

explored, all pigment cells are descendants of the neuroectoderm and derive either from 

the neural crest or the optic cup (Dutton et al., 2001; Kelsh and Barsh, 2011; Parichy and 

Spiewak, 2015; Rogers et al., 2012; Silver et al., 2006; Thomas and Erickson, 2008). 

Another developmental biological aspect appears useful to explain what singles out the 

pigment cells from all the pigmented cells, namely that it executes a genetically encoded 

differentiation programme to produce pigmented subcellular components that impart 

colour. 

We include in our definition that the pigment be in membrane-bound organelles because 

it is currently the case that all cells whose primary function is the generation of color do 

so through an organelle-based mechanism. Furthermore, these organelles represent an 

essential specialisation ensuring appropriate conditions for rapid pigment synthesis (e.g. 
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melanin) or assembly (e.g. guanine crystals) can be achieved without compromising the 

cell.  

 

We consider it is important that the pigments impart coloration to the cell, but we note 

that many vertebrates can detect UV wavelengths and would emphasise that pigments 

that are detectable at such wavelengths, even if not visible to humans, should be included, 

so long as they do, or ancestrally were likely to, result in colouration that is functionally 

significant. However, based on the definition proposed, it is clear that not every cell 

containing pigments would be considered a bona fide pigment cell. Thus, we exclude the 

following cell-types, for the reasons given: 

(i) cells, like keratinocytes, that are secondarily pigmented through the uptake of 

pigment-containing organelles from bona fide pigment cells, as well as the various 

macrophage lineages that contain melanin from phagocytosed pigment cells 

(ii) erythrocytes, because their pigment is not contained within membrane-bound 

organelles 

(iii) dopaminergic neurons containing neuromelanin, because the slow, progressive 

accumulation of this pigment in these cells is most consistent with it being a waste 

product or having another role rather than having a function in colouration (Mann and 

Yates, 1974). 

 (iv) cells containing lipofuscin, since this pigment appears as an aging-related product in 

cell types and is not imparting colour as part of the physiological function of this cell type 

(v) muscle cells in some fish (e.g. salmon) which exceptionally may appear red because of 

carotenoids 

(vi) photoreceptor cells, in which the pigment does not generate visible coloration 

 

Our definition needs to be broad to encompass all the known pigment cell-types and to 

allow the incorporation of the new pigment cell-types likely to be discovered in the future. 

Our knowledge of pigment cells in the very diverse and more basal vertebrate groups, 

especially teleosts, is still far from complete, and it is likely that the current list of distinct 

cell-types is incomplete.  

 

Nomenclature of pigment cells 
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Pigment cells, as so defined, are also known by the generic term “chromatophores” in 

vertebrates other than mammals and birds. Our definition of pigment cells immediately 

proposes a scheme for their classification, and a unifying terminology (Figure 1). The 

major separation is made primarily on the type of pigment they contain, namely those 

that synthesise melanins (including pheomelanin) and those containing non-melanin 

pigments, and secondarily on their embryonic origin.  

 

Melanocytes  

Classically, melanocytes represent the final differentiation stage of a cell lineage derived 

from the neural crest. They are found in all vertebrates and are generally the most 

widespread type of pigment cells. They are characterized by the presence of either black 

eumelanin or yellowish pheomelanin or both, although in some lineages, such as fish, 

pheomelanin has not so far been found (d'Ischia et al., 2015; Kottler et al., 2015). A second 

source of eumelanin-containing pigment cells is the optic neuroepithelium, which gives 

rise to the retinal pigment epithelium, a single cell layer abutting the photoreceptor layer 

in the vertebrate eye. By our definition, retinal pigment epithelium cells are 

also “melanocytes” despite their different embryological origin. In general, both neural 

crest-derived and optic neuroepithelium-derived melanin-containing pigment cells are 

determined by the transcription factor MITF even though there are species-specific 

exceptions. For instance, in zebrafish, Mitf is not necessary for RPE development (Lane 

and Lister, 2012).  

 

In melanocytes, melanin is contained within membrane-bound organelles called 

melanosomes. Neural crest-derived melanocytes can be further classified according to 

whether they actively transfer melanosomes to other cells - the melanin-transferring 

melanocytes – or not. The melanin-transferring melanocytes are those typically found in 

the epidermis of mammalian and avian skin, which secrete melanosomes that then are 

taken up by neighbouring keratinocytes, to impart coloration to the skin and to hair and 

feathers. Non-transferring melanocytes are found in the dermis and non-cutaneous 

locations in mammals, avians, reptiles, amphibians and fish.  

