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Abstract 

 

In the pursuit of value-added products from the degradation of the abundant aromatic 

biopolymer lignin, homogeneous catalysis has the potential to provide a mild, selective route to 

monomeric phenols. Homogeneous vanadium catalysts have previously been shown to effectively 

cleave dimeric β-O-4 model lignin compounds, with selectivity for C-C or C-O cleavage, or 

benzylic oxidation, depending on the ligand structure and oxidation state of the metal. In this study, 

a systematic kinetic investigation was undertaken in order to gain further understanding of the role 

of ligand structure and reaction conditions on the activity of vanadium Schiff-base catalysts 

towards a non-phenolic β-O-4 model lignin dimer, and the selectivity of these species towards C-

O bond cleavage. Catalytic activity was found to be increased by the addition of bulky, alkyl 

substituents at the 3’-position of the phenolate ring, whereas electron-withdrawing substituents 

were found to dramatically reduce activity irrespective of their size. Selective depolymerization of 

a phenolic β-O-4 dimer was also achieved. 
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1. Introduction 

The valorization of lignin is widely recognised as an important contributor to the economic 

viability of the biorefinery concept; despite this lignin is not currently widely exploited as a 

bioresource, largely due to its recalcitrant nature and resistance to degradation.[1-4] In its native 

polymeric form lignin is of little commercial value and is routinely burnt to recover process heat, 

for instance in the paper and pulping industry.[1] It is, however, the most abundant source of 

renewable aromatic functionality available and effective lignin depolymerization could provide a 

sustainable route to potentially valuable monomeric phenolic species. Substituted phenolic species 

obtainable from lignin, such as vanillin, have potential applications as antioxidants.[5]  

Thermochemical techniques such as pyrolysis and gasification have been employed in the 

degradation of lignin and have been carried out on both isolated lignin and whole biomass. These 

processes result in unselective degradation, often partially or fully destroying the intrinsic aromatic 

structure of the lignin polymer, and complex product mixtures are formed which generally require 

further upgrading and/or separation to produce higher value products. [1, 6-8] 

In order to selectively obtain valuable aromatic products from lignin, a milder and more 

elegant deconstruction technique is required; homogeneous catalysts could be employed to 

improve selectivity whilst potentially avoiding the need for harsh reaction conditions.[2, 9, 10] 

The inherent diversity of organometallic complexes allows catalytic activity and selectivity to be 

tuned, for example to target specific linkages or to produce particular products. Homogeneous 

species are less likely than their heterogeneous counterparts to promote over-reduction resulting 

in a loss of aromaticity and are potentially capable of accessing linkages within the three-

dimensional structure of the lignin polymer which would be beyond the reach of a traditional 

heterogeneous catalyst. [10] 



Most examples of homogeneous lignin depolymerization catalysis to date have been 

demonstrated solely on model lignin compounds.[2] The relative simplicity of these species 

compared to native lignin increases the ease of analysis, thereby facilitating mechanistic 

understanding of the degradation. Whilst a diverse library of model compounds is available, the 

most common are dimeric compounds containing the β-aryl ether (β-O-4) linkage; as well as being 

the most abundant linkage in lignin, it is also amongst the most susceptible to cleavage and 

therefore represents a desirable target for depolymerization.[11] 

A wide range of metal complexes have been shown to effectively cleave β-O-4 model 

lignin compounds.[12-16] For the production of monomeric phenols, vanadium(V) complexes 

with O/N donor ligands are amongst the most promising homogeneous catalysts, Figure 1.[17-20] 

Changing the ligand structure has been shown to dramatically affect the selectivity of the vanadium 

complexes towards C-O or C-C bond cleavage, or benzylic oxidation. Hanson et al. reported the 

C-C bond cleavage in β-O-4 models by dipicolinate vanadium(V) using air as the oxidant. 

Degradation occurred via benzylic oxidation to the oxidation product (OP) followed by subsequent 

C-C cleavage to form benzoic acid, phenol and formic acid, Figure 2(a).[17] 

 

 



Figure 1: Representative structures of vanadium-based lignin depolymerization catalysts 

reported by Hanson [17] and Toste [18] 

 

 
Figure 2: Degradation of β-O-4 model lignin compounds by vanadium catalysts a) C-C cleavage 

and benzylic oxidation, Hanson [17]; b) C-O cleavage and benzylic oxidation, Toste [18] 

 

Son and Toste reported the depolymerization of a dimeric β-O-4 model compound in the 

presence of a variety of oxo-vanadium(IV) and (V) species, Figure 2(b). The former were observed 

to significantly favour benzylic oxidation to form the oxidation product (OP), over the desired C-

O bond cleavage to form the phenol (in this case guaiacol).[18] The highest selectivity of the 

vanadium(IV) catalysts for C-O cleavage was 25% in the case of the tridentate ligand. 

For the vanadium(V) Schiff-base species, the ligand backbone and functionalization were 

found to be very important for tuning the activity and selectivity towards C-O bond cleavage over 

oxidation. Selectivity for C-O cleavage could be improved by extending carbon backbone of the 

tridentate Schiff-base ligands (from n=1 to n=2, Fig. 1), thereby decreasing the O-V-N bite angle. 

Both activity and selectivity for C-O cleavage were favoured by the addition of tert-butyl 

substituents at the 3- and 5-positions of the phenolate ring. 

The mechanism for C-O bond cleavage was proposed to proceed via a formally non-

oxidative one-electron V(V)-V(IV) redox process, with the model compound coordinating to 

vanadium through the benzylic hydroxyl group. Subsequent studies by this group demonstrated 



the partial depolymerization of Organosolv lignin derived from Miscanthus giganteus using 

vanadium catalysts.[21] 

In this current study, the role of the Schiff-base ligand on both the activity and selectivity 

of homogeneous vanadium catalysts was further probed via a systematic synthetic and kinetic 

investigation in order to inform the development of an improved catalytic system.  

