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The main aim of this paper is to demonstrate that a fast and accurate FPGA estimation engine is indispensable 
in design flows for custom instruction (template) selection. The need for a FPGA estimation engine stems from 
the difficulty in predicting the FPGA performance measures of selected custom instructions. We will present a 
FPGA estimation technique that partitions the high-level representation of custom instructions into clusters 
based on the structural organization of the target FPGA, while taking into account general logic synthesis 
principles adopted by FPGA tools. In this work, we have evaluated a widely-used graph covering algorithm 
with various heuristics for custom instruction selection. In addition, we present an algorithm called Refined 
Largest Fit First (RLFF) that relies on a graph covering heuristic to select non-overlapping superset templates, 
which typically incorporate frequently used basic templates. The initial solution is further refined by 
considering overlapping templates that were ignored previously to see if their introduction could lead to higher 
performance. While RLFF provides the most efficient cover compared to the ILP method and other graph 
covering heuristics, FPGA estimation results reveals that RLFF leads to the worst performance in certain 
applications. It is therefore a worthy proposition to equip design flows with accurate FPGA estimation in order 
to rapidly determine the most profitable custom instruction approach for a given application. 
 
Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General - Systems specification 
methodology; C.0 [Computer Systems Organization]: General - Instruction set design (e.g., RISC, CISC, 
VLIW) 
Additional Key Words and Phrases: Customizable processors, ISA extension, Approximation algorithms 
________________________________________________________________________ 
 
 
1. INTRODUCTION  

Reconfigurable processors offer the possibility of extending the basic instruction set of 

the microprocessor by introducing custom functional units on the reconfigurable space 

(e.g. Field Programmable Gate Arrays (FPGAs)) to implement custom instructions. A 

custom instruction typically encapsulates multiple primitive operations that constitute the 

critical portion of the application. The corresponding code segments associated with the 

custom instructions are implemented in hardware (i.e. Reconfigurable Functional Unit 

(RFU)). Reconfigurable computing platforms such as Stretch [STRETCH], NIOS II 

[ALTERA] and MicroBlaze [XILINX] create an environment in which this capability to 

extend the instruction set is enshrined in the basic architecture of the processor. They 

provide a toolset to allow the designer to modify the instruction set in order to meet the 

competing demands that exist in the embedded computing device product space.  



It is possible through instruction set customization to transfer the burden of creating 

the custom instructions for a given application from the designer to an automated process. 

There are two major tasks in this automated process: firstly custom instruction 

identification and secondly custom instruction selection. Custom instruction 

identification detects a set of instances from the application Data Flow Graph (DFG) that 

satisfies certain constraints (e.g. number of inputs-outputs, convexity etc.). Custom 

instruction selection evaluates the relative area, power consumption and/or speed of the 

identified custom instructions and attempts to select a set that best meets the objectives of 

that particular design process. In this paper, the terms ‘template’ and ‘custom instruction' 

are used interchangeably. Hence, template selection refers to custom instruction 

selection.  

We aim to demonstrate the importance of a fast and accurate FPGA estimation engine 

in design flows for template selection. Existing methods often rely on crude strategies for 

estimating the hardware performance measures of custom instructions, which may lead to 

adverse decisions in template selection for FPGA implementation. In addition, the quality 

of results from different template selection approaches is influenced by the application, 

micro-architecture constraints and compiler infrastructure used in the design flow. The 

presence of an accurate FPGA estimation engine will therefore aid in the rapid 

determination of the most suitable template selection approach for a given scenario.  

In this work, we evaluated a widely-used graph covering algorithm with various 

heuristics for template selection. We also present an approximate algorithm for template 

selection, called Refined Largest Fit First (RLFF) that is accomplished in two steps. The 

first step employs a graph covering algorithm to select a set of non-overlapping 

templates. The covering algorithm relies on a heuristic to select superset templates that 

tend to incorporate frequently used basic templates. This strategy is supported by our 

findings, which show that a significant number of frequently occurring templates are 

consumed by larger templates. In the second step, the initial solution is further refined by 

evaluating the benefits of selecting other templates that overlap with the existing solution. 

Performance analysis shows that RLFF outperforms other well-known heuristics and an 

Integer Linear Programming (ILP) approach, in terms of number of nodes covered. 

However, FPGA estimation results reveal that RLFF leads to the worst performance in 

certain applications. This affirms the need for an accurate FPGA estimation engine for 

template selection.  

The observations of the templates' characteristic (i.e. most of the frequently occurring 

templates are consumed by larger templates) were initially reported in our preliminary 



work in [LAM 2006a] for a restricted set of applications. In this paper, we performed 

proper template classification in order to study the statistical properties of the templates, 

and validated this characteristic with a larger set of applications. In addition, based on our 

findings, we present a graph covering strategy (i.e. RLFF) that maximizes the number of 

nodes covered. 

We will present a FPGA estimation technique that partitions the high-level 

representation of custom instructions into clusters based on the structural organization of 

the target FPGA, while taking into account general logic synthesis principles adopted by 

FPGA tools. A preliminary version of this technique has been presented in [LAM 2009]. 

Based on this preliminary technique, we have shown that area-time efficient custom 

instructions can be achieved by merging clusters in order to maximize the utilization of 

FPGA logic blocks [LAM 2011]. In this paper, we extend our previously reported FPGA 

estimation technique by formulating delay and area estimation models that take into 

account the characteristics of the operations to accurately estimate the critical path and 

FPGA area utilization of the clusters. We also evaluated the accuracy of the proposed 

estimation technique on an extensive set of custom instructions from a large number of 

benchmark applications. Experimental results show that the average estimated critical 

paths of 150 custom instructions from sixteen applications using the proposed method are 

only within 3% of those obtained using hardware synthesis. In addition, the average 

estimated area utilization using the proposed method are within 1% of those obtained 

from FPGA implementation results. 

This paper starts with a discussion of the existing methods for template selection and 

FPGA estimation. Section 3 describes the various template selection approaches that have 

been used in our evaluation. This include a novel graph covering algorithm that provides 

the most efficient cover compared to the ILP method and other widely-used graph 

covering heuristics for template selection. In Section 4, we present the proposed FPGA 

estimation strategy. Experimental results are shown in Section 5 to demonstrate the 

benefits of incorporating the proposed FPGA estimation method in design flows for 

template selection. We conclude the paper in Section 6. 

 

2. RELATED WORK 

Template selection evaluates the area, speed, and/or power consumption of template 

instances and uses these metrics to select the subset that best meets the objectives of the 

design. Our work published in [LI] has shown that exact algorithms for template selection 



are prohibitive for large sized problems. Hence, approximate solutions are often used for 

template selection.  

In [KASTNER], the approach proposed was to maximize the number of covered 

nodes whilst utilizing a minimal template set through the use of a covering algorithm. In 

[CLARK 2003][CLARK 2005][POZZI], greedy selection policies were employed to 

heuristically select a subset of templates. The work in [ATASU][CONG] formulated the 

template selection process as a knapsack problem. Each template instance is associated 

with a performance gain and area cost. A dynamic programming algorithm is then 

employed to select a subset of the instances that maximizes the performance gain 

subjected to an area cost bound. ILP based methods for template selection have also been 

discussed in [LEE 2002][GALUZZI][YU]. The method presented in [GUO] employs a 

graph-covering algorithm, formulated as the Maximum Independent Set (MIS) problem, 

on a conflict graph to maximize the number of covered nodes using a minimum number 

of templates. The work in [BONZINI] proposed a hybrid algorithm for recurrence-aware 

template selection that combines a greedy covering algorithm and an exact branch and 

bound algorithm that operates on a restricted problem space. Even though the technique 

in [BONZINI] has restricted the problem size for the exact algorithm, it still requires a 

runtime in the order of seconds for certain applications. [YAZDANBAKHSH] 

investigated the effects of selecting local and global templates using graph covering 

algorithms, and reported that locally selected templates lead to better results in terms of 

performance and performance per area. 

