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ABSTRACT 

This paper sows the application of inverse modelling 

to eight real dwellings in the city of Exeter, UK. The 

modelling has been centred on the heating system of 

the house but the envelope has also been included in 

some of the models. 

The results show that finding one model topology 

that would work for all houses is rather difficult. 

Instead, it has been seen that the fitting is highly case 

dependent. We have evaluated the functionality of 

the models by calculating gas use from internal, 

radiator and external temperature in one of the 

houses and for one of the models the error of this 

estimation was less than +/-3% although the model 

failed the statistical tests on the residuals. The results 

show that inverse modelling can be a powerful tool 

and seems to be of great value for researchers and 

professionals. 

INTRODUCTION 

Buildings are responsible for close to 40% of 

greenhouse gas emissions in developed countries 

(Pérez-Lombard, Ortiz et al. 2008) and there is a 

scientific consensus that anthropogenic greenhouse 

gases have triggered a change in the climate (IPCC 

2014). However, it is known that a substantial 

reduction in energy use is possible from the built 

environment (Boardman 2007). 

This research is part of the work carried out to 

investigate how much energy could be saved through 

the improvement of energy literacy of occupants. The 

project is called ENLITEN. The core of this larger 

study is the development of an electronic energy 

advisor that would provide individualised educational 

feedback to households aimed to reducing energy 

use.  

To provide this personalised feedback, a novel 

approach has been adopted that consists on making 

the energy electronic advisor aware of the 

thermodynamic behaviour of the building. This is 

done through inverse modelling, a technique that 

uses logged data from the building to automatically 

assemble a thermal model able of capturing its 

dynamics (ASHRAE 2009).  

Inverse modelling has been used in the past (Coley 

and Penman 1992) and it offers an alternative to 

direct modelling. In inverse modelling, the models 

are accurate to the real building by definition but do 

not allow doing forecasting of energy use in 

buildings to be built. This accuracy can be exploited 

if the inverse modelling technique is used by an 

intelligent controller of the conditioning system, 

perform forecasting of as diagnosis tool for 

evaluating the similarity of the final building with 

that on the design board. 

Other examples of inverse modelling or regression 

modelling are (Bacher and Madsen 2011) or (Tornøe, 

Jacobsen et al. 2004) for a general text on the topic 

see (Hamilton 1994). 

The work shown in this paper is an attempt to find a 

lumped parameter of the building starting from the 

heating system working all the way to the outside 

envelop. Real data from dwellings have been used to 

perform this work. The buildings were not “test-

buildings” but occupied functioning homes. With this 

work it has been evaluated the strengths of this 

method for “real-world” problems as the works found 

in the literature correspond in many cases to 

experimental set ups. 

METHODOLOGY 

The aim of this paper is to find ideal topologies of 

simple models to represent heating systems in 

dwellings. For that we have considered the gas use, 

the internal temperature and the external temperature 

as inputs and we have looked for the model that best 

generate the radiator temperature measured in the 

houses using as inputs the internal temeprature, the 

external temperature and the gas use. This is a 

methodology called grey-box modelling that belongs 

to the family of data-driven models. In the following 

we describe the main components of the 

methodology use for this study.  

Data and buildings under study 

For the work presented here, we have selected 8 

buildings in the city of Exeter that are part of the set 

of houses studied in the ENLITEN project. 

Information and nomenclature of these houses can be 

found in Table 1. 

Table 1 

Houses used for the study and data length 

 

HOUSE 

NAME 

ID BOILER LENGTH OF 

DATA [DAYS] 

A 59 unknown 9 

B 65 unknown 5 

C 84 unknown 13 

D 86 Glow warm  2 

E 100 unknown 8 

F 115 unknown 39 

G 124 Saunier  22 

 



For ENLITEN, each house has been monitored with 

environmental sensors and utility sensors. For this 

project, a minimal sensor set was developed and 

designed on a Raspberry Pi hardware platform. Each 

house have three of these sensor sets and an extra 

temperature sensor that measures the temperature of 

one radiator at the inlet pipe (the radiator selected for 

measuring temperature was the bypass radiator). 

Although for the work in this paper only 

temperatures and gas were used, the ENLITEN 

sensor set includes temperature, relative humidity, 

motion sensing and light levels. This sensors report 

every 5 minutes when there is a substantial change 

compared to the value from the last time step (0.06
o
C 

for temperature). 

The temperature sensors were calibrated using an 

environmental chamber and showed an accuracy of 

0.3
o
C. 

