

Citation for published version: Paine, HA, Nathubhai, A, Woon, ECY, Sunderland, PT, Wood, PJ, Mahon, MF, Lloyd, MD, Thompson, AS, Haikarainen, T, Narwal, M, Lehtio, L & Threadgill, MD 2015, 'Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors in vitro', Bioorganic and Medicinal Chemistry, vol. 23, no. 17, pp. 5891-5908. https://doi.org/10.1016/j.bmc.2015.06.061

DOI: 10.1016/j.bmc.2015.06.061

Publication date: 2015

Document Version Early version, also known as pre-print

Link to publication

Publisher Rights CC BY-NC-ŇD Published version available at: http://dx.doi.org/10.1016/j.bmc.2015.06.061

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

SUPPORTING INFORMATION

Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors

Helen A. Paine,^a Amit Nathubhai,^a Esther C. Y. Woon,^{a,b} Peter T. Sunderland,^a Pauline J. Wood,^a Mary F. Mahon,^c Matthew D. Lloyd,^a Andrew S. Thompson,^a Teemu Haikarainen,^d Mohit Narwal,^d Lari Lehtiö^d and Michael D. Threadgill^{a,*}

^a Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK

^b Department of Pharmacy, National University of Singapore, Block S4, Science Drive 4, Singapore 117543, Republic of Singapore

^c X-Ray Crystallographic Suite, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

^d Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland

Table of contents

Section A: General synthetic methods	2
Section B: Experimental methods - chemical synthesis	3
Section C: Examples of graphs of enzyme activity <i>vs</i> . concentration for inhibition of tankyrase-2 by isoquinolin-1-ones.	25
Section D: Examples of graphs of enzyme activity vs. concentration for inhibition of tankyrase-1 by isoquinolin-1-ones.	28
Section E: Graphs of enzyme activity vs. concentration for inhibition of human PARP-2 by isoquinolin-1-ones.	30
Section F: Data from NCI 60-cell-line evaluations of selected isoquinolinones	31
Section G: Crystal data for small-molecule X-ray crystallography	42
Section H: Details of the diffraction data and refinement of the structures of complexes of selected isoquinolin-1-ones with tankyrase-2	66
Section I: References for Supporting Information	68

Section A: General synthetic methods

Chemical reagents, solvents and starting materials were purchased from Sigma Aldrich, Goss Scientific, Alfa Aesar and Fisher Scientific and were used without further purification. Proton and carbon magnetic resonance spectra were recorded at 400.04 MHz or 500.13 MHz for ¹H NMR, at 100.59 MHz or 125.76 MHz for ¹³C NMR and at 376 MHz for ¹⁹F NMR, using CD₃OD, (CD₃)₂SO and CDCl₃, containing SiMe₄ as an internal standard. Reactions were monitored by thin-layer chromatography (TLC) on silica gel 60Å (particle size 40-63 μ m). Most mass spectrometric data were obtained by means of electrospray ionisation using a microTOF instrument from Bruker Daltonics (Bremen, Germany) and calibrated using sodium formate solution. Melting points were obtained using a heated stage microscope (Reichert-Jung). Experiments were conducted at ambient temperature, unless otherwise noted. Solutions in organic solvents were dried with MgSO₄. Pd₂dba₃ refers to tris(dibenzyl-idenacetone)dipalladium, SPhos refers to 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl, (Ph₃P)₂PdCl₂ refers to bis(triphenylphosphine)palladium(II) dichloride. The brine was saturated.

Section B: Experimental methods - chemical synthesis

5-Amino-3-(3-methoxyphenyl)isoquinolin-1-one hydrobromide (12e). Compound **31e** (31 mg, 110 µmol) was stirred with HBr in AcOH (33%, 1.1 mL) at 65°C for 5 h. Evaporation yielded **12e** (29 mg, 73%) as a pale buff solid: mp 202-205°C; ¹H NMR (CD₃OD) δ 3.89 (3 H, s, Me), 6.13 (1 H, s, N-H), 6.95 (1 H, s, 4-H), 7.10 (1 H, dt, J = 8.2, 0.6 Hz, Ph 4-H), 7.35 (2 H, m, Ph 2,6-H₂), 7.46 (1 H, t, J = 7.9 Hz, Ph 5-H), 7.61 (1 H, t, J = 7.9 Hz, 7-H), 7.83 (1 H, dd, J = 7.7, 1.0 Hz, 6-H), 8.42 (1 H, d, J = 8.1 Hz, 8-H); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 56.14 (Me), 98.49 (4-C), 113.73 (Ph 2-C), 116.98 (Ph 4-C), 120.39 (Ph 6-C), 127.56 (8a-C), 127.66 (4a-C), 127.82 (7-C), 128.96 (6-C), 129.47 (8-C), 131.60 (Ph 5-C), 134.01 (5-C), 136.68 (Ph 1-C), 144.29 (3-C), 161.82 (Ph 3-C), 164.54 (1-C); MS *m*/z 267.1115 (M + H)⁺ (C₁₆H₁₃N₂O₂ requires 267.1135).

5-Amino-3-(2-trifluoromethylphenyl)isoquinolin-1-one hydrobromide (12g). Compound **31g** (22.4 mg, 70 μmol) was stirred with HBr in AcOH (33%, 1.25 mL) at 65°C for 5 h. Evaporation yielded **12g** (25.2 mg, 94%) as a buff solid: mp >230°C; ¹H NMR (CD₃OD) δ 6.65 (1 H, s, 4-H), 7.69 (4 H, m, 7-H + Ph 4,5,6-H₃), 7.85 (1 H, d, J = 8.5 Hz, 6-H), 7.88 (1 H, d, J = 8.0 Hz, Ph 3-H), 8.45 (1 H, d, J = 8.0 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 100.84 (4-C), 125.24 (q, J = 271.3 Hz, CF₃), 127.40 (q, J = 5.3 Hz, Ph 1-C), 127.56 (q, J = 4.8 Hz, Ph 3-C), 128.21 (7-C), 128.94 (6-C), 129.36 (8-C), 131.44 (Ph 6-C), 130.10 (q, J = 30.6 Hz, Ph 2-C), 132.95 (5-C), 133.23 (Ph 4-C), 133.50 (Ph 5-C), 141.90 (3-C), 163.54 (1-C); ¹⁹F NMR (CD₃OD) δ -59.36 (s, CF₃); MS *m/z* 305.0872 (M + H)⁺ (C₁₆H₁₂F₃N₂O requires 305.0904).

5-Amino-3-(3-trifluoromethylphenyl)isoquinolin-1-one hydrobromide (12h). Compound **31h** (70.5 mg, 220 μmol) was stirred with HBr in AcOH (33%, 3.75 mL) at 65°C for 7 h. Evaporation yielded **12h** (82.4 mg, 97%) as a buff solid: mp >230°C; ¹H NMR ((CD₃)₂SO) δ 7.05 (1 H, d, J = 7.7 Hz, 6-H), 7.16 (1 H, s, 4-H), 7.25 (1 H, t, J = 7.8 Hz, 7-H), 7.57 (1 H, d, J = 7.7 Hz, 8-H), 7.71 (1 H, t, J = 7.8 Hz, Ph 5-H), 7.77 (1 H, d, J = 7.9 Hz, Ph 4-H), 8.11 (1 H, d, J = 8.0 Hz, Ph 6-H), 8.17 (1 H, s, Ph 2-H), 11.56 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 99.07 (4-C), 116.52 (8-C), 119.27 (6-C), 123.26 (q, J = 3.9 Hz, Ph 2-C), 125.67 (q, J = 3.9 Hz, Ph 4-C), 126.19 (4a-C), 127.27 (7-C), 129.74 (q, J = 31.8 Hz, Ph 3-C), 129.89 (Ph 5-C), 130.52 (Ph 6-C), 134.85 (5-C), 136.28 (Ph 1-C), 137.31 (3-C), 162.53 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -61.03 (s, CF₃); MS *m*/*z* 303.0740 (M - H)⁻ (C₁₆H₁₀F₃N₂O requires 303.0743).

5-Amino-3-(4-trifluoromethylphenyl)isoquinolin-1-one hydrobromide (12i). Compound **31i** (85 mg, 270 µmol) was stirred with HBr in AcOH (33%, 4.0 mL) at 65°C for 7 h. Evaporation yielded **12i** (101 mg, 98%) as a buff solid: mp >230°C (lit.¹ mp 214–215°C for free base); ¹H NMR ((CD₃)₂SO) δ 7.17 (2 H, m, 4,6-H₂), 7.32 (1 H, t, *J* = 7.5 Hz, 7-H), 7.67 (1 H, d, *J* = 7.5 Hz, 8-H), 7.88 (2 H, d, *J* = 8.0 Hz, Ph 3,5-H₂), 8.04 (2 H, d, *J* = 8.0 Hz, Ph 2,6-H₂), 11.63 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 99.53 (4-C), 117.08 (8-C), 118.87 (6-C), 124.11 (q, *J* = 270.6 Hz, CF₃), 125.64 (q, *J* = 3.5 Hz, Ph 3,5-C₂), 126.28 (4a-C), 127.41 (7-C + Ph 2,6-C₂), 129.20 (q, *J* = 31.8 Hz, Ph 4-C), 136.82 (Ph 1-C), 137.83 (3-C), 139.92 (5-C), 162.46 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -61.02 (s, CF₃); MS *m*/*z* 303.0756 (M - H)⁻ (C₁₆H₁₀F₃N₂O requires 303.0743).

5-Amino-3-(4-fluorophenyl)isoquinolin-1-one hydrobromide (12j). Compound **31j** (65 mg, 24 μ mol) was stirred with HBr in AcOH (33%, 3.5 mL) at 65°C for 5 h. Evaporation

yielded **12j** (80 mg, 98%) as a buff solid: mp >230°C; ¹H NMR (CD₃OD) δ 6.99 (1 H, s, 4-H), 7.34 (3 H, m, 8-H & Ph 3,5-H₂), 7.39 (1 H, t, *J* = 8.5 Hz, 7-H), 7.45 (1 H, d, *J* = 8.5 Hz, 6-H), 7.89 (2 H, m, Ph 2,6-H₂), 11.71 (1 H, bs, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 98.62 (4-C), 115.48 (8-C), 115.68 (d, *J* =6.1 Hz, Ph 3,5-C₂), 124.75 (Ph 1-C), 125.72 (3-C), 126.66 (7-C), 128.99 (d, *J* = 17.2 Hz, Ph 2,6-C₂), 130.11 (6-C), 137.96 (Ph 4-C), 141.34 (5-C), 162.63 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -112.47 (m, F); MS *m*/*z* 253.0756 (M – H)⁻ (C₁₅H₁₀FN₂O requires 253.0777).

5-Amino-3-(2-chlorophenyl)isoquinolin-1-one hydrobromide (12k). Compound **31k** (40.4 mg, 140 µmol) was stirred with HBr in AcOH (33%, 1.6 mL) at 65°C for 5 h. Evaporation yielded **12k** (47.5 mg, 95%) as a buff solid: mp >230°C; ¹H NMR (CD₃OD) δ 6.71 (1 H, s, 4-H), 7.51 (2 H, m, Ph 4,5-H₂), 7.60 (2 H, m, Ph 3,6-H₂), 7.66 (1 H, t, *J* = 8.0 Hz, 7-H), 7.85 (1 H, d, *J* = 7.5 Hz, 6-H), 8.45 (1 H, d, *J* = 8.5 Hz, 8-H); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 100.92 (4-C), 127.61 (4a-C), 128.14 (7-C), 128.55 (Ph 5-C), 128.83 (6-C), 129.34 (8-C), 131.22 (Ph 3-C or Ph 6-C), 132.35 (Ph 6-C or Ph 3-C), 132.51 (Ph 4-C), 133.54 (5-C), 134.17 (Ph 2-C), 134.98 (Ph 1-C), 142.26 (3-C), 163.87 (1-C); MS *m/z* 273.0597 (M + H) (C₁₅H₁₂³⁷CIN₂O requires 273.0609), 271.0623 (M + H)⁺ (C₁₅H₁₂³⁵CIN₂O requires 271.0638).

5-Amino-3-(3-chlorophenyl)isoquinolin-1-one hydrobromide (12l). Compound **311** (38.5 mg, 140 µmol) was stirred with HBr in AcOH (33%, 1.5 mL) at 65°C for 5 h. Evaporation yielded **12l** (46.1 mg, 97%) as a buff solid: mp >230°C; ¹H NMR (CD₃OD) δ 6.93 (1 H, s, 4-H), 7.55 (2 H, m, Ph 4,6-H₂), 7.63 (1 H, t, *J* = 7.5 Hz, 7-H), 7.71 (1 H, m, Ph 5-H), 7.79 (1 H, d, *J* = 7.5 Hz, 6-H), 7.83 (1 H, s, Ph 2-H), 8.41 (1 H, d, *J* = 8.0 Hz, 8-H); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 98.93 (4-C), 126.52 (Ph 5-C),128.09 (7-C), 128.17 (Ph 2-C), 128.47 (6-C), 128.93 (8-C), 131.16 (Ph 4-C or Ph 6-C), 131.84 (Ph 6-C or Ph 4-C), 133.56 (5-C), 136.19 (Ph 1-C), 137.24 (Ph 3-C), 142.63 (3-C), 166.31 (1-C); MS *m*/*z* 273.0584 (M + H)⁺ (C₁₅H₁₂³⁷CIN₂O requires 273.0609), 271.0616 (M + H)⁺ (C₁₅H₁₂³⁵CIN₂O requires 271.0638).

5-Amino-3-(2,6-dichlorophenyl)isoquinolin-1-one hydrobromide (12n). Compound **31n** (12.7 mg, 40 µmol) was stirred with HBr in AcOH (33%, 1.0 mL) at 65°C for 5 h. Evaporation yielded **12n** (9.0 mg, 58%) as an amber solid: mp 226-228°C; ¹H NMR (CD₃OD) δ 6.73 (1 H, s, 4-H), 7.56 (1 H, t, *J* = 6.6 Hz, Ph 4-H), 7.63 (2 H, d, *J* = 7.0 Hz, Ph 3,5-H₂), 7.74 (1 H, t, *J* = 7.9 Hz, 7-H), 7.91 (1 H, d, *J* = 7.5Hz, 6-H), 8.53 (1 H, d, *J* = 8.0 Hz, 8-H); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 101.69 (4-C), 128.44 (7-C), 128.98 (6-C), 129.47 (8-C), 129.57 (Ph 3,5-C₂), 133.13 (Ph 4-C), 133.42 (5-C), 133.88 (Ph 1-C), 136.46 (Ph 2,6-C₂), 139.26 (3-C), 164.19 (1-C); MS *m/z* 327.0065 (M + Na)⁺ (C₁₅H₁₀³⁵Cl₂N₂NaO requires 327.0068).

5-Amino-3-(4-hydroxyphenyl)isoquinolin-1-one hydrobromide (12p). Compound **31p** (55 mg, 210 µmol) was stirred with HBr in AcOH (33%, 2.5 mL) at 65°C for 16 h. Evaporation yielded **12p** (68.5 mg, 98%) as a buff solid: mp >230°C; ¹H NMR ((CD₃)₂SO) δ 6.88 (3 H, m, 4-H + Ph 3,5-H₂), 7.36 (2 H, m, 6,7-H₂), 7.67 (2 H, d, *J* = 9.0 Hz, Ph 2,6-H₂), 7.88 (1 H, d, *J* = 9.0 Hz, 8-H), 11.46 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 96.01 (4-C), 115.55 (Ph 3,5-C₂), 124.59 (7-C), 125.36 (6-C), 125.94 (8-C), 128.09 (Ph 2,6-C₂), 139.99 (3-C), 158.69 (Ph 4-C), 162.45 (1-C); MS *m*/*z* 253.0958 (M + H)⁺ (C₁₅H₁₃N₂O₂ requires 253.0977).

5-Amino-3-(2-phenylethyl)isoquinolin-1-one hydrobromide (12s). Compound **39** (40 mg, 140 μ mol) was stirred with HBr in AcOH (33%, 2.0 mL) at 65°C for 16 h. Evaporation yielded **12s** (35 mg, 70%) as a red-brown solid: mp >230°C; ¹H NMR (CD₃OD) δ 2.95 (2 H, t, *J* = 7.0 Hz, ethyl 1-H₂), 3.06 (2 H, t, *J* = 6.0 Hz, ethyl 2-H₂), 6.48 (1 H, s, 4-H), 7.24 (5 H,

m, Ph-H₅), 7.56 (1 H, t, J = 8.0 Hz, 7-H), 7.75 (1 H, dd, J = 8.0, 1.0 Hz, 6-H), 8.38 (1 H, d, J = 8.0 Hz, 8-H); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 35.83 (ethyl 2-C), 36.51 (ethyl 1-C), 97.82 (4-C), 126.76 (7-C), 127.07 (Ph 3-C), 127.48 (6-C), 129.36 (8-C), 129.43 (Ph 2,6-C₂), 129.62 (Ph 3,5-C₂), 134.04 (5-C), 141.57 (Ph 1-C), 145.88 (3-C), 164.03 (1-C); MS *m*/z 265.1320 (M + H)⁺ (C₁₇H₁₇N₂O requires 265.1341).

5-Amino-3-(4-aminocarbonylphenyl)isoquinolin-1-one hydrobromide (12u). Compound **31r** (14 mg, 50 µmol) was stirred with HBr in AcOH (33%, 1.0 mL) at 65°C for 16 h. Evaporation yielded **12u** (17.0 mg, 98%) as an amber solid: mp >230°C; ¹H NMR ((CD₃)₂SO) δ 4.4 (3 H, m, ⁺NH₃), 7.14 (1 H, d, *J* = 7.8 Hz, 6-H), 7.17 (1 H, s, 4-H), 7.30 (1 H, t, *J* = 7.8 Hz, 7-H), 7.46 (1 H, br, CON*H*H), 7.66 (1 H, d, *J* = 7.7 Hz, 8-H), 7.92 (2 H, d, *J* = 8.5 Hz, Ph 2,6-H₂), 7.99 (2 H, d, *J* = 8.5 Hz, Ph 3,5-H₂), 8.08 (1 H, br, CONH*H*), 11.55 (1 H, bs, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 98.81 (4-C), 119.83 (8-C), 120.91 (6-C), 126.12 (Ph 4-C), 126.30 (Ph 2,6-C₂), 127.09 (7-C), 127.89 (Ph 3,5-C₂), 134.48 (3-C), 136.30 (Ph 1-C), 138.15 (5-C), 162.50 (1-C), 167.13 (CONH₂); MS *m*/*z* 278.0947 (M - H)⁻ (C₁₆H₁₂N₃O₂ requires 278.0930).

3-(4-(1,1-Dimethylethyl)phenyl)-5-methylisoquinolin-1-one (13c). BuLi (2.5 M in hexanes, 0.46 mL, 1.14 mmol) was added to dry Pr_2^i NH (127.5 mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-(1,1-Dimethylethyl)benzonitrile (180 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-(1,1-Dimethylethyl)benzonitrile (180 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **13c** (96.5 mg, 29%) as a white solid: mp 204-206°C; IR v_{max} 3295, 1642 cm⁻¹; ¹H NMR ((CD₃)₂SO) (COSY) δ 1.33 (9 H, s, CMe₃), 2.55 (3 H, s, 5-Me), 6.82 (1 H, s, 4-H), 7.35 (1 H, t, *J* = 7.6 Hz, 7-H), 7.51 (2 H, d, *J* = 7.6 Hz, Ph 3,5-H₂), 7.54 (1 H, d, *J* = 7.2 Hz, 6-H), 7.75 (2 H, d, *J* = 7.6 Hz, Ph 2,6-H₂), 8.06 (1 H, d, *J* = 8.0 Hz, 8-H), 11.48 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.75 (Me), 30.97 (CMe₃), 34.44 (CMe₃), 99.60 (4-C), 124.56 (8-C), 124.86 (8a-C), 125.51 (Ph 3,5-C₂), 125.72 (7-C), 126.56 (Ph 2,6-C₂), 131.44 (Ph 1-C), 133.15 (6-C), 133.60 (4a-C), 136.69 (5-C), 139.84 (3-C), 151.87 (Ph 4-C), 162.97 (1-C); MS *m*/z 292.1686 (M + H)⁺ (C₂₀H₂₂NO requires 292.1703).

