

Citation for published version:
Thames, JL, Abler, R & Schaefer, D 2011, 'Parametric Optimization of Artificial Neural Networks for Signal
Approximation Applications' Paper presented at 48th Annual ACM Southeast Conference, Kennesaw, Georgia,
USA United States, 24/03/11 - 26/03/11, . https://doi.org/10.1145/2016039.2016095

DOI:
10.1145/2016039.2016095

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link to publication

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in ACM-SE '11 Proceedings of the 49th Annual
Southeast Regional Conference, http://doi.acm.org/10.1145/2016039.2016095

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161914719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2016039.2016095
https://researchportal.bath.ac.uk/en/publications/parametric-optimization-of-artificial-neural-networks-for-signal-approximation-applications(d24e90b0-5b45-42f0-9541-cabf54d70d7c).html

Parametric Optimization of Artificial Neural Networks for
Signal Approximation Applications

J. Lane Thames Randal Abler Dirk Schaefer
 Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology

210 Technology Circle 210 Technology Circle 210 Technology Circle
Savannah, GA 31407 Savannah, GA 31407 Savannah, GA 31407

001-912-966-7210 001-912-966-7210 001-912-966-7210

 lane.thames@gatech.edu randal.abler@gatech.edu dirk.schaefer@me.gatech.edu

ABSTRACT
Artificial neural networks are used to solve diverse sets of
problems. However, the accuracy of the network’s output for a
given problem domain depends on appropriate selection of
training data as well as various design parameters that define the
structure of the network before it is trained. Genetic algorithms
have been used successfully for many types of optimization
problems. In this paper, we describe a methodology that uses
genetic algorithms to find an optimal set of configuration
parameters for artificial neural networks such that the network’s
approximation error for signal approximation problems is
minimized.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Parameter Learning

General Terms
Algorithms, Design, Theory

Keywords
Genetic Algorithms, Artificial Neural Networks, Parameter
Optimization

1. INTRODUCTION
Artificial neural networks (ANN or just “network” if no confusion
arises) are computational systems that can be used to solve
problems for a large number of application domains. These
application areas include signal (or function) approximation, data
classification, pattern or sequence recognition (speech, text,
imaging, etc), data clustering, gaming systems, control (robotic
control, process control, vehicular control, etc), and many more.
When using ANNs, one needs to have domain knowledge of the
input-output space being presented to the network in order to
determine appropriate configuration parameters for the network
before its training. Incorrect selection of configuration parameters
can lead, in many cases, to a resultant network that does not
perform well after training. In these cases, poor classification
results from mapping input features to incorrect output classes,

which leads to networks with high rates of error. Neuroevolution
[1], [6], [7], [8] has been used as a method to generate ANNs via
simulated evolution with genetic algorithms (GA). Traditionally,
neuroevolution is used as a method to evolve the ANN’s topology
and synaptic weight matrices such that traditional network
learning (training) operations are bypassed, and the goal is to find
an optimal topology with its associated synaptic weights for some
problem instance. In this paper, we investigate a methodology that
uses GA to find optimal networks for signal approximation
applications such that the network produces minimal error.
However, instead of using the GA to evolve the ANN’s topology
and synaptic weights as with neuroevolution, we use the GA to
find the best choice of configuration parameters that define its
topology and activation (transfer) functions while allowing the
ANN to train itself based on the parameters provided by the GA.

The remainder of this paper is organized as follows. Section 2
provides a brief overview of artificial neural networks, and section
3 gives a brief overview of genetic algorithms. In section 4, we
describe how the genetic algorithm is used to optimize networks
and give experimental results demonstrating its efficacy for 3
types of signal approximation scenarios. We provide closure and
references in sections 5 and 6, respectively.

2. OVERVIEW OF ARTIFICIAL NEURAL
NETWORKS
The underlying theory of ANNs was originally inspired by
biological processes. Specifically, ANNs are modeled after the
human central nervous system, which consists of a very
sophisticated interconnection of neurons and their associated
axons, dendrites, and synapses. At the core of an ANN is the
neural unit (NU) as shown in Figure 1. The ANN is created by
interconnecting many neural units across several layers to form a
highly connected neural network. An NU takes as its input a
vector x = (x1, x2, … , xn). Associated with each input connection
xi is a “synaptic” weight wi, and these weights form the weight
vector w. The output of an NU represents its activation level for a
particular set of inputs where the output is denoted by u = T(z).
T(z) is the transfer function of the NU (sometimes T is referred to
as the activation function). Several forms exist for the transfer
function. The work described in this paper will only use three
types, which are given by Equations 1, 2, and 3. Equation 1 is the
logistic sigmoidal function or the logsig fuction, Equation 2 is the
hyperbolic tangent sigmoidal function or the tansig function, and
Equation 3 is the linear function or purelin function.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
49th ACM Southeast Conference, March 24-26, 2011, Kennesaw, GA,
USA. Copyright 2011 ACM 978-1-4503-0686-7 $5.00.

