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Mode Switching in Causally Dynamic Hybrid Bond Graphs 
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1School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK 
2Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 

7AY, UK. 

 

Abstract: The Causally Dynamic Hybrid Bond Graph is extended to the case of mode-

switching behaviour. Mode-switching ‘trees’ of switches and elements are historically used 

by bond graph practitioners to represent elements with piecewise-continuous functions. This 

case is defined as ‘parametric switching’ for the purposes of the hybrid bond graph, since the 

switching is internal to the element, as opposed to ‘structural switching’ which alters the 

model structure. This mode-switching ‘tree’ is concatenated into a new controlled element 

which features Boolean switching parameters in the constitutive equation, removing 

unnecessary complexity from the model. Mixed-Boolean state equations can be derived from 

the model, which are nonlinear and/or time-varying (and hence not in the familiar Linear 

Time Invariant Form). It can be seen that controlled elements often have a static causality 

assignment and leave the model structure unchanged. The result is a concise method for 

representing nonlinear behaviour as a piecewise-continuous function in the bond graph 

modelling framework. 

 

Keywords: Physical System Models, Hybrid Bond Graph, Switched Bond Graph, Mode-

switching, Parametric switching. 

1. INTRODUCTION 

 

This paper† is a continuation of the method for construction and analysis of causally dynamic 

hybrid bond graphs proposed by the authors [2]. The previous paper suggests the terms 

‘structural discontinuities’ and ‘parametric discontinuities’ for classifying discontinuous 
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† This paper appears in a preliminary form in the thesis 1. Margetts R. Modelling and Analysis of Hybrid 
Dynamic Systems using a Bond Graph Approach. University of Bath, 2013. 
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behaviour in engineering systems, and established controlled junctions for modelling 

structural discontinuities. In addition, a dynamic sequential causality assignment procedure 

(DSCAP) was described, yielding mixed-Boolean state equations. This paper completes the 

method by looking at parametric discontinuities. 

 

The significant body of work on switched and hybrid bond graphs has already been 

summarised by the authors [1 2], and references numerous proposals such as the use of petri-

nets to select continuous bond graph models [3] and various controlled/switching elements. 

The authors argue that existing methods are best suited to either qualitative analysis or 

simulation, but rarely both: the causally dynamic controlled junction offers a method which 

reflects the physics of the system, allows graphical inspection and can generate mixed-

Boolean equations for simulation. 

 

Parametric discontinuities are the case where an element ‘switches’ between different 

constitutive equations. This typically occurs in as mode-switching systems where an 

element’s behaviour changes so rapidly with time (an order of magnitude faster than the 

overall time-scale [4]) that it can be considered as an instantaneous transition between 

continuous modes.  The system could be modelled as a purely continuous system and solved 

using a specialist stiff solver, but this approach still gives slow simulation times and is not 

feasible for real-time applications such as HiL testing. Mode-switching systems include ‘hard 

nonlinearities,’ where there are distinct modes of operation (e.g. stiction / friction). 

Alternatively, they can occur where some relationship (gained via empirical data or a high-

order function) is best described using a piecewise continuous function, such as tyre stiffness.  

 

Just as a structural discontinuity is expected to manifest in the model structure and affect 

structural properties of the system, a parametric discontinuity is not. As the behaviour of an 

element changes with time, there is no structural change to the physical system: nothing is 

connected or disconnected. Therefore, a physical element with discontinuously changing 

behaviour should be represented by a modelling element with internalised switching.  

 

Mode switching is usually modelled as a collection of continuous modes of operation, 

controlled by an automaton, petri-net or similar. Within the bond graph framework, mode 

switching is typically modelled by a ‘tree’ of ideal switches and standard elements with 

continuous constitutive equations. Each element gives the equation for a specific mode of 



3 

operation, and the ideal switches (de)activate it as required. Naturally, only one ideal switch 

can be ON at any time during a simulation. Soderman [5] and Strömberg [6] formulate mode 

switching ‘trees’ of switched sources, and Mosterman and Biswas [4]  present a multi-bond 

controlled junction selecting a continuous bond graph element from a number of possibilities.   