 

2. Experimental 

2.1 Materials and Methods 

Where preparative details are not provided, reagents were purchased from Sigma Aldrich, TCI 

Chemicals, Fluka, Lancaster, Acros Organics or Alfa Aesar and used without additional 

purification.  

NMR Spectroscopy. NMR spectra were obtained on one of Bruker Advance 300, 400 or 500 MHz 

spectrometers at 298 K in (CD3)2SO, CD3OD or CDCl3 as solvent. Chemical shifts are reported in 

parts per million (ppm) relative to the residual solvent peak and coupling constants are reported in 

Hertz (Hz). 

ESI-MS. ESI-MS analysis was recorded on a Bruker Daltonic micrOTOF electrospray time-of-

flight (ESI-TOF) mass spectrometer coupled to an Agilent 1200 LC system as an autosampler. 10 

µL of sample was injected into a 30:70 flow of water:acetonitrile at 0.3 mL/min into the mass 

spectrometer. 

Elemental Analysis. Elemental compositions were obtained by Mr Stephen Boyer at the 

Microanalysis Service, London Metropolitan University, UK. 



X-Ray Crystallography. All data were collected on a Nonius kappa CCD diffractometer with 

MoK radiation ( = 0.71073 Å). T = 150(2) K throughout and all structures were solved by direct 

methods and refined on F2 data using the SHELXL-97 suite of programs.[22] Hydrogen atoms, 

were included in idealised positions and refined using the riding model.  The crystal data is 

straightforward and the following CCDC numbers 1404037-1404041 contain the information 

2.2 1H NMR Depolymerization Studies 

2-Phenoxy-1-phenylethanol (33 mg, 0.15 mmol), catalyst (0.5-7 mol%) and hexamethylbenzene 

(internal standard, 2 mg, 0.01 mmol) were dissolved in 1 mL DMSO-d6 in an NMR tube 

(uncapped) and heated (70-120 °C) for 4 days. 

2.3 Synthetic Procedures 

2.3.1 Non-Phenolic Model Compound Synthesis 

2-Phenoxy-1-phenylethanone. To a solution of 2-bromo-1-phenylethanone (9 g, 45 mmol) in 

dimethylformamide (150 mL) was added phenol (5 g, 53 mmol) and K2CO3 (7.3 g, 53 mmol). The 

solution was stirred overnight and a colour change from yellow to orange was observed. The 

reaction mixture was then poured into warm water and left to recrystallize. The crystals were 

filtered and redissolved in toluene; this solution was dried over MgSO4, filtered and the solvent 

removed in vacuo to give the product as a cream solid in 83 % yield. 1H NMR (CDCl3, 300 MHz): 

δ 5.29 (s, 2H, CH2), 6.92-7.06 (m, 3H, Ar-H), 7.28-7.35 (m, 2H, Ar-H), 7.48-7.56 (m, 2H, Ar-H), 

7.60-7.68 (m, 1H, Ar-H), 7.98-8.08 (m, 2H, Ar-H). 13C[4] NMR (CDCl3, 75 MHz):  δ 70.8, 114.8, 

121.7, 128.2, 128.9, 129.6, 133.9, 158.0, 194.6. ESI-MS: m/z calcd for [C14H12O2Na]+ : 235.0735; 

found: 235.0792. 



2-Phenoxy-1-phenylethanol. To a solution of 2-phenoxy-1-phenylethanone (7 g, 33 mmol) in 

methanol (200 mL) was added NaBH4 (2.5 g, 66 mmol) portion wise. The reaction was stirred for 

3 h, after which time the solvent was removed in vacuo. The residue was redissolved in ethyl 

acetate (50 mL) and the reaction was quenched by the addition of aqueous HCl (50 mL). The 

resulting solution was filtered to remove insoluble salts and the product was extracted into ethyl 

acetate (3 × 20 mL), washed with brine (1 × 30 mL), dried over MgSO4 and the solvent removed 

in vacuo to afford a waxy, cream solid in 91 % yield. 1H NMR (CDCl3, 300 MHz): δ 4.02 (dd, 

J=9.8, 9.0 Hz, 1H, CH2), 4.13 (dd, J=9.8, 3.4 Hz, 1H, CH2), 5.15 (dd, J=8.9, 3.2 Hz, 1H, CH), 

6.91-7.02 (m, 3H, Ar-H), 7.27-7.51 (m, 7H, Ar-H). 13C{1H} NMR (CDCl3, 75 MHz):  δ 72.6, 73.3, 

114.6, 126.3, 128.3, 128.6, 129.6, 144.5, 158.4. ESI-MS: m/z calcd for [C14H14O2Na]+ : 237.0891; 

found: 237.0894. Elemental Analysis: Anal. Calcd for C14H14O2: C, 78.48; H, 6.59. Found: C, 

78.31; H, 6.49. 

2.3.2 Bulky Alcohol and Salicylaldehyde Synthesis [23] 

2-Trityl-4-methylphenol. p-Cresol (25 g, 0.2 mmol) was heated to 100 °C under a flow of argon. 

Sodium metal (1.1 g, 0.05 mmol) was added slowly with vigorous stirring to form a cresolate melt. 