Instruction set customization research is heavily focused on the selection of near-

optimal sets of custom instructions from a larger candidate population. These approaches 

do not incorporate an accurate method for assessing the impact of the architecture and its 

resultant constraints and this has an impact on the achievable performance gains from the 

selected custom instructions. A number of approaches make use of pre-computed area-

time values resulting from synthesis in a standard cell design flow in [CLARK 

2003][CLARK 2005][LI][POZZI][YU]. These values form the basis of cumulative area-

time values for custom instruction candidates. A similar approach using operator 

throughput as the major metric combines the individual throughput values to form an 

overall throughput estimate for the custom instruction. In the constrained environment of 

FPGA based implementation however, these approaches are less effective. The 

alternative approach taken by some authors (e.g. [ATASU][SUN 

2004][YAZDANBAKHSH]) of including full hardware synthesis within the custom 



instruction selection process is more effective but very slow in the design stage, making 

design exploration a significant challenge. 

It is possible to take a high-level approach to area-time estimation based solely on 

algorithmic representations of the design. Physical hardware implementation is not 

required in these methods which results in considerable reductions in the computational 

effort required to generate an estimate. The high level techniques do not require a gate 

level implementation of the custom instruction giving them a considerable advantage 

over technology mapping based approaches such as [CHEN] and [JOEY].  

A formula based upon register properties and the operator in use has been reported as 

an approach for area estimation [NAYAK]. The parameters for this formula are derived 

from pre-synthesized register transfer level (RTL) descriptions of the relevant operators 

and register configurations. This approach to pre-characterization of the area leads to 

error estimates below 16% when compared to implementation using commercial 

synthesis engines. Execution traces have also been used to generate DFGs [BJURÉUS]. 

Area-time estimates are then generated based upon the frequency of occurrence of the 

operations observed. Feeding this data into a performance model that has been pre-

characterized for the target FPGA results in area estimates that are within 10% of actual 

implementation results. A two level model for area estimations in a System-C 

environment has been reported [BRANDOLESE]. The upper level of the model takes the 

input code and provides the lower level model with a list of intermediate variables which 

can be used to estimate the number of Look-Up Tables (LUTs) and Flip Flops via a set of 

equations proposed by the authors. Re-tuning of the equations is needed each time there 

is a change in either the design tools or the target FPGA family. Reported area estimate 

errors average approximately 17% for this approach. High-level SA-C codes are used in 

[KULKARNI] to create a DFG. This DFG is then used to calculate data-path area 

estimates using a formulaic approach. Resource consumption characterization combined 

with heuristic pattern analysis yield area estimates within 5% of the actual implemented 

areas. The heuristics account for typical synthesis engine optimizations. Area-time 

estimates of RTL solutions are created in a two-step process in [BILAVARN]. The 

process starts with a structural exploration step to create a range of possible RTL 

solutions. The second step maps the RTL candidates to area-time estimates for the given 

architecture based upon a characterization file for the target FPGA. The characterization 

file includes a range of information on the target architecture such as basic operator and 

memory timing from the device data sheet and operator block synthesis results.  The 

mean error in area estimation for this approach over a range of FPGA vendors was 18%.  



The separation of the methods discussed above from the constraints imposed by the 

FPGA architecture may lead to unreliability in the estimates produced by those methods. 

Synthesis optimization can exacerbate this limitation. Pre-characterization is also 

employed by these methods limiting the range of potential solutions considered. Hence, 

there is a need to develop more reliable FPGA estimation techniques in order to facilitate 

template selection. 

 

2.1 Our Contributions  

This work aims to show the essentiality of an accurate FPGA estimation for template 

selection, which is often taken for granted in existing work. We first present a novel 

strategy for the rapid selection of custom instructions based on a graph covering 

approach. This strategy is motivated by our investigations which reveal that a majority of 

frequently executed custom instructions are consumed by larger custom instructions. 

Comparisons with previously reported approximate strategies show that our technique 

selects custom instructions with highest performance gain (in terms of number of nodes 

covered). In order to rapidly evaluate the FPGA performance measures of template 

selection techniques, we propose a strategy that permits the estimation of the achievable 

clock rate of systems that incorporate those templates. These estimates include 

parameterized target FPGA data allowing the estimates to take these architectural 

constraints into account without requiring a pre-characterization step. The major input to 

the estimation process is the Intermediate Representation (IR) generated by an ANSI-C 

compiler. This makes it directly applicable to the majority of embedded applications.  

The proposed technique is applicable for direct implementation on existing, 

commercially available FPGA architectures but includes parameterization that allows it 

to be applicable to multiple FPGA families from most device vendors. This 

parameterization also provides applicability to future architectures. Finally, we 

demonstrate the necessity and effectiveness of the proposed FPGA estimation technique 

for evaluating the performance gain of custom instructions that are selected using various 

template selection approaches. The proposed approach can be used to rapidly determine 

if custom instructions should be introduce for fine-grained acceleration in programmable 

system-on-a-chip alongside with other means of acceleration (e.g. co-processors) [SUN 

2007]. 

 

 

 



3. GRAPH COVERING FOR TEMPLATE SELECTION 

The following describes the problem formulation of template selection. This approach is 

based upon the concept of graph-covering:  

Given an application DFG G, a unique set of templates T = {T1, T2, …, Ti} and the 

template instances of each template Ti, Ii = {Ii,1, Ii,2, …, Ii,j}, find a subset of the set I that 

covers G. Figure 1(a) shows an example with three templates (i.e. T1, T2 and T3) and nine 

instances in a DFG. An efficient cover can be achieved by selecting a set of non-

overlapping instances that maximizes the number of covered nodes. Existing work often 

assumes that a template selection approach that result in an efficient cover can lead to 

higher performance gain as the instances cover a larger number of operations. 

The covering algorithm that we have adopted is based on the conflict graph approach 

that was presented in [GUO]. A conflict graph is an undirected graph Gu(Vu,Eu). Each 

vertex represents a template instance Ii,j that is associated with a unique template Ti. An 

edge e ∈ Eu between two instances signifies that the instances have at least one 

overlapping node. The number of nodes in an instance Ii,j is denoted as size(Ii,j). Figure 

1(b) shows the conflict graph for the example in Figure 1(a). In this example, we assume 

size(I1,j) = 5, size(I2,j) = 9, and size(I3,j) = 1. 
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Figure 1: (a) Template instances in a DFG G, (b) Conflict graph of G 

 

The covering algorithm starts by taking all the template instances and constructing a 

conflict graph with them. For each unique template Ti the Maximum Independent Set 

(MIS) (referred to hereinafter as MISi) is the largest subset of instances in Ti for which 

those instances do not share any common edges (they are mutually non-adjacent). This is 

established using an iterative approach. The term size(MISi) is used in this paper to 

indicate the number of instances that are contained within MISi . The computation of the 

MIS can be implemented in time linear in the number of vertices and edges of Gu by 



using a simple heuristic, which has been shown to provide good solutions 

[HALLDÓRSSON]. 

The MISi with the largest objective function (w(MISi)) is then selected. All instances 

that match the selected MIS then become selected instances. After selection, these 

instances and their neighbors can be removed from the conflict graph. This algorithm is 

repeated until the conflict graph is empty. Details of the algorithm are described in Figure 

2. NONi refers to the non-overlapping nodes of the selected instances in Ti. As shown in 

line 7 of Algorithm 1, the NONi of each selected template Ti is stored in C. In the worst 

case, the number of iterations required by the selection algorithm is equivalent to the 

number of vertices in Gu. 

