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ABSTRACT 
Artificial neural networks are used to solve diverse sets of 
problems. However, the accuracy of the network’s output for a 
given problem domain depends on appropriate selection of 
training data as well as various design parameters that define the 
structure of the network before it is trained. Genetic algorithms 
have been used successfully for many types of optimization 
problems. In this paper, we describe a methodology that uses 
genetic algorithms to find an optimal set of configuration 
parameters for artificial neural networks such that the network’s 
approximation error for signal approximation problems is 
minimized.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Parameter Learning 

General Terms 
Algorithms, Design, Theory 

Keywords 
Genetic Algorithms, Artificial Neural Networks, Parameter 
Optimization 

1. INTRODUCTION 
Artificial neural networks (ANN or just “network” if no confusion 
arises) are computational systems that can be used to solve 
problems for a large number of application domains. These 
application areas include signal (or function) approximation, data 
classification, pattern or sequence recognition (speech, text, 
imaging, etc), data clustering, gaming systems, control (robotic 
control, process control, vehicular control, etc), and many more. 
When using ANNs, one needs to have domain knowledge of the 
input-output space being presented to the network in order to 
determine appropriate configuration parameters for the network 
before its training. Incorrect selection of configuration parameters 
can lead, in many cases, to a resultant network that does not 
perform well after training. In these cases, poor classification 
results from mapping input features to incorrect output classes, 

which leads to networks with high rates of error. Neuroevolution 
[1], [6], [7], [8] has been used as a method to generate ANNs via 
simulated evolution with genetic algorithms (GA). Traditionally, 
neuroevolution is used as a method to evolve the ANN’s topology 
and synaptic weight matrices such that traditional network 
learning (training) operations are bypassed, and the goal is to find 
an optimal topology with its associated synaptic weights for some 
problem instance. In this paper, we investigate a methodology that 
uses GA to find optimal networks for signal approximation 
applications such that the network produces minimal error. 
However, instead of using the GA to evolve the ANN’s topology 
and synaptic weights as with neuroevolution, we use the GA to 
find the best choice of configuration parameters that define its 
topology and activation (transfer) functions while allowing the 
ANN to train itself based on the parameters provided by the GA. 

The remainder of this paper is organized as follows. Section 2 
provides a brief overview of artificial neural networks, and section 
3 gives a brief overview of genetic algorithms. In section 4, we 
describe how the genetic algorithm is used to optimize networks 
and give experimental results demonstrating its efficacy for 3 
types of signal approximation scenarios. We provide closure and 
references in sections 5 and 6, respectively. 

2. OVERVIEW OF ARTIFICIAL NEURAL 
NETWORKS 
The underlying theory of ANNs was originally inspired by 
biological processes. Specifically, ANNs are modeled after the 
human central nervous system, which consists of a very 
sophisticated interconnection of neurons and their associated 
axons, dendrites, and synapses. At the core of an ANN is the 
neural unit (NU) as shown in Figure 1. The ANN is created by 
interconnecting many neural units across several layers to form a 
highly connected neural network. An NU takes as its input a 
vector x = (x1, x2, … , xn).  Associated with each input connection 
xi is a “synaptic” weight wi, and these weights form the weight 
vector w. The output of an NU represents its activation level for a 
particular set of inputs where the output is denoted by u = T(z). 
T(z) is the transfer function of the NU (sometimes T is referred to 
as the activation function). Several forms exist for the transfer 
function. The work described in this paper will only use three 
types, which are given by Equations 1, 2, and 3. Equation 1 is the 
logistic sigmoidal function or the logsig fuction, Equation 2 is the 
hyperbolic tangent sigmoidal function or the tansig function, and 
Equation 3 is the linear function or purelin function. 
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Figure 1. A conceptual diagram of the neural unit. 
We will refer to logsig and tansig units collectively as sigmoidal 
units.   