To this was added triphenylchloromethane (10.0 g, 0.036 mmol) and the mixture was heated at 

140 °C for 3 h. The reaction mixture was cooled to room temperature and subsequently treated 

with 7% aq. NaOH (100 mL) and ether (100 mL). The organic layer was separated, washed with 

7% aq. NaOH (5 × 50 mL), water (100 mL), and brine (50 mL), dried over MgSO4 and the solvent 

removed in vacuo. The resulting solid was recrystallized from hot diethyl ether to afford the 

product as a creamy solid in 46% yield. 1H NMR: (400 MHz, CDCl3) δ 2.19 (s, 3H, CH3), 4.33 (s, 

1H, OH), 6.74 (d, J=8.0 Hz, 1H, Ar-H), 6.86 (d, J=2.3 Hz, 1H, Ar-H), 7.04 (dd, J=8.0, 2.3 Hz, 1H, 



Ar-H), 7.16-7.34 (m, 15H, Ar-H). 13C{1H}  NMR: (100 MHz, CDCl3) δ 20.9, 62.6, 117.9, 126.7, 

127.9, 129.2, 129.4, 130.9, 131.0, 132.8, 144.2, 152.2. 

3-Trityl-5-methylsalicylaldehyde. 2-Trityl-4-methylphenol (3.5 g, 0.01 mol), 

hexamethylenetetramine (2.80 g, 0.02 mol) and trifluoroacetic acid (10 mL) were stirred together 

for 4 h at 120 °C. The mixture was cooled to 80 °C, 33% aq. H2SO4 (15 mL) was added and the 

reaction was heated for a further 2 h at 130 °C. After cooling to room temperature, ethyl acetate 

(20 mL) and water (30 mL) were added. The organic layer was separated and the water layer 

extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with water 

(50 mL) and brine (30 mL) and dried over MgSO4. The solvent was removed in vacuo and the 

residue was washed with diethyl ether to yield the product as a pale yellow powder in 49% yield. 

1H NMR: (400 MHz, CDCl3) δ 2.26 (s, 3H, CH3), 7.10-7.25 (m, 15H, Ar-H), 7.27-7.30 (m, 1H, 

Ar-H), 7.36 (d, J=2.0 Hz, 1H, Ar-H), 9.80 (s, 1H, CHO), 11.11 (d, J=0.5 Hz, 1H, OH). 13C{1H} 

NMR: (100 MHz, CDCl3) δ 20.7, 62.9, 120.6, 125.7, 127.2, 127.8, 128.0, 128.2, 129.4, 130.8, 

130.9, 132.7, 135.4, 138.8, 144.8, 158.5, 196.5. 

3-(1-Adamantyl)-5-methylsalicylaldehyde. 2-(1-Adamantyl)-4-methylphenol (1.0 g, 4.1 mmol), 

hexamethylenetetramine (1.16 g, 8.3 mmol) and trifluoroacetic acid (7 mL) were stirred together 

for 4 h at 120 °C. The mixture was cooled to 80 °C, 33% aq. H2SO4 (70 mL) was added and the 

reaction was heated for a further hour at 130 °C. After cooling to room temperature, ethyl acetate 

(20 mL) and water (30 mL) were added. The organic layer was separated and the water layer 

extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with water 

(50 mL) and brine (30 mL) and dried over MgSO4. The solvent was removed in vacuo and the 

residue was washed with diethyl ether to yield the product as a pale yellow powder in 66% yield. 

1H NMR: (400 MHz, CDCl3) δ 1.74-1.82 (m, 6H, Ad-H), 2.05-2.10 (m, 3H, Ad-H), 2.11-2.18 (m, 



6H, Ad-H), 2.31 (s, 3H, CH3), 7.13-7.19 (m, 1H, Ar-H), 7.27 (d, J=2.3 Hz, 1H, Ar-H), 9.81 (s, 1H, 

OH), 11.64 (s, 1H, CHO). 13C{1H} NMR: (CDCl3, 75 MHz): δ 20.6, 28.9, 37.0, 40.1, 120.3, 128.2, 

131.3, 135.5, 159.4, 197.2. 

2.3.3 Ligand Synthesis 

General Procedure To a solution of the aldehyde (1 g) in methanol (70 mL) was added Na2SO4 

(8 eq.) and 3-amino-1-propanol (1 eq.), the reaction was heated to reflux and stirred overnight. The 

mixture was then cooled to room temperature, filtered and concentrated in vacuo to afford the 

product. 

N-(3-Hydroxypropyl)-3,5-di-chlorosalicylaldimine. (1H2)  1H NMR: (CDCl3, 300 MHz): δ 1.96 

(quin, J=6.3 Hz, 2H, CH2), 3.78 (t, J=6.0 Hz, 2H, CH2-OH), 3.77 (t, J=5.7 Hz, 2H, N-CH2), 7.11 

(d, J=2.6 Hz, 1H, Ar-H), 7.40 (d, J=2.6 Hz, 1H, Ar-H), 8.22 (s, 1H, N=CH). 13C{1H} NMR: 

(CDCl3, 75 MHz): δ 32.7, 53.9, 59.6, 118.4, 121.3, 123.9, 129.1, 132.8, 159.9, 163.9. ESI-MS: 

m/z calcd for [C10H12Cl2NO2]
+ : 248.0245; found: 248.0237. 

N-(3-Hydroxypropyl)-3,5-di-bromosalicylaldimine. (2H2)  1H NMR: (CDCl3, 300 MHz): δ 1.98 

(quin, J=6.3 Hz, 2H, CH2), 3.75-3.82 (m, 4H, CH2-OH, N-CH2), 7.32 (d, J=2.3 Hz, 1H, Ar-H), 

7.71 (d, J=2.3 Hz, 1H, Ar-H), 8.23 (s, 1H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 32.7, 53.7, 

59.5, 108.0, 113.9, 118.8, 132.9, 138.3, 161.0, 163.8. ESI-MS: m/z calcd for [C10H12Br2NO2]
+ : 

337.9209; found: 337.9527. 

