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A lower bound for the balanced truncation error for
MIMO systems

Mark R. Opmeer and Timo Reis

Abstract—We show that for a class of systems which includes We note that systems with a semi-definite Hankel operator
state space symmetric systems, the balanced truncation @ris include RC and RL circuits (see Remark 16).
bounded from below by twice the sum of the tail of the Hankel | gection 11 we first discuss the notation and terminology
singular values (including multiplicities) divided by the dimension . .
of the input space. used. In Section Il we prove a lower bound in terms of the
| lizat | ) eigenvalues of the Hankel operator. This is then used iri@ect
Index Terms—balanced realization, balanced truncation, Han- |y, 1o hrove the lower bound (2). Section V contains comments
kel operator, error bound, model reduction, linear time-invariant . . . A
systems. on balanced singular perturbation approximation and on the
case of non-rational transfer functions. Finally, Sectidh

illustrates the theory by considering two sim circuits.
|I. INTRODUCTION y by 9 e

T HE well-known error bound for balanced truncation II. NOTATION AND TERMINOLOGY

For a matrixI’ € C**™ andp € [1, oo] the Schattep-norm
sup | G(¢) Ol <2 Z His @) s defined by pelted ’
¢eC:Re¢>0 j=rt1
where{u1, ..., ue} are the distinct Hankel singular values of ( Zlili(m’d) [0k (T)]p)l/” pell, o),
G and G, is the balanced truncation a¥, is known to be 1Tl := N
01 (T> b =00,

an equality for single-input single-output (SISO) statacp
symmetric systems, i.e. #i(s) = C(sI — A)"'B with A = wheres,(T) > ... > Tpin(m.a)(T) are the singular values of

A* € C™*™ negative definiteC* = B € C", then T,
The set ofd x m-matrices with entries in the field of
sup  |G(¢) — Gr(¢)| =2 Z K, complex rational functions is denoted Iiy(s)?*™. We call
(EC:Re¢>0 j=r+1 G € C(s)™™ stableif G is proper and all its poles have

(see e.g. [9, Theorem 4.1] and [18, Theorem 4.4]). It is aldfgative real part.

known that in this case (this follows e.g. from [14, Corofiar The|m|3ulse responsg is the inverse Laplace transfdorm of
Xm Xm

2.2]) the Hankel singular values @ all have multiplicity & € C(5)”*™. TheHankel operatoof a stabler € C(s)

one. Moreover, it is known that for multi-input multi-outpu 'S 9iVen by

(MIMO) state space symmetric systems, i.&Gifs) = C'(sI— H: L*0,00;C™) — L*(0,00;C%,

A)7'B with A = A* € C™*" negative definiteC* = B € o

Cm*™ with m > 1, strict inequality may hold (see e.g. [9, u— (Hu)(t) :/ ho(t + s)u(s) ds,

Remark 4.1] and [18, Section 4]). _ _ 0 _
In this article we prove that for state space symmetrigherehy is the function part of the impulse response, i.e. the

systems the following lower bound holds: inverse Laplace transform of the strictly proper paricof
The nonzero singular values of the Hankel operatotGof
9 m; GO -G, oy are called theHankel singular valuesf G. We denote the
k;rl 1y < CE(CS;EEOO I6(©) @I @ sequence of Hankel singular values (¥, )}_,, the sequence

] o ) of distinct Hankel singular values t(yL]-)f:l and the sequence
wherke7lnj is the multiplicity of ujh as a singular value 'Or: t?}e of multiplicities of the Hankel singular values Ioy;)¢_; (i.e.
Hankel operator of7. We note that in combination with t emj is the number of times that, appears in the sequence

upper bound (1) this in particular implies; < m for the “yn y \we choose the ordering of these sequences to be

multiplicities. compatible in the following sense
In fact, we prove the lower bound (2) for a slightly more
general class of systems than state space symmetric systems Oy 5nit g, = o = 055, = Mg j=1,... ¢

namely those systems with a semi-definite Hankel operatar.
y y P We denote the sequence of nonzero eigenvalues of the Hankel

M.R. Opmeer is with the Department of Mathematical Scientésiver- operator by(\,)r_, and call these thédankel eigenvalues
sity of Batc:)b Claverton Down, Bath BA2 7AY, United Kingdomsneall: - of ;. We note that if the Hankel operator is self-adjoint,
m.opmeer ath.ac.uk. .