z(w,x) T(z)
u = T(z)

X1

X2

X3

X4

Xn

.

.

.

W1

W2

W3

W4

Wn

Neural Unit

Figure 1. A conceptual diagram of the neural unit.
We will refer to logsig and tansig units collectively as sigmoidal
units.

 𝑇(𝑧) = 1
1+𝑒−𝑧

 (1)

 𝑇(𝑧) = 𝑒
2𝑧−1
𝑒2𝑧+1

 (2)

 𝑇(𝑧) = 𝑧 (3)

The transfer function’s input, z, is the dot product of the input
vector with the weight vector:

 𝑧 = ∑ 𝑤𝑖𝑥𝑖𝑛
𝑖=1 (4)

In this investigation, we study applications that use ANNs for
signal approximation. It is well known in the intelligent systems
community that a multilayer ANN can approximate any bounded
continuous function within some arbitrary amount of error [5].
Specifically, an ANN computes an approximation function where:

 𝑓𝑎:𝑋 → 𝑈 (5)

0 ≤ |𝑓 − 𝑓𝑎| ≤ 𝛿 (6)
In other words, the ANN can produce some approximation
function fa for the target function f such that the magnitude of the
difference is within some bounded error δ. In this paper, the
function fa represents a signal approximation (or a signal function
approximation).

Networks are created by interconnecting neural units to other
neural units formed by one or more hidden layers, where each
layer has some prescribed number of units. Networks learn how to
map values in the input space to values in the output space via
training, and training is provided by a learning algorithm, of
which many different forms exist. Common types of ANN
learning algorithms are based on the gradient decent algorithm.
The basic idea is as follows. Training data is provided to the ANN
in the form of (x, f(x)) tuples where x is the input data and f(x) is
the target function. The learning stage takes the training tuple and
sends the input value(s) into the ANN. Then, the output fa(x) is
compared to the target value and an error is calculated. This error
is used to evolve the weights such that over time (training epochs)

the error of the ANN is minimized to some preferably global but
possibly local minimum error. For this investigation, we utilized
networks based on the back-propagation algorithm, whose weight
update rule is give by Equation 7:

𝑤𝑖(𝑡 + 1) ← 𝑤𝑖(𝑡) + 𝛼[𝑓(𝑥𝑖) − 𝑓𝑎(𝑥𝑖)]𝑥𝑖 (7)
During training, each weight vector component for each NU in the
ANN is updated similar to Equation 7. As seen in Equation 7, as
the approximation function approaches the actual function over
increasing training epochs, the change in weight value wi
approaches zero such that at convergence wi(t+1) ≈ wi(t). The
value α represents the learning rate, and this value determines how
fast the weights evolve.
The performance of a ANN is sensitive to the selection of
parameters that define its overall configuration. These parameters
include, just to name a few, the type of transfer function to use in
each layer, the total number of layers, the total number of units
per layer, the learning rate’s value, the type of training algorithm
to use, and the number of training epochs to use. Furthermore,
these parameters are not generalized to any given network, and in
many cases, they depend on the underlying data’s input-output
space. If an experienced network designer has a good
understanding of the input-output space, then the designer’s
domain knowledge and expertise allows him/her to select
respectable parameter values. However, this is normally a trial-
and-error process even for experienced designers. Further, the
problem is more challenging when working with high-
dimensional input-output spaces where underlying patterns that
drive the selection of parameters are not known. Hence, methods
for automated selection of optimized parameters using other
computational optimizations sounds promising.

3. OVERVIEW OF GENETIC
ALGORITHMS
The creation of genetic algorithms (GAs) was inspired by the
biological evolutionary process. The primary inspiration is due to
the fact that biological systems can adapt over time (evolve)
within changing environments. Further, this adaptation can
propagate through successor generations within the biological
system. This adaptation-propagation scheme leads to the idea of
survival of the fittest—individuals that can adapt well to changing
environments have a higher probability of survival. Goldberg [3]
provides a detailed treatment of GA theory and its application.