The choice of objective function (i.e. w(MISi)) will have significant impact on the 

template selection process. We will discuss the objective functions that are analogous to 

commonly used heuristics in existing template selection methods, before presenting a 

novel strategy for template selection based on the graph covering approach. The 

description of the objective functions and our strategy in the subsequent sections will 

refer to the example in Figure 1. 

 
Algorithm 1 

1. TEMPLATE-SELECTION (C, Gu) { 

2. uu GG ='  
3.      while φ≠'

uG { 
4.           Find MISi of each template group Ti in '

uG   
5.           Compute w(MISi) for each MISi 

6.            Select MISi with the largest objective function  

             (corresponding Ti is the selected custom instruction) 

7.           Store nodes corresponding to the selected MISi (i.e. NONi) in C  

8.           Delete NONi and the adjacent nodes from '
uG  

9.      } 

10. } 
 

Figure 2: Pseudo code of conflict graph based template selection 
 

3.1 Most‐Frequently‐Fit‐First (MFF)  

This objective function for MFF is: ( ) ( )ii MSIsizeMSIw = . It aims to select a set of 

frequently occurring templates, as the algorithm will select the MIS with the largest 

number of instances first. This approach has a similar objective to the work in 

[KASTNER]. Figure 3(a) shows the final covering solution with MFF for the example in 

Figure 1 after two iterations. In the first iteration, MIS3 will be selected as it has the 



largest objective function (i.e. size(MIS3) = 5). MIS1 is then selected in the subsequent 

iteration. The result of the algorithm is the selection of instances I1,1, I1,2, I1,4, I3,1, I3,2, I3,3, 

I3,4 and I3,5 that are associated with the templates T1 and T3. The gain (measured in terms 

of the total number of nodes covered) is 20. 

 

3.2 Most‐Frequent‐Largest‐Fit‐First (MLFF)  

The objective function for MLFF is: ( ) ( ) ( )ixi MSIsizevsizeMSIw ×= , which takes into 

account both the frequency of template occurrence and the size of the templates. This 

objective function is analogous to the heuristic used in [GUO][BONZINI]. Figure 3(b) 

shows the covering solution of MLFF for the example in Figure 1 after two iterations. 

MIS1 is selected in the first iteration and this is followed by selection of MIS3 in the 

subsequent iteration. The result of the algorithm is the selection of T1 and T3 

(corresponding to I1,1, I1,2, I1,3, I1,4, I3,1, I3,2, I3,4 and I3,5) which covers 24 nodes. 
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Figure 3: (a) MFF based selection (Gain = 20), (b) MLFF based selection (Gain = 24), (c) LFF based selection 

(Gain = 24), (d) Refining LFF (Gain = 25) 
 

3.3 Largest‐Fit‐First (LFF)  

This objective function for the LFF heuristic is: ( ) ( )xi vsizeMSIw = . The LFF approach 

attempts to select the MIS with the largest instances first. Where there are small 

templates which have a large number of instances (e.g. I3,j), the MFF has a tendency to 

select these in preference to other templates with a large node count such as I2,2, and the 

LFF strategy attempts to remove this small template bias. Figure 3(c) shows the covering 

solution of LFF for the example in Figure 1 after three iterations. MIS2 is selected in the 



first iteration as it has the largest instances (i.e. size(I2,j) = 9). This is followed by MIS1 

and MIS3 in the subsequent iterations. The result of the algorithm is the selection of T1, T2 

and T3 (consisting of instances I1,4, I2,1, I2,2, and I,35) which covers 24 nodes. From Figure 

3(c), it can be observed instances I3,1, I3,2, I3,3 and I3,4 are consumed by instance I2,2. More 

generally, where a large proportion of the instances that belong to frequently occurring 

templates are covered by larger instances, the LFF approach can lead to a larger number 

of covered nodes. However, partial overlap of a frequently occurring template by a larger 

instance will cause the frequently occurring template to be discarded. In the experimental 

section, we will present statistical analysis of the spatial locality of templates in a number 

of applications to justify the feasibility of the LFF approach. 

 

3.4 Refining LFF  

In this sub-section, we present a novel strategy to increase the number of nodes covered 

for template selection using the graph covering approach.  

 

Algorithm 2 

1. RLFF-BASED-TEMPLATE-SELECTION { 

2. φ=C  

3.      Build conflict graph Gu from DFG Gi 

4.      TEMPLATE-SELECTION (C, Gu)  with LFF objective function  

5.      REFINE-SELECTION (C, Gu)   

6. } 

Algorithm 3 

1. REFINE-SELECTION (C, Gu)  { 

2. uu GG ='  
3.      Calculate gain of each selected template Ti based on NONi in C 

4.      Sort the selected Ti in ascending gain 

5.      for each selected Ti starting with the lowest gain { 

6.           Remove corresponding NONi from C 

7.           Identify all neighboring vertices of MISi in '
uG and store in N, where 

             the nodes corresponding to the vertices in CN ∉  

8.           Find MIS of N (MISN) 

9.           Calculate gain of MISN 

10.           if gain(MISN) > gain (NONi) 

11.                Store nodes associated with MISN in C      

12.            else restore NONi in C  

13.      }      

14. } 
 

Figure 4: Pseudo code of RLFF algorithm 



The LFF based covering algorithm can be further refined by evaluating the benefits of 

replacing the initial solution with the non-selected template instances that overlap with 

the selected instances. This is achieved by evaluating the instances of each selected 

template (in order of ascending template gain) in the initial solution to check whether 

they should be replaced by the overlapping instances. For example, in Figure 3(d), the 

initial selected instance I2,1 in Figure 3(a) is replaced with the instances I1,1 and I1,2 as they 

lead to higher gain (i.e. gain(I1,1) + gain(I1,2) > gain(I2,1)). We denote the LFF algorithm 

with refinements as RLFF. 

The RLFF algorithm is described in Algorithm 2 and 3 of Figure 4. First the gain of 

NONi of each selected template Ti is calculated (line 3 of Algorithm 3). Starting from the 

selected template Ti with the lowest NONi gain, the corresponding NONi is temporary 

removed from C. The non-selected instances that overlap with the selected instances Tij 

are identified and stored in N (Line 7). Note that the instances in N must not overlap with 

any selected instances Ik,j where k ≠ i . The MIS of N is then computed to find a maximal 

non-overlapping set of instances in N (line 9). If the gain of MISN is larger than the gain 

of NONi, then the instances of N replace the initial instances of Ti (line 11). Otherwise, 

the original selected instances in Ti are restored (line 12). This process is repeated until 

all the selected templates Ti in the initial solution have been considered. As can be 

observed from Figure 3(d) (based on the example in Figure 1), the proposed method leads 

to the highest gain among the various objective functions (i.e. gain = 25) on the given 

example. 

 

3.5 Feasibility Study of the LFF and RLFF Approach  

In Section 3.3, we explained that the LFF approach can lead to a larger number of 

covered nodes if (and only if) most of the instances belonging to frequently occurring 

templates are entirely consumed by large instances. This also applies to the RLFF 

approach. In order to investigate the feasibility of the LFF and RLFF approach, we 

analyzed the spatial locality of the template instances in sixteen benchmark applications. 

Our experiments are based on applications that are obtained from the widely-used 

MediaBench [LEE 1997], MiBench [GUTHAUS], and EEMBC [EEMBC] benchmark 

suites. 