T. Reis is with the Department of Mathematics, Universifamburg, Bun- then the absolute values of the Hankel elgenvalues equal the

desstraRe 55, 20146 Hamburg, Germany, e-mail: timo.rais@mburg.de. Hankel singular values (including multiplicities). In shcase



we choose the ordering of these sequences to be compatibléd/e refer the reader to [1, Chapter 7], [6, Chapter 9],

in the sense that [22, Chapter 7] or [23, Chapter 7] and the main original

contributions [12], [17], [5], [2] for background materiah

balanced realizations and balanced truncations.

Giving the ordering of the Hankel singular values this mat no

uniguely determine the ordering of the Hankel eigenvalbes, I1l. SELE-ADJOINT SYSTEMS

for our purposes this particular non-uniqueness is irgglev
A realization of G € C(s)™™ is a quadruple[& 5]

consisting ofA € C"*"*, B € C"*™, C € C™*", D € C4*™

with

|>\k|:0k; k:].,...,n.

In this section we consider self-adjoint systems and prove
a lower bound which in Section IV will be used to prove the
lower bound (2).

G(s)=C(sI — A" 'B+D. Definition 2. A rational functionG € C(s)™*™ is called

_adjointif G = G ti i
ConverselyG is called thetransfer functionof [4 B]. self-adjointif ¢ = G, whereG:1 is defined by

A realization [4 B] is called stable if all eigenvalues G'(s) := G(3)".

of A have negative real part. Theeachability map® : . o
L2(0,00;C™) — C™ and theobservability map¥ : C» — Remark3. Note that any SISO system with real coefficients

L2(0, 00; C?) of a stable realization4 ] are defined by has a self-adjoint transfer function. Also note that thedfar
o function of a state space symmetric system (i.e. with: A*,
Dy — / A Bu(t)dt, s =t Cels. C = B* and D = D) is self-adjoint.
0
We note that the Hankel operator equals the product of t
observability and reachability map& = V.
The stable realization? 5] is calledbalanced if ®®*

hemma 4. The following are equivalent for any stable and
sFrictIy properG € C(s)™*™.

1) G is self-adjoint.

Crxn and U* W € C"*™ satisfy 2) The impulse response is self-adjoint (that is,h(t) =
X § . h(t)* for all ¢ € [0, c0)).
PO* = VU = diag(o1,...,0n), 3) The Hankel operator is self-adjoint.

where we recall that{ox);_, is the sequence of Hankelproof. The definition of the impulse response yields

singular values. . o

Remarkl. Another common definition of the reachability map G(s)" = / e Sth(t)*dt, GT(s)= / e Sth(t)* dt.

is & : L?(—00,0;C™) — C with du = [°__ e~ 4" Bu(t)dt. 0 0

The Hankel operator is, with this definitonf = ¥ From this (and uniqueness of the inverse Laplace transform)
L2(—00,0;C™) — Lz(o'oo.(cd) see [23]. Our definition We S€€ the equivalence of 1 and 2. Since the adjoint of the

of the reachability map (and thus also the Hankel operatdfftnkel operator is given by
is related to that by multiplication from the right with the . o0 .
reflection operatoi.?(—oc,0; C™) — L?(0,00;C™). Since (Hu)(?) :/ h(t + s)"u(s) ds,

: . : X . o 0
the reflection operator is unitary, this alternative deifamit

leads to the same concepts of Hankel singular values a\rﬁﬁtstﬁetgat é:mplt'ﬁs 3 Tkhallt 3 |mE[)I|es 2 followzifrortn ';Ee
balanced realizations. Since self-adjointness of the plank2ct that/l — IS the Hankel operator corresponding to he

operator plays an important role in this article, our deifimit |mpulie respc;nﬁb(t)—h(t)_ an? the fact that the zero Ha£kel
of the Hankel operator is more convenient for our purposeé".per‘?l Oor must have zero Impuise response.