For the gas use, the commercial hardware developed 

by NAVETAS was used. As NAVETAS does not 

provide an API to access to the data over the internet 

automatically, the data from every house was 

downloaded manually from the internet. Because of 

this rather ad-hoc method of acquiring the data, the 

sampling period was 20 minutes, but the values at 

those points where not instantaneous figures but 

averaged values for the given period. 

Also for the propose of data collection in the 

ENLITEN project, we have been recording external 

conditions in the city of Exeter via two streams: data 

acquisition by means of web scrapping of weather 

stations from the Met Office; and data from a 

weather station mounted on the roof of one of the 

buildings of the ENLITEN set. The sampling period 

of the weather data from the web-scrapping tool is 5 

minutes and from the weather station is 15 minutes.  

As the time series representing the heating power 

(gas) is measured every 20 minutes, we decided to 

down sample any other variable to this sampling rate. 

The signals were first smoothed with a spam of four 

(20/5) and then resampled with the new period. 

The houses selected for the study were those in 

which the quality of the data was best. However, 

some minor gaps were found in some cases (never 

exceeding large periods), and these were filled using 

lineal interpolation for those smaller than 3 hours and 

spectral reconstruction for those larger than 3 hours. 

More about how we found the best way of filling the 

gaps depending on the series and the gap length can 

be found on the paper submitted to this conference 

called: “New Method to Reconstruct Building 

Environmental Data”. 

As an example, the data used for house A can be seen 

in Figure 1. 

Models 

In this paper, we propose an inverse modelling 

technique to characterise the system formed by a 

dwelling and its heating system.  

The methodology used consists on grey-box 

modelling. Grey-box modelling is a term normally 

used to characterised data driven modelling using 

basic physical principles. With this approach, the 

modeller selects a basic model that is likely to be 

able to capture the dynamics of the phenomenon at 

hand and, with that model and using the data of the 

real world finds the parameters that make model fit 

the data more precisely. 

 

Figure 1 Data used for House A. Top graph shows 

the radiator temperature in blue, the inside 

temperature in red and the outside temperature in 

green. The lower graph shows the gas power. The 

values below the blue horizontal line has been 

considered to be for domestic hot water and have 

been eliminated. 

 

The models used in these cases are the so-called 

Lumped Parameter Models (LPMs). These are 

normally represented with a resistor-capacitor 

network and they represent linear state-space systems 

and/or linear sets of differential equations. 

In the work that we present here, we have evaluated 

what LPM topology represents the heating system of 

a dwelling consisting on a boiler and a network of 

radiators. This is a common heating system used in 

the United Kingdom and other parts of the world 

with temperate and cold climates (CLG 2007) 

The application of inverse modelling to characterise 

LPMs has been used before to model the thermos-

dynamics of buildings. One of the pioneers in this 

technique were Coley and Penman (Coley and 

Penman 1992). In this paper, Coley and Penman 

characterised the dynamics of a building using grey 

box modelling. 

More works can be found in the literature about the 

use of LPMs for representing the heat dynamics on 

building specially when considering the building 

envelope (see for example (Ramallo-González, 

Eames et al. 2013), (Ramallo-González and Coley 

2014), (Gouda, Danaher et al. 2000) or (Fraisse, 

Viardot et al. 2002). 



To make use of the models the set of outputs and 

inputs have to be defined together with the topology 

of the system.  

The most common mathematical representation of 

lumped parameter models is the state-space 

representation. The general form for time-invariant 

models can be written as shown on Equation 1. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)   

(1) 

where x is a vector with the states of the model, in 

our case the temperatures in different nodes of the 

model, A is a characteristic matrix of the model, B 

defines the effect of the inputs in the model, and u 

are the inputs, in our case the gas, the internal 

temperature and, in some cases, the external 

temperature. In this formulation y represents the 

variables that are measured, in our case therefore C is 

a matrix of zeros with a 1 corresponding to the node 

of the radiator temperature. D  is zero in all cases for 

this work. 

Using this formulation, every time that a solution had 

to be evaluated the MATLAB built in function lsim 

was used. 

In the work presented here, we have used seven 

different models. Among those, we have included 

three models that include a switch that change one of 

the components of the system for a given condition. 

The motivation of this is explained in the following. 

The models used are outlined in Table 2, and shown 

in the Appendix. 

Dual-mode models 

The key for successful grey-box modelling is making 

sure that the topologies of the models evaluated are 

able to capture the main features of the system and 

therefore fitting the parameters will result on a 

realistic model.  

