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Abstract

Optical flow estimation is a difficult task given real-
world video footage with camera and object blur. In this
paper, we combine a 3D pose&position tracker with an RG-
B sensor allowing us to capture video footage together with
3D camera motion. We show that the additional camera
motion information can be embedded into a hybrid optical
flow framework by interleaving an iterative blind deconvo-
lution and warping based minimization scheme. Such a hy-
brid framework significantly improves the accuracy of opti-
cal flow estimation in scenes with strong blur. Our approach
yields improved overall performance against three state-of-
the-art baseline methods applied to our proposed ground
truth sequences as well as in several other real-world cas-
es.

1. Introduction

Scene blur often occurs during fast camera movemen-
t in low-light conditions due to the requirement of adopt-
ing a longer exposure. Recovering both the blur kernel and
the latent image from a single blurred image is known as
Blind Deconvolution which is an inherently ill-posed prob-
lem. Cho and Lee [5] propose a fast deblurring process
within a coarse-to-fine framework (Cho&Lee) using a pre-
dicted edge map as a prior. To reduce the noise effect in this
framework, Zhong et al. [19] introduce a pre-filtering pro-
cess which reduces the noise along a specific direction and
preserves the image information in other directions. Their
improved framework provides high quality kernel estima-
tion with a low run-time but shows difficulties given com-
bined object and camera motion blur.

To obtain higher performance, a handful of combined
hardware and software-based approaches have also been
proposed for image deblurring. Tai et al. [15] introduce a
hybrid imaging system that is able to capture both video at
high frame rate and a blurry image. The optical flow field-
s between the video frames are utilized to guide spatially-
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Figure 1. Visual comparison of our method to Portz et al. [12]
on our ground truth benchmark Grove2 with synthetic scene blur.
First Column: the input images; Second Column: the optical
flow fields calculated by our method and the baseline; Third Col-
umn: the RMS error maps against the ground truth.

varying blur kernel estimation. Levin et al. [9] propose to
capture a uniformly blurred image by controlling the camer-
a motion along a parabolic arc. Such uniform blur can then
be removed based on the speed or direction of the known ar-
c motion. As a complement to Levin el al.’s [9] hardware-
based deblurring algorithm, Joshi et al. [7] apply inertial
sensors to capture the acceleration and angular velocity of
a camera over the course of a single exposure. This extra
information is introduced as a constraint in their energy op-
timization scheme for recovering the blur kernel. All the
hardware-assisted solutions described provide extra infor-
mation in addition to the blurry image, which significantly
improves overall performance. However, the methods re-
quire complex electronic setups and the precise calibration.

Optical flow techniques are widely studied and adopt-
ed across computer vision. One of advantages is the
dense image correspondences they provide. In the last t-
wo decades, the optical flow model has evolved extensively
– one landmark work being the variational model of Horn
and Schunck [6] where the concept of Intensity Constancy
is proposed. Under this assumption, pixel intensity does not
change spatio-temporally, which is, however, often weak-
ened in real-world images because of natural noise. To ad-
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Figure 2. RGB-Motion Imaging System. (a): Our system setup using a combined RGB sensor and 3D Pose&Position Tracker. (b): The
tracked 3D camera motion in relative frames. The top-right box is the average motion vector – which has similar direction to the blur
kernel. (c): Images captured from our system. The top-right box presents the blur kernel estimated using [5]. (d): The internal process of
our system where the ∆t presents the exposure time.

dress this, some complementary concepts have been devel-
oped to improve performance given large displacements [2],
taking advantage of feature-rich surfaces [18] and adapting
to non-rigid deformation in scenes [10]. However, flow ap-
proaches that can perform well given blury scenes – where
the Intensity Constancy is usually violated – are less com-
mon. Of the approaches that do exist, Schoueri et al. [13]
perform a linear deblurring filter before optical flow esti-
mation while Portz et al. [12] attempt to match un-uniform
camera motion between neighboring input images. Where-
as the former approach may be limited given nonlinear blur
in real-world scenes; the latter requires two extra frames to
parameterize the motion-induced blur.