Mode switching has a conceptual advantage in that it aids the development of finite state 

automata for simulation. However, the ‘tree’ notation means a model can rapidly grow to a 

vast size with multiple inputs and outputs for all possible modes of operation. This makes it 

unsuitable for structural analysis and equation generation purposes. The multi-bond notation 

suggested by Mosterman and Biswas goes some way to controlling this, but is a little 

confusing because multibond notation is typically used for multiple degrees of freedom in a 

model. Their idea is used as a basis for the controlled element defined here. 

Hence, a mode-switching tree is used to define a controlled element with a mixed-Boolean 

constitutive equation. This simplifies structural analysis of the bond graph and associated 

mathematical model, whilst retaining the rigor of the ‘tree’ notation.  

 

2. THE CONTROLLED ELEMENT FOR PARAMETRIC DISCONTINUITIES  

 

This section proposes a new controlled element for the modelling of parametric switching. 

They should not be confused with the existing switched element, which has an on/off 

behaviour [7].  

Consider an element with a piecewise-continuous constitutive function. A mode-switching 

tree can be constructed using the controlled junctions with associated Boolean terms (as used 

for structural switching), as shown in Figure 1. Note that a resistance element is shown, but 

the principle holds true for inertia and compliance elements. 
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a) A ‘Tree’ of X0-Junctions b) A ‘Tree’ of X1-Junctions 

Figure 1: Bond Graph ‘Trees’ for a Piecewise Linear Resistance Element, Assuming 

Three Modes of Operation. 

 

In this tree, controlled junctions (de)activate the modes of operation, which are given by 

resistance elements on each branch. These ‘branches’ are then connected by a regular 

junction which sums the output values. 

• In Figure 1a) efforts are summed about a 1-junction: these efforts are the effort 

exerted by the resistance when a junction is ON plus the zero efforts exerted by the 

X0-junctions when they are OFF.  

• In Figure 1b), it is flows which are summed around a zero junction: these flows are 

the flow exerted by the resistance when a junction is ON plus the zero flows exerted 

by the X1-junctions when they are OFF. 

 

In a bond graph tree it is important to note that the controlled junctions are constrained so that 

only one may be ON at any time.  

 

In order to condense the ‘tree’ into a single controlled element, consider the underlying 

equations. Quantities are shown on the causal bond graph in Figure 2. The Boolean 

parameters associated with the controlled junctions are denoted µ. A reference configuration 

of µ1 = 1, µ2 = 0, µ3 = 0 is arbitrarily assumed. Note that dynamic causality is internal to the 

tree: there is static causality on the resistance elements and the input bond. 
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Figure 2: The Piecewise Linear Resistance Element Subsystem, showing quantities used 

in Equation Generation. 

 

The Junction Structure Matrices are (for force input and velocity input respectively): 
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And the Field Laws outin LDD = are: 
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Looking at the summation, we can write: 
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And, since flow is constant,     And, since effort is constant, 
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This principle will hold true for ‘trees’ of compliance and inertia elements. A general 

definition for the controlled element can therefore be defined as shown in Table 1. 
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Proposition 1: A Controlled Element for Parametric Switching 

A mode-switching tree of controlled junctions and elements can be condensed into a single 

controlled element. This controlled element has the general constitutive function: 

( )∑
=

Φ=
i

n
nn inputoutput

1

µ       (1) 

Where n is the number of branches to the tree, µn is the Boolean term associated with nth 

controlled junction and Φn is the constitutive function of the nth element. 

 

 

Table 1: Controlled Elements and their Constitutive Equations (Causally Static, Linear 

Case) 

   or     ( )eRf ∑ −= 1µ or ( ) fRe ∑= µ  

 

 

( )∫∑ ⋅= − dtfCe 1µ  

 ( )∫∑ ⋅= − dteIf 1µ  

 
 

The controlled element may be in dynamic causality (i.e. the output is effort in some modes 

and flow in others) it can be treated in the same way as a standard element in dynamic 

causality i.e. having two input/output pairs for the two causal assignments. In practise this 

rarely happens. 