N-(3-Hydroxypropyl)-3,5-di-iodosalicylaldimine. (3H2) 
 1H NMR: (CDCl3, 300 MHz): δ 1.98 

(quin, J=6.4 Hz, 2H, CH2), 3.75-3.80 (m, 4H, CH2-OH, N-CH2), 7.49 (d, J=2.3 Hz, 1H, Ar-H), 

8.05 (d, J=2.3 Hz, 1H, Ar-H), 8.13 (t, J=1.0 Hz, 1H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 



32.7, 53.5, 59.6, 90.1, 118.8, 140.0, 149.1, 163.5. ESI-MS: m/z calcd for [C10H12I2NO2]
+ : 

431.8957; found: 431.8967. 

N-(3-Hydroxypropyl)-salicylaldimine. (4H2)  1H NMR: (CDCl3, 300 MHz): δ 2.01 (quin, J=6.4 

Hz, 2H, CH2), 3.77 (t, J=6.7 Hz, 2H, CH2), 3.81 (t, J=6.2 Hz, 2H, CH2), 6.92 (t, J=7.5 Hz, 1H, Ar-

H), 7.00 (d, J=8.3 Hz, 1H, Ar-H), 7.29 (dd, J=7.7, 1.4 Hz, 1H, Ar-H), 7.32-7.38 (m, 1H, Ar-H), 

8.42 (s, 1H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 33.5, 55.8, 60.2, 117.1, 118.5, 131.3, 

132.3, 161.4, 165.3. ESI-MS: m/z calcd for [C10H14NO2]
+ : 180.1025; found: 180.1025. 

N-(3-Hydroxypropyl)-3,5-di-tert-butylsalicylaldimine. (5H2) 
1H NMR: (CDCl3, 250 MHz): δ 

1.32 (s, 9H, CH3), 1.45 (s, 9H, CH3), 1.98 (quin, J=6.3 Hz, 2H, CH2), 3.72 (td, J=6.6, 1.3 Hz, 2H, 

N-CH2), 3.79 (t, J=6.3 Hz, 2H, CH2-OH), 7.10 (d, J=2.5 Hz, 1H, Ar-H), 7.39 (d, J=2.5 Hz, 1H, 

Ar-H), 8.40 (t, J=1.3 Hz, 1H, N=CH), 13.82 (br. s, 1H, Ar-OH). 13C{1H} NMR: (CDCl3, 75 MHz): 

δ 29.4, 31.5, 33.5, 34.2, 35.1, 55.9, 60.3, 117.8, 125.8, 126.9, 136.7, 140.0, 158.2, 166.4. ESI-MS: 

m/z calcd for [C18H28NO2]
- : 290.2120; found: 290.2121. 

N-(3-Hydroxypropyl)-3-(1-adamantyl)-5-methylsalicylaldimine. (6H2)  1H NMR: (CD3OD, 

300 MHz): δ 1.85-1.91 (m, 6H, Ad-H), 1.99 (quin, J=6.7 Hz, 2H, CH2), 2.09-2.16 (m, 3H, Ad-H), 

2.22-2.27 (m, 6H, Ad-H), 2.32 (s, 3H, CH3), 3.75 (t, J=6.4 Hz, 4H, CH2-OH, N-CH2), 7.02 (d, 

J=1.3 Hz, 1H, Ar-H), 7.11 (d, J=1.8 Hz, 1H, Ar-H), 8.46 (s, 1H, N=CH). 13C{1H} NMR: (CD3OD, 

75 MHz): δ 20.9, 30.7, 35.0, 38.1, 38.4, 41.6, 56.9, 60.5, 120.0, 128.0, 130.7, 131.3, 138.4, 159.7, 

167.9. ESI-MS: m/z calcd for [C21H29NO2Na]+: 350.2096; found: 350.2089. 

N-(3-Hydroxypropyl)-3-trityl-5-methylsalicylaldimine. (7H2)  1H NMR: (DMSO-d6, 

400 MHz): δ 1.71 (quin, J=6.6 Hz, 2H, CH2), 2.21 (s, 3H, CH3), 3.42 (t, J=6.3 Hz, 4H, CH2-OH, 

N-CH2), 7.06 (d, J=2.0 Hz, 1H, Ar-H), 7.13-7.21 (m, 9H, Ar-H), 7.23 (d, J=1.8 Hz, 1H, Ar-H), 



7.28 (t, J=7.3 Hz, 6H, Ar-H), 8.50 (s, 1H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 20.8, 21.5, 

33.3, 55.8, 60.3, 63.2, 118.6, 125.3, 125.5, 126.1, 127.2, 128.3, 129.1, 130.7, 131.1, 134.4, 134.5, 

145.6, 158.0. ESI-MS: m/z calcd for [C30H29NO2Na]+ : 458.2096; found: 458.2102. 

2.3.4 Catalyst Synthesis 

General Procedure Catalyst syntheses were conducted using glove box and Schlenk line 

techniques under an atmosphere of argon. In a glove box, equimolar amounts of the ligand and 

VO(OiPr)3 were dissolved separately in anhydrous dichloromethane. The ligand solution was 

added dropwise to the metal solution and the reaction mixture was stirred for 0.5 h. The solvent 

was removed in vacuo and recrystallization was attempted from hexane, toluene or 

dichloromethane. 

VO(1)(OiPr): Recrystallized from dichloromethane. 1H NMR (CDCl3, 300 MHz): 1.46 (d, J=6.0 

Hz, 3H, CH-CH3), 1.55 (d, J=6.4 Hz, 3H, CH-CH3), 1.93-2.11 (m, 1H, CH2), 2.32-2.43 (m, 1H, 

CH2), 3.95-4.10 (m, 1H, CH2), 4.55 (t, J=12.2 Hz, 1H, CH2), 4.92 (d, J=7.9 Hz, 1H, CH2), 5.65 (t, 

J=11.1 Hz, 1H, CH2), 5.83 (spt, J=6.8 Hz, 1H, CH-CH3), 7.22 (d, J=2.6 Hz, 1H, Ar-H), 7.54 (d, 

J=2.3 Hz, 1H, Ar-H), 8.31 (br. s., 1H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 24.0, 32.6, 

63.6, 80.4, 130.3, 134.2, 162.1. 51V NMR (CDCl3, 105 MHz): δ -563.1. Elemental Analysis: Anal. 