1.1. Contributions

In this paper, our major contribution is to utilize an RGB-
Motion Imaging System – an RGB sensor combined with a
3D pose&position tracker – in order to propose: (A) an iter-
ative enhancement process for scene blur estimation which
encompasses the tracked camera motion (Sec. 2) and a Di-
rectional High-pass Filter (Sec. 3 and Sec. 6.2); (B) a Blur-
Robust Optical Flow Energy formulation (Sec. 5); and (C)
a hybrid coarse-to-fine framework (Sec. 6) for computing
optical flow in blur scenes by interleaving an iterative blind
deconvolution process and a warping based minimization
scheme. In the evaluation section, we compare our method
to three existing state-of-the-art optical flow approaches on
our proposed ground truth sequences (Fig. 1, containing
blur and baseline blur-free equivalents) and also illustrate
the practical benefit of our algorithm given other real-world
cases.

2. RGB-Motion Imaging System
Scene blur within video footage is typically due to fast

camera motion and/or long exposure times. In particular,
such blur can be considered as a function of the camera tra-
jectory supplied to image space during the exposure time
∆t. It therefore follows that knowledge of the actual cam-
era motion between image pairs can provide significant in-

formation when performing image deblurring [7, 9]. In this
paper, we propose a simple and portable setup (Fig. 2(a)),
combining an RGB sensor and a 3D pose&position track-
er (Trackir, NaturalPoint Inc.) in order to capture continu-
ous scenes along with real-time camera pose&position in-
formation. Our tracker provides the rotation (yaw, pitch and
roll), translation and zoom information synchronized to the
relative corresponding image frame using the middleware
of [8]. Assuming objects have similar depth within the same
scene (A common assumption in image deblurring which
will be discussed in our future work), the tracked 3D cam-
era motion in image coordinates can be formulated as:

Mj =
1

n

∑
x

K ([R|T ] Xj+1 − Xj) (1)

where Mj represents the average of the camera motion
vectors from the image j to image j + 1. X denotes the
3D position of the camera while x = (x, y)T is a pixel
location and n represents the number of pixels in an im-
age. K represents the 3D projection matrix while R and
T denote the rotation and translation matrices respectively
of tracked camera motion in the image domain. Fig 2(b,c)
shows sample data (video frames and camera motion) cap-
tured from our imaging system. It is observed that blur
from the real-world video is spatially-varying but near lin-
ear due to the relatively high sampling rate of the camer-
a. The blur direction can therefore be approximately de-
scribed using the tracked camera motion. Let the tracked
camera motion Mj = (rj , θj)

T be represented in polar co-
ordinates where rj and θj denote the magnitude and direc-
tional component respectively. j is a sharing index between
tracked camera motion and frame number. In addition, we
also consider the combined camera motion vector of neigh-
boring images as shown in Fig 2(d), e.g. M12 = M1 + M2

where M12 = (r12, θ12) denotes the combined camera mo-
tion vector from image 1 to image 3. As one of our main
contributions, these real-time motion vectors are proposed
to provide additional constraints for blur kernel enhance-
ment (Sec. 6) within our optical flow framework.

2
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Figure 3. Directional high-pass filter for blur kernel enhancement.
Given the blur direction θ, a directional high-pass filter along θ +
π/2 is applied to preserve blur detail in the estimated blur kernel.