Table 2 overviews the possible controlled elements, defining them as elements with a 

Heaviside function as their constituent equations (which can be controlled either internally or 

by an external modulation signal).  
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3. EQUATION GENERATION FROM THE CAUSALLY DYNAMIC HYBRID 

BOND GRAPH 

3.1. The General Hybrid Bond Graph 

Recall that a causal bond graph model can be represented in matrix format, as a Junction 

Structure Matrix (JSM) consisting of ones and zeros which relate the system inputs and 

outputs.  

 

A modified ‘hybrid’ version has been defined to capture structural switching behaviour and 

the induced dynamic causality. In addition to 1’s and 0’s, this JSM also consists of Boolean 

parameters λ indicating the state of controlled junctions describing structural discontinuities. 

Figure 3 shows the bond graph junction structure diagrammatically and the key variables 

used in equation generation. Input vectors are the state vector iX  (composed of p  and q  on I 

and C elements in integral causality),  the complement of the pseudo-state vector dZ  

(composed of f  and e  on I and C elements in derivative causality) the output from the 

resistance field outD  (composed of  effort or flow variables into dissipative elements) and 

system inputs U. Output vectors are the complement of the state vector iZ , the pseudo-state 

vector dX  and the input to the resistance field inD . Where there is structural switching in the 

model, these vectors may relate to elements in static or dynamic causality (denoted ~ or ^ 

respectively) [2]. 

 

For the structural switching case, controlled junctions (dis)connect regions of the model 

structure and Boolean terms manifest λ in the junction structure matrix. For the parametric 

switching case, mode-switching is internal to the controlled element(s) and additional 

Boolean terms µ therefore manifest in the storage and dissipative fields.  

 

Consider the junction structure equation for the General Hybrid Bond Graph. Junction 

Structure Matrix S is a function of Boolean terms λ which relate to the state of the controlled 

junctions in the model. In addition, a matrix of Boolean expressions Λ(λ) activates or 

deactivates input variables according to the mode of operation of the model.  
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Table 2: Proposed Constituent Equations for Controlled Elements (General Case) 
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(a) (b) 

Fig. 3: The Junction Structure Matrix and Generalised Bond Graph.  

(a) General Junction Structure; (b) Hybrid Junction Structure incorporating switching 

(λ) coefficients and dynamic causality 

 

The Junction Structure Matrix is typically used to derive state equations which – for a 

continuous model with linear elements – usually takes the Linear Time Invariant state space 

form. For the causally dynamic hybrid bond graph with structural switching, an implicit form 

was derived. For parametric switching, however, the LTI form is usually invalid. Parametric 

switching is frequently used to describe highly nonlinear behaviour as piecewise continuous 

functions. In addition, they may be time varying if commutation is a function of time. Hence 

a more general state equation must be derived.  

 

The junction structure matrix relates the outputs of the hybrid dynamic junction structure to 

the inputs by Equation (3) [2], presented here without proof. 
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The matrices  Λ  and ijS  are functions of the Boolean parameters λ given by the state of all 

controlled junctions in the model.   
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To derive the state equations, the established procedure is to eliminate the Din and Dout terms 

by rearranging row three and substituting into rows one and two. Looking at row 3 of 

equation (2): 

 UDZD 3433
T
1333 SSS ++−= inioutΛ  (3) 

 

Where the constitutive equation for the dissipative field is: 

 

 ( )outLin DD ,µΦ=  (4) 

 

Where LΦ  is a matrix of functions relating outputs to inputs. These are potentially nonlinear 

functions, and – where parametric switching exists – they are mixed-Boolean.  

 

Substituting (4) in (3) and solving for inD  gives: 
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The expression for inD  depends on the nature of function LΦ . Hence, inD cannot be simply 

replaced in this derivation as it could for the LTI case. 

 

 However, the complementary states can be eliminated. Taking row one of (2): 
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Λ  (6) 

 

Recall that states are related to their complements by the constituent equations of the storage 

elements. In the linear case, this matrix is:  
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In this general case, this relationship is a field of potentially nonlinear, mixed-Boolean 

functions.  
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( ) ( )
( ) ( )dFdiFdid

dFidiFii
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,,

,,
µµ
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F+F=
F+F=

 (8) 

 

Where the cross-coupling relationships are given the subscripts id and di.  