 

Melanin transfer also occurs as a special feature of mammalian melanocytes as part of the 

adaptive response to sunlight. Lower vertebrates have an even more elaborate means to 

perform “colour change”, but this is based on different cell biological mechanism(s). Here 
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melanosomes are either actively dispersed throughout the cytoplasm (associated with a 

centrifugal movement of the melanosomes) or concentrated perinuclearly (associated 

with a centripetal movement of the melanosomes), giving the melanocyte either a more 

expanded or reduced light absorbing appearance. The melanosome-dispersing ability of 

a subpopulation of melanocytes of teleosts, amphibians and reptiles, contrasting as it does 

with the melanin transfer of many mammalian melanocytes, so intrigued pigment cell 

researchers that they reserved a specific name, melanophore, for this melanocyte. 

Introducing this additional category had the advantage of providing more precise 

classification of cell behaviour, but was not consistent, as other subtypes e.g. the melanin-

secreting melanocytes of mammals, were not treated similarly. For the sake of 

simplification of the nomenclature and in recognition of the increasing evidence for the 

conserved genetics of melanocyte biology, we propose that all these cells may simply be 

referred to as melanocytes.  

 

We are aware that elimination of the historical term “melanophore” may create some 

confusion. Thus, we propose that, where they feel it appropriate, authors may explain this 

terminology adjustment to their readers. 

 

Pigment cells without melanin  

Pigment cells that contain biomolecules other than melanin that either reflect or adsorb 

light are typically found in the poikilothermic vertebrates. Several types have been 

documented as being retained in the iris of birds, although molecular characterisation has 

yet to be performed to evaluate the homology of these cells to those in poikilothermic 

vertebrates (McGraw and Nogare, 2004; Oliphant, 1981). In proposing the following 

classification, we build on the synthesis of Bagnara and Matsumoto (Bagnara and 

Matsumoto, 2006). We classify the non-melanin-containing chromatophores initially by 

primary mode of colouration (reflective or light absorbing), and then by colour. The 

relationship of these properties to the pigments contained is only partially worked out, 

and it should be noted that two or more classes of pigments are often found in different 

cell-types (see also below: “Atypical pigment cells”), in part explaining the range of 

colours each may show. 

 

We distinguish two types of reflecting pigment cells, iridophores (iridescent or white, 

reflective) and leucophores (white) (Oliphant and Hudon, 1993). Iridophores and 
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leucophores can be distinguished by the structure of their organelles (reflecting platelets 

or leucosomes). Iridophores contain thin, plate-like (flattened) reflecting platelets 

composed of purine crystals and look iridescent when arrangements of the platelets are 

precisely organised or look white when they are less organised. Leucophores typically 

also contain the purine compound uric acid, but this is contained within smaller and more 

rounded organelles termed leucosomes. Generally, these two cell-types can also be 

distinguished by their cell shapes and/or by their ability to aggregate and disperse their 

reflective organelles: iridophores are rather round in shape and typically lack the ability 

to aggregate and disperse their reflecting platelets (but see below), whereas leucophores 

are dendritic like other cell types (melanocytes, xanthophores, erythrophores and 

cyanophores) and their leucosomes can aggregate and disperse. The aggregating-

dispersing responses of leucophores occur in directions opposite to those of light-

absorbing pigment cells. When melanosomes move centripetally, for instance, in response 

to noradrenaline, leucosomes move centifugally. A dendritic iridophore in the dermis of 

the freshwater goby (Odontobutis obscura) shows a unique physiological trait in that the 

reflective organelles show the morphology of reflecting platelets, but are unusual in that 

they are motile (Matsuno and Iga, 1989). We would suggest that their classification as 

iridophores is retained on the basis of the morphology of the organelles. 

 

Among light absorbing, non-melanin pigment cells we distinguish xanthophores and 

erythrophores (yellow and red respectively, due to pterinosomes and/or carotenoid 

vesicles), and cyanophores (intense blue, due to cyanosomes containing an unknown blue 

pigment) (Table 1). The varied content of pteridines and carotenoids determines the 

range of yellow to red colouration in xanthophores and erythrophores; no molecular or 

structural markers specific to either xanthophore or erythrophore have been identified. 

