

Citation for published version:
Shah, AA, Schaefer, D & Paredis, C 2009, 'Enabling Multi-View Modeling With SysML Profiles and Model
Transformations' Paper presented at The 6th International Conference on Product Lifecycle Management,
University of Bath, Bath, UK United Kingdom, 6/07/09 - 8/07/09, pp. 527-538.

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161914724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/enabling-multiview-modeling-with-sysml-profiles-and-model-transformations(5a7e2643-4c2c-479e-b78f-72e118ce385b).html

 International Conference on Product Lifecycle Management 527

 Copyright © 2010 Inderscience Enterprises Ltd.

Enabling multi-view modeling with SysML profiles
and model transformations

Aditya A. Shah*, Dirk Schaefer and
Christiaan J.J. Paredis
Systems Realization Laboratory,
G.W. WoodruffSchool of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, GA, USA
E-mail: aditya.shah@gatech.edu
E-mail: dirk.schaefer@me.gatech.edu
E-mail: chris.paredis@me.gatech.edu
*Corresponding author

Abstract: Due to increases in system complexity, systems engineering
problems often involve many domains, each with their own experts and tools.
To help these experts with analysis and decision making, it is desirable to
present them with a view of the system that is tailored to their particular task. In
this paper, a model integration framework, based on models based systems
engineering, is demonstrated to address issues associated with multi-view
modeling. One important issue discussed in particular is the problem of
maintaining consistency between the multiple models and views. The systems
modeling language (OMG SysML™) is proposed as a general language to
represent the dependencies between the multiple views. Metamodels and graph
transformations are defined to map between the views and maintain consistency
between them. The integration is achieved in a user-interactive and continuous
manner based on declarative transformation rules. The approach is illustrated
by applying it to an example problem of an electrical CAD subsystem of a
mechatronic system.

Keywords: multi-view modelling; graph transformation; metamodel; systems
modeling language; SysML; domain specific language; DSL.

1 Introduction

Systems engineering projects are becoming increasingly complex because they span
multiple domains and tools. The increase in complexity has lead to distributed design of
systems, both geographically and functionally, consisting of multiple stakeholders with
competing objectives. An example of such systems engineering projects are mechatronic
systems, which require a combination of mechanical, electrical, electronic and software
domains during the design process (Chen et al., 2009). The multi-disciplinary nature of
such problems results in large quantities of design data, managed in different tools
corresponding to each domain. Maintaining consistency between these multiple data sets
and tool-specific models becomes an issue when analyzing different system architectures
during the design process. Due to the various subsystems and domains involved in such

 528 A.A. Shah et al.

systems engineering problems, the ability to describe a system from different viewpoints
such as different disciplinary domains, life-cycle phases, or levels of detail, fidelity and
abstraction is required. For instance, there could be multiple views associated with a
conveyor belt system of a process line for analyzing its performance from different
perspectives: an electrical circuit view, a controls view or a simulation view.

A key challenge in dealing with multiple views is that different views of a system all
relate to the same system and thus depend on each other. In the conveyor belt system
example, simulation and analysis views aid in the specification of system components.
However, since different information is represented across multiple views, only portions
of different views are related to each other. For instance, component and connection
information from schematics are important for simulation views while diagram layout
and placement details may not be relevant. Consequently, a mechanism is needed to
integrate the required information between views. In current practice, the views are
usually represented in different tools and are often maintained independently of each
other by the users, resulting in significant non-value-added effort and in significant
opportunity for errors. To avoid such costly and risky processes, the approach advocated
in model-based systems engineering is to model both the views and the dependencies
between them formally in a system model. However, even when using an integrated
system model, the modeling formalism must explicitly allow for information to be shared
in different views.

In this paper, the focus is therefore on demonstrating a formal method for multi-view
modeling, i.e., achieving consistency between the different information represented
through multiple views of a system. For this we explore and develop the foundation for
supporting such multiple views in the systems modeling language developed by the
object management group (OMG SysML™) (OMG, 2008c). Through domain specific
modeling and graph transformations, different domains and the relations between them
are described. Moreover, the method presented in this paper complies with industry
established standards such as meta object facility (MOF) (OMG, 2006), model driven
architecture (MDA) (OMG, 2008b), and SysML, facilitating the integration with a variety
of tools and standard frameworks.

In the next section, related work is discussed in more detail. Section 3 describes the
use of SysML as a unifying language between multiple views while Section 4 describes
the example that will be used to illustrate the method presented in this paper. Section 5
then presents the method that is adopted for multi-view modeling. Section 6 discusses an
implementation of the method for integrating an ECAD view and a SysML view of the
problem described in Section 4. Finally, Section 7 summarizes the work and outlines
future research areas.