3. Blind Deconvolution
The motion blur process can commonly be formulated:

I = k ⊗ l + n (2)

where I is a blurred image and k represents a blur kernel
w.r.t. a specific Point Spread Function. l is the latent image
of I; ⊗ denotes the convolution operation and n represents
spatial noise within the scene. In the blind deconvolution
operation, both k and l are estimated from I , which is an
ill-posed (but extensively studied) problem. A common ap-
proach for blind deconvolution is to solve both k and l in an
iterative framework using a coarse-to-fine strategy:

k = argmink{‖I − k ⊗ l‖+ ρ(k)}, (3)
l = argminl{‖I − k ⊗ l‖+ ρ(l)}. (4)

where ρ represents a regularization that penalizes spatial
smoothness with a sparsity prior [5], and is widely used in
recent state-of-the-art work [14, 18]. Due to noise sensitivi-
ty, low-pass and bilateral filters [16] are typically employed
before deconvolution. Eq. 5 denotes the common definition
of an optimal kernel from a filtered image.

kf = argminkf {‖(k ⊗ l + n)⊗ f − kf ⊗ l‖+ ρ(kf )}
≈ argminkf ‖l ⊗ (k ⊗ f − kf )‖ = k ⊗ f (5)

where k represents the ground truth blur kernel, f is a
filter, and kf denotes the optimal blur kernel from the fil-
tered image I ⊗ f . The low-pass filtering process improves
deconvolution computation by removing spatially-varying
high frequency noise but also results in the removal of use-
ful information which yields additional errors over object
boundaries. To preserve this useful information, we intro-
duce a directional high-pass filter that utilizes our tracked
3D camera motion.

4. Directional High-pass Filter
Detail enhancement using directional filters has been

proved effective in several areas of computer vision [19].
In this paper, we define a directional high-pass filter as:

fθ ⊗ I(x) = m

∫
g(t)I(x + tΘ)dt (6)

where x = (x, y)T represents a pixel position and g(t) =

1 − exp{−t2/2σ2} denotes a 1D Gaussian based high-
pass function. Θ = (cos θ, sin θ)T controls the filtering
direction along θ. m is a normalization factor defined as
m =

(∫
g(t)dt

)−1
. The filter fθ is proposed to preserve

overall high frequency details along direction θ without af-
fecting blur detail in orthogonal directions [4]. Given a di-
rectionally filtered image bθ = fθ ⊗ I(x), the optimal blur
kernel is defined (Eq 5) as kθ = k ⊗ fθ. Fig. 3 demon-
strates that noise or object motion within a scene usually
results in low frequency noise in the estimated blur kernel
(Cho&Lee [5]). This low frequency noise can be removed
by our directional high-pass filter while preserving major
blur details. In this paper, this directional high-pass filter
is supplemented into the Cho&Lee [5] framework using a
coarse-to-fine strategy in order to recover high quality blur
kernels for use in our optical flow estimation (Sec. 6.2).

5. Blur-Robust Optical Flow Energy

Within a blurry scene, a pair of adjacent natural images
may contain different blur kernels, further violating Intensi-
ty Constancy. This results in unpredictable flow error across
the different blur regions. To address this issue, Portz et al.
proposed a modified Intensity Constancy term by matching
the un-uniform blur between the input images. As one of
our main contributions, we extend this assumption to a nov-
el Blur Gradient Constancy term in order to provide extra
robustness against illumination change and outliers. Our
main energy function is given as follows:

E(w) = EB(w) + γES(w) (7)

A pair of consecutively observed frames from an im-
age sequence is considered in our algorithm. I1(x) repre-
sents the current frame and its successor is denoted by I2(x)
where I∗ = k∗ ⊗ l∗ and {I∗, l∗ : Ω ⊂ R3 → R} represent
rectangular images in the RGB channel. Here l∗ is latent
image and k∗ denotes the relative blur kernel. The optical
flow displacement between I1(x) and I2(x) is defined as
w = (u, v)T . To match the un-uniform blur between input
images, the blur kernel from each input image is applied to
the other. We have new blur images b1 and b2 as follows:

b1 = k2 ⊗ I1 ≈ k2 ⊗ k1 ⊗ l1 (8)
b2 = k1 ⊗ I2 ≈ k1 ⊗ k2 ⊗ l2 (9)

Our energy term encompassing Intensity and Gradient
Constancy relates to b1 and b2 as follows:

EB(w) =

∫
Ω

φ(‖b2(x + w)− b1(x)‖2

+ α ‖∇b2(x + w)−∇b1(x)‖2)dx (10)