3-(4-Methoxyphenyl)-5-methylisoquinolin-1-one (13d). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry Prⁱ₂NH (141 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 41 (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Methoxybenzonitrile (151 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave 13d (48 mg, 17%) as a white solid: mp 207-208°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.54 (1 H, s, 5-Me), 3.82 (3 H, s, OMe), 6.77 (1 H, s, 4-H), 7.04 (2 H, d, J = 8.8 Hz, Ph 3,5-H₂), 7.33 (1 H, t, J = 7.6 Hz, 7-H), 7.53 (1 H, d, J = 7.1 Hz, 6-H), 7.78 (2 H, d, J = 8.8 Hz, Ph 2,6-H₂), 8.05 (1 H, d, J = 8.0 Hz, 8-H), 11.45 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.81 (5-Me), 55.34 (OMe), 98.87 (4-C), 114.15 (Ph 3,5-C₂), 124.57 (8-C), 124.63 (8a-C), 125.51 (7-C), 126.51 (Ph 1-C), 128.23 (Ph 2,6-C₂), 133.15 (6-C), 133.49 (4a-C), 136.86 (5-C), 139.70 (3-C), 160.14 (Ph 4-C), 163.02 (1-C); MS m/z 553.2099 (2 M + Na)⁺ (C₃₄H₃₀N₂NaO₄) requires 553.2104); 288.0994 (M + Na)⁺ (C₁₇H₁₅NNaO₂ requires 288.1000), 266.1179 (M + H)⁺ ($C_{17}H_{16}NO_2$ requires 266.1181).

5-Methyl-3-(4-trifluoromethylphenyl)isoquinolin-1-one (13e). BuLi (1.6 M in hexanes, 1.1 mL, 1.7 mmol) was added to dry Prⁱ₂NH (202 mg, 2.0 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 41 (300 mg, 1.7 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Trifluoromethylbenzonitrile (289 mg, 1.7 mmol) in dry THF (2.0 mL) was added at -78 °C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was extracted with CH₂Cl₂. The extract was washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) (25 mL) gave 13e (242 mg, 47%) as white crystals: mp 251- $252^{\circ}C$; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.56 (3 H, s, Me), 6.96 (1 H, s, 4-H), 7.40 (1 H, t, J = 7.6 Hz, 7-H), 7.57 (1 H, d, J = 7.2 Hz, 6-H), 7.84 (2 H, d, J = 8.3 Hz, Ph 3,5-H₂), 8.03 (2 H, d, J = 8.2 Hz, Ph 2,6-H₂), 8.08 (1 H, d, J = 8.0 Hz, 8-H), 11.75 (1 H, br, N-H); ¹³C NMR $((CD_3)_2SO))$ (HSQC / HMBC) δ 18.77 (Me), 101.54 (4-C), 124.62 (8-C), 125.23 (q, J = 295.9 Hz, CF₃), 125.51 (8a-C), 125.56 (q, J = 3.6 Hz, Ph 3,5-C₂), 126.54 (7-C), 129.25 (q, J = 31.6 Hz, Ph 4-C), 133.40 (6-C), 134.21 (4a-C), 136.29 (5-C), 138.10 (Ph 1-C), 138.36 (3-C), 162.91 (1-C); ¹⁹F NMR ((CD₃)₂SO)) -61.08 (s, CF₃); MS m/z 302.0808 (M - H)⁻ (C₁₇H₁₁F₃NO requires 308.0798).

3-(2-Chlorophenyl)-5-methylisoquinolin-1-one (13f). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (141 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 2-Chlorobenzonitrile (155 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C. then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂. This mixture was washed thrice with brine and dried. The evaporation residue was washed (EtOH) to give **13f** (4.9 mg, 2%) as a white solid: mp 178-180°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.53 (3 H, s, Me), 6.58 (1 H, s, 4-H), 7.41 (1 H, t, *J* = 7.7 Hz, 7-H), 7.47 (1 H, td, *J* = 7.5, 1.3 Hz, Ph 4-H), 7.51 (1 H, td, *J* = 7.5, 2.0 Hz, Ph 5-H), 7.59 (3 H, m, 6-H + Ph 3,6-H₂), 8.08 (1 H, d, *J* = 8.0 Hz, 8-H), 11.59 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.69 (Me), 102.43 (4-C), 124.61 (8-C), 125.33 (8a-C), 126.25 (7-C), 127.34 (Ph 4-C), 129.70 (Ph 6-C), 130.84 (Ph 5-C), 131.56 (Ph 3-C), 132.29 (Ph 2-C), 133.22 (6-C), 133.69 (4a-C), 134.24 (Ph 1-C), 136.31 (5-C), 138.15 (3-C), 162.24 (1-C); MS m/z 292.0514 (M + Na)⁺ (C₁₆H₁₂³⁵CINNaO requires 292.0505).

3-(3-Chlorophenyl)-5-methylisoquinolin-1-one (13g). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (141 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **42** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 3-Chlorobenzonitrile (155 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave **13g** (33 mg, 11%) as a white solid: mp 275-276°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.57 (3 H, s, Me), 6.93 (1 H, s, 4-H), 7.39 (1 H, t, *J* = 7.6 Hz, 7-H), 7.52 (2 H, m, Ph 4,5-H₂), 7.57 (1 H, d, *J* = 7.2 Hz, 6-H), 7.80 (1 H, m, Ph 6-H), 7.93 (1 H, s, Ph 2-H), 8.07 (1 H, d, *J* = 8.0 Hz, 8-H), 11.61 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.82 (Me), 100.92 (4-C), 124.57 (8-C), 125.28 (8a-C), 125.64 (Ph 6-C), 126.32 (7-C), 126.74 (Ph 2-C), 129.01 (Ph 4-C), 130.54 (Ph 5-C), 133.33 (6-C), 133.55 (Ph 1-C), 134.14 (4a-C), 136.20 (Ph 3-C), 136.41 (5-C), 138.31 (3-C), 162.87 (1-C); MS *m*/z 292.0453 (M + Na)⁺ (C₁₆H₁₂³⁵CINNaO requires 292.0506), 270.0661 (M + H)⁺ (C₁₆H₁₃³⁵CINO requires 270.0686).

3-(4-Chlorophenyl)-5-methylisoquinolin-1-one (13h). BuLi (1.6 M in hexanes, 1.1 mL, 1.7 mmol) was added to dry $Pr^{i_2}NH$ (202 mg, 2.0 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (300 mg, 1.7 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Chlorobenzonitrile (233 mg, 1.7 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C. 4-Chlorobenzonitrile (233 mg, 1.7 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 2 h. Water (1.0 mL) was added, followed by CH₂Cl₂ (20 mL). The precipitate was collected by filtration to give **13h** (456 mg, 99%) as a white solid: mp >360°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.61 (3 H, s, Me), 6.93 (1 H, s, 4-H), 7.44 (1 H, t, *J* = 7.6 Hz, 7-H), 7.61 (3 H, d, *J* = 8.5 Hz, 6-H + Ph 2,6-H₃), 7.90 (2 H, d, *J* = 8.6 Hz, Ph 3,5-H₂), 8.12 (1 H, d, *J* = 7.8 Hz, 8-H), 11.70 (1 H, s, N-H); ¹³C NMR ((CD₃)₂SO)) (HSQC / HMBC) δ 18.80 (Me), 100.49 (4-C), 124.60 (8-C), 125.11 (8a-C), 126.19 (7-C), 128.73 (Ph 2,6-C₂), 128.78 (Ph 3,5-C₂), 133.01 (4a-C), 133.34 (6-C), 133.96 (Ph 1,4-C₂), 136.49 (5-C), 138.67 (3-C), 162.95 (1-C); MS *m*/z 270 (M - H)⁻, 268.0533 (M - H)⁻ (C₁₆H₁₁³⁵CINO requires 268.0535).

3-(2,6-Dichlorophenyl)-5-methylisoquinolin-1-one (13i). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (141 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 2,6-Dichlorobenzonitrile (194 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave **13i** (35 mg, 10%) as a pale buff solid: mp 202-204°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.47 (3 H, s, Me), 6.58 (1 H, s, 4-H), 7.43 (1 H, t, *J* = 7.6 Hz, 7-H), 7.55 (1 H, t, *J* = 7.2 Hz, Ph 4-H), 7.58 (1 H, d, *J* = 7.3 Hz, 6-H), 7.59 (2 H, d, *J* = 7.6 Hz, Ph 3,5-H₂), 8.09 (1 H, d, *J* = 7.9 Hz, 8-H), 11.62 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.66 (Me), 102.81 (4-C), 124.61 (8-C), 125.58 (8a-C), 126.45 (7-C), 128.28 (Ph 3,5-C₂), 131.67 (Ph 4-C), 133.19 (Ph 1-C), 133.29 (6-C), 133.75 (4a-C), 134.69 (Ph 2,6-C₂), 135.20 (3-C), 136.24 (5-C), 162.37 (1-C); MS *m*/z 326.0991 (M + Na)⁺ (C₁₆H₁₁³⁵Cl₂NNaO requires 326.0115), 304.0286 ((M + H)⁺ (C₁₆H₁₂³⁵Cl₂NO requires 304.0296).

3-(4-Bromophenyl)-5-methylisoquinolin-1-one (13j). BuLi (1.6 M in hexanes, 0.9 mL, 1.4 mmol) was added to dry $Pr^{i}_{2}NH$ (162 mg, 1.6 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (241 mg, 1.4 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Bromobenzonitrile (248 mg, 1.4 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂ (20 mL). The solid was collected by filtration and washed (EtOH) to give **13j** (181 mg, 42%) as a white solid: mp 278-279°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.55 (3 H, s, Me), 6.88 (1 H, s, 4-H), 7.38 (1 H, t, *J* = 7.7 Hz, 7-H), 7.56 (1 H, d, *J* = 7.2 Hz, 6-H), 7.69 (2 H, d, *J* = 8.5 Hz, Ph 2,6-H₂), 7.78 (2 H, d, *J* = 8.5 Hz, Ph 3,5-H₂), 8.07 (1 H, d, *J* = 8.0 Hz, 8-H), 11.59 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.81 (Me), 100.47 (4-C), 122.66 (Ph 4-C), 124.62 (8-C), 125.13 (8a-C), 126.20 (7-C), 129.03 (Ph 3,5-C₂), 131.66 (Ph 2,6-C₂), 133.34 (6-C), 133.43 (Ph 1-C), 133.97 (4a-C), 136.51 (5-C), 138.81 (3-C), 162.99 (1-C); MS *m/z* 335.9966 (M + Na)⁺ (C₁₆H₁₂⁷⁹BrNNaO requires 336.0000)

5-Methyl-3-(4-phenylethynylphenyl)isoquinolin-1-one (13k). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry Pr_2^iNH (141 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at this temperature for 10 min. Compound **41** (230 mg, 1.1 mmol)

in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. Compound **43** (194 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂. The solid was collected by filtration and washed (EtOH) to give **13k** (117 mg, 31%) as a white solid: mp 285-287°C; ¹H NMR ((CD₃)₂SO) (COSY) δ (2.57, s, Me), 6.94 (1 H, s, 4-H), 7.39 (1 H, t, *J* = 7.6 Hz, 7-H), 7.45 (3 H, m, Ph 3,4,5-H₃), 7.56 (1 H, d, *J* = 7.4 Hz, 6-H), 7.59 (2 H, m, Ph 2,6-H₂), 7.67 (2 H, d, *J* = 8.0 Hz, Ar 3,5-H₂), 7.90 (2 H, d, *J* = 8.0 Hz, Ar 2,6-H₂), 8.08 (1 H, d, *J* = 7.9 Hz, 8-H), 11.62 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.82 (Me), 88.99 (ethyne 1-C), 90.86 (ethyne 2-C), 100.64 (4-C), 122.09 (Ph 1-C), 122.92 (Ar 4-C), 124.61 (8-C), 125.18 (8a-C), 126.21 (7-C), 126.15 (Ar 2,6-C₂), 128.84 (Ph 3,5-C₂), 129.03 (Ph 10-C), 131.47 (Ph 2,6-C₂), 131.66 (Ar 3,5-C₂), 133.29 (6-C), 134.03 (4a-C), 134.17 (Ar 1-C), 136.50 (5-C), 139.00 (3-C), 163.00 (1-C); MS *m/z* 358.1218 (M + Na)⁺ (C₂₄H₁₇NNaO requires 358.1208), 336.1402 (M + H)⁺ (C₂₄H₁₈NO requires 336.1388).

5-Methyl-3-(4-(piperidin-1-vlmethyl)phenyl)isoquinolin-1-one (13m). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry Prⁱ₂NH (142 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 41 (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. Compound 45b (226 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at this temperature, then at room temperature for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with saturated brine and dried. Evaporation and washing (EtOH) gave 13m (78 mg, 21%) as a white solid: mp 196-197°C; IR v_{max} 3440 (NH), 1644 (C=O); ¹H NMR ((CD₃)₂SO) δ 1.40 (2 H, m, piperidine 4-H₂), 1.50 (4 H, m, piperidine 3,5-H₄), 2.34 (4 H, m, piperidine 2,6-H₄), 2.55 (3 H, s, Me), 3.47 (2 H, s, PhCH₂), 6.84 (1 H, s, 4-H), 7.36 (1 H, t, J = 7.7 Hz, 7-H), 7.40 (2 H, d, J = 8.2 Hz, Ph 3,5-H₂), 7.54 (1 H, d, J = 7.1 Hz, 6-H), 7.76 (2 H, d, J = 8.2 Hz, Ph 2,6-H₂), 8.06 (1 H, d, J = 7.9 Hz, 8-H), 11.48 (1 H, bs, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.76 (Me), 23.96 (piperidine 4), 25.55 (piperidine 3,5-C₂), 53.91 (piperidine 2,6-C₂), 62.37 (PhCH₂), 99.73 (4-C), 124.56 (8-C), 124.90 (8a-C), 125.79 (7-C), 126.61 (Ph 2,6-C₂), 129.01 (Ph 3,5-C₂), 132.67 (Ph 1-C), 133.18 (6-C), 133.68 (4a-C), 136.66 (5-C), 139.78 (Ph 4-C), 140.06 (3-C), 162.95 (1-C); MS m/z 665.3884 (2 M + H)⁺ (C₄₄H₄₉N₄O₂ requires 665.3855), 355.1805 (M + $Na)^+$ (C₂₂H₂₄N₂NaO requires 355.1786).

5-Methyl-3-(4-(pyrrolidin-1-vlmethyl)phenyl)isoquinolin-1-one hydrochloride (13n). BuLi (2.5 M in hexanes, 0.46 mL, 1.14 mmol) was added to dry Prⁱ₂NH (127.5 mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 41 (200 mg, 1.13 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. Compound 45c (210.5 mg, 1.13 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave 13n (32 mg, 9%) as a pale yellow solid: mp >360°C; IR v_{max} 3413, 1640 cm⁻¹; The solid was then treated for 16 h with aq. HCl (6.0 M, 2.0 mL). Evaporation and drying gave the HCl salt as a white solid: mp >360°C; ¹H NMR ((CD₃)₂SO) δ 1.70 (4 H, m, pyrrolidine 3,4-H₄), 2.44 (4 H, m, pyrrolidine 2,5-H₄), 2.54 (3 H, s, Me), 3.61 (2 H, s, PhCH₂), 6.83 (1 H, s, 4-H), 7.35 (1 H, t, J = 7.7 Hz, 7-H), 7.41 (2 H, d, J = 8.2 Hz, Ph 3.5-H₂), 7.54 (1 H, d, J = 7.2 Hz, 6-H), 7.76 (2 H, d, J = 8.2 Hz, Ph 2,6-H₂), 8.05 (1 H, d, J = 7.9 Hz, 8-H), 11.52 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.77 (Me), 23.12 (pyrrolidine 3,4-C₂), 53.50 (pyrrolidine 2,5-C₂), 59.15 (PhCH₂), 99.72 (4-C), 124.55 (8-C), 124.92 (8a-C), 125.80 (7-C), 126.64 (Ph 2,6-C₂), 128.71 (Ph 3,5-C₂), 132.64 (Ph 1-C),

133.30 (6-C), 133.68 (4a-C), 136.81 (5-C), 139.86 (3-C), 140.96 (Ph 4-C), 163.24 (1-C); MS m/z 319.1788 (M + H)⁺ (C₂₁H₂₃N₂O requires 319.1810).

5-Methyl-3-(4-((4-methylpiperazin-1-yl)methyl)phenyl)isoquinolin-1-one dihydrochloride (130). BuLi (2.5 M in hexanes, 0.46 mL, 1.14 mmol) was added to dry $Pr_2^i NH$ (128) mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 41 (200 mg, 1.13 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. Compound 45d (243 mg, 1.13 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. The evaporation residue was washed (EtOH) to give **130** (8 mg, 2%) as a white solid: mp >360°C. The solid was treated for 16 h with aq. HCl (6 M, 1.0 mL). Evaporation and drying gave the 2.HCl salt: mp >360°C; IR ν_{max} 3419, 1636 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 2.14 (3 H, s, NMe), 2.35 (8 H, m, piperazine-H₈), 2.54 (3 H, s, 5-Me), 3.49 (PhCH₂), 6.83 (1 H, s, 4-H), 7.35 (1 H, t, J = 7.7 Hz, 7-H), 7.39 (2 H, d, J = 8.2 Hz, Ph 3,5-H₂), 7.54 (1 H, d, J = 7.2 Hz, 6-H), 7.76 (2 H, d, J = 8.2 Hz, Ph 2,6-H₂), 8.05 (1 H, d, J = 7.9 Hz, 8-H), 11.51 (1 H, br, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.76 (5-Me), 40.08 (NMe), 52.57 (piperazine 2,6-C₂), 54.70 (piperazine 3,5-C₂), 61.57 (PhCH₂), 99.75 (4-C), 124.56 (8-C), 124.92 (8a-C), 125.81 (7-C), 126.65 (Ph 2,6-C₂), 129.65 (Ph 3,5-C₂), 132.79 (Ph 1-C), 133.18 (6-C), 133.69 (4a-C), 136.65 (5-C), 139.67 (Ph 4-C), 139.75 (3-C), 162.94 (1-C); MS m/z 348.2076 (M + H)⁺ (C₂₂H₂₆N₃O requires 348.2076).

5-Methyl-3-(pyridin-4-yl)isoquinolin-1-one (13p). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (142 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Cyanopyridine (118 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave **13p** (16.5 mg, 6%) as white crystals: mp 268-269°C; IR v_{max} 3450, 1654 cm⁻¹; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.59 (3 H, s, Me), 7.11 (1 H, s, 4-H), 7.44 (1 H, t, *J* = 7.7 Hz, 7-H), 7.60 (1 H, d, *J* = 7.2 Hz, 6-H), 7.87 (2 H, d, *J* = 6.2 Hz, Ph 3,5-H₂), 8.10 (1 H, d, *J* = 8.0 Hz, 8-H), 8.69 (2 H, d, *J* = 6.2 Hz, Ph 3,5-H₂), 8.10 (1 H, d, *J* = 8.0 Hz, 8-H), 8.69 (2 H, d, *J* = 6.2 Hz, Ph 3,5-H₂), 124.65 (8-C), 125.83 (8a-C), 126.91 (7-C), 133.49 (6-C), 134.50 (4a-C), 136.06 (5-C), 137.06 (pyridine 4-C), 141.03 (3-C), 150.13 (pyridine 2,6-C₂), 162.85 (1-C); MS *m/z* 235.0864 (M - H)⁻ (C₁₅H₁₁N₂O requires 235.0871).

3-(Benzo-1,3-dioxol-5-yl)-5-methylisoquinolin-1-one (**13q**). BuLi (1.6 M in hexanes, 0.70 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (141 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 5-Cyanobenzo-1,3-dioxole (166 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂. The solid was collected by filtration, washed (EtOH) and dried to give **13q** (199 mg, 63%) as a white solid. mp >360°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.54 (3 H, s, Me), 6.10 (2 H, s, CH₂), 6.78 (1 H, s, 4-H), 7.02 (1 H, d, *J* = 8.2 Hz, benzodioxole 6-H), 7.33 (1 H, t, *J* = 7.7 Hz, 7-H), 7.34 (1 H, dd, *J* = 8.1, 1.8 Hz, benzodioxole 7-H), 7.43 (1 H, d, *J* = 1.8 Hz, benzodioxole 4-H), 7.52 (1 H, d, *J* = 7.2 Hz, 6-H), 8.04 (1 H, d, *J* = 8.0 Hz, 8-H), 11.44 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.83 (Me), 99.37 (4-C), 101.52 (CH₂), 107.27 (benzodioxole 4-C), 108.46 (benzodioxole 7-C), 121.07 (benzodioxole

6-C), 124.56 (8-C), 124.72 (8a-C), 125.60 (7-C), 128.40 (benzodioxole 5-C), 133.12 (6-C), 133.62 (4a-C), 136.80 (5-C), 139.77 (3-C), 147.71 (benzodioxole 7a-C), 148.17 (benzodioxole 3a-C), 163.14 (1-C); MS *m*/*z* 278.0797 (M - H)⁻ (C₁₇H₁₂NO₃ requires 278.0817).