 𝑇(𝑧) =  1
1+𝑒−𝑧

    (1) 

 

 𝑇(𝑧) =  𝑒
2𝑧−1
𝑒2𝑧+1

    (2) 

 

 𝑇(𝑧) =  𝑧    (3) 
 
The transfer function’s input, z, is the dot product of the input 
vector with the weight vector: 

 𝑧 =  ∑ 𝑤𝑖𝑥𝑖𝑛
𝑖=1     (4) 

In this investigation, we study applications that use ANNs for 
signal approximation. It is well known in the intelligent systems 
community that a multilayer ANN can approximate any bounded 
continuous function within some arbitrary amount of error [5]. 
Specifically, an ANN computes an approximation function where: 

 𝑓𝑎:𝑋 → 𝑈    (5) 

0 ≤  |𝑓 −  𝑓𝑎|  ≤  𝛿   (6) 
In other words, the ANN can produce some approximation 
function fa for the target function f such that the magnitude of the 
difference is within some bounded error δ. In this paper, the 
function fa represents a signal approximation (or a signal function 
approximation).  

Networks are created by interconnecting neural units to other 
neural units formed by one or more hidden layers, where each 
layer has some prescribed number of units. Networks learn how to 
map values in the input space to values in the output space via 
training, and training is provided by a learning algorithm, of 
which many different forms exist. Common types of ANN 
learning algorithms are based on the gradient decent algorithm. 
The basic idea is as follows. Training data is provided to the ANN 
in the form of (x, f(x)) tuples where x is the input data and f(x) is 
the target function. The learning stage takes the training tuple and 
sends the input value(s) into the ANN. Then, the output fa(x) is 
compared to the target value and an error is calculated. This error 
is used to evolve the weights such that over time (training epochs) 

the error of the ANN is minimized to some preferably global but 
possibly local minimum error. For this investigation, we utilized 
networks based on the back-propagation algorithm, whose weight 
update rule is give by Equation 7:  

𝑤𝑖(𝑡 + 1)  ←  𝑤𝑖(𝑡) +  𝛼[𝑓(𝑥𝑖) −  𝑓𝑎(𝑥𝑖)]𝑥𝑖 (7) 
During training, each weight vector component for each NU in the 
ANN is updated similar to Equation 7. As seen in Equation 7, as 
the approximation function approaches the actual function over 
increasing training epochs, the change in weight value wi 
approaches zero such that at convergence wi(t+1) ≈ wi(t). The 
value α represents the learning rate, and this value determines how 
fast the weights evolve.  
The performance of a ANN is sensitive to the selection of 
parameters that define its overall configuration. These parameters 
include, just to name a few, the type of transfer function to use in 
each layer, the total number of layers, the total number of units 
per layer, the learning rate’s value, the type of training algorithm 
to use, and the number of training epochs to use. Furthermore, 
these parameters are not generalized to any given network, and in 
many cases, they depend on the underlying data’s input-output 
space. If an experienced network designer has a good 
understanding of the input-output space, then the designer’s 
domain knowledge and expertise allows him/her to select 
respectable parameter values. However, this is normally a trial-
and-error process even for experienced designers. Further, the 
problem is more challenging when working with high-
dimensional input-output spaces where underlying patterns that 
drive the selection of parameters are not known. Hence, methods 
for automated selection of optimized parameters using other 
computational optimizations sounds promising. 

3. OVERVIEW OF GENETIC 
ALGORITHMS 
The creation of genetic algorithms (GAs) was inspired by the 
biological evolutionary process. The primary inspiration is due to 
the fact that biological systems can adapt over time (evolve) 
within changing environments. Further, this adaptation can 
propagate through successor generations within the biological 
system. This adaptation-propagation scheme leads to the idea of 
survival of the fittest—individuals that can adapt well to changing 
environments have a higher probability of survival. Goldberg [3] 
provides a detailed treatment of GA theory and its application. 

The primary operations performed by GA include chromosome 
representation, genetic selection, genetic crossover, genetic 
mutation, and population fitness evaluation. In GAs, problem 
domains are encoded via chromosomes in a population P(t). This 
chromosome encoding is usually in the form of a bit string or 
some numerical representation, i.e., one is required to map 
population members to a binary or numerical form. The 
population represents a particular state space of hypotheses at 
evolution time epoch t, where a hypothesis is a possible solution 
to a given problem. At each time epoch, the fitness of each 
individual of the population is evaluated. The fitness is evaluated 
with a fitness function F(hi) where hi is the hypothesis represented 
by the ith member (chromosome) of the population and the fitness 
F represents how well a particular hypothesis represents the 
solution of the given problem. In general, the GA’s fitness 
function must be an increasing function with respect to a 
candidate hypothesis’s response to the problem such that good 
solutions have higher fitness and poor solutions have low fitness. 