It is well-known that a stablé&’ € C(s)?*™ has a balanced Remark5. For simplicity in Lemma 4 we considered only
realization (see e.g. [1, Section 7.1]). Note that balanc#ee strictly proper case; if there is a nonzero-feedthrough
realizations as defined above are minimal since by our dBen the impulse response is no longer a function and this
sumptions we havé@d* = U*¥ > 0. slightly complicates the formulation. In that case 2 haséo b

Let a balanced realizatidrgt 5] of G € C(s)?*™ be given. replaced by the function part of the impulse response being
Letr € {1,...,¢} andgq := Z;:1 m;. Then thebalanced self-adjoint and additionally the feedthrough operatoinge
truncation of G of dimensiong is defined as the transferself-adjoint. The condition that the feedthrough operatoist
function G, of [2" %], where, forZ, = [}] € C™¥4, the be self-adjoint must also be added to condition 3. All of the
matricesA, € C?%4, B, € C1*™ andC, € C%*¢ are defined above can be proven by applying Lemma 4dce- G(o0).
by A, := ZrAZ,, B, .= Z;B, C, :== CZ,. The realization  The following lemma shows that a balanced realization
[&r 5] is balanced. The balanced truncatih depends of a self-adjoint transfer function has a certain state spac
only onG, the ordering of the distinct Hankel singular valuesymmetry property.
andr (and not on the particular balanced realization chosen).

Note that the balanced truncation depends on the order
of the sequence of distinct Hankel singular values. We assu
that such an ordering is given (the customary one is the ot
with 117 > pe > ... e > 0; in which caseG, depends only J 0l[A B A BI'[J o
on G andr, but other orderings are permitted). [0 ]] [C D} = [C D} {0 I} . 3)

ma 6. Let G € C(s)™*™ be stable and self-adjoint and
Igt (& B be a balanced realization af. Then there exists a
pique self-adjoint operatos such that



This operatorJ is involutive (i.e.,J~! = J) and block- Lemma 9. Let G € C(s)™*™ be stable and self-adjoint.
diagonal with block structure according to the multiplies Denote the Hankel eigenvalues 6f by (\;)}_,. For r €
of the Hankel singular values. Further, there exists a ba&h {1,...,¢} let G, be the balanced truncation aF, and let

r

realization[éz [B,z] of G in which J is diagonal in which case ¢ := }._, m;, where (m;)é_, denote the multiplicities of

the diagonal entries are the Hankel singular values @. ThenG,. is self-adjoint and
y A the Hankel eigenvalues @f, are (\;){_;.
TN Proof. By Lemma 6, it is no loss of generality to assume

that (3) is fulfilled for some diagonal matrix € R™*" with
Jii = |§_\ Then, forZ, = [}] € C"*4, defineJ” := Z}J Z,.
Proof. By [21, Theorem lI], the self-adjointness of implies It follows from (3) that

the existence of a unique and invertible= J* such that (3) ” o

holds true. The definition of the reachability and obsenigbi {‘] 0] [AT BT} = [AT BT} {‘] O] ,

map then gives rise t& = ®*J, and thus 0 I][C D ¢ D 0 I

where (\,)7_, are the Hankel eigenvalues 6f.

applying Remark 8 t@-,, we see thafs,. is self-adjoint. Since
A comparison of coefficients yields thdt is block-diagonal J, is diagonal, it follows from Lemma 6 that

with block structure determined by the multiplicities ofeth AT

Hankel singular values. A consequence is that it commutes Ji; = |)\ZA|,

with U*¥, whence we obtain thal*¥ = Jod*J = i

JU*WJ = J2U*WU. The invertibility of U*¥ now implies where the\] are the Hankel eigenvalues af,. By the
that J is involutive. definition J" := Z*JZ, we haveJ], = |§1‘. Thus we have
Using that J is block-diagonal and involutive, there ex- A\ \r

ists some block-diagonal and unitary matrix such that ACHE—

J = U*JsU, where J; is diagonal with diagonal entries (Al AT

in {—1,1}. Then the systen{ & 7] = UsAUS U-B | 45 Since for a self-adjoint operator the absolute values of the

cuU; D
balanced, and its reachability and observability mapslfulfeigenvalues are the singular values and the Hankel singular
TP, = 0% = U*U. We further have values are preserved under balanced truncation, it foltbass
. in the case considered, the Hankel eigenvalues are preserve
[Js 0} {As Bs} _ [As Bs} {Js O] under balanced truncation? = \; fori = 1,...,q. )
0 I||C, D Cs Dy 0 I|°