5-Methyl-3-(thiophen-3-yl)isoquinolin-1-one (13r). BuLi (2.5 M in hexanes, 0.46 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (127.5 mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **41** (200 mg, 1.13 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 3-Cyanothiophene (123 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂ and washed thrice with saturated brine. Drying, evaporation and washing (EtOH) gave **13r** (17 mg, 6%) as a pale buff solid: mp >360°C; IR v_{max} 3448, 1647 cm⁻¹; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.56 (3 H, s, Me), 6.99 (1 H, s, 4-H), 7.34 (1 H, t, *J* = 7.6 Hz, 7-H), 7.54 (1 H, d, *J* = 7.1 Hz, 6-H), 7.70 (1 H, m, thiophene 4-H), 7.78 (1 H, d, *J* = 4.6 Hz, thiophene 5-H), 8.04 (1 H, d, *J* = 8.0 Hz, 8-H), 8.28 (1 H, d, *J* = 1.5 Hz, thiophene 2-H), 11.47 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 18.80 (Me), 99.09 (4-C), 123.46 (thiophene 2-C), 124.58 (8-C), 124.95 (8a-C), 125.74 (7-C), 126.16 (thiophene 5-C), 127.27 (thiophene 4-C), 133.25 (6-C), 133.73 (4a-C), 134.95 (thiophene 1-C), 135.37 (3-C), 136.72 (5-C), 162.80 (1-C); MS *m*/z 264.0454 (M + Na)⁺ (C₁₄H₁₁NNaOS requires 264.0459).

5-Fluoro-3-(4-methylphenyl)isoquinolin-1-one (14b). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry Prⁱ₂NH (142 mg, 1.4 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 49 (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Methylbenzonitrile (129 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave 14b (50 mg, 18%) as white crystals: mp 232-233°C; IR v_{max} 3481, 1668, 1235 cm⁻¹; ¹H NMR ((CD₃)₂SO) $(COSY) \delta 2.37 (3 H, s, Me), 6.81 (1 H, s, 4-H), 7.30 (2 H, d, J = 8.0 Hz, Ph 3,5-H₂), 7.48 (1)$ H, m, 7-H), 7.58 (1 H, t, J = 8.1 Hz, 6-H), 7.71 (2 H, d, J = 8.0 Hz, Ph 2,6-H₂), 8.03 (1 H, d, J = 8.0 Hz, 8-H), 11.70 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 20.83 (Me), 94.19 (d, J = 5.1 Hz, 4-C), 117.57 (d, J = 19.5 Hz, 6-C), 122.77 (d, J = 3.3 Hz, 8-C), 126.46 $(d, J = 3.4 \text{ Hz}, 8a\text{-C}); 126.59 (d, J = 7.6 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (d, J = 16.5 \text{ Hz}, 7\text{-C}), 126.79 (Ph 2, 6\text{-C}_2), 127.06 (Ph 2,$ 4a-C), 129.40 (Ph 3,5-H₂), 130.74 (Ph 1-C), 139.38 (Ph 4-C), 141.40 (3-C), 157.26 (d, J = 248.1 Hz, 5-C), 161.81 (d, J = 2.8 Hz, 1-C); ¹⁹F NMR ((CD₃)₂SO) δ -122.08 (dd, J = 10.4, 5.2 Hz, F); MS *m/z* 252.0807 (M - H)⁻ (C₁₆H₁₁FNO requires 252.0824).

5-Fluoro-3-(4-methoxyphenyl)isoquinolin-1-one (14c). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (131 mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **49** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Methoxybenzonitrile (147 mg, 1.1 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **14c** (8.1 mg, 3%) as an off-white solid: mp 238-240°C; ¹H NMR ((CD₃)₂SO) δ 3.82 (3 H, s, Me), 6.78 (1 H, s, 4-H), 7.05 (2 H, d, *J* = 8.9 Hz, Ph 3,5-H₂), 7.45 (1 H, m, 7-H), 7.57 (1 H, t, *J* = 8.9 Hz, 6-H), 7.77 (2 H, d, *J* = 8.9 Hz, Ph 2,6-H₂), 8.02 (1 H, d, *J* = 8.0 Hz, 8-H), 11.66 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 55.37 (Me), 93.59 (d, *J* = 5.3 Hz, 4-C), 114.23 (Ph 3,5-C₂), 117.52 (d, *J* = 19.6 Hz, 6-C), 122.74 (d, *J* = 3.2 Hz, 8-C), 125.84 (Ph 1-

C), 126.24 (d, J = 3.6 Hz, 8a-C), 126.32 (d, J = 7.6 Hz, 7-C), 129.20 (d, J = 16.5 Hz, 4a-C), 128.35 (Ph 2,6-C₂), 141.19 (3-C), 157.19 (d, J = 247.5 Hz, 5-C), 160.41 (Ph 4-C), 161.82 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -122.20 (dd, J = 9.9, 5.2 Hz, F); MS *m*/z 561.1593 (2 M + Na)⁺ (C₃₂H₂₄F₂N₂NaO₄ requires 561.1602), 292.0747 (M + Na)⁺ (C₁₆H₁₂FNNaO₂ requires 292.0750).

5-Fluoro-3-(4-trifluoromethylphenyl)isoquinolin-1-one (14d). BuLi (1.6 M in hexanes, 0.9 mL, 1.4 mmol) was added to dry Prⁱ₂NH (170 mg, 1.7 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 49 (250 mg, 1.4 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Trifluoromethylbenzonitrile (236 mg, 1.4 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂ (20 mL). The solid was collected by filtration and washed (EtOH) to give 14d (424 mg, 99%) as a white solid: mp >360°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 6.97 (1 H, s, 4-H), 7.55 (1 H, td, *J* = 7.6, 5.7 Hz, 7-H), 7.63 (1 H, t, *J* = 8.7 Hz, 6-H), 7.86 (2 H, d, J = 8.1 Hz, Ph 3,5-H₂), 8.05 (3 H, m, Ph 2,6-H₂ + 8-H), 11.92 (1 H, br, NH); ¹³C NMR $((CD_3)_2SO)$ (HSQC / HMBC) d 96.30 (d, J = 4.9 Hz, 4-C), 117.86 (d, J = 19.5 Hz, 6-C), 122.83 (d, *J* = 3.4 Hz, 8-C), 124.07 (q, *J* = 270.1 Hz, CF₃), 125.63 (q, *J* = 3.5 Hz, Ph 3,5-H₂), 126.59 (d, J = 16.3 Hz, 4a-C), 126.91 (8a-C), 127.52 (d, J = 7.6 Hz, 7-C), 127.99 (Ph 2,6-C₂), 129.58 (q, J = 31.9 Hz, Ph 4-C), 137.47 (1-C), 139.86 (3-C), 157.44 (d, J = 248.5 Hz, 5-C), 161.70 (1-C); ¹⁹F NMR (DMSO) δ -61.19 (3 F, s, CF₃), -121.55 (1 F, m, F); MS m/z $306.0559 (M - H)^{-} (C_{16}H_8F_4NO requires 306.0548)$

3-(4-Chlorophenyl)-5-fluoroisoquinolin-1-one (14f). BuLi (1.6 M in hexanes, 0.9 mL, 1.4 mmol) was added to dry $Pr^{i}_{2}NH$ (170 mg, 1.7 mmol) in dry tetrahydrofuran (2.0 mL) at -78°C and the mixture was stirred at this temperature for 10 min. Compound **49** (250 mg, 1.4 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Chlorobenzonitrile (190 mg, 1.4 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂ (20 mL). The solid was collected by filtration and washed (EtOH) to give **14f** (269 mg, 71%) as a white solid: mp 296-297°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 6.86 (1 H, s, 4-H), 7.49 (1 H, m, 7-H), 7.57 (3 H, m, 6-H + Ph 3,5-H₂), 7.84 (2 H, d, *J* = 8.6 Hz, Ph 2,6-H₂), 8.05 (1 H, d, *J* = 7.9 Hz, 8-H), 11.63 (1 H, br, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 94.91 (d, *J* = 5.4 Hz, 4-C), 117.36 (d, *J* = 19.6 Hz, 6-C), 122.53 (d, *J* = 3.5 Hz, 8-C), 126.73 (d, *J* = 8.0 Hz, 7-C), 126.52 (8a-C), 126.65 (d, *J* = 16.2 Hz, 4a-C), 128.51 (Ph 3,5-C₂), 128.57 (Ph 2,6-C₂), 132.26 (Ph 1-C), 134.15 (Ph 4-C), 140.00 (3-C), 157.15 (d, *J* = 248.4 Hz, 5-C), 161.42 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -122.79 (m, F); MS *m*/z 272.0762 (M - H)⁻ (C₁₅H₈³⁵ClFNO requires 272.0784).

3-(4-Bromophenyl)-5-fluoroisoquinolin-1-one (14g). BuLi (1.6 M in hexanes, 0.64 mL, 1.2 mmol) was added to dry $Pr_{2}^{i}NH$ (121 mg, 1.2 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **49** (180 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Bromobenzonitrile (186 mg, 1.0 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂ (20 mL). The solid was collected by filtration and washed (EtOH) to give **11g** (238 mg, 61%) as a white solid: mp >360°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 6.86 (1 H, s, 4-H), 7.47 (1 H, m, 7-H), 7.52 (1 H, t, *J* = 8.1 Hz, 6-H), 7.67 (2 H, d, *J* = 8.6 Hz, Ph 2,6-H₂), 7.78 (2 H, d, *J* = 8.6 Hz, Ph 3,5-H₂), 8.03 (1 H, d, *J* = 7.9 Hz, 8-H), 11.87 (1 H, bs, N-H); ¹³C NMR ((CD₃)₂SO) δ (HSQC / HMBC) δ 94.61 (d, *J* = 5.1 Hz, 4-C), 117.08 (d, *J* = 19.3 Hz, 6-H)

C), 122.60 (d, J = 3.5 Hz, 8-C), 122.66 (Ph 4-C), 126.45 (d, J = 7.9 Hz, 7-C), 126.53 (8a-C), 126.80 (d, J = 16.3 Hz, 4a-C), 128.85 (Ph 3,5-C₂), 131.45 (Ph 2,6-C₂), 133.27 (Ph 1-C), 140.87 (3-C), 157.20 (d, J = 248.3 Hz, 5-C), 162.10 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -121.89 (m, F); MS *m*/*z* 317.9760 (M – H)⁻ (C₁₅H₈⁸¹BrFNO requires 317.9753), 315.9773 (M – H)⁻ (C₁₅H₈⁷⁹BrFNO requires 315.9773).

5-Fluoro-3-(pyridin-4-yl)isoquinolin-1-one (14h). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry Pr_2^iNH (131 mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **49** (200 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Cyanopyridine (114 mg, 1.1 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **14h** (264 mg, 99%) as a white solid: mp >360°C; IR v_{max} 3435, 1675, 1244 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 7.10 (1 H, s, 4-H), 7.55 (1 H, m, 7-H), 7.64 (1 H, t, *J* = 8.0 Hz, 6-H), 7.86 (2 H, d, *J* = 6.2 Hz, pyridine 3,5-H₂), 8.06 (1 H, d, *J* = 7.8 Hz, 8-H), 8.70 (2 H, d, *J* = 6.2 Hz, pyridine 2,6-H₂), 11.90 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 96.61 (4-C), 117.89 (d, *J* = 19.8 Hz, 6-C), 121.10 (pyridine 3,5-C₂), 122.86 (8-C), 126.40 (d, *J* = 15.9 Hz, 4a-C), 127.26 (8a-C), 127.86 (d, *J* = 7.9 Hz, 7-C), 138.75 (3-C), 140.57 (pyridine 4-C), 150.19 (pyridine 2,6-C₂), 157.52 (d, *J* = 248.8 Hz, 5-C), 161.79 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -121.19 (m, F); MS *m*/z 239.0622 (M - H)⁻ (C₁₄H₈FN₂O requires 239.0621).

5-Methoxy-3-(4-methylphenyl)isoquinolin-1-one (15b). BuLi (1.6 M in hexanes, 0.8 mL, 1.3 mmol) was added to dry $Pr_{2}^{i}NH$ (156 mg, 1.55 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **51** (250 mg, 1.3 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Methylbenzonitrile (151 mg, 1.3 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave **15b** (16 mg, 5%) as pale yellow crystals: mp 249-251°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 2.36 (3 H, s, Ph-Me), 3.94 (3 H, s, OMe), 6.92 (1 H, s, 4-H), 7.25 (1 H, dd, *J* = 8.0, 0.9 Hz, 6-H), 7.29 (2 H, d, *J* = 7.9 Hz, Ph 3,5-H₂), 7.41 (1 H, t, *J* = 8.0 Hz, 7-H), 7.66 (2 H, d, *J* = 8.2 Hz, Ph 2,6-H₂), 7.77 (1 H, dt, *J* = 8.0, 0.8 Hz, 8-H), 11.54 (1 H, br, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 20.81 (Me), 55.92 (OMe), 96.35 (4-C), 112.22 (6-C), 118.23 (8-C), 125.66 (4a-C), 126.51 (Ph 2,6-C₂), 126.64 (7-C), 128.52 (8a-C), 129.40 (Ph 3,5-C₂), 131.22 (Ph 1-C), 138.88 (3-C), 139.62 (Ph 4-C), 154.33 (5-C), 162.54 (1-C); MS *m*/z 288.0995 (M + Na)⁺ (C₁₇H₁₅NaNO₂ requires 288.1001).

3-(4-(1,1-Dimethylethyl)phenyl)-5-methoxyisoquinolin-1-one (15c). BuLi (2.5 M in hexanes, 0.42 mL, 1.0 mmol) was added to dry $Pr_{2}^{i}NH$ (126 mg, 1.2 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **51** (200 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-(1,1-Dimethylethyl)benzonitrile (164 mg, 1.0 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C. 4-(1,1-Dimethylethyl)benzonitrile (164 mg, 1.0 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. H₂O (1.0 mL) was added and the mixture was diluted with CH₂Cl₂ and washed thrice with brine. Drying, evaporation and washing (EtOH) gave **15c** (72 mg, 23%) as a white solid: mp 249-250°C; IR v_{max} 3451, 1633 cm⁻¹; ¹H NMR ((CD₃)₂SO) (COSY) δ 1.33 (9 H, s, Bu^t), 3.96 (3 H, s, OMe), 6.95 (1 H, s, 4-H), 7.27 (1 H, d, *J* = 7.9 Hz, 6-H), 7.44 (1 H, t, *J* = 8.0 Hz, 7-H), 7.52 (2 H, d, *J* = 8.5 Hz, Ph 3,5-H₂), 7.72 (2 H, d, *J* = 8.5 Hz, Ph 2,6-H₂), 7.79 (1 H, d, *J* = 8.0 Hz, 8-H), 11.54 (1 H, br,

NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 30.96 (C(CH₃)₃), 34.43 (CMe₃), 55.90 (OMe), 96.43 (4-C), 112.19 (6-C), 118.19 (8-C), 125.59 (Ph 3,5-C₂), 125.59 (8a-C), 126.30 (Ph 3,5-C₂), 126.63 (7-C), 128.46 (4a-C), 131.19 (Ph 1-C), 139.45 (3-C), 151.85 (Ph 4-C), 154.28 (5-C), 162.47 (1-C); MS *m*/*z* 308.1639 (C₂₀H₂₂NO₂ requires 308.1652).

5-Methoxy-3-(4-trifluoromethylphenyl)isoquinolin-1-one (15d). BuLi (1.6 M in hexanes, 0.8 mL, 1.3 mmol) was added to dry Prⁱ₂NH (157 mg, 1.55 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 51 (250 mg, 1.3 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Trifluoromethylbenzonitrile (221 mg, 1.3 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was extracted with CH₂Cl₂. The extract was washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave **15d** (113 mg, 27%) as white crystals: mp 259-260°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 3.95 (3 H, s, Me), 7.04 (1 H, s, 4-H), 7.30 (1 H, d, J = 8.0 Hz, 6-H), 7.48 (1 H, t, J = 8.0 Hz, 7-H), 7.80 (1 H, d, J = 8.0 Hz, 8-H), 7.83 (2 H, d, J = 8.3 Hz, Ph3,5-H₂), 7.98 (2 H, d, J = 8.2 Hz, Ph 2,6-H₂), 11.75 (1 H, bs, N-H); ¹³C NMR ((CD₃)₂SO) (HSOC / HMBC) δ 55.93 (Me), 98.28 (4-C), 112.46 (6-C), 118.18 (8-C), 124.03 (q, J = 270.5 Hz, CF₃), 125.51 (q, J = 3.8 Hz, Ph 3,5-C₂), 126.15 (4a-C), 127.40 (7-C), 127.49 (Ph 2,6-C₂), 127.93 (8a-C), 129.14 (q, J = 31.9 Hz, Ph 4-C), 137.85 (Ph 1-C), 137.96 (3-C), 154.54 (5-C), 162.30 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -61.20 (s, CF₃); MS m/z 318.0740 (M -H)⁻ ($C_{17}H_{11}F_3NO_2$ requires 318.0747).

3-(4-Chlorophenyl)-5-methoxyisoquinolin-1-one (15e). BuLi (1.6 M in hexanes, 0.8 mL, 1.3 mmol) was added to dry $Pr_{2}^{i}NH$ (156 mg, 1.55 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **51** (250 mg, 1.3 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Chlorobenzonitrile (178 mg, 1.3 mmol) in dry THF (2.0 mL) was added -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **15e** (86 mg, 23%) as an off-white solid: mp 243-245°C; ¹H NMR ((CD₃)₂SO) (COSY) δ 4.00 (3 H, s, Me), 7.01 (1 H, s, 4-H), 7.33 (1 H, d, *J* = 7.4 Hz, 6-H), 7.50 (1 H, t, *J* = 8.0 Hz, 7-H), 7.60 (2 H, d, *J* = 6.8 Hz, Ph 3,5-H₂), 7.84 (3 H, m, 8-H + Ph 2,6-H₂), 11.71 (1 H, br, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 55.95 (Me), 97.34 (4-C), 112.39 (6-C), 118.23 (8-C), 125.89 (4a-C), 127.11 (7-C), 128.20 (8a-C), 128.56 (Ph 2,6-C₂), 128.79 (Ph 3,5-C₂), 132.88 (Ph 1-C), 133.91 (Ph 4-C), 138.42 (3-C), 154.44 (5-C), 162.44 (1-C); MS *m*/*z* 308.0413 (M + Na)⁺ (C₁₆H₁₂³⁵CINNaO₂ requires 308.0449).

3-(4-Bromophenyl)-5-methoxyisoquinolin-1-one (15f). BuLi (1.6 M in hexanes, 0.70 mL, 1.1 mmol) was added to dry $Pr_{2}^{i}NH$ (131 mg, 1.3 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **51** (200 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Bromobenzonitrile (188 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Bromobenzonitrile (188 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **15f** (48 mg, 14%) as a white solid: mp 263-264°C; IR v_{max} 3526, 1665, 739 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 3.94 (3 H, s, Me), 6.95 (1 H, s, 4-H), 7.27 (1 H, d, *J* = 7.8 Hz, 6-H), 7.45 (1 H, t, *J* = 8.0 Hz, 7-H), 7.69 (4 H, m, Ph 2,3,5,6-H₄), 7.78 (1 H, d, *J* = 8.0 Hz, 8-H), 11.64 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 55.95 (Me), 97.30 (4-C), 112.39 (6-C), 118.23 (8-C), 122.58 (Ph 4-C), 125.90 (4a-C), 127.11 (7-C), 128.19 (8a-C), 128.79 (Ph 2,6-C₂), 131.70 (Ph 3,5-

C₂), 133.24 (Ph 1-C), 138.49 (3-C), 154.44 (5-C), 162.44 (1-C); MS m/z 682.9978 (2 M + Na) (C₃₂H₂₄⁷⁹Br⁸¹BrN₂NaO₄ requires 682.9981); 661.0145 (2 M + H) (C₃₂H₂₅⁷⁹Br⁸¹BrN₂O₄ requires 661.0161); 351.9959 (M + Na) (C₁₆H₁₂⁷⁹BrNNaO₂ requires 351.9949); 332.0098 (M + H)⁺ (C₁₆H₁₃⁸¹BrNO₂ requires 332.0110); 330.0113 (M + H)⁺ (C₁₆H₁₃⁷⁹BrNO₂ requires 330.0130).