Thus the distinction of these two cell types is currently not well defined and may be 

semantic. 

 

Other cell-types no doubt remain to be identified; one prime location to look might be the 

feather follicles of parrots, within which are likely to be found cells synthesising and 

secreting the psittacofulvins which give this group their striking red, orange and yellow 

plumage colours (McGraw and Nogare, 2004). Similarly, red fluorescent chromatophores 

have been identified in tropical reef fish, including from the eye ring of tropical goby 

species and the black-faced blenny (Tripterygion delaisi), and in dendritic 
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chromatophores in the integument of Gold Neon Eviota Goby (Eviota pellucida) (Michiels 

et al., 2008; Wucherer and Michiels, 2014; Wucherer and Michiels, 2012). Their 

combination of red colouration with reflecting platelets in a dendritic cell suggests that 

they might be an unusual type of iridophore, but further characterisation of their 

organelles might confirm they form a novel cell-type. 

 

In general chromatophores are likely to derive from the neural crest, although a reflecting 

cell layer, which we would classify as consisting of leucophores, in the retinal epithelium 

in birds seems most likely to be derived from the RPE (Hudon and Oliphant, 1995). For 

cyanophores so far their embryological origin has not been documented but their 

ultrastructural organisation, shape and location in the integument makes it reasonable to 

assume a similar lineage relationship as for the other pigment cell types of the fish skin. 

However, given Nature’s ability to surprise, we feel it would be unwise to rule out the 

possible origin of novel pigment cell types (sensu stricto) from other tissues, so that 

testing of the robustness of this supporting criterion will be an intriguing aspect to studies 

of novel pigment cell-types discovered in the future. 

  

Non-melanin pigment cells are present at cutaneous and non-cutaneous sites and 

subpopulations exist that are involved in colour change. The latter depends upon 

cytoskeleton-dependent movement of pigment-containing organelles within the 

cytoplasm.  Again, it is proposed not to use further sub classification into “–cytes” and “-

phores”, in particular as the terms leucocytes or erythrocytes are already used for non-

pigment cells. Thus, for clarity and consistent with historical use, we propose the 

continued use of the suffix “–phore” for all non-melanin pigment cells. 

 

Polychromatic pigment cells 

Pigment cells that cannot be encompassed by the above classification have been identified 

in some poikilothermic vertebrates. Dichromatic chromatophores, having two types of 

distinguishable pigment compounds or organelles have been reported. Recently, erythro-

iridophores, which possess light-reflecting platelets and reddish carotenoid pigments, 

were found in Pseudochromis diadema (Goda et al., 2011), and light absorbing 

polychromatic chromatophores, which contain cyanosomes, pterinosomes and carotinoid 

vesicles in their cytoplasm, have been found in the integument around the margins of the 

bluish regions of the mandarin fish (Synchiropus splendidus) (Goda et al., 2013).  We 
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propose the name erythro-cyanophore for the latter.  In the case of erythro-iridophores, 

it is unclear where the carotenoids are accumulated (most likely cytoplasmic, or perhaps 

in reflecting platelets?). It would certainly be interesting to assess the developmental 

origin of erythro-iridophores, to establish whether they are modified iridophores that 

have co-opted the ability to accumulate carotenoids.  

 

Interestingly, leucophores can also contain pteridines (drosopterine) and thus look 

orange during embryonic/larval stages in medaka (H.H., unpub. obs.). The developmental 

genetics of leucophores and xanthophores in medaka has suggested that development of 

these cell-types shares a common cell lineage different from that of melanophores and 

iridophores, so that developmentally leucophores are more closely-related to 

xanthophores than to iridophores (Kimura et al., 2014; Nagao et al., 2014; Oliphant and 

Hudon, 1993). Nevertheless, given the common presence of multiple pigmented 

organelles and the frequent ignorance regarding their chemical components, we prefer to 

maintain the tradition of classifying by mode of colouration and colour. This means that 

we would also classify so-called ‘reflecting xanthophores’ in the bird iris, which are shiny 

yellow due to crystalline pteridines (or mixtures of pteridines and purines) within 

reflecting platelets (Oliphant and Hudon, 1993), as iridophores.  