The primary operations performed by GA include chromosome
representation, genetic selection, genetic crossover, genetic
mutation, and population fitness evaluation. In GAs, problem
domains are encoded via chromosomes in a population P(t). This
chromosome encoding is usually in the form of a bit string or
some numerical representation, i.e., one is required to map
population members to a binary or numerical form. The
population represents a particular state space of hypotheses at
evolution time epoch t, where a hypothesis is a possible solution
to a given problem. At each time epoch, the fitness of each
individual of the population is evaluated. The fitness is evaluated
with a fitness function F(hi) where hi is the hypothesis represented
by the ith member (chromosome) of the population and the fitness
F represents how well a particular hypothesis represents the
solution of the given problem. In general, the GA’s fitness
function must be an increasing function with respect to a
candidate hypothesis’s response to the problem such that good
solutions have higher fitness and poor solutions have low fitness.

F is computed for each member, and the next population P(t+1) is
created by probabilistically selecting the most fit members of the
current population. Some of the members will be part of P(t+1) in
their current form, and some are selected for genetic modifications
such as crossover and mutation. Crossover produces offspring
from two parents whereas mutation is the act of randomly
modifying the encoding features of a selected set of individuals.
There are two important design issues when using a GA: 1) one
must define a mapping from the input-output space of the problem
into an encoding that can be used by the GA, i.e., a binary or
numerical mapping, and 2) one must design a fitness function for
the problem domain. The power of the GA is in its ability to
encode a very large set of possible solution spaces for a given
problem. They are often used successfully for optimization
problems, but they have also been used for function
approximation, complex circuit layout, and scheduling. As stated
earlier, they are also used in neuroevolution to evolve neural
networks. In this work, the GA will be used to optimize a certain
set of ANN design parameters.

4. SYSTEM DESIGN AND EVALUATION
The goal of this study was to evaluate a methodology for signal
approximation applications whereby a GA computes an optimal
set of ANN configuration parameters via simulated evolution such
that the resultant configuration produces a trained ANN whose
error function is minimized. In this section, we will first present
the generic process of our system design. Then, we will describe
the detailed description of options used during our experimental
evaluations along with experimental results.

 The system design we evaluated for ANN parameter optimization
consists of a two-phase evolutionary process. During phase 1, the
GA has a population of chromosomes that are numerical
representations of ANN configuration parameters. At each
evolution time epoch, t, the chromosome for each population
member is submitted to the ANN. The ANN maps the
chromosome’s numerical values to their respective parameter
types, implements a self-configuration based on these values, and
then learns from a training set of the problem’s input-output
space. Once the ANN has been trained, a set of labeled validation
data from the input-output space is used to evaluate the ANN’s
post-training error response. This error response is then used to
evaluate the fitness of the population member whose chromosome
was submitted to the ANN for configuration and training. Since
the goal is to find an ANN with minimal error, the error response,
which is given by Equation 8, is used as input to the GA’s fitness
function:

 𝐸𝑖 = �∑ (𝑓�𝑥𝑗� − 𝑓𝑎(𝑥𝑗))2 𝑁
𝑗=1 (8)

In Equation 8, Ei is the error of the ANN configured and trained
based on the chromosome of the ith population member, and the
error is calculated over a total of N evaluations from the validation
dataset. The fitness function for the system is given by Equation
9:

 𝐹(ℎ𝑖;𝐸𝑖) = 1
𝐸𝑖

 (9)

The fitness function is inversely proportional to the error of the
ANN configured by parameters represented by the ith chromosome

(i.e., the ith hypothesis). Hence, a decrease in error provides an
increase in fitness, which is our objective.

The steps described above are performed for each member in the
GA’s population. Once each member in the population has been
evaluated for fitness, the GA performs its selection, crossover, and
mutation operations and then proceeds to the next evolution
epoch, t+1. This entire process proceeds until the evolution
process terminates. Note that during this phase, the training and
validation data used by the ANN are extracted from a dataset from
the target input-output space, and the training set is separate from
the validation set.