The following result is a specialization of the main result

It remains to be shown that if is diagonal then its diagonal ¢ [3] to the rational case.

entries must beﬁ—| This however follows from the fact that o
the non-zero spectrum df = ¥® coincides with the non- Lemma 10. Let & € C(s)™*™ be stable and self-adjoint.
zero spectrum ofb¥, that ¥ equals the diagonal matrix Denote the Hankel eigenvalues Gfby (A;);_,. Then

JU*U, that|\;| equal the diagonal elements ¥f ¥ and that n

Ji € {—1,1}. 0 trace(G(0) — G(00)) =2 Ak

Remark7. Note that systems that fulfill (3) for some involutive o _ h=l _

and self-adjoint/ € R"*" are self-adjoint, since Combining Lemma 10 with Lemma 9, we obtain the fol-

lowing.

G(s)=D+C(sI —A)"'B=D*+C(sI — A~ tJC* - o
_ D4 CU(sT — AY) IO Proposition 11. LetG € C(s)™*™ be stable and self-adjoint.
Denote the Hankel eigenvalues 6f by (\;)}_,. For r €
= D"+ B*(sI — A")7'C" = G(s). {1,....4} let G, be the balanced truncation af, and let
@) 4= > -1 mj, where (my)é_, denote the multiplicities of
the Hankel singular values a@¥. Then
Remark8. Systems with a signature structure (3) arise natu-
rally in energy-based modelling of physical systems [20le T
state signaturd stands for different types of reactive elements
(such as, for instance inductances/capacitances in iekdctr
circuit models [19], masses/springs in models for mectanidroof. Using thatG (o) = G, (c0) and applying Lemma 10
systems [16]). The quadratic form defined by the signatuse h@ both G and G, we have, with\! the Hankel eigenvalues
the physical interpretation of laagrangianof the system [20]. of G,.,

2| 3 Ml< s (160 - GOl

kg i1 CEC:ReC>0

As is well-known, the chosen subset of the Hankel singular n q
values is retained in balanced truncation. The followimgriea 2 Z Ak —2 Z AL
shows that, in the self-adjoint case, the same is true for the k=1 k=1

®)

Hankel eigenvalues. Moreover, the lemma shows that batance = trace(G(0) — G(00)) — trace(G-(0) — G (0))
truncation preserves self-adjointness. = trace(G(0) — G,(0)).



By Lemma 9 we have\j = A, for k = 1,...,¢, so that the Corollary 14. Let G € C(s)"*™ be stable and self-adjoint

left-hand side of (5) equals with a Hankel operator which is either positive semi-deéinit
n or negative semi-definite. Lefu;){_, denote the sequence

2 Z A. of distinct Hankel singular values off with multiplicities
k=qt1 (mj)ﬁzl. Forr € {1,...,¢} letG, be the balanced truncation

Using that the absolute value of the trace does not exceed %9 Then
trace class norm, the absolute value of the right-hand fideo ¢ .. ¢
(5) is at most|G(0) — G,(0)]1. In turn this is not larger than 2 >, —2u; < sup  [|G(¢) = Gr(Qlloo <2 D .
h=ril C€EC:Re(>0 j=r+1
sup  [|G(¢) = Gr(O1- - i
CEC:Re(>0 Proof. The upper bound is the standard balanced truncation
error bound. For the lower bound we use that for ampy-

We conclude that -
m matrix T there holds

20 Y M| < sup GO = Gr(Qlha 1T < m||T|oo-
kg i1 CEC:Re¢>0 o _ -
This gives, by using Proposition 13:
O
2 & 1

Remark12. The real-valued SISO case of Proposition 11, in ~ — > myp; < — _sup [|G(¢) = Gr(Q)llh
slightly different language, is the main result of [11] (@ot k=r+1 (E€C:ReC>0
that in the SISO case all Schatten norms are the same and < sup  [|G(C) = G ()] co-
that in the real-valued SISO case every transfer function is CEC:ReC>0
self-adjoint). O

IV. SYSTEMS WITH A SEMI-DEFINITE HANKEL OPERATOR Remark15. It is easily seen that a state space symmetric
' system (that isA = A* € C"*" negative definiteC* = B €

The following proposition establishes a lower bound wheggrnxm 1 — p+* ¢ cm*m) has a Hankel operator which is

as matrix norm we choose the trace class norm (i.e. thgsitive semi-definite. Therefore Proposition 13 and Qaryl
Schatten 1-norm) instead of the usual operator norm (iee. th4 apply to state space symmetric systems.