5-Methoxy-3-(pyridin-4-yl)isoquinolin-1-one (**15g).** BuLi (1.6 M in hexanes, 0.80 mL, 1.3 mmol) was added to dry $Pr^{i}_{2}NH$ (157 mg, 1.55 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **51** (250 mg, 1.3 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Cyanopyridine (135 mg, 1.3 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 4-Cyanopyridine (135 mg, 1.3 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. Water (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **15g** (284 mg, 87%) as a white solid: mp >360°C; IR v_{max} 3431, 1673 cm⁻¹; ¹H NMR ((CD₃)₂SO) (COSY) δ 3.96 (3 H, s, Me), 7.16 (1 H, s, 4-H), 7.31 (1 H, d, *J* = 7.9 Hz, 6-H), 7.50 (1 H, t, *J* = 8.0 Hz, 7-H), 7.80 (3 H, m, 8-H + pyridine 3,5-H₂), 8.66 (2 H, d, *J* = 6.1 Hz, pyridine 2,6-H₂), 11.74 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 56.04 (Me), 98.74 (4-C), 112.64 (6-C), 118.26 (8-C), 120.76 (pyridine 3,5-C₂), 126.55 (4a-C), 127.70 (8a-C), 127.93 (7-C), 136.82 (pyridine 4-C), 140.86 (3-C), 150.19 (pyridine 2,6-C₂), 154.70 (5-C), 162.39 (1-C); MS *m/z* 253.0972 (M + H) (C₁₅H₁₃N₂O₂ requires 253.0977).

3-(Benzo-1,3-dioxol-5-yl)-5-methoxyisoquinolin-1-one (15h). BuLi (1.6 M in hexanes, 0.7 mL, 1.1 mmol) was added to dry Prⁱ₂NH (125 mg, 1.2 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound 51 (200 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 5-Cyanobenzo-1,3dioxole (152 mg, 1.0 mmol) in dry THF (2.0 mL) was added at -78 °C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. H₂O (1.0 mL) was added. The mixture was diluted with CH₂Cl₂, washed thrice with brine and dried. Evaporation and washing (EtOH) gave **15h** (32 mg, 11%) as an off-white solid: mp 282-284°C; IR v_{max} 3445, 1631 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 3.93 (3 H, s, Me), 6.09 (2 H, s, CH₂), 6.86 (1 H, s, 4-C), 7.01 (1 H, d, J = 8.1 Hz, Ph 5-H), 7.25 (1 H, d, J = 7.2 Hz, 6-H), 7.27 (1 H, dd, J = 8.2, 1.9 Hz, Ph 6-H), 7.33 (1 H, d, J = 1.8 Hz, Ph 2-H), 7.40 (1 H, t, J = 8.0 Hz, 7-H), 7.74 (1 H, d, J = 8.0 Hz, 8-H), 11.45 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC / DEPT) δ 55.91 (OMe), 96.29 (4-C), 101.53 (CH₂), 107.03 (Ph 4-C), 108.54 (Ph 7-C), 112.17 (6-C), 118.21 (8-C), 120.92 (Ph 6-C), 125.54 (4a-C), 126.52 (7-C), 128.20 (Ph 5-C), 128.54 (8a-C), 139.42 (3-C), 147.72 (Ph 7a-C), 148.16 (Ph 3a-C), 154.27 (5-C), 162.51 (1-C); MS *m*/*z* 613.1595 (2 M + Na) $(C_{34}H_{26}N_2NaO_8 \text{ requires } 613.1587); 591.1768 (2 M + H) (C_{34}H_{27}N_2O_8 \text{ requires } 591.1767);$ 318.0765 (M + Na) (C₁₇H₁₃NNaO₄ requires 318.0742); 296.0907 (M + H) (C₁₇H₁₄NO₄ requires 296.0923).

5-Methoxy-3-(thiophen-3-yl)isoquinolin-1-one (15i). BuLi (2.5 M in hexanes, 0.42 mL, 1.0 mmol) was added to dry Pr_2^iNH (126 mg, 1.24 mmol) in dry THF (2.0 mL) at -78°C and the mixture was stirred at -78°C for 10 min. Compound **51** (200 mg, 1.0 mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at -78°C. 3-Cyanothiophene (112 mg, 1.0 mmol) in dry THF (2.0 mL) was added at -78°C and the mixture was stirred for 1 h at -78°C, then at 20°C for 16 h. H₂O (1.0 mL) was added. The mixture was diluted with CH₂Cl₂ and washed thrice with brine. Evaporation and washing (EtOH) gave **15i** (37 mg, 14%) as a pale buff solid: mp 286-287°C; IR v_{max} 3503, 1652, 746 cm⁻¹; ¹H NMR ((CD₃)₂SO) (COSY) δ 3.94 (3 H, s, Me), 7.04 (1 H, s, 4-H), 7.24 (1 H, d, *J* = 7.9 Hz, 6-H), 7.40 (1 H, t, *J* = 8.0 Hz, 7-H), 7.66 (2 H, m, thiophene 4,5-H₂), 7.75 (1 H, d, *J* = 8.0 Hz, 8-H), 8.23 (1 H, d, *J* = 1.2

Hz, thiophene 2-H), 11.48 (1 H, br, NH); 13 C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 55.88 (Me), 95.99 (4-C), 112.28 (6-C), 118.24 (8-C), 123.36 (thiophene 2-C), 125.71 (8a-C), 125.78 (thiophene 5-C), 126.63 (7-C), 127.44 (thiophene 4-C), 128.44 (4a-C), 134.71 (thiophene 1-C), 135.20 (3-C), 154.30 (5-C), 162.29 (1-C); MS *m*/*z* 280.0399 (C₁₄H₁₁NNaO₂S requires 280.0409).

5-Hydroxy-3-(4-trifluoromethylphenyl)isoquinolin-1-one (**16b**). Compound **15d** (51 mg, 0.16 mmol) was heated with BBr₃ in CH₂Cl₂ (1.0 M, 4.0 mL) at reflux for 16 h. The evaporation residue was treated with aq. NaOH (2.5 M, 3.5 mL) at 0°C and the mixture was stirred at 20°C for 3 h. The solution was acidified with aq. HCl (2 M). The solid was collected by filtration. Chromatography (EtOAc / petroleum ether 2:3 \rightarrow 1:1) gave **16b** (3.9 mg, 8%) as a pale buff solid: mp 258-260°C; IR v_{max} 3399, 3197, 1640, 1329, 1113, 1068 cm⁻¹; ¹H NMR (CD₃OD) δ 7.14 (1 H, dd, *J* = 7.8, 1.0 Hz, 6-H), 7.29 (1 H, s, 4-H), 7.37 (1 H, t, *J* = 7.9 Hz, 7-H), 7.81 (3 H, m, 8-H + Ph 3,5-H₂), 7.92 (2 H, d, *J* = 8.2 Hz, Ph 2,6-H₂); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 102.03 (4-C), 117.66 (6-C), 118.54 (8-C), 125.54 (q, *J* = 268.9 Hz, CF₃), 126.94 (q, *J* = 3.8 Hz, Ph 3,5-C₂), 127.41 (4a-C), 128.36 (Ph 2,6-C₂), 128.90 (7-C), 129.23 (8a-C), 131.88 (q, *J* = 32.4 Hz, Ph 4-C), 138.33 (3-C), 139.73 (Ph 1-C), 154.84 (5-C), 165.60 (1-C); MS *m*/z 328.0568 (M + Na)⁺ (C₁₆H₁₀F₃NNaO₂ requires 328.0561), 306.0740 (M + H)⁺ (C₁₆H₁₁F₃NO₂ requires 306.0742); MS *m*/z 304.0577 (M - H)⁻ (C₁₆H₉F₃NO₂ requires 304.0585).

5-Nitro-3-(4-trifluoromethylphenyl)isoquinolin-1-one (22i). Compound **30i** (78 mg, 220 μmol) was stirred with HBr in AcOH (33%, 3.5 mL) at 65°C for 7 h. Evaporation yielded **221** (34.5 mg, 47%) as a yellow solid: mp: 292-294°C; ¹H NMR ((CD₃)₂SO) δ 7.30 (1 H, s, 4-H), 7.70 (1 H, t, J = 8.0 Hz, 7-H), 7.89 (2 H, d, J = 8.5 Hz, Ph 3,5-H₂), 7.99 (2 H, d, J = 8.5 Hz, Ph 2,6-H₂), 8.49 (1 H, d, J = 7.5 Hz, 8-H), 8.60 (1 H, d, J = 7.5 Hz, 6-H), 12.26 (1 H, br, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 98.63 (4-C), 124.01 (q, J = 270.8 Hz, CF₃), 125.81 (q, J = 3.6 Hz, Ph 3,5-C₂), 126.36 (7-C), 126.89 (8a-C), 128.27 (Ph 2,6-C₂), 129.99 (8-C), 130.04 (q, J = 31.8 Hz, Ph 4-C), 130.59 (4a-C), 133.19 (6-C), 137.44 (Ph 1-C), 142.64 (3-C), 144.94 (5-C), 161.33 (1-C); ¹⁹F NMR ((CD₃)₂SO) δ -61.22 (s, CF₃); MS *m/z* 333.0493 (M - H)⁻ (C₁₆H₈F₃N₂O₃ requires 333.0493).

3-(4-Fluorophenyl)-5-nitroisoquinolin-1-one (22j). Compound **30j** (16 mg, 50 µmol) was stirred with HBr in AcOH (33%, 1.0 mL) at 65°C for 7 h. Evaporation yielded **22j** (7.8 mg, 55%) as a yellow solid: mp >360°C; ¹H NMR ((CD₃)₂SO) δ 7.19 (1 H, s, 4-H), 7.36 (2 H, t, *J* = 8.6 Hz, Ph 3,5-H₂), 7.65 (1 H, *J* = 7.9 Hz, 7-H), 7.84 (2 H, dd, *J* = 8.2, 5.3 Hz, Ph 2,6-H₂), 8.46 (1 H, d, *J* = 7.8 Hz, 8-H), 8.59 (1 H, d, *J* = 7.7 Hz, 6-H), 11.95 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 96.94 (4-C), 115.56 (d, *J* = 21.8 Hz, Ph 3,5-C₂), 125.41 (7-C), 126.38 (8a-C), 129.36 (8-C), 129.43 (Ph 2,6-C₂), 129.86 (4a-C), 130.63 (Ph 1-C), 132.83 (6-C), 143.07 (3-C), 144.55 (5-C), 160.99 (1-C), 162.94 (d, *J* = 246.6 Hz, Ph 4-C); ¹⁹F NMR ((CD₃)₂SO) δ -110.96 (m, F); MS *m*/*z* 283.0524 (M - H)⁻ (C₁₅H₈FN₂O₃ requires 283.0524).

1,3-Dichloro-5-nitroisoquinoline (27). Aq. HNO₃ (67%, 430 mg) in conc. H₂SO₄ (3.0 mL) was added dropwise to 1,3-dichloroisoquinoline 26 (1.00 g, 5.1 mmol) in conc. H₂SO₄ (5.0 mL) at 5°C. The mixture was stirred at 0-5°C for 2 h, then poured onto ice. The precipitate was collected, washed (H₂O), dried and recrystallised (EtOAc / petroleum ether) to give 27 (1.12 g, 91%) as a yellow powder: mp 168-170°C (lit.² mp 168-170°C); ¹H NMR (CDCl₃) δ 7.80 (1 H, t, *J* = 7.8 Hz, 7-H), 8.55 (1 H, s, 4-H), 8.62 (1 H, dd, *J* = 7.8, 1.8 Hz, 6-H), 8.72 (1 H, dt, *J* = 8.5, 1.1 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 115.16 (4-C), 126.00 (4a-

C), 126.64 (7-C), 129.63 (6-C), 131.60 (8a-C), 133.12 (8-C), 144.01 (5-C), 147.08 (3-C), 151.75 (1-C).

1-Methoxy-3-(3-methylphenyl)-5-nitroisoquinoline (**30b**). Compound **28** (0.84 g, 3.5 mmol), Pd₂dba₃ (0.18 g, 0.35 mmol), SPhos (0.14 g, 0.70 mmol), K₃PO₄ (1.5 g, 7.1 mmol) and 3-methylphenylboronic acid (720 mg 5.3 mmol) were placed in a dry flask. Degassed toluene (20 mL) was added and the mixture was stirred at 100°C for 16 h. Evaporation and chromatography (hexane / EtOAc 15:1) gave **30b** (700 mg, 67%) as yellow crystals: mp 166-169°C; ¹H NMR (CDCl₃) δ 2.36 (3 H, s, ArMe), 4.11 (3 H, s, OMe), 7.13 (1 H, d, *J* = 7.8 Hz, Ar 4-H), 7.27 (1 H, t, *J* = 7.8 Hz, Ar 5-H), 7.36 (1 H, t, *J* = 7.4 Hz, 7-H), 7.83 (1 H, s, Ar 2-H), 7.85 (1 H, d, *J* = 7.6 Hz Ar 6-H), 8.23-8.26 (2 H, m, 6-H and 4-H), 8.39 (1 H, d, *J* = 7.4 Hz 8-H); ¹³C NMR (HMBC / HMQC) δ 21.6 (ArMe), 54.0 (OMe), 104.9 (4-C), 124.2 (Ar 6-C), 124.2 (7-C), 127.6 (Ar 2-C) 128.5 (6-C), 128.6 (Ar 5-C), 130.1 (Ar 4-C), 131.1 (8-C), 131.3 (C_q), 138.2 (Ar 1-C), 138.5 (C_q),151.8 (3-C), 151.9 (5-C), 160.3 (1-C); MS *m*/z 295.1076 (M + H)⁺ (C₁₇H₁₅N₂O₃ requires 295.1083).

1-Methoxy-3-(2-methoxyphenyl)-5-nitroisoquinoline (30d). Degassed PhMe (3.0 mL) was added to **28** (102 mg, 430 µmol), Pd₂dba₃ (11.5 mg, 13 µmol), SPhos (23 mg, 56 µmol), 2-methoxybenzeneboronic acid (150 mg, 1.0 mmol) and K₃PO₄ (204 mg, 1.0 mmol) in a dry flask. The mixture was stirred at 100°C for 16 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave **30d** (74 mg, 58%) as a yellow solid: mp 115-117°C; ¹H NMR (CDCl₃) δ 3.97 (3 H, s, PhOMe), 4.23 (3 H, s, 1-OMe), 7.06 (1 H, d, *J* = 8.3 Hz, Ph 3-H), 7.11 (1 H, td, *J* = 7.6, 1.1 Hz, Ph 4-H), 7.39 (1 H, td, *J* = 7.8, 1.8 Hz, Ph 5-H), 7.55 (1 H, t, *J* = 7.9 Hz, 7-H), 8.15 (1 H, dd, *J* = 7.8, 1.8 Hz, Ph 6-H), 8.43 (1 H, dd, *J* = 7.8, 1.3 Hz, 6-H), 8.59 (1 H, dt, *J* = 8.2, 1.1 Hz, 8-H), 8.78 (1 H, s, 4-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.06 (1-OMe), 55.71 (PhOMe), 110.12 (4-C), 111.79 (Ph 3-C), 119.70 (8a-C), 120.87 (Ph 4-C), 124.36 (7-C), 128.18 (6-C), 130.17 (Ph 5-C), 130.91 (8-C), 131.22 (Ph 6-C), 146.81 (5-C), 157.82 (Ph 2-C), 160.04 (1-C); MS *m*/z 333.0858 (M + Na)⁺ (C₁₇H₁₄N₂NaO₄ requires 333.0852), 311.1030 (M + H)⁺ (C₁₇H₁₅N₂O₄ requires 311.1034).

1-Methoxy-3-(3-methoxyphenyl)-5-nitroisoquinoline (30e). Degassed PhMe (3.0 mL) was added to **28** (103 mg, 430 μmol), Pd₂dba₃ (11.6 mg, 13 μmol), SPhos (22 mg, 54 μmol), 3-methoxybenzeneboronic acid (153 mg, 1.0 mmol) and K₃PO₄ (203 mg, 0.96 mmol). The mixture was stirred at 100°C for 16 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave **30e** (81 mg, 81%) as a yellow solid: mp 87-90°C; ¹H NMR (CDCl₃) δ 3.93 (3 H, s, PhOMe), 4.28 (3 H, s, 1-OMe), 7.00 (1 H, m, Ph 6-H), 7.42 (1 H, t, *J* = 8.0 Hz, Ph 5-H), 7.57 (1 H, t, *J* = 8.0 Hz, 7-H), 7.78 (2 H, m, Ph 2,4-H₂), 8.48 (1 H, dd, *J* = 7.8, 1.3 Hz, 6-H), 8.51 (1 H, s, 4-H), 8.61 (1 H, dt, *J* = 8.2, 1.0 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.16 (PhOMe), 56.00 (1-OMe), 105.38 (4-C), 112.98 (Ph 4-C), 114.79 (Ph 6-C), 119.62 (Ph 2-C), 124.53 (7-C), 128.54 (6-C), 129.76 (Ph 5-C), 131.20 (8-C), 139.72 (Ph 3-C), 144.35 (5-C), 160.26 (1-C); MS *m*/z 311.1030 (M + H)⁺ (C₁₇H₁₅N₂O₄ requires 311.1034).

1-Methoxy-5-nitro-3-(3-trifluoromethylphenyl)isoquinoline (30h). Method A. Degassed PhMe (3.0 mL) was added to **28** (101 mg, 420 μ mol), Pd₂dba₃ (41 mg, 45 μ mol), SPhos (40 mg, 100 μ mol), 3-trifluoromethylbenzeneboronic acid (161 mg, 850 μ mol) and K₃PO₄ (179 mg, 840 μ mol). The mixture was stirred at 100°C for 16 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (Et₂O / petroleum ether 1:199) gave **30h** (80.4 mg, 55%) as a yellow solid: mp 135-137°C; ¹H NMR (CDCl₃) δ 4.29 (3 H, s, Me), 7.62 (2 H, m, 7-H + Ph 5-H), 7.70 (1 H, d, *J* = 8.0 Hz, Ph 4-H), 8.34 (1 H, d, *J* = 7.9 Hz, Ph 6-H), 8.47 (1

H, s, Ph 2-H), 8.49 (1 H, dd, J = 7.7, 1.2 Hz, 6-H), 8.53 (1 H, s, 4-H), 8.62 (1 H, dt, J = 7.2, 1.0 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.31 (Me), 105.70 (4-C), 120.30 (8a-C), 123.98 (q, J = 3.9 Hz, Ph 2-C), 124.19 (q, J = 270.4 Hz, CF₃), 125.08 (7-C), 125.84 (q, J = 3.9 Hz, Ph 4-C), 126.89, 128.77 (6-C), 128.78, 29.20 (Ph 5-C), 130.12 (Ph 6-C), 131.27 (8-C), 131.27 (4a-C), 131.30 (q, J = 32.3 Hz, Ph 3-C), 139.47 (Ph 1-C), 145.04 (5-C), 150.25 (3-C), 160.75 (1-C); ¹⁹F NMR (CDCl₃) δ -62.66 (s, CF₃); MS *m*/*z* 349.0826 (M + H)⁺ (C₁₇H₁₂F₃N₂O₃ requires 349.0802).

1-Methoxy-5-nitro-3-(3-trifluoromethylphenyl)isoquinoline (30h). Method B. Dry DMF (8.0 mL) was added to **37** (300 mg, 1.1 mmol), Pd_2dba_3 (97 mg, 106 µmol), SPhos (99 mg, 0.21 mmol), 3-trifluoromethyl)benzeneboronic acid (403 mg, 2.1 mmol) and K₃PO₄ (675 mg, 3.2 mmol) and the mixture was stirred at 135°C for 16 h. The mixture was filtered (Celite[®] and the solvent was evaporated. Chromatography (EtOAc / petroleum ether 1:49) gave **30h** (232 mg, 63%) as a yellow solid, with properties as above.