F is computed for each member, and the next population P(t+1) is 
created by probabilistically selecting the most fit members of the 
current population. Some of the members will be part of P(t+1) in 
their current form, and some are selected for genetic modifications 
such as crossover and mutation. Crossover produces offspring 
from two parents whereas mutation is the act of randomly 
modifying the encoding features of a selected set of individuals. 
There are two important design issues when using a GA: 1) one 
must define a mapping from the input-output space of the problem 
into an encoding that can be used by the GA, i.e., a binary or 
numerical mapping, and 2) one must design a fitness function for 
the problem domain. The power of the GA is in its ability to 
encode a very large set of possible solution spaces for a given 
problem. They are often used successfully for optimization 
problems, but they have also been used for function 
approximation, complex circuit layout, and scheduling. As stated 
earlier, they are also used in neuroevolution to evolve neural 
networks. In this work, the GA will be used to optimize a certain 
set of ANN design parameters.  

4. SYSTEM DESIGN AND EVALUATION 
The goal of this study was to evaluate a methodology for signal 
approximation applications whereby a GA computes an optimal 
set of ANN configuration parameters via simulated evolution such 
that the resultant configuration produces a trained ANN whose 
error function is minimized. In this section, we will first present 
the generic process of our system design. Then, we will describe 
the detailed description of options used during our experimental 
evaluations along with experimental results. 

 The system design we evaluated for ANN parameter optimization 
consists of a two-phase evolutionary process. During phase 1, the 
GA has a population of chromosomes that are numerical 
representations of ANN configuration parameters. At each 
evolution time epoch, t, the chromosome for each population 
member is submitted to the ANN. The ANN maps the 
chromosome’s numerical values to their respective parameter 
types, implements a self-configuration based on these values, and 
then learns from a training set of the problem’s input-output 
space. Once the ANN has been trained, a set of labeled validation 
data from the input-output space is used to evaluate the ANN’s 
post-training error response. This error response is then used to 
evaluate the fitness of the population member whose chromosome 
was submitted to the ANN for configuration and training. Since 
the goal is to find an ANN with minimal error, the error response, 
which is given by Equation 8, is used as input to the GA’s fitness 
function:  

 𝐸𝑖 = �∑ (𝑓�𝑥𝑗� − 𝑓𝑎(𝑥𝑗))2 𝑁
𝑗=1  (8) 

 
In Equation 8, Ei is the error of the ANN configured and trained 
based on the chromosome of the ith population member, and the 
error is calculated over a total of N evaluations from the validation 
dataset. The fitness function for the system is given by Equation 
9: 

 𝐹(ℎ𝑖;𝐸𝑖) = 1
𝐸𝑖

    (9) 

The fitness function is inversely proportional to the error of the 
ANN configured by parameters represented by the ith chromosome 

(i.e., the ith hypothesis). Hence, a decrease in error provides an 
increase in fitness, which is our objective. 

The steps described above are performed for each member in the 
GA’s population. Once each member in the population has been 
evaluated for fitness, the GA performs its selection, crossover, and 
mutation operations and then proceeds to the next evolution 
epoch, t+1. This entire process proceeds until the evolution 
process terminates. Note that during this phase, the training and 
validation data used by the ANN are extracted from a dataset from 
the target input-output space, and the training set is separate from 
the validation set. 

During phase 2, which proceeds after the simulated evolution 
process terminates, the GA submits the chromosome from the 
terminal population’s best fit individual to the ANN. The ANN 
uses this chromosome to configure its parameters and then trains 
from a set of phase-2 training data. Once this training is complete, 
the ANN is ready to be deployed for its target application.  

For the experiments performed during this study, the 
chromosomes encode three ANN parameters, which include: 1) 
the number of hidden units in a single hidden layer, 2) the transfer 
function to use at the hidden layer, and 3) the transfer function to 
use at the output layer. We used numerical chromosome 
encodings in the GA, and the mapping from numerical to transfer 
function types is shown in Table 1. 