Exhaustive template enumeration has been carried out using the method proposed in 

[POZZI] which combines a tree search with a constraint violation based pruning process. 

A pre-register allocation IR is used to prevent false dependencies from influencing the 

experimental results. This IR is generated using Trimaran [TRIMARAN] which performs 



loop unrolling and loop pipelining to expose the instruction-level parallelism of the 

application. The same constraint set as described in [LAM2009] is used in these 

enumeration experiments. In particular, only integer operations are allowed in the 

template instance. Including memory accesses in custom instructions can lead to non-

deterministic latencies and increased complexity. In addition, custom instructions with 

floating-point operations often do not lead to notable speedup [YU]. Maximum number 

of input ports is 5 and maximum number of output ports is 2. Previous work [YU] has 

shown that input-output ports more than this range result in little performance gain. 

Finally, only convex sub-graphs are allowed in template instances to ensure a feasible 

schedule exists when the sub-graph is collapsed into a custom instruction. 

Templates can be divided into: 1) Superset templates, 2) Basic templates, and 3) 

Others. A superset template consists of large template instances that cannot be entirely 

consumed by other instances or subsume one or more basic template instances. In Figure 

1(a), T2 is a superset template as both its instances (I2,1 and I2,2) are not entirely consumed 

by other template instances. In addition, I2,2 subsumes template instances I3,1, I3,2, I3,3 and 

I3,4. A basic template consists of template instances that do not subsume any template 

instances or are entirely consumed by superset templates. In Figure 1(a), T3 is a basic 

template as its instances I3,1, I3,2, I3,3 and I3,4 are entirely consumed by I2,2. Template T1 in 

Figure 1(a) falls under the category 'Others' as none of its instances (I1,1, I1,2, I1,3 and I1,4) 

subsumes other instances or are entirely consumed by other instances. 
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Figure 5: Percentage of different template types 

 

Figure 5 shows the percentage of instances of the three template types for the sixteen 

benchmark applications. The statistics imply that a significant number of frequently 

occurring templates (i.e. basic templates) are contained within the superset templates. In 



particular, an average of 77.4% of the template instances, are basic templates that are 

consumed within the superset templates in the sixteen applications. Hence, employing 

LFF and RLFF for template selection can lead to the selection of large templates that are 

also likely to subsume frequently occurring templates. 

 

3.6 Efficiency of Graph Covering Heuristic   

In this sub-section, we will compare the performance of the selected templates that are 

obtained using MFF, MLFF, LFF and RLFF. In addition, we have implemented an ILP 

method for template selection in order to evaluate the quality of the solutions obtained 

using the proposed methods.  

Let's define Ti, for i = 1,2, ..., n, as a unique template, where n is the total number of 

templates obtained from template enumeration. A template Ti can have ni number of 

instances in the application denoted by Ii,1, Ii,2, …, Ii,ni. Each instance has an execution 

frequency of Fi,j. Let size(Ii,j) denote the number of nodes in instance Ii,j. We define 

binary variables { }1,0, ∈jix , which is equal to 1 if instance Ii,j is selected and 0 otherwise. 

Finally, Gu(Vu,Eu) is the conflict graph, where (Ii,j,Ik,l) ∈ Eu if the instances Ii,j and Ik,l 

overlaps. The objective function of ILP for template selection is formulated by 

maximizing the total performance gain (in terms of number of nodes/operations): 

( )∑∑
= =

××
n

i

n

j
jijiji

i

IsizeFx
1 1

,,, )(:max    (1) 

We optimize the objective function under the constraint that none of the selected 

instances overlap. 

( ) ulkjilkji EIIxx ∈≤+ ,,,, ,1    (2) 

The ILP-based method, although capable of producing optimal solutions, can have 

extremely long runtime due to the complexity of the problem. As shown in Table 1, the 

ILP-based method does not produce optimal solutions for half of the applications 

considered even after 1 hour of runtime. On the other hand, the runtime of MFF, MLFF, 

LFF and RLFF are less than 1 second for all the applications considered. In the following 

experiments, we have obtained results for the ILP approach after 15 minutes of runtime. 

The optimality of the solutions produced by the ILP approach is the same as that in Table 

1. While it may be possible to obtain better solutions when the ILP-based method is 

executed for a longer time, this will not be acceptable in view of the tight time-to-market 

pressures faced by the industry.  



Figure 6 shows the number of selected templates that are obtained using the various 

approaches. The average number of selected templates obtained using MFF, MLFF, ILP, 

LFF and RLFF is 8.8, 9.1, 11.2, 11.6 and 12.3 respectively. It is evident from this set of 

results that LFF and RLFF lead to the selection of a larger number of templates compared 

to the existing approaches. The results also show that template selection based on the 

frequency of occurrence of the templates (e.g. MFF and MLFF) can lead to the disposal 

of a notable number of overlapping templates. 

 
Table I. Optimality of ILP based template selection after 1 hour 

Application Optimal Solution 
Adpcm Dec Yes 
Adpcm Enc Yes 
Aes No 
Basicmath Large Yes 
Bitcount No 
Blowfish Dec No 
Blowfish Enc No 
Cjpeg No 
CRC32 Yes 
Dijkstra Large Yes 
FFT Yes 
Patricia Yes 
Pegwit No 
Rijndael Dec No 
Rijndael Enc No 
Sha Yes 
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Figure 6: Number of selected templates 

 



In this sub-section, the performance gain is reported in terms of the number of nodes 

covered in the various graph covering approaches. This metric is analogous to the 

reduction in the number of Instruction Set Architecture (ISA) operations executed on the 

base processor. Figure 7 shows the gain contribution of the selected templates that have 

been grouped according to their size, in terms of number of nodes (as labeled on the 

charts), for MFF, MLFF, ILP, LFF and RLFF respectively. For example in Adpcm Dec, 

only templates of size 2 are selected using MFF and MLFF, while templates of size 2 and 

3 are selected using ILP, LFF and RLFF. The results for Blowfish Enc are the same as 

Blowfish Dec, and hence are not shown.  
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Figure 7: Percentage performance contribution of selected templates  

 

When compared to the MFF and MLFF approaches, LFF and RLFF generally leads to 

the selection of more templates (see Figure 6) with larger number of nodes (see Figure 7), 

which has resulted in higher gain. For Aes, Rijndael Dec and Rijndael Enc, RLFF leads 



to the selection of smaller templates compared to those selected using MFF and MLFF 

approaches. However, as shown in Figure 6, the RLFF approach leads to the selection of 

more templates and hence, the overall gain of RLFF is still higher than MFF and MLFF 

for these applications. In general, the selected templates of LFF have the largest number 

of nodes.  

On average, the LFF method outperforms the MFF and MLFF method by 9.0% and 

4.6% respectively. For Aes and Dijkstra Large, LFF outperforms MFF by over 32% and 

24% respectively. The LFF approach also outperforms the MFF and MLFF methods by 

over 10% for a number of applications. Except for two applications (i.e. Rijndael Dec and 

Rijndael Enc), LFF either performs more favorably or is comparable with the ILP 

approach. For the Rijndael Dec and Rijndael Enc applications, the percentage 

performance gain difference between the LFF and ILP approach is less than 10%. 

The RLFF method outperforms the LFF method by over 15% in Rijndael Dec and 

Rijndael Enc. On average, the RLFF method outperforms the MFF and MLFF method by 

11.0% and 6.6% respectively. In addition, when compared to the ILP method, the 

proposed RLFF approach has a higher number of nodes covered in several applications 

(e.g. Blowfish Dec, Blowfish Enc, Rijndael Dec and Rijndael Enc), and is comparable in 

the remaining ones. It is noteworthy that LFF and RLFF can execute in a fraction of the 

time that is required by the ILP method. 