1-Methoxy-5-nitro-3-(4-trifluoromethylphenyl)isoquinoline (30i). To **37** (300 mg, 1.1 mmol) in a dry flask was added Pd₂dba₃ (97 mg, 110 μmol), SPhos (99 mg, 210 μmol), 4-trifluoromethylphenylbenzeneboronic acid (403 mg, 2.1 mmol) and K₃PO₄ (675 mg, 3.2 mmol). Dry DMF (8.0 mL) was added and the mixture was stirred at 135°C for 16 h. The mixture was filtered through Celite[®] and the solvent was evaporated. Chromatography (EtOAc / petroleum ether 3:197) gave **30i** (209 mg, 57%) as a yellow solid: mp 125-127°C; ¹H NMR (CDCl₃) δ 4.25 (3 H, s, Me), 7.58 (1 H, t, *J* = 7.9 Hz, 7-H), 7.72 (2 H, d, *J* = 8.2 Hz, Ph 3,5-H₂), 8.25 (2 H, d, *J* = 8.1 Hz, Ph 2,6-H₂), 8.46 (1 H, dd, *J* = 7.8, 1.3 Hz, 6-H), 8.50 (1 H, s, 4-H), 8.58 (1 H, dt, *J* = 8.2, 1.1 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.23 (Me), 105.94 (4-C), 120.18 (4a-C), 125.11 (7-C), 125.57 (q, *J* = 3.6 Hz, Ph 3,5-C₂), 126.42 (q, *J* = 275.0 Hz, CF₃), 127.20 (Ph 2,6-C₂), 128.75 (6-C), 131.17 (8a-C), 131.20 (8-C), 141.79 (Ph 1-C), 144.82 (5-C), 150.01 (3-C), 160.56 (1-C); ¹⁹F NMR (CDCl₃) δ -62.56 (s, CF₃); MS *m/z* 371.0601 (M + Na)⁺ (C₁₇H₁₁F₃N₂O₃Na requires 371.0622), 349.0775 (M + H)⁺ (C₁₇H₁₂F₃N₂O₃ requires 349.0780).

3-(4-Fluorophenyl)-1-methoxy-5-nitroisoquinoline (30j). To **37** (200 mg, 710 µmol) in a dry flask was added Pd₂dba₃ (65 mg, 70 µmol), SPhos (66 mg, 140 µmol), 4-fluorobenzeneboronic acid (148 mg, 1.1 mmol) and K₃PO₄ (448 mg, 2.1 mmol). Dry DMF (6.0 mL) was added and the mixture was stirred at 135°C for 16 h. The evaporation residue, in CHCl₃, was filtered through Celite[®]. Chromatography (EtOAc / petroleum ether 1:99 \rightarrow 1:49) gave **30j** (60 mg, 28%) as a yellow solid: mp 199-200°C; ¹H NMR (CDCl₃) δ 4.27 (3 H, s, Me), 7.19 (2 H, t, *J* = 8.5 Hz, Ph 3,5-H₂), 7.57 (1 H, t, *J* = 8.0 Hz, 7-H), 8.19 (2 H, m, Ph 2,6-H₂), 8.47 (1 H, s, 4-H), 8.49 (1 H, dd, *J* = 8.0, 1.0 Hz, 6-H), 8.61 (1 H, d, *J* = 8.0 Hz; ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.11 (Me), 104.79 (4-C), 115.68 (d, *J* = 21.5 Hz, Ph 3,5-C₂), 119.91 (4a-C), 124.53 (7-C), 128.72 (6-C), 128.97 (d, *J* = 8.3 Hz, Ph 2,6-C₂), 131.26 (8-C), 131.56 (8a-C), 134.81 (Ph 1-C), 144.91 (5-C), 150.93 (3-C), 160.58 (1-C), 163.75 (d, *J* = 248.3 Hz, Ph 4-C); MS *m*/z 299.0808 (M + H)⁺ (C₁₆H₁₂FN₂O₃ requires 299.0834).

3-(2-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30k). Method A. To **28** (102 mg, 0.43 mmol) were added $Pd_2(dba)_3$ (13 mg, 14 µmol), SPhos (22 mg, 54 µmol), 2-chlorobenzeneboronic acid (202 mg, 1.3 mmol) and K₃PO₄ (202 mg, 0.95 mmol). Degassed PhMe (3.0 mL) was added and the mixture was stirred at 100°C. After 4.5 h, further $Pd_2(dba)_3$ (33.5 mg, 40 µmol) and SPhos (20.5 mg, 40 µmol) were added and the mixture was stirred at 100°C for a further 11.5 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave **30k** (135 mg, 100%) as a yellow solid, with properties as below.

3-(2-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30k). Method B. To **37** (200 mg, 710 µmol) were added Pd₂dba₃ (65 mg, 70 µmol), SPhos (66 mg, 140 µmol), 2-chlorobenzeneboronic acid (165 mg, 1.1 mmol) and K₃PO₄ (450 mg, 2.1 mmol). Dry DMF (7.5 mL) was added and the mixture was stirred at 135°C for 16 h. The solvent was evaporated. The residue, in CHCl₃, was filtered through Celite[®]. Chromatography (EtOAc / petroleum ether 3:197 \rightarrow 1:19) gave **30k** (132 mg, 60%) as a yellow solid: mp 122-127°C; ¹H NMR (CDCl₃) δ 4.21 (3 H, s, Me), 7.39 (1 H, t, *J* = 7.2 Hz, Ph 5-H), 7.40 (1 H, t, *J* = 7.0 Hz, Ph 4-H), 7.53 (1 H, dd, *J* = 7.5, 1.5 Hz, Ph 6-H), 7.63 (1 H, t, *J* = 7.9 Hz, 7-H), 7.73 (1 H, dd, *J* = 7.8, 1.7 Hz, Ph 3-H), 8.37 (1 H, s, 4-H), 8.49 (1 H, dd, *J* = 7.8, 1.3 Hz, 6-H), 8.65 (1 H, dt, *J* = 8.2, 1.1 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.39 (Me), 110.19 (4-C), 119.79 (8a-C), 125.05 (7-C), 126.84 (Ph 4-C), 128.46 (6-C), 129.62 (Ph 5-C), 130.48 (Ph 6-C), 130.74 (4a-C), 131.13 (8-C), 131.67 (Ph 3-C), 144.95 (5-C), 160.29 (1-C); MS *m/z* 315.0533 (M + H)⁺ (C₁₆H₁₂³⁵CIN₂O₃ requires 315.0538).

3-(3-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30l). Method A. To **28** (104 mg, 0.44 mmol) in a dry flask was added $Pd_2(dba)_3$ (44.0 mg, 48 µmol), SPhos (40.3 mg, 98 µmol), 3-chlorobenzeneboronic acid (198 mg, 1.3 mmol) and K₃PO₄ (180 mg, 0.85 mmol). Degassed toluene (3.0 mL) was added and the mixture was stirred at 100°C for 40 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (Et₂O / petroleum ether 1: 99) gave **30l** (46 mg, 34%) as a yellow solid, with properties as below.

3-(3-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30l). Method B. To **37** (200 mg, 710 µmol) were added Pd₂dba₃ (65 mg, 70 µmol), SPhos (66 mg, 140 µmol), 3-chlorobenzeneboronic acid (166 mg, 1.1 mmol) and K₃PO₄ (450 mg, 2.1 mmol). Dry DMF (7.5 mL) was added and the mixture was stirred at 135°C for 16 h. The solvent was evaporated. The residue, in CHCl₃, was filtered through Celite[®]. Chromatography (EtOAc / petroleum ether 3:197 \rightarrow 1:19) gave **30l** (116 mg, 52%) as a yellow solid: mp 134-141°C; ¹H NMR (CDCl₃) δ 4.18 (3 H, s, Me), 7.41 (2 H, m, Ph 5,6-H₂), 7.58 (1 H, t, *J* = 8.0 Hz, 7-H), 8.03 (1 H, dt, *J* = 6.9, 1.9 Hz, Ph 4-H), 8.18 (1 H, s, Ph 2-H), 8.47 (1 H, dd, *J* = 7.8, 1.2 Hz, 6-H), 8.48 (1 H, s, 4-H), 8.60 (1 H, dt, *J* = 8.2, 1.1, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.29 (Me), 105.53 (4-C), 120.18 (8a-C), 124.90 (7-C), 125.05 (Ph 4-C), 127.21 (Ph 2-C), 128.73 (6-C), 129.24 (Ph 6-C), 129.93 (Ph 5-C), 131.26 (8-C), 131.33 (4a-C), 134.81 (Ph 3-C), 140.43 (3a-C), 144.95 (5-C), 150.30 (3-C), 160.58 (1-C); MS *m*/*z* 315.0529 (M + H)⁺ (C₁₆H₁₂³⁵ClN₂O₃ requires 315.0538).

3-(4-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30m). Degassed toluene (3.0 mL) was added to **37** (96 mg, 0.34 mmol), Pd₂(dba)₃ (31 mg, 34 µmol), SPhos (31.5 mg, 68 µmol), 4-chlorobenzeneboronic acid (79.3 mg, 0.51 mmol) and K₃PO₄ (215 mg, 1.01 mmol). The mixture was stirred at 100°C for 16 h. The evaporation residue, in CHCl₃, was filtered (Celite[®]). Chromatography (EtOAc / petroleum ether 1:39) gave **30m** (104 mg, 98%) as a yellow solid: mp 168-169°C; ¹H NMR (CDCl₃) δ 4.24 (3 H, s, Me), 7.46 (2 H, dd, *J* = 6.8, 2.0 Hz, Ph 2,6-H₂), 7.56 (1 H, t, *J* = 7.9 Hz, 7-H), 8.13 (2 H, dd, *J* = 6.8, 2.0 Hz, Ph 3,5-H₂), 8.46 (1 H, dd, *J* = 7.7, 1.2 Hz, 6-H), 8.47 (1 H, s, 4-H), 8.59 (1 H, dt, *J* = 8.2, 0.92 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.15 (Me), 105.06 (4-C), 120.04 (4a-C), 124.66 (7-C), 128.31 (Ph 3,5-C₂), 128.65 (6-C), 128.87 (Ph 2,6-C₂), 131.18 (8-C), 131.29 (8a-C), 135.41 (Ph 4-C), 137.07 (3-C), 150.67 (5-C), 160.81 (1-C); MS *m*/z 315.0531 (M + H)⁺ (C₁₆H₁₁³⁵ClN₂O₃ requires 315.0536).

3-(2,6-Dichlorophenyl)-1-methoxy-5-nitroisoquinoline (30n). To **37** (240 mg, 850 μ mol) was added Pd₂dba₃ (78 mg, 85 μ mol), SPhos (79 mg, 170 μ mol), 2,6-dichlorobenzeneboronic

acid (243 mg, 1.3 mmol) and K₃PO₄ (541 mg, 2.5 mmol). Dry DMF (8.0 mL) was added and the mixture was stirred at 135°C for 16 h. Filtration (Celite[®]), evaporation and chromatography (EtOAc / petroleum ether 1: 99) gave **30n** (35 mg, 12%) as a yellow solid: mp 122-124°C; ¹H NMR (CDCl₃) δ 4.17 (3 H, s, Me), 7.30 (1 H, t, *J* = 8.7 Hz, Ph 4-H), 7.44 (2 H, d, *J* = 8.5 Hz, Ph 3,5-H₂), 7.66 (1 H, t, *J* = 8.1 Hz, 7-H), 8.08 (1 H, s, 4-H), 8.52 (1 H, dd, *J* = 7.8, 1.3 Hz, 6-H), 8.67 (1 H, dt, *J* = 8.2, 1.1 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.61 (Me), 111.16 (4-C), 120.08 (4a-C), 125.36 (7-C), 128.24 (Ph 3,5-C₂), 128.56 (6-C), 129.82 (Ph 4-C), 130.75 (8a-C), 131.32 (8-C), 134.86 (Ph 2,6-C₂), 138.19 (Ph 1-C), 144.94 (5-C), 149.95 (3-C), 160.73 (1-C); MS *m*/*z* 348.9740 (M - H)⁻ (C₁₆H₁₁³⁵Cl³⁷ClN₂O₃ requires 348.9961).

3-(3-Cyanophenyl)-1-methoxy-5-nitroisoquinoline (30q). Method A. To **37** (152 mg, 0.64 mmol) in a dry flask was added $Pd_2(dba)_3$ (58.3 mg, 64 µmol), SPhos (60.8 mg, 0.15 mmol), 3-cyanobenzeneboronic acid (147 mg, 1.3 mmol) and K₃PO₄ (270 mg, 1.3 mmol). Degassed toluene (4.5 mL) was added and the mixture was stirred at 100°C for 16 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (EtOAc / petroleum ether 1:40) gave **30q** (15.6 mg, 8%) as a yellow solid, with properties as below.

3-(3-Cyanophenyl)-1-methoxy-5-nitroisoquinoline (30q). Method B. To **37** (200 mg, 710 µmol) were added Pd₂dba₃ (65 mg, 70 µmol), SPhos (66 mg, 140 µmol), 3-cyanobenzeneboronic acid (148 mg, 1.1 mmol) and K₃PO₄ (448 mg, 2.1 mmol). Dry DMF (6.0 mL) was added and the mixture was stirred at 135°C for 16 h. The solvent was evaporated. The residue, in CHCl₃, was filtered through Celite[®]. Chromatography (EtOAc / petroleum ether 1:99 \rightarrow 1:10) gave **30q** (20 mg, 9%): mp 195-196°C; ¹H NMR (CDCl₃) δ 4.29 (3 H, s, Me), 7.62 (1 H, t, *J* = 8.0 Hz, Ph 5-H), 7.64 (1 H, t, *J* = 8.0 Hz, 7-H), 7.72 (1 H, dt, *J* = 7.8, 1.3 Hz, Ph 6-H), 8.38 (1 H, dt, *J* = 8.2, 1.2 Hz, Ph 4-H), 8.52 (1 H, dd, *J* = 7.8, 1.3 Hz, 6-H), 8.55 (1 H, s, 4-H), 8.56 (1 H, s, Ph 2-H), 8.65 (1 H, dt, *J* = 8.2, 1.1 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.44 (Me), 105.90 (4-C), 113.31 (Ph 1-C), 121.03 (4a-C), 125.39 (7-C), 128.88 (6-C), 129.55 (Ph 2,5-C₂), 130.98 (Ph 6-C), 131.30 (8-C), 132.45 (Ph 4-C), 140.32 (CN), 145.67 (5-C), 160.92 (1-C).

3-(4-Cyanophenyl)-1-methoxy-5-nitroisoquinoline (30r). To **28** (151 mg, 630 µmol) were added Pd₂dba₃ (58 mg, 63 µmol), SPhos (58 mg, 140 µmol), 4-cyanobenzeneboronic acid (150 mg, 1.3 mmol) and K₃PO₄ (279 mg, 1.3 mmol). Degassed PhMe (4.5 mL) was added and the mixture was stirred at 100°C for 16 h. The evaporation residue, in CHCl₃, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave **30r** (53 mg, 28%) as a yellow solid: mp 206-210°C; ¹H NMR (CDCl₃) δ 4.30 (3 H, s, Me), 7.66 (1 H, t, *J* = 8.0 Hz, 7-H), 7.81 (2 H, d, *J* = 8.6 Hz, Ph 2,6-H₂), 8.32 (2 H, d, *J* = 8.6 Hz, Ph 3,5-H₂), 8.53 (1 H, dd, *J* = 7.8, 1.2 Hz, 6-H), 8.59 (1 H, s, 4-H), 8.66 (1 H, d, *J* = 8.2 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.36 (Me), 106.64 (4-C), 112.68 (CN), 118.79 (Ph 4-C), 120.80 (8a-C), 125.56 (7-C), 127.58 (Ph 2,6-H₂), 128.85 (6-C), 129.67 (4a-C), 131.26 (8-C), 132.53 (Ph 3,5-H₂), 142.86 (3-C), 145.16 (5-C), 149.59 (Ph 1-C), 160.84 (1-C).

5-Amino-1-methoxy-3-(3-methoxyphenyl)isoquinoline (31e). Compound **30e** (40 mg, 140 μ mol) was stirred vigorously with Pd/C (10%, 44 mg) in EtOH (9 mL) under H₂ for 5 h. Filtration (Celite[®]) and evaporation yielded **31e** (31 mg, 81%) as a pale yellow solid: mp 146-149°C; ¹H NMR (CDCl₃) δ 3.91 (3 H, s, Ph OMe), 4.21 (3 H, s, 1-OMe), 6.93 (2 H, m, Ph 6-H + 6-H), 7.31 (1 H, t, *J* = 7.8 Hz, 7-H), 7.39 (1 H, t, *J* = 8.0 Hz, Ph 5-H), 7.60 (1 H, s, 4-H), 7.71 (3 H, m, Ph 2,4-H₂ + 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.60 (1-OMe), 55.31

(Ph-OMe), 104.17 (4-C), 112.39 (Ph 2-C), 113.47 (Ph 6-C), 114.05 (6-C), 114.47 (8-C), 118.94 (Ph 4-C), 119.57 (8a-C), 126.75 (7-C), 128.36 (4a-C), 129.54 (Ph 5-C), 141.22 (Ph 1-C), 141.58 (5-C), 146.53 (3-C), 159.92 (Ph 3-C), 160.68 (1-C); MS m/z 303.1110 (M + Na)⁺ (C₁₇H₁₆N₂NaO₂ requires 303.1110), 281.1278 (M + H)⁺ (C₁₇H₁₇N₂O₂ requires 281.1290).

5-Amino-1-methoxy-3-(2-trifluoromethylphenyl)isoquinoline (31g). Compound **30g** (48 mg, 140 µmol) was stirred vigorously with Pt/C (1%, 53 mg) in EtOH (6.0 mL) under H₂ for 4 h. Filtration (Celite[®]) and evaporation gave **31g** (29 mg, 66%) as a yellow solid: mp 172-174°C; ¹H NMR (CDCl₃) δ 4.13 (OMe), 6.96 (1 H, dd, J = 7.5, 0.5 Hz, 6-H), 7.28 (1 H, s, 4-H), 7.37 (1 H, t, J = 7.5 Hz, 7-H), 7.51 (1 H, t, J = 7.5 Hz, Ph 5-H), 7.63 (2 H, m, Ph 4,6-H₂), 7.73 (1 H, d, J = 8.5 Hz, 8-H), 7.81 (1 H, d, J = 8.0 Hz, Ph 3-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.85 (Me), 108.10 (4-C), 114.03 (6-C), 114.32 (8-C), 119.34 (8a-C), 124.28 (q, J = 272 Hz, CF₃), 126.69 (q, J = 5.1 Hz, Ph 3-C), 127.17 (7-C), 127.57 (4a-C), 127.81 (Ph 5-C), 128.54 (q, J = 30.1 Hz, Ph 2-C), 131.41 (Ph 6-C), 131.90 (Ph 4-C), 140.55 (Ph 1-C), 141.56 (5-C), 147.56 (3-C), 160.35 (1-C); MS *m*/z 341.0872 (M + Na)⁺ (C₁₇H₁₃F₃N₂NaO requires 341.0880).

5-Amino-1-methoxy-3-(3-trifluoromethylphenyl)isoquinoline (31h). Compound **30h** (152 mg, 440 μmol) was stirred vigorously with Pd/C (10%, 165 mg) in EtOH (8.0 mL) under H₂ for 5.5 h. Filtration (Celite[®]) and evaporation gave **31h** (120 mg, 87%) as a pale buff solid: mp 89-91°C; ¹H NMR (CDCl₃) δ 4.22 (3 H, s, Me), 6.94 (1 H, d, J = 7.4 Hz, 6-H), 7.33 (1 H, t, J = 7.8 Hz, 7-H), 7.55 (1 H, t, J = 7.7 Hz, Ph 5-H), 7.62 (2 H, m, 4-H + Ph 4-H), 7.70 (1 H, d, J = 8.2 Hz, 8-H), 8.32 (1 H, d, J = 7.6 Hz, Ph 6-H), 8.40 (1 H, s, Ph 2-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.70 (Me), 104.50 (4-C), 114.37 (6-C), 114.57 (8-C), 119.87 (4a-C), 123.23 (q, J = 3.9 Hz, Ph 2-C), 124.39 (q, J = 270.8 Hz, CF₃), 124.63 (q, J = 3.9 Hz, Ph 4-C), 127.24 (7-C), 128.22 (8a-C), 129.00 (Ph 5-C), 129.66 (Ph 6-C), 130.95 (q, J = 31.8 Hz, Ph 3-C), 140.44 (Ph 1-C), 141.75 (5-C), 145.16 (3-C), 160.97 (1-C); ¹⁹F NMR (CDCl₃) δ -62.50 (s, CF₃); MS *m/z* 319.1048 (M + H)⁺ (C₁₇H₁₄F₃N₂O requires 319.1060).