A heating system with a boiler and a network of 

radiators (normally called central heating) works in 

the following way: The boiler burns gas to heat up 

water that either circulates through the radiator 

network or goes through a heat exchanger, which 

heats a secondary cycle that then goes through the 

radiators. 

Table 2 

Models used for this study 

NAME ID PAR. ORD. SWITCH 

1R 1 1 0 No 

1R1C 2 2 1 No 

2R1CTout 3 3 1 No 

2R2C 4 4 2 No 

3R2CTout 5 5 2 No 

1R1CNL 6 3 1 Yes 

3R1CNLTout 7 5 1 Yes 

4R2CNLTout 8 7 2 Yes 

 

The interesting fact about this is the pump that 

circulates the water through the radiators. Before the 

boiler starts burning the gas, the pump starts the flow 

of water, once the boiler stops burning water, the 

pump stops. 

One could believe that the heat exchange between the 

water of the heating system and the interior of the 

building will change depending on the state of the 

pump, if it is on (there is water going through the 

radiator) or off (the water is still in the network). 

Although this may be considered a non-linearity of 

the system, we have adopted a simple way of 

modelling. This is that one of the components of the 

model (the thermal resistance between radiator and 

the internal air) takes two values and the system 

switches from one to the other while the rest of the 

elements of the model stay the same. The models can 

be seen in the Annex. 

It is obvious that for simulating this model we needed 

to know the operation of the pump. It was not 

possible to access to this data on-site. Instead, we 

have used a threshold in the gas use: when the value 

of the gas power was larger than 15% of the 

maximum value, we considered that the pump was in 

operation. We selected the value of 15% after 

observation of the data. We have seen that values 

below that are the result of narrow spikes that 

represent hot water use. If the boiler turns on for 5 

minutes, because the data is being averaged before 

reporting, that will appear as a short peak in gas use 

(see lower subplot of Figure 1). 

The pump has to get in operation before the boiler 

starts burning gas to avoid malfunctioning, for that 

reason we have also considered in all cases that the 

pump started functioning one-step ahead of the gas. 

Optimisation 

To find the parameters that make the LPM produce 

the radiator temperature that is most similar to the 

series meassured in the actual building an 

optimisation of the model parameters had to be done.  

The optimisation consists on a search of values of the 

parameters of the LPM that make the fit best. The 

goodness of the fit is therefore the objective function. 

In some cases, maximun likelihood is used as a 

measure of the fit. This method is common among 

statistitians; however, its implementation is complex 

and the computational time of evaluation of the 

objective function are long. For our case, we have 

used a more simple assessment method consisting on 

the sum of squares of the residuals. This method was 

used with good results by (Coley and Penman 1992) 

among others. 

The decision space when looking for the values of 

the parameters of the LPM is unknown. In each 

optimisation, the values of the parameters are 

searched, but also a potential lag between the gas 

time series and the temperature time series. This has 



been included in the calculations as the data for these 

two series comes from different databases.  

Apart from the most simple case like the 1R or the 

1R1C models, it is very difficult to anticipate the 

characteristics of the decision space. It is therefore 

very risky to assume that it will be a single-modal, 

purely-convex decision space. If this was the case, 

and the objective function had a single local optima, 

then any search method would be valid, and a quasi-

newton method would be the most efficient way of 

looking for the optimal set of parameters. However, 

if the decision space is not convex this would lead to 

the stagnation of the optimisation on a local minima 

and therefore a missleading representation of the 

model. 

To ensure that our methodology had a broad “vision” 

of the decision space, we have used a Genetic 

Algorithm (GA) with a population of 20 

indidividuals. 

It is known that GAs are robust function optimisers 

that perform well even in multimodal functions, but 

that find near-optimal solutions (Goldberg 1989).  

The optimisation we used was more time consuming 

than other single-evaluated methods that we tested. 

However, in oposition to those, the GA seemed much 

more robust without the need of giving an initial 

search point even using broad ranges for the values. 

Other methods showed to be very sensitive to the 

starting point of the search, forcing the operator to 

perform several trials before finding the right initial 

point. We think this is disadvantageous for this kind 

of methodologies which largest potential in 

automatic control systems. 

Framework 

To carry out the work presented in this paper we 

have developed a framework on Matlab that allow us 

to evaluate the different LPMs as potential models of 

the heating system in each house. 

Each house was studied individually, using the 

models that were shown in Table 1. 

As mentioned before, the square root of the sum of 

residuals divided by the number of data points was 

used as the objective function for the optimisation 

and therefor assessment of the fit. 