Based on the experiments discussed in this section, it can be deduced that template 

selection based on frequently occurring templates (using the MFF and MLFF approach) 

can result in the disposal of a notable number of overlapping templates that are likely to 

have a larger number of operations. This concurs with our earlier analysis which shows 

that a significant number of frequently occurring templates (i.e. basic templates) are 

contained within the superset templates. Hence, we can conclude that template selection 

strategies that give preference to the selection of large templates can lead to better results 

in all the applications considered. In addition, the experimental results show that the 

RLFF method leads to the highest gain (in terms of number of nodes covered). 

 

4. PROPOSED FPGA ESTIMATION TECHNIQUE 

In this section, we proposed the cluster generation technique for FPGA estimation.  

Definition 1: A template (custom instruction) can be defined as a directed graph 

( )iii EVG ,= for i = 1,2,..., n and n is the number of selected templates, where: 



 A vertex iVv ∈  for 1 ≤ i ≤ n is a primitive integer operation in a compiler’s IR. 

Each vertex is associated with at most two input ports and one output port. 

These operations can be categorized as 1) arithmetic i.e. addition (ADD), 

subtraction (SUB), multiplication (MUL), division (DIV), 2) logical (AND, OR, 

XOR), and 3) relational e.g. logical/arithmetic shift by a constant/non-constant 

(SHL, SHR, SHRA).  

 An arc iEvue ∈= ),( , indicates a data transfer from vertex u to vertex v, whereby 

the output port of u is connected to one of the input ports of v. 

Definition 2: A cluster ( )j
i

j
i

j
i EVC ,=  is a sub-graph of a template Gi, which can be 

implemented either: 1) on a set of FPGA logic blocks with the same configuration, or 2) 

using FPGA embedded IP cores. In particular, multipliers, dividers and shift by non-

constant operations are implemented using widely available IP cores such as DSP slices 

in the Xilinx devices [XILINX 2012].  None of the clusters in Gi overlap, i.e. 

φ=∩ k
i

j
i VV  and φ=∩ k

i
j

i EE  for j ≠ k . In addition, U
c

j
i

j
i VV

1=

= and U
c

j
i

j
i EE
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= , where 

c is the number of clusters in Gi. 

 
1)   {0, 1, 4, 5, 7, 8}
2)   {5, 7, 8}
3)   {4, 7, 8}
4)   {7, 8}
5)   {2, 3, 6, 8}
6)   {3, 6, 8}
7)   {2, 6, 8}
8)   {6, 8}
9)   {8}
10) {0, 1, 4, 5, 7}
11) {1, 4, 5, 7}
12) {0, 4, 5, 7}
13) {4, 5, 7}
14) {0, 1, 5, 7}
15) {1, 5, 7}
16) {0, 5, 7}

17) {5, 7}
18) {4, 7}
19) {7}
20) {2, 3, 6}
21) {3, 6}
22) {2, 6}
23) {6}
24) {0, 1, 5}
25) {1, 5}
26) {0, 5}
27) {5}
28) {4}
29) {3}
30) {2}
31) {1}
32) {0}

 
Figure 8: (a) Cluster enumeration, (b) cluster instances, (c) cluster selection 

 

Cluster generation partitions the templates into a cluster set, where the template is 

entirely covered by that cluster set. The process of generating clusters can be further sub-

divided into a cluster enumeration step and cluster selection step. These steps are 

illustrated in Figure 8, where Figure 8(a) shows an example template with nine vertices 

(primitive operations). In cluster enumeration, the template is decomposed into connected 

sub-graphs that are realizable in the logic block architecture of target FPGA. These 

become the cluster instances. Typical FPGA targets can replicate the single logic block in 

a tightly coupled group to provide the multi-bit (usually 32 bit) architecture required for 



the custom instruction.  The tight coupling provides inter-bit routes for carry propagation 

in the case of primitive operations such as ADD. Figure 5(b) shows the 32 cluster 

instances that will be enumerated in our example for the case K = 4. From this point 

onwards, we refer to a set of logic blocks that is configured to implement a cluster as a 

single logic block, without any loss of generality. A set of clusters is then selected to 

effectively cover the template in order to meet a certain criteria. For example in Figure 

8(c), clusters 1 and 20 are selected from the enumerated set such that the number of 

clusters required to cover the data-path is minimized. Two FPGA logic blocks will be 

required to realize the template in Figure 8(a). 

The cluster generation algorithm follows a set of rules to establish mapping capability 

within a single logic block. In general, operators can almost be combined with each other 

so long as the combination of the operators does not overload the carry propagation 

circuitry, the input or output capability of the logic block. These rules have been verified 

using a standard synthesis process on VHDL implementations of the basic clusters. 

Further detail on the rule sets is given in [LAM 2009]. 

The experiments described in this paper make use of a 4-input logic block that is seen 

in many FPGA architectures such as the Xilinx Virtex-2 and Virtex-4 families [XILINX 

2007, XILINX 2008]. However, the use of the variable K to indicate the number of direct 

inputs to the logic block makes the approach applicable in situations where the number of 

inputs is different. There is an assumption in our work that the logic blocks will be 

accompanied by a fast carry propagation structure that is standard on all modern FPGAs.  

 

4.1 Critical Path Estimation  

Figure 9 shows the critical path delay estimation of a template that has been partitioned to 

clusters. Note that the critical path is the path with the maximum number of clusters from 

the input buffer to output buffer. The timing characteristics for the various logic and 

interconnect is also shown in Figure 9 with their default values, which are obtained 

empirically or from data sheets of the target device. In the example, the target device is 

Xilinx Virtex-4 xc4vlx40-10ff1148. In general, the critical path delay estimation model 

of a template is shown in Eq. (3), where m is the number of basic clusters in the critical 

path of the template (m = 3 in the example).  

 



Basic
Cluster 1

Basic
Cluster 2

Basic
Cluster 3

Basic
Cluster 4

tibuf : Delay of input buffer = 0.965 ns 

tibuf-lut : Net delay between input buffer and logic block 
= 0.585 ns

t : Delay of logic block

tlb-lb : Net delay between consecutive logic blocks = 
0.741 ns

tlb-obuf : Net delay between logic block and output buffer 
= 0.360 ns

tobuf : Delay of output buffer = 3.957 ns 

tlb-lb : Net delay between consecutive logic blocks = 
0.741 ns

t : Delay of logic block

t : Delay of logic block

 
 

Figure 9: Example of critical path delay estimation of template 
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The delay of a logic block i (i.e. i
lbt ) consists of two components, i.e. the delay of the 

LUT (i.e. i
lutt ) and the delay of the carry chain. The estimation model of i

lbt is shown in 

Eq. (4), where xi indicates the existence of an ADD operation in cluster i: 
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The parameters somuxcyt _ , ciomuxcyt _ and cioxorcyt _  correspond to the delay of the 

multiplexer and XOR components in the carry-chain structure with the following values 

(obtained from the data sheets): 0.366ns, 0.044ns and 0.360ns respectively. i
ccn  is the 

number of multiplexers in the carry-chain path (excluding the first and last one) and is 

assumed to be 30. The estimation model in Eq. (4) can be easily verified from Figure 10, 

which shows the delay path of an addition operation. 

 

 
Figure 10: Delay path of an addition operation 

 



The estimation model in Eq. (3) and Eq. (4) must be extended to take into 

consideration consecutive basic clusters with addition operations in the critical path. 