2 Related work

The requirements of maintaining consistency between multiple views are different than
those for maintaining interoperability between models. Interoperability involves
managing similar information across different formats. For instance, standard file formats
such as STEP (Lubell¸2002; Chen and Schaefer, 2007) and XML (Czarnecki and Helsen,
2003) are commonly used for interoperability in engineering and software domains.
However, multi-view modeling involves managing different information across different

 Enabling multi-view modeling 529

tools and domains. In such cases, file formats suffer from certain limitations such as data
loss issues in STEP (Alexander et al., 2008) and readability issues with XML.

Since multiple views involve different information, a mechanism to perform
operations such as abstraction or addition of information to the model is required. The
process of model transformation is suited for this, since it is the automated process of
converting a source model into a target model based on specified transformation rules. In
these regards, Czarnecki and Helen (2003) discuss the classification and comparison of
different model transformation based approaches, such as direct manipulation and graph
transformations. In direct manipulation, transformations are defined from scratch using
general purpose programming languages such as Java. However, since such languages
lack high-level abstractions, the direct manipulation approach can be cumbersome to use,
understand and maintain (Sendall and Kozaczynski, 2003). Graph transformations, on the
other hand, can be defined in a declarative and visual manner, allowing complex rules to
be expressed in an intuitive fashion (Baresi and Heckel, 2002). Moreover, the execution
of graph transformations can occur in continuous or incremental modes as opposed to
batch mode when using standard file formats. Transformations can therefore be
performed interactively with the user which makes managing consistency between views
easier (Sendall and Kozaczynski, 2003). In addition, platforms such as MOFLON (2009)
provide the capability to define graph transformations and automatically generate
corresponding executable code for performing the model transformation in a language
such as Java. Therefore, in the research described in this paper, a graph transformation
approach is adopted for the integration of multiple views of a system.

In addition to integration between views, a mechanism for systems level design is
required for systems that are large and highly complex. For instance, the development of
mechatronic systems is highly disjoint due to a lack of integration between different
views as well as a lack of systems-level modeling capabilities. To overcome these
problems, we propose to use the general purpose modeling language SysML for both
systems-level design and for integrating multiple views of the system. The use of SysML
as a unifying language for systems design is discussed in the next section.

3 SysML as a unifying language

Multiple views of a system are essential to represent the multi-disciplinary nature of large
systems engineering projects such as the design of mechatronic systems. Instead of
customized mappings between different views, we believe that a common language such
as SysML can serve as a unifying language between the various views of a system. Since
each view is mapped to a SysML view, the order of complexity is 0(n) as compared to
0(n2) for the case of individual mappings. Moreover, SysML also provides support for
systems-level design as well as mechanisms for customizing SysML for specific
domains, which are important concepts for MDA as laid out by OMG. Another benefit of
SysML is its conformance to industry established standards such as MOF, UML, and
XMI, which enables tool support with existing meta-CASE and UML authoring tools.

Therefore, we demonstrate a method for the integration between a domain specific
view and a SysML view for an example mechatronic system, which is described in the
next section.

 530 A.A. Shah et al.

4 Example problem

A simple mechatronic system with a motor and overload protection switch as one of its
subsystems is used to demonstrate the method for multi-view modeling presented
in this paper. Electrical systems are designed typically by experts using domain specific
tools such as EPLAN Electric P8 (2008). However, since domain specific tools generally
lack support for systems-level design as well as integration across multiple domains,
the method presented in this paper can be used to achieve integration between multiple
views of a system – a system-level view in SysML and a domain-specific view in Electric
P8.

In Figure 1, a domain specific view of the example system is shown using a
schematic diagram. The system consists of two components: a three-phase motor and a
motor overload switch for protection. Constructs such as Device, Part, Project and
Page are used to model the system. In the next section, a method for multi-view
modeling is discussed in the context of the example described above. The application of
this method is demonstrated in Section 6, in which a domain-specific view (Figure 1) is
automatically generated from a system-level view in SysML (Figure 7).

Figure 1 Domain specific view of motor overload protection subsystem (schematic diagram) in
EPLANElectricP8

Source: EPLAN (2008)

 Enabling multi-view modeling 531

5 Multi-view modeling method

Our method for multi-view modeling involves the following steps:

1 formal definition of the domains involved in the system through metamodels

2 customization of SysML through profiles to enable domain specific modeling

3 mapping between the domain specific metamodel and SysML profile through graph
transformations

4 tool specific API calls in the transformations to complete the integration between the
different views.