 

Non-pigmented precursor cells 

In their derivation from the neural tube or from neural crest cells, all pigment cells 

transition through non-pigmented stages to their fully-pigmented, fully differentiated 

state. We distinguish any cell that shows evidence of fate specification to a pigment cell 

fate using the generic term chromatoblast, and distinguish melanoblasts, iridoblasts, 

leucoblasts, erythro-iridoblasts, xanthoblasts, erythroblasts and cyanoblasts, as 

appropriate (Table 1). We have taken the pragmatic decision to refer to fate specification, 

and not commitment, since, in reality, it is essentially impossible to evaluate commitment 

in vivo, and rarely testable in vitro. In contrast, a ‘specified’ cell is readily defined as one 

showing specific molecular, cellular or behavioural features characteristic of a specific 

pigment cell lineage, and we explicitly recognise that this does not require that the cell is 

determined i.e. committed to that lineage. We think it is important to include specified 

precursors within the definition, for the same reason that we consider an albino 

melanocyte to still be a melanocyte i.e. it expresses a recognisable pattern of melanocyte-

specific genes, regardless of whether melanin is synthesised in detectable amounts or not. 
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Neoplasms of pigment cells 

 

When pigment cells undergo neoplastic transformation, these pathological derivatives 

are usually termed according to the pigment that characterized the original cell lineage: 

melanoma cells from melanocytes, erythrophoroma cells from erythrophores, 

xanthophoroma cells from xanthophores, etc. Those tumors in poikilothermal 

vertebrates, which contain more than one cell type, are classified as chromatophoromas. 

Pigment cell tumors are very heterogeneous with respect to many cellular features; this 

includes degree of pigmentation (sometimes complete absence of pigment), shape, 

capacity to proliferate and/or to migrate. The morphological variation in pigment cell 

neoplasms that occur in different species is also extensive and complicates comparative 

evolutionary studies.  

 

With respect to the cell types that deviate from the normal, physiological differentiation 

path, the nomenclature committee that identified the 1966 nomenclature for the normal 

pigment cells also proposed a classification for the pathological series, but this is not in 

use any more. An extensive literature exists for the classification of human melanocytic 

neoplasia (Eduardo Calonje et al., 2011). A variety of benign melanocytic neoplasms are 

recognized and include common nevi, dysplastic nevi, blue nevi, cellular blue nevi, deep 

penetrating nevi, and Spitz nevi. Melanocytic nevi are clonal proliferations of melanocytes 

that retain many of the cytological features of melanocytes, but have altered growth 

patterns, frequently forming nests or clusters. In contrast cutaneous melanocytes 

typically maintain a net-like pattern at the epidermal/dermal junction and rarely are 

directly adjacent to other melanocytes.  Melanoma variants comprise the vast majority of 

malignant pigment cell neoplasms. Melanoma can arise spontaneously in a variety of 

animals, including dogs, horses, pigs and several fish. Melanoma can also be induced by 

exposure to UV irradiation, following exposure to carcinogens, or by the presence of 

relevant genetic changes in melanocytes. Similar genetic changes in other species can 

result in analogous melanocytic neoplasia. One example is the observation that Gnaq and 

Gna11 mutations both result in similar blue nevus-like dermal melanocytic proliferations 

in mice and humans (Bastian, 2014). In recent years, a variety of genetic changes have 

been characterized in human melanocytic neoplasms and often correlate strongly with 

specific morphological characteristics (Bastian, 2014). About half of all melanoma in 
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humans harbour oncogenic mutations in the BRAF gene. Mutations in NRAS, CDKN2A, 

NF1, p53, and PTEN also play a role in melanoma formation (Bastian, 2014). While 

progress has been made on defining the genetic changes present in melanoma, much 

remains to be learned about the specific characteristics of malignant transformation of 

the distinct pigment cell populations discussed above.  

 

Molecular markers of pigment cells 

 

On current knowledge, molecular markers distinguishing pigment cell-types can only be 

tentatively assigned, because whilst melanocytes have been extensively studied, 

knowledge of other cell-types lags behind. We propose here some putative markers 

(Table 1), but note that further exploration of the genetics and molecular biology of 

diverse pigment cells will be necessary before any of these can be considered confirmed. 