Table 1. Symbolic to numeric mapping scheme for the 
experimentation. 

Transfer  Function Mapping 

logsig 0.0  ≤  yj <  0.5  

tansig 0.5  ≤  yj <  1.5 

purelin 1.5  ≤  yj <  2 

 

The chromosome encoding was defined by hi = (y1, y2, y3) where 
y1 represented the number of nodes in the hidden layer, y2 
represented the transfer function for the hidden layer, and y3 
represented the transfer function of the output layer. So, j = 2 or j 
= 3 in Table 1. For example, if the GA produced a chromosome 
for y2 = 0.2, then the ANN self-configured its hidden layer to use 
the logsig transfer function. For the number of hidden units, the 
ANN rounded the numerical value to the nearest integer. For both 
experiments, we use a back propagation ANN with a learning rate 
of 0.1. The GA used numerically encoded chromosomes, as stated 
above, with a fixed population size of 20 chromosomes, and we 
used arithmetic crossover, uniform mutation, and normalized 
geometric selection. (Refer to [4] for a description of these 
options). 

4.1 Evaluation with the Boolean XOR 
Benchmark 
The Boolean XOR function falls into a class known as non-
linearly separable functions [5]. Because of this, the XOR is 
commonly used as a benchmark to test machine learning and 
artificial intelligence algorithms. For this experiment, a brute 
force technique was implemented over the entire set of possible 
configurations under study. The results from these ANN 
configurations were compared to the best fit (optimal) 
configuration produced by the GA. All possible combinations of 



the transfer function set {logsig, tansig, purelin} for both the 
hidden and output layer were evaluated, giving a total of 9 
combinations. Further, each possible combination was evaluated 
over a number of hidden units ranging from 1 to 20. Overall, 9*20 
= 180 configurations were compared with respect to their error 
response. Figure 2 shows the ANN XOR approximation error over 
the 180 configurations. The following notation is used to describe 
the data in the graph: LS = logsig, TS = tansig, and PL = purelin. 
The notation X-Y represents X as the hidden layer transfer 
function and Y as the output layer transfer function, i.e. LS-TS is 
an ANN with logsig for the hidden layer transfer function and 
tansig for the output layer transfer function. 

 Figure 2. ANN error versus the number of hidden units for 
the nine different T(z) combinations. 

As seen in Figure 2, the ANNs with purelin used at the hidden 
layer do not approximate XOR very well—the error does not go 
below 1 for any number of hidden units. The LS-PL and TS-PL 
gave the best results in terms of convergence and stability (they 
both converged to small error at two hidden units and retained a 
small error through 20 units). LS-LS, LS-TS, TS-LS, and TS-TS 
did well, but the error fluctuated over the different number of 
hidden nodes. Table 2 shows the average and standard deviation 
of the error for the nine combinations across the hidden unit 
range. 

Table 2. Average and standard deviation of ANN XOR 
approximation error using the brute force evaluation. 

 Average Std Dev 
LS-LS 0.115 0.271 
LS-TS 0.165 0.405 
LS-PL 0.042 0.182 
TS-LS 0.080 0.234 
TS-TS 0.255 0.461 
TS-PL 0.041 0.183 
PL-LS 1.000 0.000 
PL-TS 1.020 0.093 
PL-PL 1.000 0.000 

 
For the GA approach, we ran simulated evolution over 60 
generations with GA options as described above. The population 
size of the GA was fixed at 20 members. Figure 3 shows the 
average and best population fitness over the 60 generations. 

 
Figure 3. Best and average fitness over the 60 generations. 

 
The fitness values shown in Figure 3 are computed by the GA 
with Equation 9. The near-constant line in blue is the fitness of the 
best member during each epoch. Notice that the GA quickly finds 
a solution with high fitness, i.e., finding a best fit ANN to 
approximate the XOR function. Table 3 provides a sample of the 
best fit candidate of the population as the GA evolved.  
 

Table 3. Best fit candidate moving towards convergence. 