The term ∇ = (∂xx, ∂yy)T presents a spatial gradient
and α ∈ [0, 1] denotes a linear weight. The smoothness

3
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regularizer penalizes global variation as follows:

ES(w) =

∫
Ω

φ(‖∇u‖2 + ‖∇v‖2)dx (11)

where we apply the Lorentzian function φ(s) = log(1 +
s2/2ε2) with ε = 0.001 to both the data term and s-
moothness term for robustness against flow blur on bound-
aries [10]. In the following section, our optical flow frame-
work is introduced in detail.

6. Optical Flow Framework

Algorithm 1: Blur-Robust Optical Flow Framework
Input : A image pair I1, I2 and camera motion θ1, θ2, θ12

Output : Optimal optical flow field w
1: A n-level top-down pyramid is built with the level index i
2: i← 0
3: li1 ← Ii1, li2 ← Ii2
4: ki1 ← 0, ki2 ← 0, wi ← (0, 0)T

5: for coarse to fine do
6: i← i+ 1
7: Resize ki{1,2}, l

i
{1,2}, I

i
{1,2} and wi with the ith scale

8: foreach ∗ ∈ {1, 2} do
9: ki∗ ← IterativeBlindDeconvolve ( li∗, I

i
∗ )

10: ki∗ ← DirectionalFilter ( ki∗, θ1, θ2, θ12 )
11: li∗ ← NonBlindDeconvolve ( ki∗, I

i
∗ )

12: endfor
13: bi1 ← Ii1 ⊗ ki2, bi2 ← Ii2 ⊗ ki1
14: dwi ← EnergyOptimization ( bi1, b

i
2,wi )

15: wi ← wi + dwi
16: endfor

Our overall framework is outlined in Algorithm 1 based
on an iterative top-down, coarse-to-fine strategy. Pri-
or to minimizing the Blur-Robust Optical Flow Energy
(Sec. 6.3), a fast blind deconvolution approach [5] is per-
formed for pre-estimation of the blur kernel (Sec. 6.1),
which is followed by kernel refinement using our Direction-
al High-pass Filter (Sec. 6.2). All these steps are detailed
in the following subsections.

6.1. Iterative Blind Deconvolution

Cho and Lee [5] describe a fast and accurate approach
(Cho&Lee) to recover the spatially-varying blur kernel. As
shown in Algorithm 1, we perform a similar approach for
the pre-estimation of the blur kernel k within our iterative
process, which involves two steps of prediction and kernel
estimation. Given the latent image l estimated from the con-
secutively coarser level, the gradient maps ∆l = {∂xl, ∂yl}
of l are calculated along the horizontal and vertical direc-
tions respectively in order to enhance salient edges and re-
duce noise in featureless regions of l. Next, the predicted

gradient maps ∆l as well as the gradient map of the blur-
ry image I are utilized to compute the pre-estimated blur
kernel by minimizing the energy function as follows:

k = argmink
∑
I∗,l∗

ω∗ ‖I∗ − k ⊗ l∗‖2 + δ ‖k‖2

(I∗, l∗) ∈ {(∂xI, ∂xl), (∂yI, ∂yl), (∂xxI, ∂xxl),
(∂yyI, ∂yyl), (∂xyI, (∂x∂y + ∂y∂x)l/2)} (12)

where δ denotes the weight of Tikhonov regularization
and ω∗ ∈ {ω1, ω2} represents a linear weight for the deriva-
tives in different directions. Both I and l are propagated
from the nearest coarse level within the pyramid. To mini-
mize this energy Eq. (12), we follow the inner-iterative nu-
merical scheme of [5] which yields a pre-estimated blur k-
ernel k.