Schatterco-norm). Systems withA = A* negative definiteC* = —B and

Proposition 13. Let G € C(s)™*™ be stable and self-adjoint 0 = D* have a Hankel operator which is negative semi-
with a Hankel operator which is either positive semi-deéinitdefinite and therefore Proposition 13 and Corollary 14 apply
or negative semi-definite. Lefu;)’_, denote the sequence!® Such systems as well.
of distinct Hankel singular values aoff with multiplicities Remarkl6. In light of Remark 8, systems with a semi-definite
(mj)ﬁzl. Forr € {1,...,¢} let G, be the balanced truncation Hankel operator arise in physical systems which contaiy onl
of G. Then one type of reactive elements. For instaiit€ or RL circuits

’ [18] belong to this class. As well, mass-damper or spring-

. _ damper systems can also be modeled by systems with a semi-
? Z ik = 466%3500 16(€) = G lh- ©) definite Hankel operator [16].

Proof. Consider the case where the Hankel operator is positive! N€ following corollary shows that for systems with a semi-
semi-definite. Then the eigenvalués,)?_, of the Hankel definite Hankel operator the multiplicities of the nonzeranH
operator are nonnegative and equal theksTéguIar vélyes kel singular values are bounded from above by the dimension
=1 .
of the Hankel operator. Proposition 11 gives (wigh:= ©Of the input space.
D1 ) Corollary 17. Let G € C(s)™*™ be stable and self-adjoint
, with a Hankel operator which is either positive semi-deéinit
. or negative semi-definite. Létr;)¢_, denote the multiplicities
< _ X X 77j=1
2 kz—:&-l)\k - Ceéglj<>o|‘G(C) Gr(Qll, of the Hankel singular values a¥. Thenm; < m for j =
=q
1,...,0

Jj=r+1

where, since)\, = o, > 0, the left-hand side equalsp ¢ E Coroll 14 with — ¢—1 btain? <
231 ox, which in turn equal@ >>°_ . m;u;. We con- 00! From LOTotary s withr = £ =1, We obtaindm.jie =
= 7= 2myue, Which is equivalent ton, < m. Since we can choose
clude that (6) holds. X - ) :
%ny ordering of the distinct Hankel singular values, we wbta

If the Hankel operator is negative semi-definite then i
P 9 e desired result. O

eigenvalues are nonpositive and equal to the negativeseof
Hankel singular values. The remainder of the argument is Rémark18. Let H be the transfer function of a stable single-
above. U input single-output state space symmetric system. Define
The following corollary deals with the operator norm (th&” € C(s)™"" as the diagonal matrix with copies ofH on
Schatteno-norm). the diagonal. Themn; = m fpr all j. For suchG the lower _
bound and the upper bound in Corollary 14 are equal, showing



that the new lower bound is -in general- the best that can Be The non-rational case
obtained. This example also shows that for a reasonablg larg te theorems presented in this article continue to hold for

class of MIMO systems the usual balanced truncation UPRESK rational matrix-valued functions as long as the Hankel
bound is an equality. operator is trace class, i.8.7°, ox < oo (see e.g. [7], [8]
for this class of systems). We note that the upper bound in
V. EXTENSIONS Corollary 14 was proven in [8], [7, Section 5.4]. Lemma 8

In this section we briefly mention two extensions to th§an be proven utilizing the discrete-time infinite-dimemil
theory presented in this article. The first considers badenc€SUlt [4, Theorem 5.1] translated to continuous-time gisire

singular perturbation approximation rather than balarioge:  USUu@! linear fractional transformation (Cayley transfpgiven

cation and the second considers the case of non-ratiolfaf:9- [1°] @s replacement for the reference to [21, Theorem
functions. [l]. The remainder of the proofs can remain unchanged.