The steps outlined above form the foundation for a systematic method for integrating
between different views in disparate languages and tools. The method is modularizable,
since the same steps are followed to map a domain-specific view with its corresponding
SysML view. Thereafter, integrating different tools involves defining transformations
within the SysML view of the system.

5.1 Metamodeling

Describing multiple views of the same system in a formal manner is essential for
integrating them in a systematic way. Therefore, the first step to integrate multiple views
is to define each domain formally by establishing a metamodel. A metamodel defines a
language for expressing the information that is relevant in the domain including the
relationships between these types of information. For example, the requirements,
schematic and simulation views of an ECAD system may be described by different
metamodels. They are called meta-models because they themselves are models that
define the languages in which the models of the views are described. Each view of a
system is an instance of a metamodel defined for the domain.

To support model and metamodel driven systems, OMG established the MOF
standard. MOF provides a methodology and framework for “defining, manipulating, and
integrating meta-data and data in a platform independent manner” (OMG, 2006). The
approach we have taken is to specify explicitly the metamodel reconstructed from the
API of the tool with which interoperability is desired (Czarnecki, 2005). This is a
conversion of the implicit metamodel (i.e., the data structures used internally to the tool
and only made visible through its API targeted for general purpose programming
languages like C++) into a formal and explicit metamodel compliant with the MOF
standard.

The MOF compliant meta-CASE tool MOFLON (2009) is used to define the abstract
syntax for the domain specific metamodel for ECAD. A small portion of a metamodel for
the ECAD domain is shown in Figure 2. The language constructs associated with the
domain are specified as classes (Project, Page, Device, etc.) while the relationships
between the various constructs are specified as associations (A_page_device,
A_project_page, etc.). For instance, the metamodel in Figure 2 states that a Project
contains a number of Pages and can be related to Pages through the composition
association A_project_page.

Once the domain has been formalized by an explicit metamodel, it is necessary to
customize SysML to enable domain specific system-level modeling of the ECAD

 532 A.A. Shah et al.

domain. This is done through the use of SysML profiles, which is the next step in the
approach to multi-view modeling.

Figure 2 Portion of metamodel for ECAD domain defining the structure for a valid
ECAD system

5.2 Domain specific modeling in SysML

In order for SysML to be a unifying language between multiple views, a mechanism is
needed to represent specific domains and systems within SysML. Since SysML is a
general purpose modeling language, it lacks the detailed, formal semantics needed for
formal domain analysis and automated tool support (Brucker and Doser, 2007). For
instance, almost any model can be described using generalized constructs such as SysML
blocks. This makes it cumbersome for domain experts to create models in SysML,
thereby limiting the acceptance of general SysML for specific domains. To overcome this
limitation, SysML provides different ways to create semantics specific to a domain
through the use of domain specific languages (DSLs). DSLs simplify commonly used
aspects of a domain and reduce the need for repeated use of lower level constructs like
value properties needed for their definition. In addition, DSLs enhance computer
interpretability since the information in a valid model is encoded at the meta-level instead
of the model level. Thus, the use of a DSL makes it easier and more intuitive for system
engineers to define ECAD and ECAE designs in SysML. Moreover, DSLs facilitate
automated model transformations since mappings are based on language constructs
instead of variable names.

Among the various approaches available to define DSLs in SysML, profiles are used
since they do not modify the underlying SysML metamodel so that tool support is
retained (Weisemoller and Schurr, 2008). A portion of a SysML profile created for the
ECAD domain is shown in Figure 3. The profile is constructed as per the domain
metamodel and this can be seen from the use of the elements Page and Device in both
the metamodel and profile. Language constructs specific to the ECAD domain (e.g.,

 Enabling multi-view modeling 533

Page and Device) are defined as stereotypes that extend existing SysML and UML
constructs, such as the Block metaclass of SysML.

In conclusion, the combination of profiles and metamodels provides the framework in
which graph transformations can be applied to integrate these multiple views and
maintain consistency among them, which is discussed in the next section on graph
transformations.