Figure 11 illustrates the delay path of two consecutive addition operations (where each 

adder is in a separate cluster). It can be observed that the carry chain delay of the second 

addition operation partially overlaps with the first and hence, should not be included in 

the estimation model.  

In order to take into account the partial overlapping carry chain delay of the second 

addition operation, the estimation model in Eq. (3) is modified as shown in Eq. (5), where 

the modified logic block delay consists of two components (i.e. i
lbt 1−  and i

lbt 2− ) as shown 

in Eq. (6) and Eq. (7). a denotes the number of adder groups, where each adder group 

consists of either one disjoint cluster with ADD operation or several consecutive clusters 

with ADD operations.  
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Figure 11: Delay path of two consecutive additions 

 

The estimation model for the logic block delay can be further extended to take into 

account the effective shift-right constant offset that occurs between two consecutive 

additions. In cases where the cluster consists of more than one shift operation preceding 

the ADD operation, the effective shift right offset must be computed. This can be 

calculated using existing bit-width analysis approaches such as that proposed in 

[MAHLKE].  
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Figure 12: Delay path of two consecutive additions with a right shift operation  

 
 

Figure 12 illustrates this scenario, whereby the first cluster consists of an ADD 

operation, while the second cluster consists of a shift-right-constant operation (by a factor 

of two) followed by an ADD operation. It can be observed that due to the shift operation, 

the full result of the first addition must be obtained and shifted to the right by two bits, 

before being fed to the second basic cluster. This incurs additional carry chain delay in 

the second cluster. In order to take into account the addition delay incurred by shift-right-

by-constant operations between two consecutive ADD operations, the estimation model 

for the logic block delay (tlb-2) in Eq. (7) is extended as shown in Eq. (8) to incorporate a 

new parameter (i.e. i
shrn ), which denotes the effective shift right constant offset of the 

basic cluster i. 
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4.2 Area Estimation  

The estimated number of logic blocks is equivalent to the number of selected clusters that 

are obtained after the cluster selection step. This estimation is undertaken with the 

assumption that the eventual hardware operators must cater to operands with the 

maximum bit-width. However, this may lead to high inaccuracies as commercial FPGA 

tools are capable of inferring the appropriate data-path widths of hardware operators, 

which processes operands that occupy a limited segment of the maximum bit-width. 

In this sub-section, we describe a more accurate method for estimating the area 

utilization of the custom instructions on FPGAs based on the cluster generation process. 

In particular, the proposed method is capable of inferring the appropriate data-path 

widths of clusters, by analyzing the logic shift offsets in the clusters. We consider two 

cases based on the shift-left-by-constant and shift-right-by-constant operations.  

In the first case, we consider shift-left-by-constant operations that occur before or 

after a logical or arithmetic operation in a basic cluster. Figure 13 shows two examples of 



this situation, where a shift left operation (by a constant factor of two) occurs after and 

before an ADD operation. It can be observed from Figure 13 that the delay path consist of 

only 30 logic blocks (we assume the maximum bit-width is 32) in both examples. In the 

first example, since the two Most Significant Bits (MSBs) of the addition result will be 

shifted out, the FPGA synthesis tool will recognize the redundancy in computing the 

addition for the two operand MSBs. Hence, only the last 30 bits of the operands will be 

computed. In the second example, since the operands are shifted left by two, only 30 

logic blocks will be required to compute the effective bit-width of the operands. 

Therefore, the number of required logic blocks of a cluster is equivalent to the maximum 

bit-width (i.e. 32) minus the effective left shift offset of the cluster. 

In the second case, we consider shift-right-by-constant operations that occur before a 

logical or arithmetic operation in a cluster. Figure 14 shows an example of this case 

where a shift right operation (by two) occurs before an ADD operation in a cluster. 

Similar to the discussion for the first case, since the operands are shifted right by two, 

only 30 logic blocks will be required to compute the effective bit-width of the operands. 

Therefore, the number of required logic blocks of a cluster is equivalent to the maximum 

bit-width (i.e. 32) minus the effective right shift offset of the cluster, when the right shift 

operation occurs before the logical or arithmetic operations in the cluster. 

 

 
Figure 13: Delay path of cluster with shift‐left‐by‐constant and addition 

 

 
Figure 14: Cluster with shift‐right‐by‐constant preceding an addition  

 
 

The area estimation model of a template (in terms of number of basic logic elements) 

is shown in Eq. (9), where k is the number of basic clusters. i
shn  denotes the effective 

shift offset of basic cluster i for the two cases described above. Note that the effective 

shift offsets must be calculated when the basic cluster has multiple shift-by-constant 



operations. This can be computed using existing bit-width analysis methods (e.g. 

[MAHLKE]). 

( )∑ −=
k

i

i
shtemplate nA 32    (9) 

 
4.3 Delay-Area Estimation Example 

The custom instruction in Figure 8 is used as an example to demonstrate the viability of 

the proposed delay-area estimation models. Figure 15 shows the critical path estimation 

of the custom instruction that has been partitioned into two clusters. Figure 16 shows the 

FPGA synthesis timing report of the custom instruction. The synthesis report clearly 

shows that the delay path of the custom instruction implementation on FPGA spans 

across two logic blocks, i.e. a 2-input LUT for the first logic block and a 4-input LUT for 

the second logic block. In addition, the delay of the second logic block comprises of the 

carry-chain delay. This is consistent with the results of the proposed clustering generation 

process. 

Based on Eq. (5), (6) and (8), the critical delay is estimated as 9.044ns (less than 1% 

estimation error). For area estimation, the effective shift offsets is 4 (we assume a 

constant offset of 2 for both the shift operations). Hence, the number of basic logic 

elements is estimated correctly as 60 ((32-4) + 32). 

 

 
Figure 15: Critical path delay estimation of example in Figure 8  

 



 
Figure 16: FPGA synthesis timing report 

 
 
5. EXPERIMENTAL RESULTS  

In this section, we will first introduce the target reconfigurable processor platform. 

Experimental results is presented to show the accuracy of the proposed area-time 

estimation technique which relies on the cluster generation process and delay-area 

estimation models discussed in Section 4.1 and 4.2. Next, we demonstrate how the cluster 

generation can be employed for multi-cycle custom instructions. We then reexamine the 

performance of the custom instruction selection approaches by using the proposed cluster 

generation technique on the same set of application benchmarks that were employed in 

Section 3.6. Finally, we perform experiments that take into account the area constraint of 

the FPGA to further reinforce the need for a fast and accurate FPGA estimation engine in 

design flows for custom instruction selection.  

 

5.1 Target Reconfigurable Processor Model 

The target reconfigurable model, which is shown in Figure 17, is a four-wide Very Long 

Instruction Word (VLIW) architecture that has been extended with an RFU for 

implementing multi-cycle custom instructions. The target model provides coupling logic 

between the integer unit and RFU. Hence, the RFU only facilitates custom instruction 



implementations of integer type operations. We assumed that the number of available 

input/output ports in the RFU is 5 and 2 respectively. 

 

 
Figure 17: Target reconfigurable processor model 

 

We assume that a multi-ported register file [RIXNER] is used to enable simultaneous 

accesses of the custom instruction to the register file. The number of read/write ports of 

the register file corresponds to the operand number of the custom instructions and hence, 

no communication latency will be introduced [CONG 2006]. The work in [SAGHIR] has 

demonstrated that low-latency multi-ported register file can be implemented using block 

RAMs that are available in high-density FPGAs.  