Calcd for C13H16Cl2NO4V: C, 41.96; H, 4.33; N, 3.76. Found: C, 41.83; H, 4.46; N, 3.84. 

VO(2)(OiPr): Recrystallized from dichloromethane. 1H NMR (CDCl3, 300 MHz): δ 1.39 (d, J=6.0 

Hz, 3H, CH-CH3), 1.48 (d, J=6.0 Hz, 3H, CH-CH3), 1.86-2.04 (m, 1H, CH2), 2.22-2.35 (m, 1H, 

CH2), 3.94 (d, J=12.4 Hz, 1H, CH2), 4.47 (t, J=12.2 Hz, 1H, CH2), 4.84 (d, J=9.0 Hz, 1H, CH2), 

5.56 (td, J=11.2, 2.8 Hz, 1H, CH2), 5.75-5.88 (m, 1H, CH-CH3), 7.32 (d, J=2.3 Hz, 1H, Ar-H), 

7.76 (d, J=2.3 Hz, 1H, Ar-H), 8.20 (br. s., 1H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 24.2, 



32.6, 63.5, 80.5, 109.3, 134.1, 139.7, 162.0. 51V NMR (CDCl3, 105 MHz): δ -563.2. Elemental 

Analysis: Anal. Calcd for C13H16Br2NO4V: C, 33.87; H, 3.50; N, 3.04. Found: C, 33.72; H, 3.40; 

N, 2.98. 

VO(3)(OiPr): Recrystallized from toluene. 1H NMR (CDCl3, 500 MHz): δ 1.50 (d, J=6.0 Hz, 3H, 

CH-CH3), 1.58 (d, J=6.0 Hz, 3H, CH-CH3), 2.03 (q, J=12.3 Hz, 1H, CH2), 2.35 (d, J=12.9 Hz, 1H, 

CH2), 4.00 (d, J=12.0 Hz, 1H, CH2), 4.52 (t, J=12.6 Hz, 1H, CH2), 4.90 (d, J=9.8 Hz, 1H, CH2), 

5.61 (t, J=10.6 Hz, 1H, CH2), 5.90-6.03 (m, 1H, CH-CH3), 7.58 (br. s, 1H, Ar-H), 8.20 (br. s, 2H, 

Ar-H, N=CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 24.2, 24.5, 25.6, 32.6, 63.4, 78.9, 80.5, 141.4, 

150.8, 161.8. 51V NMR (CDCl3, 132 MHz): δ -562.4. Elemental Analysis: Anal. Calcd for 

C13H16I2NO4V: C, 28.13; H, 2.91; N, 2.52. Found: C, 28.00; H, 2.79; N, 2.57. 

VO(4)(OiPr): 1H NMR (CDCl3, 300 MHz): δ 1.37 (d, J=6.4 Hz, 3H, CH-CH3), 1.43 (d, J=6.4 Hz, 

3H, CH-CH3), 1.82-1.99 (m, 1H, CH2), 2.19-2.31 (m, 1H, CH2), 3.91 (d, J=12.4 Hz, 1H, CH2), 

4.42 (tt, J=12.3, 2.2 Hz, 1H, CH2), 4.74-4.90 (m, 1H, CH2), 5.40-5.63 (m, 2H, CH2, CH-CH3), 

6.77-6.86 (m, 1H, Ar-H), 6.89 (d, J=8.3 Hz, 1H, Ar-H), 7.26 (dd, J=7.5, 1.9 Hz, 1H, Ar-H), 7.38 

(ddd, J=8.6, 7.1, 1.7 Hz, 1H, Ar-H), 8.29 (br. s., 1H, N-CH). 13C{1H} NMR: (CDCl3, 75 MHz): δ 

24.1, 32.7, 63.4, 80.1, 83.0, 118.9, 132.8, 134.9, 163.1. 51V NMR (CDCl3, 105 MHz): δ -556.8. 

Elemental Analysis: Anal. Calcd for C13H18NO4V: C, 51.49; H, 5.98; N, 4.62. Found: C, 51.32; 

H, 5.84; N, 4.66. 

VO(5)(OiPr): 1H NMR (CDCl3, 300 MHz): δ 1.25 (s, 9H, C(CH3)3), 1.37-1.43 (m, 15H, C(CH3)3 

(9H), CH(CH3)2 (6H)), 1.82-1.91 (m, 1H, CH2), 2.13-2.24 (m, 1H, CH2), 3.80-3.91 (m, 1H, CH2), 

4.35 (t, J=11.7 Hz, 1H, CH2), 4.70-4.85 (m, 1H, CH2), 5.43 (t, J=12.4 Hz, 1H, CH2), 5.63 (spt, 

J=6.0 Hz, 1H, CH(CH3)2), 7.09 (d, J=2.6 Hz, 1H, Ar-H), 7.46 (d, J=2.6 Hz, 1H, Ar-H), 8.27 (br. 



s, 1H, N=CH). 13C{1H} NMR (CDCl3, 75 MHz): δ 24.6, 24.9, 25.4, 29.5, 31.5, 32.1, 32.9, 34.2, 

35.2, 63.4, 127.0, 129.6, 141.0, 163.8. 51V NMR (CDCl3, 105 MHz): δ -568.8. Elemental Analysis: 

Anal. Calcd for C21H34NO4V: C, 60.71; H, 8.25; N, 3.37. Found: C, 60.51; H, 8.88; N, 4.10.  