During phase 2, which proceeds after the simulated evolution
process terminates, the GA submits the chromosome from the
terminal population’s best fit individual to the ANN. The ANN
uses this chromosome to configure its parameters and then trains
from a set of phase-2 training data. Once this training is complete,
the ANN is ready to be deployed for its target application.

For the experiments performed during this study, the
chromosomes encode three ANN parameters, which include: 1)
the number of hidden units in a single hidden layer, 2) the transfer
function to use at the hidden layer, and 3) the transfer function to
use at the output layer. We used numerical chromosome
encodings in the GA, and the mapping from numerical to transfer
function types is shown in Table 1.

Table 1. Symbolic to numeric mapping scheme for the
experimentation.

Transfer Function Mapping

logsig 0.0 ≤ yj < 0.5

tansig 0.5 ≤ yj < 1.5

purelin 1.5 ≤ yj < 2

The chromosome encoding was defined by hi = (y1, y2, y3) where
y1 represented the number of nodes in the hidden layer, y2
represented the transfer function for the hidden layer, and y3
represented the transfer function of the output layer. So, j = 2 or j
= 3 in Table 1. For example, if the GA produced a chromosome
for y2 = 0.2, then the ANN self-configured its hidden layer to use
the logsig transfer function. For the number of hidden units, the
ANN rounded the numerical value to the nearest integer. For both
experiments, we use a back propagation ANN with a learning rate
of 0.1. The GA used numerically encoded chromosomes, as stated
above, with a fixed population size of 20 chromosomes, and we
used arithmetic crossover, uniform mutation, and normalized
geometric selection. (Refer to [4] for a description of these
options).

4.1 Evaluation with the Boolean XOR
Benchmark
The Boolean XOR function falls into a class known as non-
linearly separable functions [5]. Because of this, the XOR is
commonly used as a benchmark to test machine learning and
artificial intelligence algorithms. For this experiment, a brute
force technique was implemented over the entire set of possible
configurations under study. The results from these ANN
configurations were compared to the best fit (optimal)
configuration produced by the GA. All possible combinations of

the transfer function set {logsig, tansig, purelin} for both the
hidden and output layer were evaluated, giving a total of 9
combinations. Further, each possible combination was evaluated
over a number of hidden units ranging from 1 to 20. Overall, 9*20
= 180 configurations were compared with respect to their error
response. Figure 2 shows the ANN XOR approximation error over
the 180 configurations. The following notation is used to describe
the data in the graph: LS = logsig, TS = tansig, and PL = purelin.
The notation X-Y represents X as the hidden layer transfer
function and Y as the output layer transfer function, i.e. LS-TS is
an ANN with logsig for the hidden layer transfer function and
tansig for the output layer transfer function.

 Figure 2. ANN error versus the number of hidden units for
the nine different T(z) combinations.

As seen in Figure 2, the ANNs with purelin used at the hidden
layer do not approximate XOR very well—the error does not go
below 1 for any number of hidden units. The LS-PL and TS-PL
gave the best results in terms of convergence and stability (they
both converged to small error at two hidden units and retained a
small error through 20 units). LS-LS, LS-TS, TS-LS, and TS-TS
did well, but the error fluctuated over the different number of
hidden nodes. Table 2 shows the average and standard deviation
of the error for the nine combinations across the hidden unit
range.

Table 2. Average and standard deviation of ANN XOR
approximation error using the brute force evaluation.

 Average Std Dev
LS-LS 0.115 0.271
LS-TS 0.165 0.405
LS-PL 0.042 0.182
TS-LS 0.080 0.234
TS-TS 0.255 0.461
TS-PL 0.041 0.183
PL-LS 1.000 0.000
PL-TS 1.020 0.093
PL-PL 1.000 0.000

For the GA approach, we ran simulated evolution over 60
generations with GA options as described above. The population
size of the GA was fixed at 20 members. Figure 3 shows the
average and best population fitness over the 60 generations.

Figure 3. Best and average fitness over the 60 generations.

The fitness values shown in Figure 3 are computed by the GA
with Equation 9. The near-constant line in blue is the fitness of the
best member during each epoch. Notice that the GA quickly finds
a solution with high fitness, i.e., finding a best fit ANN to
approximate the XOR function. Table 3 provides a sample of the
best fit candidate of the population as the GA evolved.

Table 3. Best fit candidate moving towards convergence.