5-Amino-1-methoxy-3-(4-trifluoromethylphenyl)isoquinoline (31i). Compound **30i** (151 mg, 430 μmol) was stirred vigorously with Pd/C (10%, 165 mg) in EtOH (8.0 mL) under H₂ for 5.5 h. Filtration (Celite[®]) and evaporation gave **31i** (120 mg, 87%) as a buff solid: mp 141-142°C; ¹H NMR (CDCl₃) δ 4.21 (3 H, s, Me), 6.95 (1 H, dd, J = 7.5, 0.8 Hz, 6-H), 7.34 (1 H, t, J = 7.7 Hz, 7-H), 7.65 (1 H, s, 4-H), 7.71 (3 H, m, 8-H + Ph 3,5-H₂), 8.25 (2 H, d, J = 8.2 Hz, Ph 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.70 (Me), 104.97 (4-C), 114.40 (6-C), 114.58 (8-C), 119.96 (4a-C), 123.26 (q, J = 269.9 Hz, CF₃), 125.48 (q, J = 3.9 Hz, Ph 3,5-C2), 126.68 (Ph 2,6-C₂), 127.37 (7-C), 128.16 (8a-C), 129.86 (q, J = 31.9 Hz, Ph 4-C), 141.78 (5-C), 143.06 (Ph 1-C), 145.21 (3-C), 160.97 (1-C); ¹⁹F NMR (CDCl₃) δ -62.40 (s, CF₃); MS *m*/z 317.0907 (M - H)⁻ (C₁₇H₁₂F₃N₂O requires 317.0900).

5-Amino-3-(4-fluorophenyl)-1-methoxyisoquinoline (31j). Compound **30j** (108 mg, 360 µmol) was stirred vigorously with Pd/C (10%, 118 mg) in EtOH (8.0 mL) under H₂ for 6 h. Filtration (Celite[®]) and evaporation gave **31j** (90 mg, 69%) as an off-white solid: mp 154-155°C; ¹H NMR (CDCl₃) δ 4.21 (3 H, s, Me), 6.94 (1 H, dd, J = 7.5, 1.0 Hz, 6-H), 7.15 (2 H, m, Ph 3,5-H₂), 7.31 (1 H, t, J = 7.5 Hz, 7-H), 7.54 (1 H, s, 4-H), 7.69 (1 H, dt, J = 8.2, 1.0 Hz, 8-H), 8.13 (2 H, m, Ph 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.62 (Me), 103.64 (4-C), 114.31 (6-C), 114.67 (8-C), 115.42 (d, J = 21.5 Hz, Ph 3,5-C₂), 119.40 (4a-C), 126.72 (7-C), 128.62 (d, J = 10.4 Hz, Ph 2,6-C₂), 128.53 (8a-C), 135.85 (d, J = 3.3 Hz, Ph 1-C), 141.37 (5-C), 145.98 (3-C), 160.82 (1-C), 163.04 (d, J = 246.0 Hz, Ph 4-C); MS *m*/z 269.1074 (M +

H)⁺ (C₁₆H₁₄FN₂O requires 269.1092); ¹⁹F NMR (CDCl₃) δ -114.31 (m, F); MS m/z 267.0925 (M - H)⁻ (C₁₆H₁₂FN₂O requires 267.0932).

5-Amino-3-(2-chlorophenyl)-1-methoxyisoquinoline (**31k**). Compound **30k** (75 mg, 240 μ mol) was stirred vigorously with Pt/C (1%, 84 mg) in EtOH (6.0 mL) under H₂ for 5 h. Filtration (Celite[®]) and evaporation gave **31k** (70 mg, 100%) as a yellow solid: mp 102-103 °C; ¹H NMR (CDCl₃) δ 4.18 (Me), 6.93 (1 H, dd, J = 7.5 Hz, 6-H), 7.35 (3 H, m, 7-H + Ph 4,5-H₂), 7.51 (1 H, dd, J = 8.0, 1.0 Hz, Ph 3-H), 7.56 (1 H, s, 4-H), 7.73 (1 H, d, J = 8.0 Hz, 8-H), 7.76 (1 H, dd, J = 7.5, 1.5 Hz, Ph 6-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.78 (Me), 109.13 (4-C), 113.89 (6-C), 114.14 (8-C), 119.29 (4a-C), 126.75 (Ph 4-C), 127.17 (7-C), 127.59 (8a-C), 128.83 (Ph 5-C), 130.27 (Ph 3-C), 131.75 (Ph 6-C), 132.32 (Ph 1-C), 139.34 (Ph 2-C), 141.65 (5-C), 145.86 (3-C), 160.57 (1-C); MS *m/z* 285.0803 (M + H)⁺ (C₁₆H₁₄³⁵ClN₂O requires 285.0796).

5-Amino-3-(3-chlorophenyl)-1-methoxyisoquinoline (311). Compound **301** (75 mg, 240 μ mol) was stirred vigorously with Pt/C (1%, 84 mg) in EtOH (6.0 mL) under H₂ for 5 h. Filtration (Celite[®]) and evaporation gave **311** (62 mg, 91%) as a yellow solid: mp 94-95°C; ¹H NMR (CDCl₃) 4.20 (Me), 6.93 (1 H, dd, *J* = 7.5, 0.5 Hz, 6-H), 7.33 (3 H, m, 7-H + Ph 5, 6-H₂), 7.57 (1 H, s, 4-H), 7.69 (1 H, d, *J* = 8.5 Hz, 8-H), 8.01 (1 H, d, *J* = 7.5 Hz, Ph 3-H), 8.14 (1 H, s, Ph 2-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) 53.69 (Me), 104.39 (4-C), 114.31 (6-C), 114.53 (8-C), 119.72 (4a-C), 124.47 (Ph 4-C), 126.57 (Ph 2-C), 127.07 (7-C), 128.19 (8a-C), 128.01 (Ph 5-C), 129.74 (Ph 6-C), 134.56 (Ph 3-C), 141.47 (5-C), 141.57 (Ph 1-C), 145.18 (3-C), 160.78 (1-C); MS *m*/z 285.0793 (M + H)⁺ (C₁₆H₁₄³⁵ClN₂O requires 285.0796).

5-Amino-3-(2,6-dichlorophenyl)-1-methoxyisoquinoline (31n). Compound **30n** (30 mg, 90 μ mol) was stirred vigorously with Pd/C (10%, 33 mg) in EtOH (5.0 mL) under H₂ for 5 h. Filtration (Celite[®]) and evaporation gave **31n** (27 mg, 94%) as a pale orange solid: mp 103-104°C; ¹H NMR (CDCl₃) δ 4.12 (3 H, s, Me), 6.95 (1 H, dd, *J* = 7.5, 1.0 Hz, 6-H), 7.19 (1 H, d, *J* = 0.9 Hz, 4-H), 7.25 (1 H, t, *J* = 8.6 Hz, Ph 4-H), 7.36 (1 H, t, *J* = 7.6 Hz, 7-H), 7.42 (2 H, d, *J* = 8.3 Hz, Ph 3,5- H₂), 7.74 (1 H, dt, *J* = 8.2, 1.0 Hz, 8-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 54.02 (Me), 109.70 (4-C), 114.00 (6-C), 114.37 (8-C), 127.36 (7-C), 128.15 (Ph 3,5-C₂), 129.30 (Ph 4-C), 119.69 (4a-C), 127.62 (8a-C), 135.25 (Ph 2,6-C₂), 138.92 (Ph 1-C), 141.65 (5-C), 144.58 (3-C), 160.94 (1-C); MS *m*/z 321.0356 (M + H)⁺ (C₁₆H₁₃³⁵Cl³⁷ClN₂O requires 321.0375), 319.0387 (M + H)⁺ (C₁₆H₁₃³⁵Cl₂N₂O requires 319.0405).

5-Amino-3-(4-hydroxyphenyl)-1-methoxyisoquinoline (31p). Compound **30p** (65 mg, 220 µmol) was stirred vigorously with Pd/C (10%, 71.5 mg) in EtOH (5.0 mL) under H₂ for 6 h. Filtration (Celite[®]) and evaporation gave **31p** (63 mg, 98%) as a yellow solid: mp >230°C; ¹H NMR (CD₃OD) δ 4.17 (3 H, s, Me), 6.87 (2 H, d, *J* = 7.0 Hz, Ph 3,5-H₂), 6.94 (1 H, d, *J* = 7.0 Hz, 6-H), 7.22 (1 H, t, *J* = 8.0 Hz, 7-H), 7.53 (1 H, d, *J* = 8.5 Hz, 8-H), 7.81 (1 H, s, 4-H), 8.07 (2 H, d, *J* = 7.0 Hz, Ph 2,6-H₂); ¹³C NMR (CD₃OD) (HSQC / HMBC) δ 53.84 (Me), 104.35 (4-C), 114.14 (8-C), 114.63 (6-C), 116.24 (Ph 3,5-C₂), 120.52 (4a-C), 127.40 (7-C), 128.85 (Ph 2,6-C₂), 130.19 (8a-C), 132.74 (Ph 1-C), 144.38 (5-C), 147.73 (3-C), 158.86 (Ph 4-C), 161.74 (1-C); MS *m*/z 267.1123 (M + H)⁺ (C₁₆H₁₅N₂O₂ requires 267.1135).

5-Amino-3-(3-cyanophenyl)-1-methoxyisoquinoline (31q). Compound **30q** (34 mg, 110 µmol) was stirred vigorously with Pd/C (10%, 38 mg) in EtOH (5.0 mL) under H₂ for 6.5 h. Filtration (Celite[®]), evaporation and chromatography (ethyl acetate / petroleum ether 1:39 \rightarrow 1:4) gave **31q** (11.2 mg, 37%) as a golden buff solid: mp 183-184°C; ¹H NMR (CDCl₃) δ 4.22 (3 H, s, Me), 6.96 (1 H, dd, *J* = 7.5, 1.0 Hz, 6-H), 7.35 (1 H, t, *J* = 7.6 Hz, 7-H), 7.56 (1

H, t, J = 7.4 Hz, Ph 5-H), 7.62 (1 H, s, 4-H), 7.63 (1 H, dt, J = 7.9, 1.5 Hz, Ph 6-H), 7.70 (1 H, dt, J = 8.2, 0.9 Hz, 8-H), 8.36 (1 H, dt, J = 7.9, 1.3 Hz, Ph 4-H), 8.46 (1 H, t, J = 1.3 Hz, Ph 2-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.80 (Me), 104.72 (4-C), 112.74 (Ph 3-C), 114.52 (6-C), 114.58 (8-C), 119.14 (CN), 120.03 (8a-C), 127.53 (7-C), 128.08 (4a-C), 129.31 (Ph 5-C), 130.26 (Ph 2-C), 130.49 (Ph 4-C), 131.27 (Ph 6-C), 140.84 (Ph 1-C), 141.81 (5-C), 144.22 (3-C), 161.09 (1-C); MS *m*/z 276.1128 (M + H)⁺ (C₁₇H₁₄N₃O requires 276.1137).

5-Amino-3-(4-cyanophenyl)-1-methoxyisoquinoline (**31r**). Compound **30r** (37 mg, 120 µmol) was stirred vigorously with Pd/C (10%, 41 mg) in EtOH (5.5 mL) under H₂ for 6.5 h. Filtration (Celite[®]), evaporation and chromatography (EtOAc / petroleum ether 1:39 \rightarrow 1:4) gave **31r** (17.3 mg, 52%) as an amber-coloured solid: mp 203-204°C; ¹H NMR (CDCl₃) δ 4.21 (3 H, s, Me), 6.96 (1 H, dd, *J* = 7.6, 1.0 Hz, 6-H), 7.36 (1 H, t, *J* = 7.6 Hz, 7-H), 7.67 (1 H, s, 4-H), 7.70 (1 H, dt, *J* = 7.3, 0.9 Hz, 8-H), 7.74 (2 H, d, *J* = 8.7 Hz, Ph 3,5-H₂), 8.25 (2 H, d, *J* = 8.7 Hz, Ph 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 53.76 (Me), 105.55 (4-C), 111.27 (Ph 4-C), 114.58 (6-C), 114.61 (8-C), 119.17 (CN), 120.18 (4a-C), 126.89 (Ph 2,6-C₂), 127.77 (7-C), 127.98 (8a-C), 132.39 (Ph 3,5-C₂), 141.93 (5-C). 143.93 (Ph 1-C), 144.45 (3-C), 161.04 (1-C); MS *m*/z 276.1124 (M + H)⁺ (C₁₇H₁₄N₃O requires 276.1137).

Isoquinoline-1,3-dione (33). 2-Carboxyphenylacetic acid **32** (20.0 g, 111 mmol) was heated with finely ground urea (7.33 g, 122 mmol) at 175-185°C for 2 h. Cooling and recrystallisation (MeOH) gave **33** (12.0 g, 67%%) as an off-white solid: mp 220-222°C (lit.³ mp 236-238°C); ¹H NMR ((CD₃)₂SO) δ 4.09 (3 H, s, CH₂), 7.44 (1 H, d, *J* = 7.6 Hz, 5-H), 7.51 (1 H, t, *J* = 7.6 Hz, 7-H), 7.70 (1 H, td, *J* = 7.6, 1.2 Hz, 6-H), 8.07 (1 H, dd, *J* = 7.8, 1.1 Hz, 8-H), 11.36 (1 H, s, N-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 35.92 (4-C), 124.95 (8a-C), 127.16 (7-C), 127.41 (8-C), 127.87 (5-C), 133.47 (6-C), 136.66 (4a-C), 165.34 (1-C), 170.99 (3-C).

1,3-Dibromoisoquinoline (34). Method A. PBr₃ (10 mL) was added slowly to **33** (1.41 g, 8.7 mmol) and the mixture was heated at reflux for 16 h. The evaporation residue was quenched (sat. aq. NaHCO₃) and extracted thrice with CHCl₃. Chromatography (EtOAc / petroleum ether 3:17), followed by chromatography (EtOAc / petroleum ether 1:49) gave **34** (358 mg, 14%) as white crystals: mp 148-150°C (lit.⁴ mp 147-147.5°C); ¹H NMR ((CD₃)₂SO) δ 7.93 (1 H, td, *J* = 6.9, 1.3 Hz, 6-H), 8.00 (1 H, td, *J* = 6.9, 1.2 Hz, 7-H), 8.10 (1 H, dt, *J* = 8.1, 0.6 Hz, 5-H), 8.27 (1 H, d, *J* = 8.4 Hz, 8-H), 8.38 (1 H, s, 4-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 124.66 (4-C), 126.85 (5-C), 127.13 (8a-C), 127.68 (4a-C), 127.89 (8-C), 130.69 (6-C), 132.69 (7-C), 138.74 (3-C), 143.18 (1-C). Further elution gave **35** (66 mg, 4%) as white crystals: mp 61-63°C (lit.⁴ mp 63-64°C; ¹H NMR ((CD₃)₂SO) (NOE) δ 7.80 (1 H, td, *J* = 8.0, 1.2 Hz, 6-H), 7.90 (1 H, dt, *J* = 8.3, 1.2 Hz, 7-H), 8.03 (1 H, d, *J* = 8.3 Hz, 5-H), 8.23 (1 H, d, *J* = 8.3 Hz, 8-H), 8.27 (1 H, s, 4-H), 9.24 (1 H, s, 1-H); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 123.53 (4-C), 125.76 (5-C), 127.25 (4a-C), 127.80 (8-C), 128.13 (6-C), 131.68 (7-C), 135.19 (3-C), 137.46 (8a-C), 153.19 (1-C).

1,3-Dibromoisoquinoline (34). Method B. Isoquinoline-1,3-dione **33** (3.00 g, 18.6 mmol) was heated under reflux with $POBr_3$ (10.7 g, 37 mmol) in 1,4-dioxane (20 mL) for 22 h. The mixture was quenched with MeOH, then water. The mixture, in water, was extracted thrice with CH_2Cl_2 . Drying, evaporation and recrystallisation (PhMe) gave **34** (1.87 g, 35%) as an off-white solid, with properties as above.

4-Phenylethynylbenzonitrile (43). (Ph₃P)₂PdCl₂ (96.5 mg, 140 µmol), CuI (52 mg, 300 µmol), sodium ascorbate (33 mg, 160 µmol) and 4-bromobenzonitrile **42** (500 mg, 2.75 mmol) were mixed in a dry flask. Degassed THF (10 mL) and dry $Pr_{2}^{i}NH$ (5.0 mL) were added and the mixture was stirred at 50 °C for 30 min. Phenylethyne (281 mg, 2.75 mmol) was added and the mixture was stirred for 16 h at 50 °C. The mixture was filtered through Celite[®]. Evaporation and chromatography (ethyl acetate / petroleum ether 1:199 \rightarrow 1:99) gave **43** (394 mg, 70%) as an off-white solid: mp 78-79°C (lit.⁵ mp 91-92°C); ¹H NMR (CDCl₃) δ 7.38 (3 H, m, Ph 3,4,5-H₃), 7.55 (2 H, m, Ph 2,6-H₂), 7.60 (4 H, m, NCPh 2,3,5,6-H₄); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 87.66 (ethyne 1-C), 93.69 ((ethyne 2-C), 111.34 (CN), 118.42 (NCPh 1-C), 122.11 (Ph 1-C), 128.11 (NCPh 4-C), 128.42 (Ph 3,5-C₂), 129.04 (Ph 4-C), 131.69 (Ph 2,6-C₂), 131.93 (NCPh 2,6-C₂), 131.95 (NCPh 3,5-C₂).

4-Dimethylaminomethylbenzonitrile (**45a**). 4-Bromomethylbenzonitrile (1.00 g, 5.1 mmol) was stirred with aq. Me₂NH (40%, 4.0 mL) for 16 h. The mixture was diluted with water and extracted with CH₂Cl₂. The extract was washed with aqueous citric acid (10%). The combined aqueous solutions were basified by addition of aq. NaOH (15%) and extracted with CH₂Cl₂. The combined solutions in CH₂Cl₂ were dried and the solvent was evaporated to give **45a** (420 mg, 51%) as a colourless oil (lit.⁶ oil): ¹H NMR (CDCl₃) δ 2.24 (6 H, s, NMe₂), 3.47 (2 H, s, CH₂), 7.43 (2 H, d, J = 8.2 Hz, 3,5-H₂), 7.61 (2 H, d, J = 8.2 Hz, 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 45.42 (NMe₂), 63.83 (CH₂), 110.92 (1-C), 118.95 (CN), 129.51 (3,5-C₂), 132.13 (2,6-C₂), 144.62 (4-C).

4-(Piperidin-1-ylmethyl)benzonitrile (**45b**). 4-Bromomethylbenzonitrile (500 mg, 2.6 mmol) was stirred with K₂CO₃ (388 mg, 2.8 mmol) and piperidine (238 mg, 2.8 mmol) in dry DMF (6.0 mL) at 20°C for 3 h, then at 90°C for 3 d. The mixture was then cooled to 20°C. Water (18 mL) was added and the mixture was stirred for 30 min. This mixture was diluted with EtOAc. The suspension was washed thrice with brine and dried. Evaporation of the solvent gave **45b** (340 mg, 67%) as a pale orange oil (lit.⁷ oil): ¹H NMR (CDCl₃) δ 1.44 (2 H, m, piperidine 4-H₂), 1.57 (4 H, m, piperidine 3,5-H₄), 2.36 (4 H, m, piperidine 2,6-H₄), 3.50 (2 H, s, PhCH₂), 7.44 (2 H, d, *J* = 8.0 Hz, Ph 3,5-H₂), 7.59 (2 H, d, *J* = 8.3 Hz, Ph 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 24.20 (piperidine 4-C), 25.94 (piperidine 3,5-C₂), 54.60 (piperidine 2,6-C₂), 63.25 (PhCH₂), 110.58 (Ph 1-C), 119.07 (CN), 129.46 (Ph 3,5-C₂), 131.99 (Ph 2,6-C₂), 144.84 (Ph 4-C).

4-(Pyrrolidin-1-ylmethyl)benzonitrile (**45c**). 4-Bromomethylbenzonitrile (1.00 g, 5.1 mmol) in dry THF (15 mL) was stirred with Et₃N (1.08 g, 10.7 mmol) and pyrrolidine (760 mg, 10.7 mmol) for 2 d. This mixture was diluted with EtOAc, washed thrice with water and dried. Evaporation of the solvent gave **45c** (935 mg, 98%) as a pale orange oil (lit.⁸ oil): ¹H NMR (CDCl₃) δ 1.79 (4 H, m, pyrrolidine 2,3-H₄), 2.50 (4 H, m, pyrrolidine 1,4-H₄), 3.65 (2 H, s, PhCH₂), 7.44 (2 H, d, *J* = 8.5 Hz, Ph 3,5-H₂), 7.59 (2 H, d, *J* = 8.4 Hz, Ph 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 23.53 (pyrrolidine 2,3-C₂), 54.24 (pyrrolidine 1,4-C₂), 60.23 (PhCH₂), 110.67 (Ph 1-C), 119.05 (CN), 129.29 (Ph 3,5-C₂), 132.10 (Ph 2,6-C₂), 145.29 (Ph 4-C).