VO(6)(OiPr): 1H NMR (CDCl3, 300 MHz): δ 1.45 (d, J=6.0 Hz, 3H, CH-CH3), 1.53 (d, J=6.0 Hz, 

3H, CH-CH3), 1.76 (d, J=11.7 Hz, 3H, Ad-H), 1.86 (d, J=11.7 Hz, 3H, Ad-H), 1.89-2.00 (m, 1H, 

CH2), 2.04-2.11 (m, 3H, Ad-H), 2.14-2.22 (m, 6H, Ad-H), 2.22-2.29 (m, 1H, CH2), 2.32 (s, 3H, 

CH3), 3.92 (dt, J=12.3, 3.5 Hz, 1H, CH2), 4.43 (tt, J=12.6, 1.9 Hz, 1H, CH2), 4.82-4.93 (m, 1H, 

CH2), 5.50-5.59 (m, 2H, CH2, CH-CH3), 6.99 (d, J=1.6 Hz, 1H, Ar-H), 7.23 (d, J=2.2 Hz, 1H, Ar-

H), 8.28 (br. s., 1H, N-CH). 13C{1H} NMR (CDCl3, 125 MHz): δ 19.7, 23.5, 23.9, 28.1, 31.8, 36.0, 

39.2, 62.4, 78.7, 84.1, 118.4, 126.9, 129.4, 132.1, 162.3. 51V NMR (CDCl3, 105 MHz): δ -556.4.  

VO(7)(OiPr): 1H NMR (CDCl3, 500 MHz): δ 1.06 (d, J=6.0 Hz, 3H, CH-CH3), 1.26 (d, J=6.0 Hz, 

3H, CH-CH3), 1.80-1.93 (m, 1H, CH2), 2.17 (d, J=13.2 Hz, 1H, CH2), 2.27 (s, 3H, CH3), 3.86 (d, 

J=11.7 Hz, 1H, CH2), 4.33 (t, J=12.0 Hz, 1H, CH2), 4.66-4.79 (m, 1H, CH-CH3), 4.88-4.98 (m, 

1H, CH2), 5.33 (t, J=11.0 Hz, 1H, CH2), 7.04-7.40 (m, 17H, Ar-H), 8.25 (br. s., 1H, N=CH). 

13C{1H} NMR (CDCl3, 75 MHz): δ 20.8, 24.1, 24.4, 32.3, 63.5, 79.1, 84.9, 125.3, 127.1, 127.3, 

131.1, 132.1, 136.8, 163.3. 51V NMR (CDCl3, 132 MHz): δ -562.6. Elemental Analysis: Anal. 

Calcd for C33H34NO4V: C, 70.83; H, 6.12; N, 2.50. Found: C, 70.71; H, 6.24; N, 2.57. 

3. Results and Discussion 

3.1 Catalyst Synthesis and Characterization 

Tridentate salen ligands 1H2 - 7H2 were synthesised via condensation of the relevant 

aldehyde with 3-amino-1-propanol. Subsequent reaction of the ligands with vanadium 

oxytriisopropoxide under an inert atmosphere gave rise to vanadium(V) complexes VO(1-



7)(OiPr), Fig. 3. The catalysts were analysed by 1H, 13C{1H} and 51V NMR spectroscopy, and solid 

state structures were obtained for several of the species by single-crystal X-ray diffraction. 

 

Figure 3: Synthesis of vanadium Schiff-base catalysts 

The complexes were isolated as red crystalline samples in moderate to good yields. For complexes 

VO(1-5)(OiPr) the solid state structures were determined by single crystal X-ray diffraction, Figure 

4. In the solid state the complexes are dimeric with the aliphatic alcohol bridging between the two 

vanadium centres. In all cases the vanadium atoms are in pseudo octahedral environments and the 

metric data are consistent with vanadium(V) complexes, Table 1. Interestingly the only previously 

reported solid state structure of analogous Schiff-base complexes are based on a vanadium-

methoxy moieties.[18] In those cases it is observed that the –OMe is bridging (with the H-

substituted ligand) or monomeric species (tBu-substituted ligand) are isolated in the solid-state. 

However, all examples in this study are dimeric. From 1H solution-state NMR spectroscopic 

investigations the ligand is “locked” in place as evidenced by the presence of distinct 

diastereotopic doublets for the CH2 for the propyl bridge.  



 

Figure 4: Solid state structure of VO(2)(OiPr) ellipsoids are shown at the 30% probability level 

and hydrogen atoms have been removed for clarity. 

 

 

 

 

 

 VO(1)(OiPr) VO(2)(OiPr) VO(3)(OiPr) VO(4)(OiPr) VO(5)(OiPr) 

V(1)-O(1) 1.781(2) 1.7815(19) 1.781(2) 1.7905(18) 1.7957(11) 

V(1)-O(2) 1.8731(18) 1.8757(19) 1.879(2) 1.8867(18) 1.8870(10) 

V(1)-O(3) 1.9193(19) 1.9218(19) 1.925(2) 1.8983(19) 1.9011(10) 

V(1)-O(4) 1.596(2) 1.5955(19) 1.595(3) 1.6013(17) 1.5954(11) 

V(1)-N(1) 2.192(2) 2.196(2) 2.199(3) 2.178(2) 2.1616(13) 

N(1)-V(1)-O(1) 172.96(9) 173.26(9) 173.38(12) 173.97(8) 172.37(5) 

O(3)-V(1)-O(1) 93.39(9) 93.68(8) 94.29(11) 93.60(9) 94.73(5) 

 

Table 1: Selected bond distances (Å) and angles () for complexes VO(1-5)(OiPr). 