One common feature of melanocytes is their genetic dependence on the transcription 

factor Mitf (Lister, 2002; Steingrimsson et al., 2004). Identification of key factors driving 

fate specification and differentiation of other cell-types will be invaluable, but this will be 

non-trivial for those cell-types found only in non-model organisms, e.g. cyanophores. In 

many respects, biosynthetic enzymes involved in pigment synthesis are useful markers, 

but this is complicated by the presence of multiple pigment types in some pigment cells 

(e.g. leucophores).  In practice, this means that, depending on the cell-type, two or more 

markers may be required to definitively identify pigment cell types.  

 

Further progress in pigment cell research will certainly not only increase our 

understanding of pigment cell biology but also give the opportunity to improve and 

perfect the definition of what a pigment cell is.  
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Figure and table legends 

 

Table 1: Pigments and pigment cell types 

 

 

Figure 1: Classification of vertebrate pigment cells 

 

1 (Keratinocytes, Melanophages and Kupffer cells) 

2 Xanthophores (yellow) Pteridine, Carotenoid (passive), Erythophores (red): Pteridine, 

Carotinoid (passive), Leucophores (white): Pteridine, Uric acid, Iridophores (iridescent 

color) ( +Visceral): Purine-crystalized platelet, Cyanophores (blue): ? 

3 Transferring Mc: Epidermal melanocytes (interfollicular + follicular) 



Pigment cell Precursor Pigment Pigment-
containing 
organelle 

Pigment cell derived 
tumor 

Putative 
molecular 
markers 

Distribution1 

 
Absorptive 

      

Melanocyte Melanoblast Melanin, 
Phaeomelanin 

Melanosome Melanoma Mitf, Dct, 
Tyrosinase 

All vertebrates 

Xanthophore Xanthoblast Pteridines, 
carotenoids 

Pterinosome, 
carotenoid 
granule 

Xanthophoroma Xdh, Gch Avians, 
reptiles, 
amphibians, 
fish 

Erythrophore Erythroblast Pteridines, 
carotenoids 

Pterinosome, 
carotenoid 
granule 

Erythrophoroma Xdh, Gch? Reptiles,  
amphibians,  
fish 

Cyanophore Cyanoblast Unknown Cyanosome Cyanophoroma2 Unknown Fish 
       
 
Reflective 

      

Iridophore Iridoblast Crystalline 
purines or 
pteridines 

Reflecting 
platelet 

Iridophoroma Ltk, Pnp4a Avians, 
reptiles, 
amphibians, 
fish 

Leucophore Leucoblast Crystalline 
purines, 
pteridines 

Leucosome 
(Pterinosome, 
others3) 

Leucophoroma Xdh, Gch in 
embryonic 
leucophores 

Avians? 
reptiles, 
amphibians, 
fish 

 
Dichromatic 

      

Erythro-
iridophore 

Erythro-
iridoblast 

Crystalline 
purines, 
carotenoids? 

Reflecting 
platelet 

(others?)4 

Erythro- 
iridophoroma2 

Unknown Fish 

Erythro-
cyanophore 

Erythro-
cyanoblast 

Pteridines, 
carotenoids, 
unknown 

Pterinosome, 
carotenoid 
granule, 
Cyanosome 

Erythrocyanophoroma2 Unknown Fish 

1 Note that distribution of non-melanocyte cell-types is only poorly explored in birds and requires further investigation in the case 
of mammals 
2 not reported so far 
3 not known if pteridines are contained in the leucosome or in separate organelles 
4 location of carotenoids currently unclear, maybe cytoplasmic? 
 
Table 1: Summary of key pigment cell-types and distinguishing characteristics 
 



Primarily
pigmented cells

Non-melanin
pigmented cells

Melanin
pigmented cells

Non-NCC melanocyte
(RPE)

NCC melanocyte

Secondarily pigmented cells
(Keratinocytes, Melanophages, 

Kup�er  cells)

Pigmented cells

Non-transferring
melanocyte

Transferring melanocyte
Epidermal melanocytes

(interfollicular & follicular)

Melanocyte with motile
melanosomes

(aka melanophores)

Melanocyte with non-motile
melanosomes

(Dermal & visceral
melanocytes)

Reflecting pigment cells
(Iridophores & Leucophores)

Absorbing pigment cells
(Xanthophores, Erythrophores

& Cyanophores)

Figure 1 Schartl et al