4-((4-Methylpiperazin-1-yl)methyl)benzonitrile (45d). 4-Bromomethylbenzonitrile (1.0 g, 5.1 mmol) was stirred for 24 h with Et₃N (1.03 g, 10.2 mmol) and 1-methylpiperazine (760 mg, 7.6 mmol) in dry CH₂Cl₂ (10 mL). This mixture was diluted with CH₂Cl₂ and washed thrice with sat. aq. NaHCO₃ and H₂O. Drying and evaporation gave **45d** (650 mg, 59%) as a white solid: mp 65-67°C (lit.⁹ mp 62-64°C): ¹H NMR (CDCl₃) δ 2.29 (3 H, s, Me), 2.47 (8 H, m, piperazine 2,3,5,6-H₈), 3.54 (2 H, s, PhCH₂), 7.43 (2 H, d, *J* = 8.2 Hz, Ph 3,5-H₂), 7.58 (2

H, d, J = 8.2 Hz, Ph 2,6-H₂); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 45.98 (Me), 53.08 (piperazine 2,6-C₂), 55.05 (piperazine 3,5-C₂), 62.38 (PhCH₂), 110.85 (Ph 1-C), 118.97 (CN), 129.49 (Ph 3,5-C₂), 132.10 (Ph 2,6-C₂), 144.23 (Ph 4-C).

Ferrocenenitrile (47). Ferrocenecarboxylic acid **46** (500 mg, 2.2 mmol) was stirred with oxalyl chloride (634 mg, 5.0 mmol) for 1 h. The evaporation residue, in dry THF (5.0 mL), was added dropwise to saturated NH₃ in Et₂O (25 mL). After 15 min, H₂O (20 mL) was added and organic layer was washed thrice (H₂O). Drying and evaporation gave ferrocene-carboxamide (370 mg, 74%) as a pale orange solid: mp 168-169°C (lit.¹⁰ mp 168-171°C); ¹H NMR ((CD₃)₂SO) δ 4.15 (5 H, s, Fc'-H₅), 4.32 (2 H, br, Fc 3,4-H₂), 4.74 (2 H, br, Fc 2,5-H₂), 6.91 (1 H, br, NH), 7.28 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) (HSQC / HMBC) δ 68.49 (Fc 2,5-C₂), 69.31 (Fc'-C₅), 69.91 (Fc 3,4-C₂), 76.42 (Fc 1-C), 171.01 (C=O). This material (352 mg, 1.5 mmol) was stirred with POCl₃ (3.5 mL) at 120°C for 2 h, followed by cooling to 0°C and quench with H₂O (1.0 mL). The mixture was diluted with EtOAc and washed thrice with H₂O. Drying and evaporation gave **47** (360 mg, 99%) as a dark orange solid: mp 105-107°C (lit.¹¹ mp 106-106.5°C); ¹H NMR ((CD₃)₂SO) (HSQC / HMBC) δ 51.05 (Fc 1-C), 70.32 (Fc'-C₅), 71.00 (Fc 3,4-C₂), 71.61 (Fc 2,5-C₂), 120.21 (CN).

3-Fluoro-2,N,N-trimethylbenzamide (49). SOCl₂ (3.0 g, 25 mmol) was added to **48** (1.00 g, 6.5 mmol) at 0°C. The mixture was heated at reflux for 16 h, then the excess SOCl₂ was evaporated. The residue, in CH₂Cl₂ (1.0 mL), was added dropwise to a stirred solution of Me₂NH in water (40 %, 3.7 mL) at 10°C. The mixture was then stirred at 20°C for 2.5 h. The mixture was diluted with CH₂Cl₂, then washed thrice with water and dried. Evaporation gave **49** (1.00 g, 85%) as a pale orange oil: ¹H NMR (CDCl₃) δ 2.19 (3 H, d, *J* = 2.0 Hz, 2-Me), 2.82 (3 H, s, N-Me), 3.13 (3 H, s, N-Me), 6.96 (1 H, d, *J* = 7.6 Hz, 6-H), 7.01 (1 H, ddd, *J* = 7.4, 6.1, 0.8 Hz, 4-H), 7.18 (1 H, m, 5-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 11.20 (d, *J* = 4.5 Hz, 2-Me), 34.54 (N-Me), 38.28 (N-Me), 115.31 (d, *J* = 22.5 Hz, 4-C), 121.39 (d, *J* = 3.6 Hz, 6-C), 121.59 (d, *J* = 18.3 Hz, 2-C), 127.45 (d, *J* = 8.6 Hz, 5-C), 138.90 (d, *J* = 3.9 Hz, 1-C), 161.25 (d, *J* = 244.5 Hz, 3-C), 169.98 (d, *J* = 3.3 Hz, C=O); ¹⁹F NMR (CDCl₃) δ -115.66 (d, *J* = 6.1 Hz, 3-F); MS *m*/*z* (M + H)⁺ 182.0973 (C₁₀H₁₃FNO requires 182.0976).

3-Methoxy-2,N,N-trimethylbenzamide (**51**). SOCl₂ (2.74 g, 23 mmol) was added to **50** (1.00 g, 6.0 mmol) at 0°C. The mixture was heated at reflux for 16 h, then the excess SOCl₂ was evaporated. The residue, in CH₂Cl₂ (3.0 mL), was added dropwise to a stirred solution of Me₂NH in water (40 %, 3.7 mL) at 10°C. The mixture was then stirred at 20°C for 3.5 h. The mixture was diluted with CH₂Cl₂, then washed thrice with water and dried. The solvent was evaporated to give **51** (980 mg, 85%) as a pale yellow oil: ¹H NMR (CDCl₃) δ 2.12 (3 H, s, 2-Me), 2.81 (3 H, s, N-Me), 3.12 (3 H, s, N-Me), 3.82 (3 H, s, OMe), 6.76 (1 H, dd, *J* = 7.6, 0.8 Hz, 4-H), 6.81 (1 H, d, *J* = 8.2 Hz, 6-H), 7.18 (1 H, t, *J* = 7.6 Hz, 5-H); ¹³C NMR (CDCl₃) (HSQC / HMBC) δ 12.42 (Me), 34.44 (N-Me), 38.24 (N-Me), 55.44 (OMe), 110.10 (6-C), 117.73 (4-C), 122.69 (2-C), 126.97 (5-C), 137.99 (1-C), 157.76 (3-C), 171.23 (C=O); MS *m*/*z* 216.0988 (M + Na)⁺ (C₁₁H₁₅NNaO₂ requires 216.0995).

Section C: Examples of graphs of enzyme activity *vs*. concentration for inhibition of tankyrase-2 by isoquinolin-1-ones. X-Axes – concentration of inhibitor (nM); Y-axes – optical density (490 nm).

Section D: Examples of graphs of enzyme activity vs. concentration for inhibition of tankyrase-1 by isoquinolin-1-ones. X-Axes – concentration of inhibitor (nM); Y-axes – optical density (490 nm).

Section E: Graphs of enzyme activity vs. concentration for inhibition of human PARP-2 by isoquinolin-1-ones. X-Axes – concentration of inhibitor (nM); Y-axes – % Inhibition.

Developmental Ther	apeutics Program	NSC: D-776981 / 1 Conc: 1.00E-5 Molar Test Date: Sep 03, 2013							
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: Mar 09, 2014							
Panel/Cell Line	Growth Percent	Mean Growt	h Percent - Growth Perc	cent					
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-92 NCI-H226 NCI-H226 NCI-H226 NCI-H322M NCI-H322M NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322ZM NCI-H322 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-	Growth Percent 11.74 -15.76 18.70 29.65 13.56 10.58 30.68 26.14 17.79 41.37 44.64 36.56 15.37 12.26 2.19 42.78 24.97 29.33 2.46 28.81 23.07 43.62 10.74 -32.54 18.99 4.05 16.39 44.92 21.77 3.63 67.48 26.23 49.26 38.48 29.33 14.21 24.13 42.99 -11.43 55.68 19.56 35.12 58.35 14.73 16.95 20.51 24.96 47.77 23.96 29.98 </th <th>100 50</th> <th>h Percent - Growth Perc</th> <th>-100 -150</th>	100 50	h Percent - Growth Perc	-100 -150					
O H									
		Sin	gle concentration	10 μM					
⁺ NH ₃ Br ⁻		511							
12c									

Section F: Data from NCI 60-cell-line evaluations of selected isoquinolinones

Developmental Ther	apeutics Program	NSC: D-776983 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013				
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: Mar 09, 2014						
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent				
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-92 NCI-H226 NCI-H23 NCI-H23 NCI-H232M NCI-H226 NCI-H227 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-M	59.93 -7.60 9.76 18.16 36.07 29.40 26.50 20.23 50.99 54.18 39.54 16.79 56.60 20.17 50.88 17.62 30.23 15.26 28.69 15.89 57.93 45.78 42.04 30.64 14.27 38.31 33.91 16.18 22.20 -29.61 14.33 61.64 17.76 10.20 28.40 49.10 61.71 41.95 15.52 50.25 45.79 -4.86 54.07 55.25 45.78 68.27 8.37 50.68 66.41 18.22 34.29 <	100 50		-100 -150				
Щ. H								
		Sing	gle concentration	10 µM				
Me ^u Me								

13b

Developmental Ther	apeutics Program	NSC: D-776982/1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013
One Dose Mea	an Graph	Experiment ID: 1309	OS63	Report Date: Mar 09, 2014
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
CCRF-CEM HL-80(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 HOP-92 NCI-H23 NCI-H230 NCI-H230 NCI-H230 NCI-H226 NCI-H230 NCI-H226 NCI-H227 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-0V-3 Renal Cancer T86-0 A498 ACHN RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	94.16 119.72 112.32 103.64 99.44 101.76 82.43 67.40 68.40 71.70 85.76 84.34 103.32 90.82 100.92 99.60 90.84 86.78 98.86 96.37 104.26 96.02 99.45 92.43 83.92 77.28 54.91 92.86 95.13 91.86 94.87 101.59 96.15 92.75 98.41 84.48 45.70 65.78 60.91 87.84 90.13 83.84 92.54 95.67 73.11 92.16 81.39 79.22 124.75 22.35 90.17 98.77 63.22 76.66 122.41 87.33 88.08 65.73 102.40	100 50		
		Alexand St. Sterrer		
Me 13e		Sing	le concentration	10 µM

Developmental Ther	apeutics Program	NSC: D-776986 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013			
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: Mar 09, 2					
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent			
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 HOP-92 NCI-H23 NCI-H23 NCI-H23 NCI-H23 NCI-H226 NCI-H226 NCI-H227 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62 Ovcar-8 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468 Mean Delta Range	Growth Percent 96.41 114.45 102.69 94.28 102.56 86.93 93.90 104.34 85.55 96.89 99.36 110.79 95.89 100.04 103.00 114.19 96.41 91.94 102.75 94.86 100.91 98.01 106.97 121.50 102.73 83.63 90.83 102.25 112.57 112.44 95.79 97.45 102.65 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.51 104.94 98.09 106.55 104.94 99.33 108.36 82.22 107.49 102.74 100.85 102.57 105.42 76.14 74.54 99.86 43.16 87.96	Mean Growth	Percent - Growth Per	cent			
	150	100 50	0 -50) -100 -150			
	en especifis	Verger en annuen	innen ÖÖlüğ	en en un en			
O N ^{-H}							

∣ Me Single concentration 10 μM

Developmental Ther	apeutics Program	NSC: D-776986 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013			
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: N					
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent			
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-92 NCI-H23 NCI-H23 NCI-H23 NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-285 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-2	96.41 114.45 102.69 94.28 102.56 86.93 93.90 104.34 85.55 96.89 99.93 100.04 103.00 114.19 95.89 100.04 103.00 114.19 96.41 91.94 102.75 94.86 100.91 98.01 106.97 121.50 102.75 112.57 112.44 95.79 114.59 102.65 104.94 98.09 106.11 81.45 100.494 98.09 106.11 81.45 100.494 98.87 97.11 99.33 108.36 82.22 107.49 102.74 100.83 144.66 98.67 99.64 102.35 56.70 88.58 102.57 105.42 76.14 74.54 99.86 43.16 87.96	100 50		-100 -150			
O H							
Me Cl		Sing	le concentration	10 μΜ			
13h							

Developmental Ther	apeutics Program	NSC: D-776987 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013			
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: 1					
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent			
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H32A SK-MEL-2 SK-	Growth Percent 97.16 110.10 103.57 93.09 93.85 97.62 80.47 99.32 81.54 100.48 103.90 120.90 102.81 107.58 110.10 112.40 96.39 97.42 111.97 112.13 114.61 103.83 105.81 115.41 100.18 61.59 93.97 102.34 103.70 101.70 97.49 90.05 118.34 103.39 107.54 103.39 107.54 103.39 107.54 103.39 107.54 103.56 115.86 95.26 107.32 93.57 112.31 <th>Mean Growth</th> <th>Percent - Growth Per</th> <th></th>	Mean Growth	Percent - Growth Per				
	150	100 30	0 -50	-100 -150			
O N ^{-H} Cl Me Cl 13i		Sing	le concentration	10 μM			

Developmental Ther	apeutics Program	NSC: D-776988 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013				
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: Mar 09, 2014						
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent				
$\begin{array}{c} {\rm CCRF-CEM} \\ {\rm HL-60(TB)} \\ {\rm K-562} \\ {\rm MOLT-4} \\ {\rm RPMI-8226} \\ {\rm SR} \\ {\rm Non-Small Cell Lung Cancer} \\ {\rm A549/ATCC} \\ {\rm HOP-62} \\ {\rm HOP-92} \\ {\rm NCI-H226} \\ {\rm NCI-H226} \\ {\rm NCI-H322M} \\ {\rm HCT-116} \\ {\rm HCT-15} \\ {\rm HT29} \\ {\rm KM12} \\ {\rm SW-620} \\ {\rm CNS Cancer} \\ {\rm SF-295} \\ {$	97.92 96.57 108.28 104.34 104.44 105.51 94.30 107.95 86.51 96.83 103.08 102.65 105.77 110.42 97.43 112.52 107.29 101.88 99.27 104.64 104.65 111.49 106.59 94.94 102.28 72.31 87.49 103.85 116.37 105.22 100.95 105.79 114.49 100.18 102.58 99.26 104.27 114.50 85.60 105.59 96.23 107.84 110.50 105.95 105.15 100.32 96.06 92.50 124.37 100.64 97.89 106.16 93.41 98.49 102.18 29.87 52.06							
	150	100 50	U -50	-100 -150				
O Me 13k	~	Sing	gle concentration	10 μM				

One Dose Mean Graph Experiment ID: 1309OS63 Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent Leukemia CCRF-CEM 88.63 HL-60(TB) 106.90 K-562 46.09 MOLT-4 94.96 RPMI-8226 93.77 SR 36.38 Non-Small Cell Lung Cancer 45.49 A549/ATCC 75.78 HOP-62 64.19 HOP-62 64.19 HOP-92 38.81 NCI-H226 72.04 NCI-H226 72.04 NCI-H226 72.04 NCI-H226 70.35 NCI-H322M 80.58 NCI-H322M 85.41 NCI-H322M 80.88 NCI-H322 81.06 Colo cancer 70.45 COLO 205 87.23 HC2-2998 84.89 HT29 79.13 KM12 67.03 SW-620 69.89 CNS Cancer Sr-285	Report Date: Mar 09, 2014
Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent Leukemia CCRF-CEM 88.63 CCRF-CEM 88.63 Image: Comparison of the compari	Percent
Leukemia CCRF-CEM 88.63 HL-60(TB) 106.90 K-562 46.09 MOLT-4 94.96 RPMI-8226 93.77 SR 36.38 Non-Smail Cell Lung Cancer A549/ATCC 75.78 HOP-62 64.19 HOP-92 38.81 NCI-H226 72.04 NCI-H226 72.04 NCI-H226 72.04 NCI-H322M 80.58 NCI-H322M 80.58 NCI-H322 81.06 Colon Cancer COLO 205 87.23 HCC-2998 84.89 HCT-116 70.45 HCT-115 78.49 HCT-115 78.49 HCT-115 78.49 HCT-298 84.89 HCT-116 70.45 HCT-2998 84.89 HCT-115 78.49 HCT-2998 84.89 HCT-115 78.49 HCT-2998 84.89 HCT-115 78.49 HCT-2998 84.89 HCT-115 78.49 HCT-2998 84.89 HCT-116 70.45 HCT-2998 84.89 HCT-116 70.45 HCT-2998 84.89 HCT-116 70.45 HCT-2998 84.89 HCT-116 70.45 HCT-2998 84.89 HCT-2998 84.89 HCT-116 70.45 HCT-2998 84.89 HCT-2998 84.90 HCT-2998 84.90 HCT-2988 84.90 HC	
U12:10 51.00 Melanoma 88.51 LOX IMVI 88.51 MALME-3M 79.80 M14 83.09 MDA-MB-435 14.55 SK-MEL-2 92.92 SK-MEL-28 89.53 SK-MEL-20 68.28 Ovarian Cancer 68.28 IGROV1 49.32 OVCAR-3 73.72 OVCAR-4 53.19 OVCAR-5 86.44 OVCAR-5 86.44 OVCAR-5 88.51 SK-0V-3 89.22 Renal Cancer 77.96 PC-3 77.96 DU-145 96.82 Breast Cancer 77.96 PC-3 77.96 DU-145 96.82 Breast Cancer 77.96 MCF7 59.88 MCF7 59.88 MCA-MB-231/ATCC 61.91 MDA-MB-468 69.08 MDA-MB-468 69.08 MDA-MB-468 69.08	
	-50 -100 -150
O N ^H	-ວບ -100 -150

✓ Me

F

Single concentration 10 μM

Developmental Ther	apeutics Program	NSC: D-776984 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 03, 2013				
One Dose Mea	an Graph	Experiment ID: 1309OS63 Report Date: Mar 09, 201						
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent				
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-92 NCI-H226 NCI-H226 NCI-H226 NCI-H226 NCI-H227 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 UZ51 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-22 SK-MEL-23 SK-MEL-23 SK-MEL-23 SK-MEL-23 SK-MEL-23 SK-MEL-23 SK-MEL-25 UACC-62 Ovaaria Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-5 OVCAR-8 NCIADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN RXF 393 TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-231/ATCC HS 678T BT-549 T-47D MDA-MB-231/ATCC HS 678 MEAN BT-549 T-47D MDA-MB-231/ATCC HS 678 H H	Growth Percent 93.71 104.54 91.43 85.54 95.63 89.86 82.82 66.72 59.53 64.83 84.77 100.74 93.38 103.39 93.89 95.92 92.07 103.52 87.61 98.05 95.51 81.86 75.81 47.75 99.21 106.58 111.16 96.43 105.40 95.74 106.10 68.57 67.37 101.34 80.58 72.73 92.99 88.27 46.14 100.14 76.95 95.58 77.73 92.99 88.27 46.14 100.14 76.95 95.58 77.75 93.51 87.76 69.79 95.18	Mean Growth	0 -50	-100 -150				
N ^N		Sing	ele concentration	10 uM				
OMe Me		~ 112						