 



To probe the solution state behaviour further, DOSY NMR were obtained for 

VO(4,6,7)(OiPr) in CDCl3. Measured diffusion constants were found to be 8.4  10-10 m2s-1  (H), 

7.8  10-10 m2s-1 (Ad) and 6.8  10-10 m2s-1 (CPh3) respectively. These are consistent with the 

dimeric solid state structure being maintained in solution. However, when the sample was run in 

d8-THF (a coordinating solvent) a significantly more complex NMR spectrum was obtained with 

two clear species being present in solution, indicating that the dimer is dissociating into a 

monomer. Thus, in the presence of the coordinating lignin model compound the active catalyst is 

the monomeric species. 

 

3.2 1H NMR Depolymerization Studies 

Kinetic investigations in this study were carried out on the non-phenolic model compound 

2-phenoxy-1-phenylethanol. Breakdown of the model compound to phenol and acetophenone, and 

2-phenoxy-1-phenylethanone (by C-O bond cleavage and benzylic oxidation respectively) was 

monitored by 1H NMR spectroscopy, Figure 5.[17] Conversion of the model compound and yields 

of acetophenone and 2-phenoxy-1-phenylethanone were quantified by integration of the NMR 

spectra with respect to an internal standard (hexamethylbenzene). Direct quantification of phenol 

by this method was not possible due to overlapping resonances, therefore selectivity for C-O bond 

cleavage was quantified from the yield of co-product, acetophenone. 

Both acetophenone and phenol were found to be stable in the presence of the catalyst and 

did not undergo further reaction. In agreement with previous studies, the benzylic oxidation 

product (OP), 2-phenoxy-1-phenylethanone, was not broken down under the reaction conditions 

(results not shown) confirming that degradation occurs directly from the alcohol rather than via 



the OP.[18] This is in contrast to the C-C cleavage reported by Hanson et al. which proceeds via 

oxidation.[17] No conversion of the model compound was observed in the absence of a catalyst. 

 

 

Figure 5: Degradation of β-O-4 lignin model compound 2-phenoxy-1-phenylethanol to C-O 

cleavage products acetophenone and phenol, and benzylic oxidation product (OP) 2-phenoxy-1-

phenylethanone. 

 

The overall activity of catalysts VO(1-7)(OiPr) for the conversion of the model compound 

was investigated and pseudo first order rate constants were determined by monitoring the 

concentration of the model compound as a function of time, Figure 6. As steric bulk on the 

phenolate ring had previously been reported to improve catalyst activity [18], possibly by 

preventing the aggregation of active catalytic intermediates into inert dimeric species, the size of 

the substituent at the 3’ position was systematically increased. The unsubstituted catalyst 

VO(4)(OiPr) was found to have an observed rate constant, k’, of 0.24 days-1. As in the literature, a 

dramatic increase in activity was observed on addition of tert-butyl groups at the 3’ and 5’ 

positions, with k’ = 0.68 days-1 for VO(5)(OiPr). Adamantyl-substitution at the 3’ position 

produced no further improvement in rate {VO(6)(OiPr): k’ =  0.67 days-1}, whilst increasing the 

size of the substituent further again to a trityl group resulted in a significant decrease in activity 

back to the level of the unsubstituted catalyst {VO(7)(OiPr): k’ = 0.23 days-1}. If the role of steric 

bulk in increasing activity is related to the prevention of dimerization, it appears that the tert-butyl 

group is large enough to achieve this. The drop in activity observed with the trityl substituent could 

be a result of reduced access of the model compound to the catalyst active site. 



In order to probe the electronic effects of the ligand on catalyst performance, a range of 

halogen substituted catalysts were also subjected to investigation. These species were significantly 

less active than their bulky alkyl-substituted counterparts and there was a very minor decrease in 

activity with increasing substituent size going down the group (k’ = 0.16, 0.14, 0.12 days-1 for 

VO(1-3)(OiPr) respectively). 

 

 

 

Catalyst k’ / days-1 

VO(1)(OiPr) 0.16 ± 0.01 

VO(2)(OiPr) 0.14 ± 0.01 

VO(3)(OiPr) 0.12 ± 0.01 

VO(4)(OiPr) 0.24 ± 0.01 

VO(5)(OiPr) 0.68 ± 0.06 

VO(6)(OiPr) 0.67 ± 0.05 

VO(7)(OiPr) 0.23 ± 0.02 

 

Figure 6: ln([A]0/[A]t) vs. time for VO(1-7)(OiPr), where [A]t is the concentration of model 

compound 2-phenoxy-1-phenylethanol (in mol.dm-3) at time, t and k’ is the pseudo first order rate 

constant (5 mol% catalyst, DMSO-d6, 100 °C) {[A]0 = initial concentration of model compound = 

0.15 moldm-3, [A]t = concentration of model compound at time t as determined from 1H NMR 

spectroscopic analysis.} 
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Whilst catalytic activity is important, the selectivity of the catalyst for carbon-oxygen bond 

cleavage over benzylic oxidation is the priority, as breaking the C-O bonds in lignin is more likely 

to facilitate depolymerization, Figure 7. Catalysts VO(1-3)(OiPr) with electron-withdrawing 

ligand substituents were found to favour oxidation and demonstrated low selectivity towards C-O 

bond cleavage, whilst selectivities for the alkyl-substituted species VO(5-7)(OiPr) were 

significantly higher. The unsubstituted catalyst VO(4)(OiPr) displayed an intermediate selectivity. 

The major difference between the trends in activity and selectivity was in the performance of the 

three bulky alkyl-substituted species. Selectivity of the catalyst appeared to be directly related to 

the size of the substituent, with the ratio of C-O cleavage to oxidation increasing as 

H<<tBu<Ad<CPh3, from 0.30 for the unsubstituted catalyst up to 1.80 for the bulkiest trityl 

substituent. This trend in selectivity could be a result of the increased steric hindrance impeding 

the access of molecular oxygen to the active site of the catalyst; thus favouring C-O cleavage over 

C-O oxidation. This signposts towards potential future avenues of research in this field. Analogous 

investigations using a dipicolinate vanadium(V) catalyst were reported to achieve relatively high 

selectivity for depolymerization (via C-C cleavage) over benzylic oxidation, however activity was 

lower, with only 95% conversion after 7 days at 10 mol% loading as compared to >95% in under 

4 days at 5 mol% loading for VO(6)(OiPr). 