6.2. Directional High-pass Filtering

Once the pre-estimated kernel k is obtained, our Direc-
tional High-pass Filters are applied to enhance the blur
information by reducing noise in the orthogonal direction
of the tracked camera motion. Although our RGB-Motion
Imaging System provides an accurate camera motion esti-
mation, we take into account the directional components
{θ1, θ2, θ12} of two consecutive camera motions M1 and
M2 as well as their combination M12 (Fig. 2(d)) for extra
robustness. The pre-estimated blur kernel is filtered along
its orthogonal direction as follows:

k =
∑
β∗,θ∗

β∗k ⊗ fθ∗+π/2 (13)

where β∗ ∈ {1/2, 1/3, 1/6} linearly weights the con-
tribution of filtering in different directions. Note that two
consecutive images I1 and I2 are involved in our frame-
work where the former accepts the weight set (β∗, θ∗) ∈
{(1/2, θ1), (1/3, θ2), (1/6, θ12)} while the other weight set
(β∗, θ∗) ∈ {(1/3, θ1), (1/2, θ2), (1/6, θ12)} is performed
for the latter. This filtering process yields an updated blur
kernel k which is used to update the latent image l within a
non-blind deconvolution [19].

Having performed blind deconvolution and directional
filtering (Sec. 6.1, 6.2), two updated blur kernels ki1 and
ki2 on the ith level of the pyramid are obtained from input
images Ii1 and Ii2 respectively, which is followed by the u-
niform blur image bi1 and bi2 computation using Eq. (9). In
the following subsection, Blur-Robust Optical Flow Energy
optimization on bi1 and bi1 is introduced in detail.

6.3. Optical Flow Energy Optimization

As mentioned in Sec. 5, our blur-robust energy is con-
tinuous but highly nonlinear. Minimization of such energy
function is extensively studied in the optical flow commu-
nity. In this section, a numerical scheme combining Euler-
Lagrange Equations and Nested Fixed Point Iterations is

4
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applied [2] to solve our main energy function Eq. 7. For
clarity of presentation, we define the following mathemati-
cal abbreviations:

bx = ∂xb2(x + w) byy = ∂yyb2(x + w)
by = ∂yb2(x + w) bz = b2(x + w)− b1(x)
bxx = ∂xxb2(x + w) bxz = ∂xb2(x + w)− ∂xb1(x)
bxy = ∂xyb2(x + w) byz = ∂yb2(x + w)− ∂yb1(x)

After Euler-Lagrange Equations are applied to Eq. (7),
we minimize the resulting system in a coarse-to-fine frame-
work within a top-down image pyramid. In the outer fixed
point iterations, we initialize the flow field w = (0, 0)T on
the top (coarsest) level of the pyramid and propagate this
to the next finer level as wi+1 ≈ wi + dwi where we fol-
low the assumption that the flow field on finer level i+ 1 is
estimated by the flow field and the increments from the pre-
vious coarser level k. First order Taylor Expansion is then
applied to the terms of bi+1

z , bi+1
xz and bi+1

yz , which results in

bi+1
z ≈ biz + bixdu

i + biydv
i,

bi+1
xz ≈ bkxz + bixxdu

i + bixydv
i,

bi+1
yz ≈ bkyz + bixydu

i + biyydv
i.

where dui and dvi are two unknown increments which
will be solved in our inner fixed point iterations. Given the
initialization of dui,0 = 0 and dvi,0 = 0, we assume that
dui,j and dvi,j converge within j iterations. We have the
final linear system in dui,j+1 and dvi,j+1 as follows:

(φ′)i,jB · {b
i
x(biz + bixdu

i,j+1 + biydv
i,j+1)

+αbixx(bixz + bixxdu
i,j+1 + bixydv

i,j+1)

+αbixy(biyz + bixydu
i,j+1 + biyydv

i,j+1)}

−γ (φ′)i,jS · ∇(ui + dui,j+1) = 0 (14)

(φ′)i,jB · {b
i
y(biz + bixdu

i,j+1 + biydv
i,j+1)

+αbiyy(biyz + bixydu
i,j+1 + biyydv

i,j+1)

+αbixy(bixz + bixxdu
i,j+1 + bixydv

i,j+1)}

−γ (φ′)i,jS · ∇(vi + dvi,j+1) = 0 (15)

where (φ′)i,jB denotes a robustness factor against flow
discontinuty and occlusion on the object boundaries. (φ′)i,jS
represents the diffusivity of the smoothness regularization.