While the overhead of data transfer in tightly-coupled scheme does not pose a major 

bottleneck to the system performance and is often ignored during performance evaluation 

[BARAT], the delay of the multiplexer logic that is required to select the desired custom 

instruction result can significantly affect the system’s performance. As discussed in 

[LAM 2006], this logic increases with the number of custom instructions. Hence, the 



outputs of the custom instructions are multiplexed to meet the two output port constraint 

of the RFU. In particular, single output custom instructions are multiplexed to the 

primary output port of the RFU, and dual-output custom instructions are multiplexed to 

the primary and secondary output ports of the RFU. 

Table 2 shows the critical path delay of the custom instructions and the delay 

contributed by the output multiplexer in the critical path for all the applications 

considered. The results are based on custom instructions selected using the LFF method 

which produces large number of instructions (see Figure 6). It can be observed that the 

delay contribution of the multiplexer is very small for all the applications (average 

difference of less than 10%). Hence, the delay of the multiplexers is not likely to affect 

the achievable clock rate of the custom instructions.  

 
Table II. Critical path and multiplexer delay  

Application Critical path (ns) Multiplexer delay (ns) Difference (%) 
Adpcm Dec 10.64 1.46 13.72 
Adpcm Enc 10.20 0.97 9.46 
Aes 19.69 1.76 8.91 
Basicmath Large 6.79 0.56 8.18 
Bitcount 16.47 0.58 3.50 
Blowfish Dec 13.16 1.51 11.50 
Blowfish Enc 13.16 1.51 11.50 
Cjpeg 23.90 2.16 9.02 
CRC32 8.19 0.36 4.40 
Dijkstra Large 8.63 0.57 6.60 
FFT 10.26 1.51 14.75 
Patricia 11.61 3.74 32.24 
Pegwit 16.38 0.53 3.22 
Rijndael Dec 13.11 1.51 11.54 
Rijndael Enc 23.04 0.57 2.47 
Sha 11.47 0.97 8.42 

 

 
5.2 FPGA Estimation Results 

In this sub-section, we present experimental results to show the reliability of the proposed 

cluster generation process for FPGA estimation. Column 3/4 of Table 3 shows the 

average/maximum percentage error of the proposed critical path delay estimation 

technique with respect to the synthesis results of equivalent hand-crafted designs for 150 

custom instructions from sixteen benchmark applications. Only custom instructions that 

do not contain complex operations (e.g. multiplication, division, shift-by non-constant) 

are considered. These complex operations can be implemented using FPGA embedded IP 

cores. Xilinx ISE Version 11.2 is used as the synthesis engine to create implementations 

of the hand-crafted VHDL designs. A Xilinx Virtex-4 xc4vlx40-10ff1148, which 

incorporates logic blocks with 4-input LUTs is used as the experimental target.  



The proposed FPGA estimation technique executes cluster enumeration and cluster 

selection algorithms to generate the internal structure for each custom instruction using 

the estimation models shown in Eq. (5), Eq. (6) and Eq. (8). It can be observed that the 

proposed technique has an average/maximum percentage delay error of only 2.85% and 

about 11% respectively for the 150 custom instructions. In addition, except for Basicmath 

Large, the average percentage delay error for each application is within 4%. The absolute 

error of critical path estimation is less than 1ns. 

 
Table III. Average/maximum error of critical path delay and area estimation for 150 custom instructions 

Application 
Number of 

Custom 
Instructions 

Critical Path Delay 
(% Error) Area (% Error) 

Average Maximum Average Maximum 
Adpcm Dec 6 2.89 7.54 0.00 0.00 
Adpcm Enc 7 1.45 6.19 0.00 0.00 
Aes 27 3.30 11.08 0.54 5.93 
Basicmath 
Large 2 9.63 11.08 0.00 0.00 

Bitcount 4 3.13 2.30 0.00 0.00 
Blowfish Dec 8 2.20 3.52 0.27 2.13 
Blowfish Enc 8 2.20 3.52 0.27 2.13 
Cjpeg 29 1.71 11.08 0.44 3.23 
CRC32 1 1.00 2.08 0.00 0.00 
Dijkstra 
Large 5 1.45 7.08 1.65 4.92 

FFT 5 3.03 7.70 0.00 0.00 
Patricia 4 1.27 2.30 0.81 3.23 
Pegwit 14 2.29 11.08 0.79 3.33 
Rijndael Dec 12 3.56 11.08 0.18 2.13 
Rijndael Enc 11 3.44 8.18 0.19 2.13 
Sha 7 3.04 11.08 1.23 3.23 

 

Column 5/6 of Table 3 shows the average/maximum percentage area error in each of 

the benchmark applications. Area errors are calculated by comparing the logic block 

usage estimate of our proposed area estimation technique with the synthesis device 

utilization summary of the respective hand-crafted VHDL design. It can be observed that 

the proposed technique has an average and maximum percentage error of only 0.40% and 

less than 6% respectively for the 150 custom instructions. The maximum average 

percentage error of each application is within 2%. In addition, it can be seen that the 

proposed method can estimate the number of logic blocks without any error for several 

applications (e.g. Adpcm Dec, Adpcm Enc, Basicmath Large, Bitcount, CRC2 and FFT). 

These results demonstrate the reliability of the cluster generation process for high-level 

area estimation of custom instructions on FPGA. 

These results are very encouraging as the critical delay and area can be rapidly 

estimated using just information relating to primitive operations. Design conversion to 



VHDL and subsequent synthesis are not required. Cluster enumeration and selection 

become millisecond timescale operations using this approach which enables the use of 

this estimation technique in rapid design exploration during instruction set customization. 

 

5.3 Multi-Cycle Custom Instructions  

Multi-cycle custom instruction implementation is necessary to maintain a high clock rate 

especially for custom instructions with long critical path. The cluster generation process 

can be employed to partition custom instructions into multiple states in an architecture-

aware manner to provide for a high degree of estimation accuracy. 
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Figure 18: Multi-cycle custom instructions for data flow structures extracted from DFGs of a) JPEG Smooth 

Downsample, b) Auto Regression Filter, and c) Elliptic Wave Filter 
 

In this section, we evaluate the viability of the cluster generation technique for multi-

cycle custom instructions using three large data flow structures that have been extracted 

from [EXPRESS]. These data structures are part of DFGs obtained from real application 

functions i.e. JPEG Smooth Downsample, Auto Regression Filter and Elliptic Wave 

Filter. In order to investigate the effects of the number of arithmetic and logical 

operations on the estimation accuracy, we have randomly generated the operations based 



on four arithmetic-to-logical operation ratios for each data flow structure (i.e. 1:1, 1:2, 

1:3, 1:4).  

Figure 18 shows the results of cluster generation on the three data flow structures with 

arithmetic-to-logical operation ratio 1:1. In these examples, register states (represented by 

the bold lines) are inserted after each basic cluster. Connected operations are labeled with 

the same color if they belong to the same basic cluster. Based on the results of cluster 

generation, the register states are explicitly specified in the RTL codes. As such, the 

synthesis tool will produce custom instruction implementations with deterministic 

latencies. This enables the cluster generation process to accurately estimate the latencies 

of the multi-cycle custom instructions by determining the critical path with the largest 

number of state registers. 

Table IV shows the area estimation results for the multi-cycle custom instructions 

with randomly generated arithmetic-to-logical operation ratio (column 3). It can be 

observed that the average area estimation error is less than 7% for these large custom 

instruction data-paths. These results demonstrate the viability of the proposed cluster 

generation technique for generating multi-cycle custom instructions with high degree of 

estimation accuracy. 