Epoch 

Number of 
Hidden 
Units 

Hidden Layer 
Transfer 
Function 

Output Layer 
Transfer 
Function 

1 15.8916   0.2475 1.5243 
2 20.0000 0.1921 1.8668 
4 20.0000 0.0000 1.8429 

60 20.0000 0.0000 1.8429 
 
Table 1 is used to map the hidden and output layer transfer 
function numerical values to their symbolic representations. The 
GA’s final result for the best fit member to encode this problem is 
in the last row of Table 3. Specifically, the number of hidden units 
is 20, the hidden layer transfer function is logsig, and the output 
layer transfer function is purelin. 

4.2 Evaluation with a Sinusoidal Signal 
This section explores the GA optimization methodology when 
using an ANN to approximate a sinusoidal signal. For this 
experiment, the signal (or target function) to approximate will be 
f(x) = sin(x). The experimental setup was similar to the XOR 
evaluation. First, a set of brute force configuration evaluations 
were performed for each possible transfer function configuration 
and for the number of hidden units ranging from 1 to 20. Figure 4 
shows the approximation error for the nine configurations. 

Similar to the XOR evaluation, the configurations with PL hidden 
layer transfer functions do not perform well. Table 4 gives the 
average error along with its standard deviation and minimum 
values for all nine configurations over the range of hidden nodes. 
Using the minimum error and the minimum average error as a 
decision factor, the ANN configuration with TS-TS or TS-PL as 
the transfer functions appear to provide the best approximations to 
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the sine function. The GA used for this approximation problem 
was similar to the XOR evaluation except that the number of 
generations was set to 100 instead of 60. Figure 5 shows the best 
and average fitness over the 100 generations and Table 5 provides 
a sample of the best fit candidate over the 100 generations. 
Observe that the GA converged to a best fit candidate after 26 
generations. 

 

 
Figure 4. ANN approximation error for the nine T(z) 

configurations. 
 

Table 4. Average, standard deviation, and minimum of error 
for the nine configurations.  

 Average Std. Dev. Minimum 
LS-LS 4.026 0.094 3.964 
LS-TS 0.473 0.513 0.155 
LS-PL 0.433 0.611 0.128 
TS-LS 3.996 0.064 3.964 
TS-TS 0.404 0.530 0.130 
TS-PL 0.359 0.474 0.121 
PL-LS 4.972 1.551 4.457 
PL-TS 2.699 0.019 2.689 
PL-PL 3.540 0.030 3.533 

 
The best configuration produced by the GA is an ANN with 20 
hidden layer units, tansig hidden layer transfer function, and 
tansig output layer transfer function. Comparing this result with 
the brute force technique shows that the GA can indeed produce 
good configurations in the optimal sense of minimal error for 
ANN configurations.  

4.3 Description of a Real-World System 
Part of our research deals with autonomic computing applications. 
We are currently investigating the idea of self-preservation 
controllers (SPC) as an enabler of self-configuration and self-
healing for Enterprise-class servers and high-performance 
computing systems. A complete description of SPC is beyond the 
scope of this paper, but in this sub-section, we provide some 
preliminary results of the ANN parameter optimization techniques 
described in this paper that have been employed in our SPC 
designs. 

In our SPC design, a set of applications are deployed on server 
systems, and these applications measure particular types of system 
activities related to the server’s function. Activity measurements 
are sampled at a constant rate, and sliding windows of the 
resultant time series data are delivered to a wavelet transformation 
engine. The wavelet transformation engine produces series of 
wavelet coefficient profiles over different scales. We then extract 
a subset of the coefficient profiles and feed them into an ANN 
whose job is to approximate the coefficient profiles. The goal is to 
determine when the server experiences a significant “profile shift” 
induced by changing workloads. When the SPC detects these 
changes, it invokes higher-level applications that perform self-
healing and self-configuration operations that allow the server to 
adapt to the changing workload environment. 
 

 
Figure 5. Best and average fitness over the 100 generations. 

 
 
Table 5. Best fit candidate moving towards convergence. 