Figure 3 Portion of SysML profile for ECAD domain used to create structural system-level view,
based on the domain metamodel

5.3 Graph transformations

Now that we are able to formally define multiple views of the system in different
languages, model transformations are used to map between them to provide integration.
The domain metamodel and SysML profile can be described in terms of graphs (Baresi
and Heckel, 2002), in which the language objects represent the nodes, and associations
represent the edges. Consequently, graph transformations can be used to integrate
between the different views and models. Two common transformation based approaches
are OMG’s queries/views/transformations (QVT) (OMG, 2008a) and triple graph
grammars (TGG) (Schurr, 1995). A combination of QVT and TGG-like rules are used to
define the transformations between the different views. Unlike TGGs, bidirectional
transformation rules are not automatically generated and therefore mappings are required
in each direction. For instance, the example mapping described in this section is from
SysML to EPLAN. Another mapping would be defined from EPLAN to SysML.

The process of maintaining consistency between multiple views involves creation of
new or updated views through the execution of graph transformations. This process is
shown in Figure 4, in which transformations are defined at the meta-level on the
corresponding metamodels and not the models themselves.

Figure 4 Process of model transformation: from source to target model

Source: Czarnecki and Helsen (2006)

 534 A.A. Shah et al.

A correspondence metamodel is used to link elements of the source and target
metamodels on which the transformations are defined (Schurr, 1995). The
correspondence metamodel for the ECAD system, shown in Figure 5, links objects of the
SysML view to the ECAD tool specific view. For instance, the object
DeviceBlock2Device links a Block object in SysML to a Device object in the
ECAD domain, just as the stereotype Device extends from the Block class in the
SysML profile.

Figure 5 Correspondence metamodel that links objects of a SysML view with objects of an
ECAD view

After formally defining the language of the views through metamodeling, profiles, and a
correspondence metamodel, it is now possible to transform from one view into another
through the definition and subsequent execution of graph transformations. The graph
transformations are written in a declarative and graphical manner through the use of story
diagrams (Fischer et al., 2000). In Figure 6, a story diagram is shown in which a block of
stereotype ElectricalSystem in SysML is transformed into a Project file in the
ECAD-specific tool EPLAN. The input to the story diagram is a SysML block and the
output is an EPLAN-specific project file. MOFLON is used to automatically generate
Java metadata interface (JMI) compliant Java code, which allows for easier integration
and execution of transformations from within standard SysML tools.

Thus, through the successive execution of graph transformations, it is possible to
generate the target view (in EPLAN) from the source view (in SysML), thereby
automating the process of maintaining consistency between different views.

Figure 6 Story diagram that transforms electrical system block in SysML to a project in EPLAN
(ECAD specific tool)

 Enabling multi-view modeling 535

6 SysML and ECAD integration

The method presented in the previous section is applied to the example mechatronic
system described in Section 4. Figure 7 shows a systems-level structural view in SysML,
which is modeled using the domain-specific constructs specified in the SysML profile.
The constructs defined in the profile are applied as stereotypes onto generic SysML
constructs such as blocks. This automatically assigns properties to the blocks, which
simplifies the task of the modeler.

Graph transformations are then executed, in the form of a Java plugin, on the SysML
model to derive an intermediate domain model of the system as per the metamodel that is
defined. This domain model is then converted to the domain-specific view (EPLAN, for
this example) through the use of function calls to the internal API of the tool (EPLAN).
JNBridgePro (JNBridge, 2008) is used to handle the incompatibility between the
languages of the SysML tool (Java) and that of EPLAN (.NET).

In Figure 8, the complete process is shown of creating the SysML view, applying the
graph transformation to create the domain model and then using API calls to create the
tool specific view. The resultant EPLAN view is shown in Figure 1, which consists of
two devices as defined in the SysML view but with added information as compared to the
SysML view, such as visual representation of components through the use of symbols.

Figure 7 Structural view of the system in SysML – a block definition diagram (BDD) created
using the constructs specified in the SysML Profile for the ECAD domain (Figure 3)

 536 A.A. Shah et al.

Figure 8 Process for implementing the multi-view modeling method: from SysML view to
EPLAN view through execution of graph transformations (Java plugin)

7 Closure and future work

In this paper, the use of SysML profiles and graph transformations for multi-view
modeling is discussed. The method presented in this paper integrates multiple views that
contain different information, thereby leveraging the capabilities of the different
languages and domains involved. For instance, electrical CAE tools such as EPLAN are
well-suited for detailed design of power and control systems through diagrams such as
schematics or wiring diagrams. SysML, on the other hand, is better suited for defining the
high-level relationships that exist between requirements, structure, and behavior.
Consequently, this method provides the designer with the ability to trace decisions made
to corresponding requirements defined in SysML as well as maintain bidirectional
consistency between other domains that are linked with SysML. This is different from
current approaches for interoperability, which export the complete model into standard
file formats to achieve single-direction integration.