For the data from each house, each one of the models 

was estimated running the optimisation previously 

described. As a result, a value of the objective 

function was obtained for each house and each 

model, and an estimate of the radiator temperature. 

With the estimate of the radiator temperature, the 

residuals were calculated and analysed statistically. 

The R square value was calculated using the so-

called summed square of residuals (SSE) and the sum 

of squares about the mean. See equations 1, 2 and 3. 

SSE = ∑wi (yi – ŷi)
2
  (1) 

SST = ∑wi (yi – ȳ i)
2
  (2) 

R
2
 = 1- SSE/SST (3) 

Where the summations are done from i=1 to i=L, 

with L the number of data points; wi are weighting 

factors that we have taken as 1 for all i. The series yi 

is the real radiator temperature, ŷi is the estimated 

radiator temperature and ȳ i is the mean of the series 

of the real radiator temperature.  

With this, we evaluate the proportion of the variance 

that is being represented by the estimate i.e. an R
2
 

value of 0.78 means that 78% of the variance of the 

signal is being generated with the model. 

To ensure that the comparison between models is 

appropriate, we have also calculated the adjusted R
2
. 

This value is calculated using the degrees of freedom 

of each model (p) and the number of data points for 

each case. The calculation of (adj)R
2
 can be seen in 

Equation 4. 

(adj)R
2
 = 1 – (1 – R

2
)*(n-1)/(n-p-1)  (4) 

More statistical analysis was done studying the fit of 

the models but we have not included them in this 

paper for the sake of brevity. Among this was the 

study of the autocorrelation function of the residuals 

and the partial autocorrelation function.  

Figure 2 shows an example of fit between the 

temperature of the radiator and the output of the LPM 

(in this case the 2R1CTout). For this specific 

example, the fit gives a value according to Equation 

4 of 0.759. 

 

Figure 2 Example of fit for House A and model 

2R1CTout. The fit between the real radiator 

temperature and the simulated using the LPM has an 

adjR
2
 of 0.759. 

 

After analysing the results, we decided to use the 

cumulative periodogram as an indicator of the 

goodness of the fit in terms of how the model 

captures the dynamics of the problem.  

The cumulative periodogram is a derived graph that 

is calculated using the values of the periodogram. 

The periodogram shows the frequencies found on the 

residuals. If the model is fitted perfectly, one expect 



to find not significant peaks in the periodogram, 

peaks in the periodogram imply that there exist 

certain periodicity on the residuals. Instead, a signal 

which dynamics have been totally captured by a 

model is expected to have white noise as residuals 

and therefore the spectrum of frequencies would be 

white noise. The cumulative periodogram of such 

residuals is close to a straight line. 

RESULTS 

The data from the seven houses of the study was used 

to find the right topology to represent the heat 

dynamics of their heating systems.  

This was done using the framework that has been 

previously described. The computational times 

depended highly on the type of model used in each 

one of the estimations. However, the optimisation for 

the eight of them took approximately one hour on a 

desktop machine with 3GHz processor speed (32bits) 

and 4Gb of run single threaded. 

Most of this time is used for the calculation of the 

dual-mode models. This is because the way the 

models were solved was with the built-in function of 

Matlab lsim, this function calculated the exponential 

of the matrix of the model, this is a rather 

computationally expensive task, and needs to be done 

every time the system changes from one mode to 

another. This computational time could be reduced 

by hard coding the simulation of the models so the 

exponential of the matrix of the model could be 

reused. 

The results of the estimations have been shown in 

Figure 3 and 4.  

 

Figures 3 Minimum objective value found per house 

and model. 

 

 

Figures 4 Adjusted R
2 
for the fit of each house and 

model. 

 

In addition to these statistical values, we have also 

shown the cumulative periodogram of each house 

with a curve corresponding to each of the models. 

With this, we attempt to show how well each model 

captures the dynamics of the problem for each 

specific house. The cumulative periodograms are 

shown in Figures from 5 to 12. 

It should be noted that for some of the houses the 

data was incomplete in terms of the temperature of 

the radiator. Those gaps were present on house C, D, 

F and G. On those cases the data should be read with 

care, as the statistical estimators are calculated using 

the largest segment found in the data with no gaps. 