Epoch

Number of
Hidden
Units

Hidden Layer
Transfer
Function

Output Layer
Transfer
Function

1 15.8916 0.2475 1.5243
2 20.0000 0.1921 1.8668
4 20.0000 0.0000 1.8429

60 20.0000 0.0000 1.8429

Table 1 is used to map the hidden and output layer transfer
function numerical values to their symbolic representations. The
GA’s final result for the best fit member to encode this problem is
in the last row of Table 3. Specifically, the number of hidden units
is 20, the hidden layer transfer function is logsig, and the output
layer transfer function is purelin.

4.2 Evaluation with a Sinusoidal Signal
This section explores the GA optimization methodology when
using an ANN to approximate a sinusoidal signal. For this
experiment, the signal (or target function) to approximate will be
f(x) = sin(x). The experimental setup was similar to the XOR
evaluation. First, a set of brute force configuration evaluations
were performed for each possible transfer function configuration
and for the number of hidden units ranging from 1 to 20. Figure 4
shows the approximation error for the nine configurations.

Similar to the XOR evaluation, the configurations with PL hidden
layer transfer functions do not perform well. Table 4 gives the
average error along with its standard deviation and minimum
values for all nine configurations over the range of hidden nodes.
Using the minimum error and the minimum average error as a
decision factor, the ANN configuration with TS-TS or TS-PL as
the transfer functions appear to provide the best approximations to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LS-LS

LS-PL

TS-TS
PL-LS

PL-PL
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

LS-LS
LS-TS
LS-PL
TS-LS
TS-TS
TS-PL
PL-LS
PL-TS
PL-PL

Best and Average Fitness

50

60

70

80

90

100

110

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Generation Epoch

Fi
tn

es
s

BestFitness AverageFitness

the sine function. The GA used for this approximation problem
was similar to the XOR evaluation except that the number of
generations was set to 100 instead of 60. Figure 5 shows the best
and average fitness over the 100 generations and Table 5 provides
a sample of the best fit candidate over the 100 generations.
Observe that the GA converged to a best fit candidate after 26
generations.

Figure 4. ANN approximation error for the nine T(z)

configurations.

Table 4. Average, standard deviation, and minimum of error
for the nine configurations.

 Average Std. Dev. Minimum
LS-LS 4.026 0.094 3.964
LS-TS 0.473 0.513 0.155
LS-PL 0.433 0.611 0.128
TS-LS 3.996 0.064 3.964
TS-TS 0.404 0.530 0.130
TS-PL 0.359 0.474 0.121
PL-LS 4.972 1.551 4.457
PL-TS 2.699 0.019 2.689
PL-PL 3.540 0.030 3.533

The best configuration produced by the GA is an ANN with 20
hidden layer units, tansig hidden layer transfer function, and
tansig output layer transfer function. Comparing this result with
the brute force technique shows that the GA can indeed produce
good configurations in the optimal sense of minimal error for
ANN configurations.

4.3 Description of a Real-World System
Part of our research deals with autonomic computing applications.
We are currently investigating the idea of self-preservation
controllers (SPC) as an enabler of self-configuration and self-
healing for Enterprise-class servers and high-performance
computing systems. A complete description of SPC is beyond the
scope of this paper, but in this sub-section, we provide some
preliminary results of the ANN parameter optimization techniques
described in this paper that have been employed in our SPC
designs.

In our SPC design, a set of applications are deployed on server
systems, and these applications measure particular types of system
activities related to the server’s function. Activity measurements
are sampled at a constant rate, and sliding windows of the
resultant time series data are delivered to a wavelet transformation
engine. The wavelet transformation engine produces series of
wavelet coefficient profiles over different scales. We then extract
a subset of the coefficient profiles and feed them into an ANN
whose job is to approximate the coefficient profiles. The goal is to
determine when the server experiences a significant “profile shift”
induced by changing workloads. When the SPC detects these
changes, it invokes higher-level applications that perform self-
healing and self-configuration operations that allow the server to
adapt to the changing workload environment.

Figure 5. Best and average fitness over the 100 generations.

Table 5. Best fit candidate moving towards convergence.