The general-purpose and customizable nature of SysML provides a good opportunity
for scalable information exchange between domains. The formal description of domains,
through metamodels and SysML profiles, and the creation of mappings through story
diagrams allow designers to start from a systems perspective and automatically generate
domain specific models that are necessary for the latter stages of the design process.
Moreover, the use of domain models in the abstract syntax provides a level of tool
independence since different tools of the same domain do not require new metamodels,
only different API calls. Thus, the method outlined in this paper is a step towards the
unification of the various domains involved in the solving of multi-disciplinary systems
engineering problems.

Future work in this area involves refining the process of integrating tool specific APIs
with graph transformations through the use of JMI to enable the use of TGG for
bidirectional mapping between multiple views of the system.

 Enabling multi-view modeling 537

Acknowledgements

The authors would like to thank Julie Bankston, Roger Burkhart, Sanford Friedenthal,
Aleksandr Kerzhner, Leon McGinnis, and Russell Peak for the discussions that helped
crystallize the ideas presented in this paper. No Magic Inc. provided access to its
MagicDraw UML/SysML tool, EPLAN Software and Services LLC provided access to
Electric P8, and JNBridge LLC. provided access to JNBridgePro.

References
Alexander, B., Lian, D. and Manjula, P. (2008) ‘An approach to accessing product data across

system and software revisions’, Advanced Engineering Informatics, Vol. 22, No. 2,
pp.222–235.

Baresi, L. and Heckel, R. (2002) ‘Tutorial introduction to graph transformation: a software
engineering perspective’, Graph Transformation, pp.402–429.

Brucker, A.D. and Doser, J. (2007) ‘Metamodel-based UML notations for domain-specific
languages’, in 4th International Workshop on Software Language Engineering (ATEM2007),
Nashville, USA.

Chen, K. and Schaefer, D. (2007) ‘MCAD – ECAD integration: overview and future research
perspectives’, Proceedings of the 2007 ASME International Mechanical Engineering
Congress and Exposition, Seattle, Washington, USA.

Chen, K., Bankston, J., Panchal, J.H. and Schaefer, D. (2009) ‘A framework for integrated design
of mechatronic systems’, Collaborative Design and Planning for Digital Manufacturing,
pp.37–70.

Czarnecki, K. (2005) ‘Overview of generative software development’, Unconventional
Programming Paradigms, pp.326–34l.

Czarnecki, K. and Helsen, S. (2003) ‘Classification of model transformation approaches’,
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the
Model Driven Architecture.

Czarnecki, K. and Helsen, S. (2006), ‘Feature-based survey of model transformation approaches’,
IBM Systems Journal, Vol. 45, No. 3, pp.62l–645.

EPLAN, S.S.L. (2008) ‘Eplan Electric P8’, available at http://www.eplanusa.com/.
Fischer, T., Niere, J., Torunski, L. and Zundorf, A. (2000) ‘Story diagrams: a new graph rewrite

language based on the unified modeling language and Java’, Theory and Application of Graph
Transformations, pp.l57–l67.

JNBridge, L. (2008) ‘Jnbridgepro’, available at http://www.jnbridge.com/jnbpro.htm.
Lubell, J. (2002) ‘From model to markup: XML representation of product data’, XML Conference,

pp.8–l3, Baltimore, MD.
MOFLON (2009) ‘MOFLON homepage’, available at http://moflon.org/.
OMG (2006) ‘Meta object facility (MOF) core specification V2.0’, available at

http://www.omg.org/docs/formal/06-0l-0l.pdf.
OMG (2008a) ‘Meta object facility (MOF) 2.0 query/view/transformation, V1.0’, available at

http://www.omg.org/docs/formal/08-04-03.pdf.

 538 A.A. Shah et al.

OMG (2008b) ‘OMG model driven architecture’, available at http://www.omg.org/mda/.
OMG (2008c) ‘OMG systems modeling language, V1.1’, available at

http://www.omg.org/docs/formal/08-11-02.pdf.
Schurr, A. (l995) ‘Specification of graph translators with triple graph grammars’, Graph-Theoretic

Concepts in Computer Science, pp.l5l–l63.
Sendall, S. and Kozaczynski, W. (2003) ‘Model transformation: the heart and soul of model-driven

software development’, Software, IEEE, Vol. 20, No. 5, pp.42–45.
Weisemoller, I. and Schurr, A. (2008) ‘A comparison of standard compliant ways to define domain

specific languages’, Models in Software Engineering, pp.47–58.