 

( ) ( ) U141312111111 ,, SDSXSXSXSX +++Φ+Φ= inddΦidiΦii
 µµΛ  (9) 

 

Likewise, row two of (3) yields: 
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T
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Rearranging gives: 
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T
12 −Φ+Φ+Φ+Φ= dΦiddΦdiΦdiiΦi µµµµ ΛΛ  (11) 

 

Hence, the system equations are a state equation, an associated algebraic constraint (for cases 

where storage elements are dynamic causality) and an expression for input to the dissipative 

field (which can be substituted into the state equation). Acknowledging that the functions can 

be mixed-Boolean, this can be written concisely as: 

 

( ) ( ) U141312111111 SDSXSXSXSX +++Φ+Φ= inddΦidiΦii
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Regardless of the form that ( )inL D1−Φ  takes, it should be clear that the state equation contains 

nonlinear functions relating to the dissipative and storage fields, and these functions are 

mixed-Boolean where parametric switching occurs. The algebraic constraint also contains 

potentially mixed-Boolean nonlinear functions relating to the storage field.  
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4. MODEL PROPERTIES  

4.1. Properties of the General Model 

Assume a model has parametric switching but no structural switching. I.e. it is a function of μ 

but not λ. Recall Equation (12), which is a function of μ but, in this case, not parameters 

relating to structural switching λ. Hence S ≠ f(λ) and Λ =I: 

 

( ) ( ) U1413121111 SDSXSXSXSX +++Φ+Φ= inddΦidiΦii
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4.2. Properties of the Linearised Model in one mode 

Assume a single mode of operation, in which all constitutive equations are linear or can be linearised. 
Equation (5) becomes; 
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And this can be substituted into (12) to give: 
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Yielding the familiar implicit equation: 
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Essentially, the form of the equation remains the same in each mode of operation and the 

values of the coefficients F and H (which is a function of L) vary as parametric switching 

coefficients μ vary. If there is just causally static parametric switching in the model (and no 

structural switching), the modeller would typically seek to eliminate any [static] derivative 

causality. In this case, dim dX =0 and the explicit state equation is obtained: 

  

( ) ( )U143413
T
131311 SSSXSSSX ++−= HFH iii

   (18) 

 

Where, again, coefficients F and H (which is a function of L) vary as parametric switching 

coefficients μ vary. 

5. APPLICATIONS  

5.1. Mechanical Friction 

A common case study for discontinuities in Bond Graphs, previously investigated by Richard 

et al [8] (among others) is dry friction. In the bond graph framework, this has historically 

been modelled using switched sources. The use of controlled elements is presented here as an 

alternative which practitioners may find more physically intuitive. 

The most basic and commonly used friction model is coulomb friction, given by: 

( )vsgnFF NC ε=  (19) 

Here, the friction coefficient is denoted ε to avoid confusion with the hybrid bond graph 

notation. Coulomb friction only gives friction force for nonzero velocities. When a body is at 

rest, a static friction (or stiction) force must be overcome before this model becomes valid. 

Friction force at rest is given by: 

( )



=
es

stick FsgnF
F

F e     (20) 

This yields behaviour shown in Figure 4. 

 

If v=0 and  

If v=0 and  
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Figure 4: Coulomb and Static Friction Model 
 

Friction is a balance of forces: the applied force minus the friction force. The force normal to 

the surface (which is usually a function of the body’s weight) is also used in calculation.  

There are two modes of operation here: kinematic (i.e. velocity is nonzero) and static (i.e. 

velocity approaches zero). The static mode is further divided into two modes: external force 

less than Fs, and external force equal to or greater than Fs. This could be represented by a 

‘tree’ of three resistance elements, and concatenated into a controlled resistance (XR) 

element. Note that v can be taken from the bond graph 1-junction so that it is explicitly shown 

that commutation is a function of v. 

Note that he Automaton in this model is simply a piece of code which evaluates which mode 

is active and assigns Boolean Values to the junctions accordingly: the exact form will depend 

on the modelling environment. In the practical implementation of the controlled element, this 

would take the form of a statement which assigns values of µ depending on the values of the 

inputs. Note also that capturing the nonlinear behaviour close to v=0 in a simulation would 

require a stiff solver and/or event detection. These practical concerns have been addressed in 

part [9] and are the subject of further work. 