 



 

Catalyst 
Ratio of C-O Cleavage : 

Oxidation products 

VO(1)(OiPr) 0.34 

VO(2)(OiPr) 0.26 

VO(3)(OiPr) 0.33 

VO(4)(OiPr) 0.30 

VO(5)(OiPr) 0.96 

VO(6)(OiPr) 1.43 

VO(7)(OiPr) 1.80 

 

Figure 7: Effect of ligand substituents on conversion and selectivity for C-O bond cleavage in the 

degradation of model compound 2-phenoxy-1-phenylethanol. Conditions: 5 mol% catalyst, 

DMSO-d6, 100 °C 

 

Catalytic activity towards conversion of the β-O-4 model lignin compound was found to 

increase with increasing catalyst loading. This effect was seen to tail off above 7 mol%, which 

could be due to insolubility of the catalyst at higher loadings. It is more likely, however, that it is 

a result of mass transfer limitations resulting from inefficient mixing in the narrow, unstirred 

reaction vessel. The selectivity was found to be largely unaffected by changes in the catalyst 

loading. 

The tert-butyl and trityl substituted catalysts VO(5)(OiPr) and VO(7)(OiPr) were subjected 

to further investigation at a range of temperatures. Unsurprisingly, catalyst turnover was found to 
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improve with increasing temperature; more interestingly, however, the selectivity for C-O bond 

cleavage over oxidation was also significantly enhanced, increasing from 0.88 at 70 °C to 3.73 at 

120 °C. This trend was also observed for VO(5)(OiPr), with a rise in C-O cleavage selectivity from 

0.51 to 1.89 over the same temperature range. Again, this highlights potential for increasing the 

selectivity in vanadium-catalyzed systems. 

Rate constants for VO(5)(OiPr) and VO(7)(OiPr) as a function of temperature were plotted 

in a classic Arrhenius form, Figure 8. From this data, two different regimes were observed; below 

around 400 K, the rate appears to be limited by the kinetics of the reaction itself, however above 

this temperature an external influence dominates the kinetics. This is most likely a mass transfer 

limited regime. Regression analysis of the linear low temperature regime provided values for the 

activation energy (Ea) for conversion of the β-O-4 model compound; in the case of VO(4)(OiPr) 

Ea was calculated to be 96 ± 6 kJ.mol-1, whilst for VO(7)(OiPr) the value was found to be 66 ± 8 

kJ.mol-1. 

 

Figure 8: Arrhenius plots for the degradation of 2-phenoxy-1-phenylethanol by VO(5,7)(OiPr). 

Conditions: 5 mol% catalyst, DMSO-d6, 70-120 °C 
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It had previously been noted that oxygen is not required for catalyst turnover, but that 

activity was reduced under anaerobic conditions.[18] Degradation of the model compound in the 

presence of VO(7)(OiPr) was investigated under standard and low oxygen concentrations (100 °C, 

4days, uncapped and capped NMR tubes). As expected, a significant reduction in catalytic activity 

was observed under low oxygen conditions (k’ = 0.23 ± 0.02, 0.10 ± 0.02 days-1) for standard and 

low oxygen respectively). Despite the reduced activity, restricting the availability of oxygen 

further increased selectivity for C-O bond cleavage to 2.29 (from 1.80 under standard conditions). 

To further assess the suitability of these vanadium catalysts for lignin depolymerization, catalyst 

VO(6)(OiPr) was tested for activity on phenolic β-O-4 model lignin compound guaiacylglycerol-

β-guaiacyl ether under analogous conditions, Figure 9. 1H NMR analysis confirmed complete 

conversion of the model compound within 24h and indicated 100% selectivity for C-O bond 

cleavage, with no evidence of the ketone oxidation product. Products were confirmed by GC-MS. 

Further work is ongoing to investigate the effect of these catalysts on real lignin substrates.  

 

 

Figure 9: Depolymerization of phenolic β-O-4 model lignin compound guaiacylglycerol-β-

guaiacyl ether 

Our catalyst appears to be more active for the breakdown of this model compared to the previous 

one utilized in this study. We only observe evidence for C-O cleavage and no evidence for C-C 

cleavage in agreement with previous studies by Toste and Hanson.[18, 19]  

 



4. Conclusions 

 Vanadium Schiff-base complexes have been shown to be effective catalysts for the 

degradation of both phenolic and non-phenolic β-O-4 model lignin compounds. For the non-

phenolic model, kinetic investigations revealed that a subtle balance of steric and electronic effects 

are responsible for tuning the activity and selectivity of these catalysts towards C-O bond cleavage. 

The unsubstituted catalyst, VO(4)(OiPr) and those with electron-withdrawing ligand substituents 

demonstrated low activities and selectivities. Bulky, electron-donating ligand substituents were 

found to produce the most selective catalysts, with the bulkiest trityl group effecting the highest 

selectivity. Catalytic activity was also improved by the addition of bulky aliphatic substituents 

such as tert-butyl and adamantyl groups, however the trityl-substituted complex was less active, 

possibly as a result of increased steric hindrance preventing access of the model compound to the 

metal centre.  

The next step in this work is to assess the applicability of these catalysts to the 

depolymerization of real lignin substrates. Amongst the major challenges to be overcome in the 

use of homogeneous catalysts for lignin depolymerization is that of catalyst stability and 

recyclability, however the potential to achieve highly selective degradation to value-added 

products makes this a highly interesting avenue of research. 
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