(φ′)i,jB = φ′{(biz + bixdu
i,j + bi,jy dv

i,j)2

+ α(bixz + bixxdu
i,j + bixydv

i,j)2

+ α(biyz + bixydu
i,j + biyydv

i,j)2}

(φ′)i,jS = φ′{
∥∥∇(ui + dui,j)

∥∥2
+
∥∥∇(vi + dvi,j)

∥∥2}

In our implementation, the image pyramid is constructed
with a downsampling factor of 0.75. The final linear system
in Eq. (14,15) is solved using Conjugate Gradients within

45 iterations.

7. Evaluation
In this section, we evaluate our method on both synthet-

ic and real-world sequences and compare its performance
against three existing state-of-the-art optical flow approach-
es of Xu et al.’s MDP [18], Portz et al.’s [12] and Brox et
al.’s [2] (an implementation of [11]). MDP is one of the best
performing optical flow methods given blur-free scenes, and
is one of the top 3 approaches in the Middlebury bench-
mark [1]. Portz et al.’s method represents the current state-
of-the-art in optical flow estimation given spatially-varying
object blur scenes while Brox et al.’s contains a similar opti-
mization framework and numerical scheme to Portz et al.’s,
and ranks in the midfield of the Middlebury benchmarks
based on overall average. Note that all three baseline meth-
ods are evaluated using their default parameters setting.

In the following subsections, we compare our algorith-
m (moBlur) and three different implementations (nonGC,
nonDF and nonGCDF) against the baseline methods.
nonGC represents the implementation without the Gradi-
ent Constancy term while nonDF denotes an implementa-
tion without the directional filtering process. nonGCDF
is the implementation with neither of these features. The
results show that our Blur-Robust Optical Flow Energy and
Directional High-pass Filter significantly improve algorith-
m performance for blur scenes in both synthetic and real-
world cases.

7.1. Middlebury Dataset with Scene Blur

One advance for evaluating optical flow given scenes
with object blur is proposed by Portz et al. [12] where syn-
thetic Ground Truth (GT) scenes are rendered with blurry
moving objects against a blur-free static/fixed background.
However, their use of synthetic images and controlled ob-
ject trajectories lead to a lack of global camera blur, natural
photographic properties and real camera motion behavior.
To overcome these limitations, we render four sequences
with scene blur and corresponding GT flow-fields by com-
bining sequences from the Middlebury dataset [1] with blur
kernels estimated using our system.

In our experiments we select the sequences Grove2, Hy-
drangea, RubberWhale and Urban2 from the Middlebury
dataset. For each of them, four adjacent frames are selected
as latent images along with the GT flow field wgt (supplied
by Middlebury) for the middle pair. 40 × 40 blur kernels
are then estimated [5] from real-world video streams cap-
tured using our RGB-Motion Imaging System. As shown in
Fig. 4(a), those kernels are applied to generate blurry im-
ages denoted by I0, I1, I2 and I3 while the camera mo-
tion direction is set for each frame based on the 3D motion
data. Although the wgt between latent images can be uti-
lized for the evaluation on relative blur images I∗ [3, 17],
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(a) A sample synthetic sequence RubberWhale with the blur kernel and tracked camera motion direction.
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(b) Left: Quantitative Average Endpoint Error (AEE) and Average Angle Error (AAE) comparison on our synthetic sequences where the subscripts show
the rank in relative terms. Right: AEE measure on RubberWhale by ramping up the noise distribution.
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(c) Visual comparison on Grove2 and RubberWhale by varying baseline methods. For each sequence, First Row: optical flow fields from different methods.
Second Row: the error maps against the ground truth.