Epoch 

Number of 
Hidden 
Units 

Hidden 
Layer 
Transfer 
Function 

Output Layer 
Transfer 
Function 

1 15.2914 1.2639 0.9166 

2 19.9994 0.6405 1.3945 

7 19.1401 0.5817 0.9340 
13 20.0000 1.4569 1.0444 

26 20.0000 0.7054 0.9339 

100 20.0000 0.7054 0.9339 

 
 
For this application, we require an ANN with significantly low 
error during normal signal approximation because the ANN’s 
error function is used as an indicator function in the SPC. We are 
exploiting the fact that an ANN can produce reasonable 
approximation to a “continuous and smooth” function. However, 
an ANN will produce increased approximation error when a 
signal discontinuity occurs (a signal rupture). Therefore, we need 
an approximation system with extremely low error except for 
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points around the signal’s discontinuities. The following figure 
shows a sample of a web server’s activity measurements (the top 
plot), which in this case is a measurement of file system activity, 
its scaled time-frequency coefficient plot in the middle, and the 
coefficient line from the mid-point scale on the bottom. The 
noticeable “spike” from the top plot represents a flash-crowding 
event that caused a significant shift in the resources required for 
the server to continue functioning. The increased demand in 
server resources is represented by a signal rupture in the 
coefficient plots. Notice that the profile shift is observable in all 3 
plots. 
 

 
Figure 6. Wavelet analysis plots of activity measurements. 

 
Figure 7 shows the error of the system’s ANN signal 
approximation that has been configured using the GA 
optimization method described in this paper. 
 

Figure 7. Error response of GA optimized ANN in the SPC. 
 
 
 
 

Observe two things from Figure 7. First, the magnitude of the 
approximation error is extremely small, i.e., less than 16*10-4. 
Second, a significantly observable “spike” is seen at the point in 
time represented by the signal rupture. This type of behavior, 
extremely small error except at times when signal ruptures occur, 
is a fundamental requirement of our SPC designs. Current 
investigations have shown that optimized ANNs can achieve these 
requirements.  

5. CONCLUSION 
This paper described a method for using genetic algorithms to 
optimize the configuration parameters of artificial neural 
networks. Experimental results revealed that the method performs 
well in terms of finding the configuration parameters of artificial 
neural networks such that the error in signal approximation 
applications can be reduced without the need for human-assisted 
trial and error selection of configuration parameters. The 
methodology described in this paper appears to be promising for 
applications that require significantly small approximation error 
when using artificial neural networks for signal approximation. 
Even though the investigation reported in this paper only 
considered a few of the possible network configuration 
parameters, the method can be generalized to support optimization 
of virtually any configuration parameter that is traditionally 
provided by the neural network designer such as learning rates, 
number of hidden layers, and training algorithms, just to name a 
few. Further, the method can be seamlessly integrated into an 
automated, software-based neural network configuration 
framework. 

6. REFERENCES 
[1] Carrano, E., Takahashi, R., Caminhas, W., Neto, O. 2008. A 

genetic algorithm for multiobjective training of ANFIS fuzzy 
networks. In Proceedings of the 2008 IEEE Congress on 
Evolutionary Computation (CEC’08) 

[2] The GAOT Toolbox. 
http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/ 

[3] Goldberg, D. 1989. Genetic algorithms in search, 
optimization, and machine learning. Addison-Wesley, 
Reading, MA 

[4] Houck, C., Joines, J., Kay, M. 1995. A genetic algorithm for 
function optimization: A MATLAB implementation. 
Technical Report 95-09. North Carolina State University. 

[5] Mitchell, T. 1997. Machine learning. McGraw-Hill. Boston, 
MA. 

[6] Rossi, A., Carvalho, A., Soares, C. 2008. Bio-inspired 
parameter tuning of MLP networks for gene expression 
analysis. In Proceedings of the 2008 8th International 
Conference on Hybrid Intelligent Systems (HIS’08) 

[7] Stanley, K., Miikkulainen, R. 2002. Evolving neural 
networks through augmenting topologies. Evolutionary 
Computation 10, 2, 99-127 

[8] Stanley, K., Bryant, B., Miikkulainen, R. 2003. Evolving 
adaptive neural networks with and without adaptive 
synapses. In Proceedings of the 2003 IEEE Congress on 
Evolutionary Computation (CEC’03) 


	1. INTRODUCTION
	2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS
	3. OVERVIEW OF GENETIC ALGORITHMS
	4. SYSTEM DESIGN AND EVALUATION
	4.1 Evaluation with the Boolean XOR Benchmark
	4.2 Evaluation with a Sinusoidal Signal
	4.3 Description of a Real-World System

	5. CONCLUSION
	6. REFERENCES