Force F 

Velocity v 

Fs 
Fc 
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Figure 5: Overview of a Rigid Body on a Flat Surface with Stiction / Friction 
 

 

 

 

Figure 6: Mode Switching ‘Tree’ for Stiction / Friction Model 
 

 

Figure 7: Mode Switching ‘Tree’ Concatenated into a Controlled Element 
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5.2. A Hydraulic Valve 

A hydraulic valve is analogous to an electrical switch: it inhibits flow when OFF. However, it 

is an orifice in the ON state and therefore cannot be considered as an ideal switch. This can 

be simply modelled as a non-ideal switch i.e. a controlled junction connected to a resistance 

which models the orifice. If it is concatenated into a controlled resistance, it will be causally 

dynamic and there is no computational advantage.  Indeed, the valve should not be 

represented as a controlled element, since the state of the valve affects the structural analysis 

of the model: parts of the system are connected and disconnected by the state of the valve 

(albeit, usually a line to tank which can be neglected).  

The orifice equation is, itself, nonlinear. In situations where the square-relationship causes 

the simulation to slow down, the user may choose to represent it as piecewise continuous. In 

this case, the hydraulic valve model becomes a controlled resistance with multiple modes of 

operation. The controlled resistance is still causally dynamic.  

The standard equation for a proportional valve is as follows (21). The mode of operation is 

dictated by the pressure drop. In addition, the resistance is modulated by the valve spool 

displacement x. 

ρ
PACQ of

∆
=

2
 (21) 

Where A is generally taken as: 

( )θπ cosdxAo ≈  (22) 

Note that μ1 and μ2 are not mutually exclusive: it is now possible for both to be OFF. Further, 

note that the valve joins to a pipe (via a constant pressure node) and the operation of the valve 

restricts flow. Therefore, unlike the stiction/friction model, this ‘tree’ of modes contains X1-

elements rather than X0-elements. When concatenated into a controlled R-element, this is 

evident from the causal assignment (effort input, flow output). 

As with the previous case study, the automaton in Figure 9 denotes some submodel or code 

which assigns Boolean values to the controlled junctions. When concatenated into a 

controlled element (Figure 10), this will be some form of conditional statement.  
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Figure 8: A Single-Stage Poppet Relief Valve. 
 

  

Figure 9: Mode switching ‘Tree’ for a Single-Stage Poppet Relief Valve. 

 

 

Figure 10: Mode Switching ‘Tree’ Concatenated into a Controlled Element 
 

 

6. CONCLUSIONS 

In this paper, a controlled element is proposed to model ‘parametric discontinuities’ (i.e.  

elements represented by piecewise-continuous equations). They concatenate the ‘mode-

switching tree’ representation used in the literature. This is important for two reasons. First, 

the ‘trees’ can become large and unwieldy, hampering qualitative structural analysis and 

generating unnecessarily large mathematical models. Second, the use of controlled junctions 

in the ‘tree’ wrongly implies structural switching, which is unacceptable in an idealised 

physical modelling method.  

Automaton

MR High_Pressure

MR Low_PressureX1

X1
0

 

XR

P 

µ1 
µ2 
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x 
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Q 

( )Q f P,dx,μ∆=

ON 

OFF 

Low_Pressure 

High_Pressure 



18 

The General Hybrid Bond Graph is presented as a General Bond Graph with a modified 

Junction Structure. The hybrid junction structure matrix S is a function of a structural 

switching Boolean parameters λ as well as 0 and 1 (and coefficients relating to any 

transformers or gyrators). In addition, the fields of constitutive equations can now be 

nonlinear and switching too, and are functions of parametric switching Boolean parameters μ. 

 

Dynamic causality is an inherent feature of the General Hybrid Bond Graph. It is interesting 

to note that controlled elements internalise any dynamic causality due to switching, and tend 

to be causally static. 

 

A single state space equation describing all possible modes of operation is generated. 

 

This technique has been demonstrated on the case study of mechanical friction and a 

hydraulic valve.  

 

Further work includes the automation of equation generation and simulation, an investigation 

into impacts, and formalising the structural analysis of the causally dynamic hybrid bond 

graph.  
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