Figures 3 and 4 show the objective value and the 

goodness of the fit with the values of the adjusted R 

square. It can be seen that this values change 

substantially depending on the house being under 

study. In addition, the change on the minimum 

objective value found does not change largely from 

one model to the next and would be challenging to 

considerate a model being better than another just by 

looking at this value. The adjusted R square however, 

differ substantially more between models in some 

buildings allowing therefore to find a compromise 

between complexity of the model and how well it fits 

the data. In House A for example, one can see that 

using a model more complex than the 2R1CTout 

makes little sense, as the improvement if any would 

be relatively small in terms of the fitting. 

When looking at the periodograms one may also see 

that, the model topology that needs to be used 

depends highly on the house being studied. This is 

true to the point that some of the models that were 

capable to model the heating systems for one house 

were not able to do it for another with the same 

accuracy. See for example model 3R2CTout 

capturing all dynamics of the system for House B but 

no for house A. 
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Figures 5-11 

Cumulative periodograms of the residuals of the fit 

for the seven houses and the eight models 

 

To evaluate the functionality of the models an extra 

test was done with the models estimated in this work.  

With the same method as explained before, the 

models were searched using only half of the data 

available and the other half was used to generate the 

gas use using internal temperature external 

temperature and radiator temperature. This is an 

example on how inverse modelling can be used in 

real research going beyond the mere academic 

exercise.  

As some of the data was incomplete, it was not 

possible to do this test with all the houses and all the 

models.  

Table 10 shows that the errors found when 

calculating the gas using the LPM can be very low. 

In addition, it shows that the fact that the residuals of 

the model are correlated (the periodogram does not 

show a good fit) does not necessarily mean that the 

model is bad, as we have seen that the models used 

for House A show a substantial correlation, but yet, 

the prediction of gas using them is considerably 

accurate. This seems to point to the fact that the R
2
 

on its own may be sufficient to evaluate this kind of 
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models (the reader should not that the R
2
 of the 

models for house A are the largest.  

Table 3 

Errors when calculating gas consumption using the 

LPMs. Note: the values for house A models 4 and 5 

are average values over 8 runs the std’s are 5.5% 

and 0.68% respectively.  

Model 1R 1R1C 
2R1C

Tout 
2R2C 

3R2C

Tout 

ID 1 2 3 4 5 

A -19% -7.1% -16% 3.1% -0.1% 

B Not enough data 

C -98% -25% -28% 
No 

data 

No 

data 

D -30% -23% -27% 
No 

data 

No 

data 

E -48% -33% -29% -28% -25% 

F -36% -19% -28% 
No 

data 

No 

data 

G 46% 50% -12% 
No 

data 

No 

data 

CONCLUSIONS 

This paper shows a study on model topologies for the 

inverse modelling of heating systems in dwellings. 

The study has used Lumped Parameter Models that 

were physically meaningful, including a dual-mode 

LPM. Approach that has not been used in the past.  

The work shown in this paper suggest that 

identifying the right topology of a model that would 

represent a complex system in the real world is 

challenging and difficult to generalise. 

It was found in this work that the heating system 

could be modelled with a rather low-order model; 

however, this model will not always seem to be able 

to fit the data. Actually, in some cases, we were not 

able to identify one that would. 

The model with one capacitor and two resistors that 

includes the internal temperature of the house and the 

outside temperature as inputs seem to give good 

estimations for almost all cases. However, we have 

seen that the dual-mode models are in general more 

advantageous but come with a rather longer 

computational time. 

We have also seen with this work, that although one 

not may eliminate the correlation of residuals when 

performing an exhaustive statistical analysis, it is 

possible to find models that would fit the data 

accurately when inspected it by the “naked eye”. Not 

only that, we have seen that this lower order models 

even when they do not seem to eliminate completely 

the dynamics of the residuals they can be used to 

calculate gas use using the other variables with good 

accuracy. 

Overall, we consider that inverse model of heating 

systems is a very powerful tool and very useful for 

building modeller specially as a diagnosis tool or for 

data analysis but the fact that each house may have a 

very different behaviour and it is difficult to 

generalised about model topologies in the real world. 

NOMENCLATURE 

SSE = summed square of residuals 

SST =  sum of squares about the mean 

R
2
 =  R square 

(adj)R
2
 =  R square 

yi = measured series 

ŷi = estimated series 

ȳ i = mean of the series 

wi = weighting factors 
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APPENDIX MODELS 

 
Figure A1 1R 

 
Figure A2 1R1C 

 
Figure A3 2R1CTout 

 

 
Figure A4 2R2C 

 
Figure A5 3R2CTout 

 
Figure A6 1R1CNL 

 
Figure A7 3R1CNLTout 

 
Figure A8 4R2CNLTout 

 



 
Figure A9 Legend 

 

 

 

 