Figure 4. Quantitative evaluation on four synthetic blur sequences with both camera motion and ground truth.

strong blur can significantly violate the original image in-
tensity, which leads to a multiple correspondences prob-
lem: a point in the current image corresponds to multiple
points in the consecutive image. To remove such multiple
correspondences, we sample reasonable correspondence set
{ŵ | ŵ ⊂ wgt, |I2(x + ŵ)− I1(x)| < ε} to use as the GT
for the blur images I∗ where ε denotes a predefined thresh-
old. Once we obtain ŵ, both Average Endpoint Error (AEE)
and Average Angle Error (AAE) tests [1] are considered in
our evaluation.

Fig. 4(b) Left shows AEE (in pixel) and AAE (in de-
gree) tests on our four synthetic sequences. moBlur and

nonGC lead both AEE and AAE tests in all the trials. Both
Brox et al. and MDP yield significant error in Hydrangea,
RubberWhale and Urban2 because those sequences contain
large textureless regions with blur, which in turn weakens
the inner motion estimation process as shown in Fig. 4(c).
Furthermore, Fig 4(b) Right shows the AEE metric for Rub-
berWhale by varying the distribution of Salt&Pepper noise.
It is observed that a higher noise level leads to additional er-
rors for all the baseline methods. Both moBlur and nonGC
yield the best performance while Portz et al. and Brox et al.
show a similar rising AEE trend when the noise increases.

To investigate how the tracked 3D camera motion affect-
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Figure 5. AEE measure of our method (moBlur) by varying the input motion directions. (a): the overall measure strategy and error maps
of moBlur on sequence Urban2. (b): the quantitative comparison of moBlur against nonDF by ramping up the angle difference λ. (c): the
measure of moBlur against Portz et al. [12].
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(a) Visual comparison on real-world sequences of warrior and chessboard.
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(b) Visual comparison on real-world sequences of LabDesk and shoes.

Figure 6. Visual comparison of image warping on real-world sequences of warrior, chessboard, LabDesk and shoes, captured by our
RGB-Motion Imaging System.
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s the performance of our algorithm, we compare moBlur
to nonDF and Portz et al. by varying the input motion di-
rections. As shown in Fig. 5(a), we rotate the input vec-
tor with respect to the GT blur direction by an angle of λ
degrees. Fig. 5(b,c) shows the AEE metric by increasing
the λ. We observe that the AEE increases during this test.
moBlur outperforms the nonDF (moBlur without the direc-
tional filter) in both Grove2 and RubberWhale while nonDF
provides higher performance in Hydrangea when λ is larger
than 50◦. In addition, moBlur outperforms Portz et al. in all
trials except Hydrangea where Portz et al. shows a minor
advantage (AEE 0.05) when λ = 90◦.

7.2. Real-world Dataset

Fig. 6 shows visual comparison of our method moBlur
against Portz et al. on real-world sequences of warrior,
chessboard, LabDesk and shoes captured using our RGB-
Motion Imaging System. Both warrior and chessboard con-
tain occlusions, large displacements and depth change while
the sequences of LabDesk and shoes embodies the object
motion blur and large textureless regions within the same
scene. It is observed that our method preserves appearance
details on the object surface and reduce boundary distortion
after warping using the flow field. In addition, our method
shows robustness given cases where multiple types of blur
exist in the same scene (Fig.6(b), sequence shoes). Please
note that more details of our real-world results can be found
in the supplementary document.

8. Conclusion

In this paper, we proposed a hybrid optical flow model
by interleaving iterative blind deconvolution and a warp-
ing based minimization scheme. We also highlighted the
benefits of both the RGB-Motion data and directional filters
in the image deblurring task. Our evaluation demonstrat-
ed the high performance of our method against large scene
blur in both noisy and real-world cases. One limitation in
our method is that the spatial invariance assumption for the
blur is not valid in some real-world scenes, which may re-
duce accuracy in the case where the object depth signifi-
cantly changes. Finding a depth-dependent deconvolution
is a challenge for future work.
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