 
 Table IV. Estimation results of large multi-cycle custom instructions 

Source 
Function 

Number of 
nodes/edges 

Operation 
Ratio 

Latency 
(Cycles) 

Area (Logic blocks) 

Actual Estimated Error 
(%) 

JPEG 
Smooth 

Downsample 
19/20 

1:1 5 313 288 7.99 
1:2 5 313 288 7.99 
1:3 4 286 256 10.49 
1:4 4 254 224 11.81 

Auto 
Regression 

Filter 
28/31 

1:1 7 607 576 5.11 
1:2 7 607 576 5.11 
1:3 7 543 512 5.71 
1:4 6 480 480 0.00 

Elliptic Wave 
Filter 34/48 

1:1 10 735 704 4.22 
1:2 9 671 640 4.62 
1:3 8 512 544 6.25 
1:4 8 512 544 6.25 

 
 

5.4 Speedup Evaluation with Hardware Estimation  

The experimental results in Section 3.6 reveal that RLFF can rapidly select custom 

instructions with highest performance (in terms of number of nodes covered). However, 

the number of nodes covered (or number of operations in the ISA that can be mapped to 

hardware) does not provide a realistic measure of the effective performance gain that can 



be achieved by the custom instructions. This is due to the fact that the hardware latencies 

of the custom instructions have not been taken into consideration.  

We now reexamine the performance of the custom instruction selection approaches by 

using the proposed cluster generation technique to estimate the custom instruction 

latencies on FPGAs. The performance of an application with custom instruction 

extension for application A can be calculated in terms of SCS (Software Cycle Savings) 

as shown in Eq. (10). SCS(A) is defined as the number of software clock cycle savings 

due to the migration of the native instructions of the processor to hardware for application 

A. In Eq. (10), Gi for i = 1,2, ..., n is a custom instruction, where n is the total number of 

custom instructions obtained from template selection for application A, F(Gi) is the 

execution frequency of instruction Gi in application A, TS(Gi) denotes the number of 

nodes covered in instruction Gi using the template selection methods discussed in the 

previous chapter, and r is the ratio of the clock frequency of the RFU and the base 

processor (r is chosen based on the area-optimized configuration of the soft-core 

processor in [MATTSON]). Ttemplate(Gi), which is the estimated critical path delay of Gi is 

b, which is the multi-cycle latency of Gi.  

( ) ( ) ( )( )itemplatei
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We compare the speedup obtained from the various template selection heuristics with 

ILP, where the objective function is formulated to maximize SCS(A). In particular, the 

ILP objective function in Eq. (1) is modified to include the estimated latency of the 

instances as shown in Eq. (11) under the non-overlapping constraint in Eq. (2). 
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Figure 19 shows the percentage speedup of the estimated performance calculated 

using SCS with respect to the performance of the baseline processor that is obtained from 

Trimaran's simulator.  The result for the ILP approach is obtained after 15 minutes of 

runtime. Contrary to the results in Figure 7, where the RLFF approach performs 

favorably across all the applications considered, the results in Figure 19 which 

incorporate FPGA estimation, shows that RLFF has the worst performance in the 

following applications: AES, Blowfish Dec, Blowfish Enc, Rijndael Dec, Rijndael Enc 

and Sha. In addition, the ILP approach is unable to produce better results than the LFF 

method in several applications in the given time. These results clearly demonstrate the 

importance of an accurate and rapid estimation technique for template selection. 
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Figure 19: Percentage speedup  

 
 

5.5 Speedup Evaluation with Area Constraint 

In this section, we evaluate the performance of the MFF, MLFF, LFF and RLFF 

approaches by taking into consideration the FPGA area constraint. This is achieved by 

employing a greedy algorithm that solves the well-known 0-1 knapsack problem 

[PISINGER] to select a set of profitable custom instructions that meets the area 

constraints for each application. The greedy algorithm aims to choose a set of custom 

instructions (from MFF, MLFF, LFF and RLFF) to maximize the SCS while ensuring that 

the total area utilization of the custom instructions does not exceed the resource 

constraint. We have used the proposed area estimation technique to predict the total area 

utilization of the custom instructions. We have also extended the ILP formulation in Eq. 

(11) and Eq. (2) to take into consideration the estimated area of template instances and 

the area constraint R as shown in Eq. (12). This ILP formulation has been presented in 

[Yu]. 
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Figure 20 shows the experimental results, where the x-axes denote the range of area 

constraints (in terms of number of basic clusters) for each application. We have not 

shown the results for applications where the template selection approaches do not exhibit 

any variations. Results for Blowfish/Rijndael Enc are the same as that for 

Blowfish/Rijndael Dec, and hence are also not shown.  

It can be observed that in general, the performance increases for all the template 

selection approaches when the area constraint is relaxed. This is reasonable as more 

custom instructions can be implemented when the available FPGA resources increase. 

We can also observe that the MFF and MLFF approaches lead to better performance in 

many cases when the area constraint is tight. This is attributed to the fact that custom 

instructions selected using the MFF and MLFF approach are usually small (Figure 7) and 

hence they can better utilize a restricted FPGA space. As the area constraint is relaxed, 

template selection approaches e.g. LFF, RLFF and ILP, which produces large custom 

instructions, become more favorable. 

It is noteworthy that the point at which one template selection approach becomes 

more favorable than another cannot be effectively determined without the knowledge of 

the hardware area utilization of the custom instructions. In addition, the RLFF method 

(which has been shown in Section 3.6 to be able to select custom instructions with largest 

number of operations) consistently underperforms under varying area constraints 

compared to most of the other template selection approaches for AES, Rijndael Dec and 

Rijndael Enc. The ILP approach, which typically takes hours to complete for each 

application (restricted to 15 minutes runtime for each design point) consistently 

underperforms particularly when the area constraint is tight when compared to the other 

template selection approaches that can execute in the order of seconds. 

These experiments clearly show the need for an accurate delay-area estimation 

technique to facilitate fast design space exploration for custom instruction selection. 
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Figure 20: Percentage speedup with area constraint 

 

6. CONCLUSION 

We have proposed a novel cluster generation strategy that partitions the custom 

instructions into a set of clusters such that the clusters can be efficiently mapped onto the 

LUT and carry-look-ahead structure of the FPGA logic blocks. We presented delay 



estimation models, which take into account the anomalies incurred by consecutive 

addition operations and shift right operations to accurately estimate the critical path of the 

basic clusters. Experimental results show that the average estimated critical paths of 150 

custom instructions from sixteen applications using the proposed method are within 3% 

of those obtained using hardware synthesis. The short execution time of this estimation 

process in comparison to a full hardware synthesis makes is particularly attractive. The 

inclusion of strategies to account for logic shift offsets in basic clusters permits accurate 

estimation of the area utilization of the custom instructions on FPGA.  

In order to demonstrate the benefits of the proposed FPGA estimation technique for 

template selection, we devised an efficient strategy for the rapid selection of high 

performance custom instructions for reconfigurable processors based on the graph 

covering approach. The RLFF selection strategy is based on our findings that over 77% 

of the template instances are high frequency basic templates that are incorporated into 

larger templates. The RLFF approach has been shown to benefit from cases in which 

overlapping templates could be re-introduced to maximize performance. Comparisons 

with widely used approximate strategies such as MFF, MLFF and ILP show that the 

RLFF select custom instructions that covers the most number of nodes for the 

applications considered.  

When the performance of the template selection approaches are re-examined using the 

proposed cluster generation technique, the new experimental results reveal that RLFF 

performs less favorably than the other approaches for certain applications. This is due to 

the fact that the templates selected using RLFF incur hardware latencies that are under-

compensated by the number of clock cycle savings. This clearly demonstrates the 

necessity and effectiveness of the proposed delay estimation technique for template 

selection. Finally, the proposed estimation technique can be incorporated in the template 

selection process in order to select FPGA efficient custom instructions. 
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