Epoch

Number of
Hidden
Units

Hidden
Layer
Transfer
Function

Output Layer
Transfer
Function

1 15.2914 1.2639 0.9166

2 19.9994 0.6405 1.3945

7 19.1401 0.5817 0.9340
13 20.0000 1.4569 1.0444

26 20.0000 0.7054 0.9339

100 20.0000 0.7054 0.9339

For this application, we require an ANN with significantly low
error during normal signal approximation because the ANN’s
error function is used as an indicator function in the SPC. We are
exploiting the fact that an ANN can produce reasonable
approximation to a “continuous and smooth” function. However,
an ANN will produce increased approximation error when a
signal discontinuity occurs (a signal rupture). Therefore, we need
an approximation system with extremely low error except for

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LS-LS

LS-PL

TS-TS
PL-LS

PL-PL
0

1

2

3

4

5

6

7

8

9

10

LS-LS
LS-TS
LS-PL
TS-LS
TS-TS
TS-PL
PL-LS
PL-TS
PL-PL

Best and Average Fitness

0

2

4

6

8

10

12

14

16

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Generation Epoch

Fi
tn

es
s

BestFitness AverageFitness

points around the signal’s discontinuities. The following figure
shows a sample of a web server’s activity measurements (the top
plot), which in this case is a measurement of file system activity,
its scaled time-frequency coefficient plot in the middle, and the
coefficient line from the mid-point scale on the bottom. The
noticeable “spike” from the top plot represents a flash-crowding
event that caused a significant shift in the resources required for
the server to continue functioning. The increased demand in
server resources is represented by a signal rupture in the
coefficient plots. Notice that the profile shift is observable in all 3
plots.

Figure 6. Wavelet analysis plots of activity measurements.

Figure 7 shows the error of the system’s ANN signal
approximation that has been configured using the GA
optimization method described in this paper.

Figure 7. Error response of GA optimized ANN in the SPC.

Observe two things from Figure 7. First, the magnitude of the
approximation error is extremely small, i.e., less than 16*10-4.
Second, a significantly observable “spike” is seen at the point in
time represented by the signal rupture. This type of behavior,
extremely small error except at times when signal ruptures occur,
is a fundamental requirement of our SPC designs. Current
investigations have shown that optimized ANNs can achieve these
requirements.

5. CONCLUSION
This paper described a method for using genetic algorithms to
optimize the configuration parameters of artificial neural
networks. Experimental results revealed that the method performs
well in terms of finding the configuration parameters of artificial
neural networks such that the error in signal approximation
applications can be reduced without the need for human-assisted
trial and error selection of configuration parameters. The
methodology described in this paper appears to be promising for
applications that require significantly small approximation error
when using artificial neural networks for signal approximation.
Even though the investigation reported in this paper only
considered a few of the possible network configuration
parameters, the method can be generalized to support optimization
of virtually any configuration parameter that is traditionally
provided by the neural network designer such as learning rates,
number of hidden layers, and training algorithms, just to name a
few. Further, the method can be seamlessly integrated into an
automated, software-based neural network configuration
framework.

6. REFERENCES
[1] Carrano, E., Takahashi, R., Caminhas, W., Neto, O. 2008. A

genetic algorithm for multiobjective training of ANFIS fuzzy
networks. In Proceedings of the 2008 IEEE Congress on
Evolutionary Computation (CEC’08)

[2] The GAOT Toolbox.
http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/

[3] Goldberg, D. 1989. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley,
Reading, MA

[4] Houck, C., Joines, J., Kay, M. 1995. A genetic algorithm for
function optimization: A MATLAB implementation.
Technical Report 95-09. North Carolina State University.

[5] Mitchell, T. 1997. Machine learning. McGraw-Hill. Boston,
MA.

[6] Rossi, A., Carvalho, A., Soares, C. 2008. Bio-inspired
parameter tuning of MLP networks for gene expression
analysis. In Proceedings of the 2008 8th International
Conference on Hybrid Intelligent Systems (HIS’08)

[7] Stanley, K., Miikkulainen, R. 2002. Evolving neural
networks through augmenting topologies. Evolutionary
Computation 10, 2, 99-127

[8] Stanley, K., Bryant, B., Miikkulainen, R. 2003. Evolving
adaptive neural networks with and without adaptive
synapses. In Proceedings of the 2003 IEEE Congress on
Evolutionary Computation (CEC’03)

	1. INTRODUCTION
	2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS
	3. OVERVIEW OF GENETIC ALGORITHMS
	4. SYSTEM DESIGN AND EVALUATION
	4.1 Evaluation with the Boolean XOR Benchmark
	4.2 Evaluation with a Sinusoidal Signal
	4.3 Description of a Real-World System

	5. CONCLUSION
	6. REFERENCES