An example of a state space symmetric system with a trace
class Hankel operator is the following boundary controlled
A. Balanced singular perturbation approximation heat equation on the state spacg0,1):

Balanced realizations cannot only be used to define the 92(; ¢) = P21, ¢)
balanced truncation, but also to define the balanced singula 0t ‘5 = 02\ 57
perturbation approximation [10]. The theorems presented i x(t,0) — g—g(ﬁ,o) =ui(t), «(t, 1)+g—4§(t, 1) = ua(t),
this article for the balanced truncation also hold for the yi(t) = 2(t,0), ya(t) = z(t, 1).
balanced singular perturbation approximation. This feio
easily using the reciprocal transformation [13]. Defigc
by Gr¢iP(s) := G(1/s). If [4 B] is a realization ofG, then VI. EXAMPLES
a realization ofGreciv js | A" —A'B | |t is shown in  As a simple illustration of the obtained theoretical result
CA D—-CA™'B . . . . .
[10] that the reachability and observability maps of thetays W€ chS|der two RC ladder C|rcun§. anh of the circuits
and its reciprocal are related hiyeciP(recip)* = d&* and contains two current sources; the input is formgd py the
(precip)*preciv — @ In particular,[ 4 B] is balanced, if, currents of the sources at the right and left of the circuite T
and only if [ A-l  _a-lp } is balanced. This implies thatoutpu'_c is th_e n_egatlve _of the voltage_s at the cu_rrent sources

) "LoATt D-CAT'B ’ The first circuit contains seven resistances with resigtanc

G™“P has the same Hankel singular values (with the samgiue , and four capacitances with capacitance vafyghe
multiplicities) asG. It can be furthermore concluded from (3)second circuit six resistances with resistance vaguand four
that self-adjointness aff (which is clearly equivalent to the capacitances with capacitance valoeAs state, we consider

self-adjointness of*<'?), implies that a balanced realizationhe vector containing the voltages at the capacitancesngUsi
of the reciprocal system fulfills

[7.10} A™' —AT'B | _ | A7Y —-AT'B
0 Il|cA ' D-cA™'B CA ' D-CA™'B

:| * I:f.] 0} R R R R R

[V

C C C [

Lemma 6 then implies that the Hankel eigenvalue&fiP T T T T
are (with the same multiplicities) the negatives of the Hank
eigenvalues ofG. In particular,G has a positive (negative) Figure 1. RC ladder circuit
semi-definite Hankel operator if, and only if, the Hankel
operator ofG™°"? is negative (positive) semi-definite.

Let Gspa be the balanced singular perturbation approxima-

R R R £3
tion of G and let (G*™*),. be the balanced truncation of
G™P. Then Gepa(s) = (G™P),.(1/s), see [13, Figure 1]. in & c c c c %
Therefore T [ 1T T

G(s) = Gspa(s) = G™P(1/s) = (G™P),(1/s).

=

i

Figure 2. RC ladder circuit

Sinces — 1/s is a bijection of the open right-half complex
plane,swe ot/)tsain thatJ P g P Kirchhoff’s laws and the component relations [19], the first

circuit is modelled by a system with

el G(C) — Gspa(Q) EETRRET 0
= sup  [[GR(Q) — (G, ()], Al % = = 0

¢ECiRe(>0 0 i 21|
; - A Y
or any matrix norm. = s

The results in this article applied to the right-hand sidenth _Q_IC 0

lead to the corresponding results for the left-hand sidee Th i 0 0 £
consequence is that we can simply repléteby G, in the B=0"= 0 0 |’ D= {(2) 4 :
statements of the theorems. 0 -—L 2



The second circuit can be modelled by a system with

— 5t - 0 0
,%RC 7&{52 0 0
A=10  0 —z L |
o
0 0 T
702% 8 X0
vk _ |2
B=C"= 0 E D{O %]
0 %

Note that in both cases we have (3) with= I (i.e. we
have a state space symmetric system). Therefore, the Hal
operators of both circuits are positive semi-definite. Wease

R = C = 1. For the first circuit the Hankel singular valueﬁzz]

are then

0.2281, 0.1050, 0.0219, 0.0021,

the upper bound is therefo®e)480, the lower bound i9.0240
and the actual error can be computed toOb@138. For the
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second circuit (which satisfies the conditions of Remark 18)

the Hankel singular values are

0.1197, 0.1197, 0.0053, 0.0053,

the upper bound, lower bound and actual error are identical
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