15b

	National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 77	6981/1				Exp	Experiment ID : 1312N805							Type : 08		Units : N	/olar
Report Date : February 14, 2014 Test Date : December 30, 2013							QNS	QNS: MC:								
COMI : HAP2-135 (132198) Stain Reagent : SRB Dual-Pass Related								SSP	L:OFMB							
Log10 Concentration																
Panel/Cell Line	Time Zero	CH	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-8.0	5.0	-4.0	GI50		TGI	LC50
CCRF-CEM HL-SO(TB)	0.377	2.216	2.104	2.122	1.585	0.448	0.450	94 97	95 100	66 68	-22	4	1.79E-8	* 1	1.00E-4	> 1.00E-4 > 1.00E-4
K-582 MOLT-4	0.373	2,432	2.425	2172	1.438	0.537	0.550	100	87	52	87	9	1.00E-8 2.83E-8	1	1.00E-4	> 1.00E-4
RPMI-8228	0.995	2.948	2.921	2,901	2.684	1.292	1.088	99	98	86	15		3.20E-8 4 93E-7	-	1.00E-4	1.000-4
Non-Small Cell Lur	ng Cancer	2.410					0.410				~	- 11	1.000-1			
AS4WATCC HOP-82	0.440	2.251	2.221	2.221	1.993	0.709	0.589	98 100	98 94	88 74	15 24	17	3.19E-8 3.03E-8	3	1.00E-4	> 1.00E-4 > 1.00E-4
HOP-02	1.462	2.004	1.935	1.938	1.796	1.523	1.547	88	88	62	13	17	1.78E-8	*	1.00E-4	> 1.00E-4
NCI-H23	0.564	1.604	1.590	1.500	1.533	0.988	0.905	20	90	93	41	33	6.652-6	- 54	1.00E-4	> 1.00E-4
NCI-H322M	0.827	1.928	1.860	1.830	1.749	1.418	1.538	94		84	54	65	> 1.00E-4	120	1.00E-4	> 1.00E-4
NCI-H622	0.891	2.260	2.210	2.232	1.991	1.007	0.848	96	98	80	8	-5	2.65E-8	÷.	4.31E-5	> 1.00E-4
Colon Center																
COLO 205 HCC-2998	0.489	1.607	1.665	1.582	1.456	0.408	0.309	105	98	87 75	-11	-33	2.38E-8 2.55E-8		7.70E-8 1.00E-4	> 1.00E-4 > 1.00E-4
HCT-116	0.267	2.274	2.263	2.129	1.438	0.437	0.448	99	93	58	8	9	1.47E-8	× 1	1.00E-4	> 1.00E-4
HT29	0.306	1.664	1.675	1.768	1.653	0.358	0.384	101	108	30	12	6	3.286-8	- 54	1.00E-4	> 1.00E-4
KM12 SW-520	0.476	2.457	2.582	2.411	1.648	0.882	0.743	96 80	98 98	50	19 21	13	1.70E-8 1.87E-8	1	1.00E-4	> 1.00E-4 > 1.00E-4
CNS Cancer																
SF-268	0.609	2.010	1.962	1.911	1.727	1.211	0.940	97	93	80	43	24	6.44E-8	1	1.00E-4	> 1.00E-4
SNB-19	0.742	2.514	2.398	2.442	2178	1.285	1.367	93	96	81	31	36	4.13E-8	- > 1	1.00E-4	> 1.00E-4
SNB-75	0.848	1.764	1.687	1.572	1.465	0.819	0.783	92	79	67	-3	-8	1.76E-8	1.1	8.95E-5	> 1.00E-4
Melanoma					1.000		0.010						1.000			
LOX INVI	0.291	1.682	1.602	1.664	1.425	0.787	0.580	94	99	82	36	21	4.86E-6	121	1.00E-4	> 1.00E-4
M14	0.488	2.148	2.062	1.982	1.420	0.761	0.941	94	90	56	16	27	1.436-8	5	1.00E-4	> 1.00E-4
MDA-MB-435 SK-MEL-5	0.555	2,683	2.563	2.482 3.129	0.614	0.315	0.573	102	102	40	-14	-62	2.89E-7 9.52E-7		1.955-5	> 1.00E-4 9.41E-5
UACC-257	0.994	2,402	2,286	2,358	2123	1.835	1.790	92	97	80	60	57	> 1.00E-4	10	1.00E-4	1.00E-4 1.00E-4
Overlag Cancer		2.100	2.720							~		~	0.000-0			
IGROV1	0.774	2.252	2.222	2.238	1.968	1.250	1.049	98	99	81	32	19	4.30E-8	2	1.00E-4	> 1.00E-4
OVCAR-4	0.678	1.324	1,289	1.223	1.363	0.920	0.793	96	84	78	37	18	4.72E-8	- 54	1.00E-4	> 1.00E-4
OVCAR-8	0.560	2.518	2.478	2,493	2,292	1.061	0.914	98	99	88	28	18	4.00E-8	120	1.00E-4	> 1.00E-4
SK-OV-3	0.967	2.295	2.183	2.038	2.001	1.261	1.253	92	80	78	22	22	3.16E-8	5	1.00E-4	> 1.00E-4
Renal Cancer	0.057	2810	2811	2 760	2.602		1.442	100	07	04	-	30	0.325.6		005-4	> 100E4
A498	1.760	2.429	2.248	2.252	2.075	1.554	1.531	73	74	4	-12	-13	7.71E-7	- î -	6.31E-6	> 1.00E-4
CAKI-1 ROF 393	0.562	2.678	2.501	2.458	1,944	1.152	1.036	98	90	20	28	22	2.56E-6 2.21E-8	× 1	1.00E-4	> 1.00E-4 > 1.00E-4
SN12C	0.705	2.821	2.681	2.674	2.262	1.425	1.180	93	93	74	34	22	3.96E-8	\geq	1.00E-4	> 1.00E-4
UO-31	0.759	2.020	1.847	1.790	1.404	0.967	0.888	86	82	58	16	10	1.58E-6	- 54	1.00E-4	> 1.00E-4
Prostate Cancer																
PC-3 DU-145	0.648	2.476	2.589	2.353	1.857	1.067	1.093	95	93 101	66 92	23	24	2.36E-6 4.40E-8	121	1.00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer										_						
MCF7 MDA-MB-231/AT0	0.321 CC 0.735	1.749	1.600	1.550	1.218	0.512	0.479	90 99	85	61	13	15	1.81E-6	- 51	1.00E-4	> 1.00E-4 > 1.00E-4
HS 578T	1.382	2.490	2.434	2.402	2.217	1.532	1.827	95	92	75	14	13	2.57E-8	20	1.00E-4	> 1.00E-4
T-47D	0.813	1.822	1.748	1.654	1.649	1.220	1.158	92	83	83	40	34	5.91E-8	- <u>S</u> -	1.00E-4	> 1.00E-4
MLANEC-100		1.500	1.462	1.470	1.300	0.003	0.040	8	~	5		13	2.006-0		1.000-4	11004

O + NH₃ Br Me 12c

Five concentrations: 10 nM, 100 nM, 1.0 µM, 100 µM

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 776	Exp	Experiment ID : 1401NS08						Test	Type : 08	Units : N	Aolar				
Report Date : February 14, 2014						Test Date : January 06, 2014							:	MC :	
COMI : HAP4	-093 (13	32200)			Sta	in Rea	gent : (RB Dual-	Pass I	Related	1	SSP	.: OFMB		
					-	L	og10 Co	ncentration				-			
Panel/Cell Line	Time Zero	CH	-8.0	Mear -7.0	Optical -6.0	-5.0	-1.0	-8.0	-7.0	ercent G -8.0	-5.0	-4.0	QI50	TGI	LC50
CCRF-CEM	0.703	3.042	3.040	3.040	2.963	1.520	1.250	100	100	97	35	24	5.606-8	> 1.00E-4	> 1.008-4
N-662 MOLT-4 RPML-8228	0.162	1.747 2.595 2.893	2,700	1.823 2.650 2.858	2.607	1.150	0.366	105	105	101	19 29 27	25	6.02E-7 5.11E-8 4.40E-8	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4
SR Sectored Call	0.412	1.398	1.438	1.439	1.089	0.440	0.379	104	104	80	3	-8	1.92E-8	1.81E-5	> 1.00E-4
AS49ATCC HOP-52	0.432	2.110	2.094	2.111	1.793 1.129	0.999	0.968	99 80	100 73	81 52	34 27	32 26	4.54E-8 1.23E-8	> 1.00E-4	> 1.00E-4 > 1.00E-4
HOP-02 NCI-H226	1.618	2.015	1.970	1.864	1.749 2.353	1.489	1.535	80 96	83	33 75	40	-8 47	2.58E-7 6.04E-8	6.39E-8 > 1.00E-4	> 1.00E-4 > 1.00E-4
NCI-H23 NCI-H322M	0.510	1.509 2.250	1.532 2.230	1.508 2.180	1.411 1.962	0.939	0.886	102 98	100	90 77	42.85	38 53	7.09E-8 > 1.00E-4	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
NCI-H460 NCI-H622	0.338	2.888	2.970	2,898	2.687	0.742	0.741	104	101	93 83	16 -12	-15	3.62E-8 2.22E-8	> 1.00E-4 7.51E-8	> 1.00E-4 > 1.00E-4
Colon Cancer COLO 205	0.405	1.465	1.336	1.383	1.251	0.507	0.484	88	90	80	10	7	2.665-6	> 1.00E-4	> 1.005-4
HCC-2998 HCT-116	0.432	1.282	1.298	1.278	1.252	0.928	1.047	102	100	97 78	58 23	72	> 1.00E-4 3.12E-8	> 1.00E-4	> 1.00E-4
HCT-15 HT29	0.322	1.919	1.804	1.735	1.468	0.586	0.622	93 108	88	72 82	17	19	2.47E-8 3.58E-8	> 1.00E-4	> 1.00E-4
KM12 SW-620	0.610	2,780 2,193	2,777	2,809	2.165	1.317	1.163	100	101	72	33 17	25 12	3.58E-8 2.12E-8	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
CNS Cancer SF-268	0.589	1.857	1.805	1.776	1.604	1.077	1.037	98	94	87	38	35	5.805-6	> 1.00E-4	> 1.00E-4
57-295 57-539	0.517	2,498 2,713	2.260	2.277	2.069	0.790	0.740	88 90	89	78	14	11	2.75E-8 2.59E-8	> 1.00E-4 9.48E-8	> 1.00E-4 > 1.00E-4
SNB-19 SNB-75	0.787	2.462	2.419	2.220	1.869	1.368	1.454	97	85	85	35	40	3.07E-8 1.55E-8	> 1.00E-4 5.57E-6	> 1.00E-4 > 1.00E-4
U251	0.564	2.326	2.278	1.790	1.464	1.004	1.043	97	70	51	25	27	1.106-8	> 1.00E-4	> 1.00E-4
LOX IMVI	0.231	1.442	1.478	1.420	1.323	0.684	0.679	103	98	90	37	37	5.77E-6	1.00E-1	> 1.00E-6
M14	0.584	2.200	2.115	2.125	1.793	0.775	0.794	91	82	72	1	13	2.325-6	> 1.00E-4	1.008-4
SK-MEL-2	1.009	1.896	1.996	1.947	1.862	1.120	1.051	111	106	æ	13	-10	3.565-6	> 1.00E-4	> 1.00E-4
SK-MEL-25 SK-MEL-5	0.681	2.460	2.393	2.284	1.911	0.982	0.992	88	80	80	17	17	2.325-8	> 1.00E-4	1.000-4
UACC-82	0.904	2.587	2.435	2.278	2.023	1.504	1.557	91	8	67	38	39	3.436-8	> 1.00E-4	> 1.00E-4
Overlan Cancer IGROV1	0.882	2.468	2.487	2.391	2.011	1.418	1.379	101	95	71	34	31	3.70E-8	> 1.00E-4	> 1.008-4
OVCAR-3 OVCAR-4	0.579	1.730	1.757	1.566	1.385	0.549	0.482	102	86 84	70 58	ŝ	-17	1.84E-8 2.68E-8	8.51E-6 > 1.00E-4	> 1.00E-4 > 1.00E-4
OVCAR-8 OVCAR-8	0.765	1.718	1.623	1.658	1.505	1.193	1.254	90 98	94 87	78	45	51	3.825-8	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
NCMADR-RES SK-OV-3	0.918	1.760	1.762	1.998	1.472	0.672	0.689	100	87	76 67	19	10 25	2.43E-8 2.23E-8	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
Renal Cancer 785-0	0.719	2.668	2.664	2.644	2.440	1.465	1.526	100	99	88	38	41	5.84E-8	> 1.00E-4	> 1.00E-4
A498 ACHN	1.649	2,239 2,005	2.214 1.900	2,178	2.022	1.589	1.425	98 93	90 97	83	-16 39	-14	1.47E-8 6.29E-8	6.31E-6 > 1.00E-4	> 1.00E-4 > 1.00E-4
CAKI-1 ROUF 393	0.684	2.825	2.554	2.405	2.129	1.026	1.061	87	80 81	67 70	16 24	18 20	2.18E-8 2.78E-8	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
6N12C TK-10	0.794	2.676	2.494	2.281	2.094	1.377	1.465	90 104	78	60 91	31	38	3.16E-8 4.82E-8	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
00-31	0.907	2.242	2.003	1.785	1.390	1.097	0.966	82	65	36	14	6	3.41E-7	> 1.00E-4	> 1.008-4
PC-3 DU-145	0.770	2.695	2.515	2.442	2.265	1.520	1.335	91 105	87 97	78	29 28	29	3.66E-6 4.15E-5	> 1.00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer MCF7	0.499	2.510	2 236	2 331	1,993	0.739	0.789	87	91	75	13	16	2.525-8	> 1.00E-4	> 1.005-4
MDA-MB-231/ATO	0.764	1.985	2.013	1.725	1.414	1,250	1.247	102	79	53	40	40	1.75E-8	> 1.00E-4	> 1.00E-4
BT-540 T-470	0.595	1.451	1.381	1.338	1.227	0.778	0.745	89	87	74	21	17	2.84E-8 3.00E-8	> 1.00E-4	> 1.00E-4
MDA-MB-468	0.648	1.331	1.268	1.252	1.178	0.803	0.758	91	88	78	23	16	3.186-8	> 1.00E-4	> 1.00E-4

N-H Me 13b

Five concentrations: 10 nM, 100 nM, 1.0 µM, 100 µM

Section G: Crystal data for small-molecule X-ray crystallography

Table 1. Crystal data and structure reminiment for 151.	
Identification code	k12farm8
Empirical formula	C34 H28 Cl4 N2 O3
Formula weight	654.38
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$a = 14.1190(3)$ Å $\alpha = 90^{\circ}$
	$b = 13.6440(3)$ Å $\beta = 96.302(1)^{\circ}$
	$c = 15.7740(4)$ Å $\gamma = 90^{\circ}$
Volume	3020.33(12) Å ³
Z	4
Density (calculated)	1.439 Mg m ⁻³
Absorption coefficient	0.431 mm ⁻¹
F(000)	1352
Crystal size	$0.25 \times 0.15 \times 0.08 \text{ mm}$
θ range for data collection	3.62 to 26.37°
Index ranges	-17<=h<=17; -17<=k<=17; -19<=l<=19
Reflections collected	56157
Independent reflections	6157 [R(int) = 0.0932]
Reflections observed (> 2σ)	4274
Data Completeness	0.997
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.928 and 0.832
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6157 / 0 / 391
Goodness-of-fit on F ²	1.034
Final R indices $[I>2\sigma(I)]$	$R1 = 0.0502 \ wR2 = 0.1070$
R indices (all data)	$R1 = 0.0868 \ wR2 = 0.1250$
Largest diff. peak and hole	0.382 and -0.377 eÅ ⁻³

Table 1. Crystal data and structure refinement for 13i.

Notes:

Small crystal – poor diffraction at higher Bragg angles, hence data truncated at $\theta = 26.4^{\circ}$. Two molecules in the asymmetric unit plus one solvent entity (ethanol). Hydrogen-bonding present. Methyl hydrogen atoms attached to C16 and C16A are disordered.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>A</th></dha<>	d(DA)	A
02-Н2	0.840	1.988	174.03	2.825	01A
N1-H1	0.880	1.947	170.53	2.819	01A
N1A-H1A	0.880	2.030	160.14	2.874	01

Atom	X	У	Z	U(eq)
Cl(1)	6739(1)	6508(1)	5251(1)	43(1)
Cl(2)	6779(1)	3145(1)	7104(1)	35(1)
O(1)	8901(1)	2703(1)	5088(1)	30(1)
O(2)	6729(2)	3007(2)	3249(2)	51(1)
N(1)	7908(2)	3810(2)	5586(1)	26(1)
C(1)	6168(2)	5613(2)	5800(2)	31(1)
C(2)	5211(2)	5739(2)	5874(2)	34(1)
C(3)	4733(2)	5046(2)	6300(2)	38(1)
C(4)	5216(2)	4233(2)	6660(2)	36(1)
C(5)	6181(2)	4132(2)	6585(2)	29(1)
C(6)	6690(2)	4804(2)	6142(2)	26(1)
C(7)	7708(2)	4650(2)	6035(2)	25(1)
C(8)	8425(2)	5243(2)	6344(2)	26(1)
C(9)	9396(2)	5012(2)	6224(2)	24(1)
C(10)	9587(2)	4125(2)	5812(2)	25(1)
C(11)	8802(2)	3491(2)	5473(2)	26(1)
C(12)	10522(2)	3860(2)	5709(2)	30(1)
C(13)	11260(2)	4467(2)	6004(2)	33(1)
C(14)	11076(2)	5357(2)	6393(2)	32(1)
C(15)	10161(2)	5644(2)	6503(2)	26(1)
C(16)	9966(2)	6627(2)	6895(2)	34(1)
C(17)	7352(2)	2287(2)	2980(2)	47(1)
C(18)	7566(3)	2559(3)	2092(2)	51(1)
Cl(1A)	8342(1)	-1484(1)	5145(1)	38(1)
Cl(2A)	8970(1)	1794(1)	7072(1)	38(1)
O(1A)	6463(1)	2497(1)	4942(1)	29(1)
N(1A)	7483(2)	1314(2)	5481(1)	25(1)
C(1A)	9101(2)	-663(2)	5728(2)	26(1)
C(2A)	10060(2)	-884(2)	5836(2)	30(1)
C(3A)	10687(2)	-241(2)	6291(2)	34(1)
C(4A)	10352(2)	597(2)	6654(2)	33(1)
C(5A)	9385(2)	789(2)	6545(2)	28(1)
C(6A)	8723(2)	187(2)	6066(2)	25(1)
C(7A)	7699(2)	449(2)	5932(2)	25(1)
C(8A)	6993(2)	-75(2)	6225(2)	25(1)
C(9A)	6024(2)	259(2)	6099(2)	24(1)

Table 2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for 1.U(eq) is defined as one third of the trace of the orthogonallised Uij tensor for **13i**.

C(10A)	5826(2)	1162(2)	5674(2)	24(1)
C(11A)	6594(2)	1704(2)	5340(2)	25(1)
C(12A)	4902(2)	1535(2)	5562(2)	29(1)
C(13A)	4173(2)	1015(2)	5849(2)	31(1)
C(14A)	4353(2)	114(2)	6253(2)	32(1)
C(15A)	5261(2)	-279(2)	6385(2)	27(1)
C(16A)	5426(2)	-1265(2)	6805(2)	35(1)

 Table 3. Bond lengths [Å] and angles [°] for 13i.

Cl(1)-C(1)	1.745(3)	Cl(2)-C(5)	1.744(3)
O(1)-C(11)	1.250(3)	O(2)-C(17)	1.414(4)
N(1)-C(11)	1.366(3	N(1)-C(7)	1.392(3)
C(1)-C(2)	1.380(4)	C(1)-C(6)	1.402(4)
C(2)-C(3)	1.378(4)	C(3)-C(4)	1.391(4)
C(4)-C(5)	1.388(4)	C(5)-C(6)	1.398(4)
C(6)-C(7)	1.481(4)	C(7)-C(8)	1.345(4)
C(8)-C(9)	1.439(4)	C(9)-C(10)	1.414(4)
C(9)-C(15)	1.414(4)	C(10)-C(12)	1.396(4)
C(10)-C(11)	1.461(4)	C(12)-C(13)	1.371(4)
C(13)-C(14)	1.398(4)	C(14)-C(15)	1.379(4)
C(15)-C(16)	1.514(4)	C(17)-C(18)	1.511(5)
Cl(1A)-C(1A)	1.741(3)	Cl(2A)-C(5A)	1.737(3)
O(1A)-C(11A)	1.254(3)	N(1A)-C(11A)	1.360(3)
N(1A)-C(7A)	1.394(3)	C(1A)-C(2A)	1.381(4)
C(1A)-C(6A)	1.405(4)	C(2A)-C(3A)	1.388(4)
C(3A)-C(4A)	1.384(4)	C(4A)-C(5A)	1.384(4)
C(5A)-C(6A)	1.401(4)	C(6A)-C(7A)	1.482(4)
C(7A)-C(8A)	1.349(4)	C(8A)-C(9A)	1.435(4)
C(9A)-C(15A)	1.417(4)	C(9A)-C(10A)	1.416(4)
C(10A)-C(12A)	1.394(4)	C(10A)-C(11A)	1.457(4)
C(12A)-C(13A)	1.367(4)	C(13A)-C(14A)	1.394(4)
C(14A)-C(15A)	1.385(4)	C(15A)-C(16A)	1.506(4)
C(11)-N(1)-C(7)	124.8(2)	C(2)-C(1)-C(6)	122.9(3)
C(2)-C(1)-Cl(1)	117.7(2)	C(6)-C(1)-Cl(1)	119.4(2)
C(3)-C(2)-C(1)	119.5(3)	C(2)-C(3)-C(4)	120.1(3)
C(5)-C(4)-C(3)	119.1(3)	C(4)-C(5)-C(6)	122.7(3)
C(4)-C(5)-Cl(2)	117.7(2)	C(6)-C(5)-Cl(2)	119.5(2)
C(5)-C(6)-C(1)	115.6(3)	C(5)-C(6)-C(7)	121.5(2)
C(1)-C(6)-C(7)	122.9(2)	C(8)-C(7)-N(1)	119.6(2)
C(8)-C(7)-C(6)	125.0(2)	N(1)-C(7)-C(6)	115.3(2)
C(7)-C(8)-C(9)	120.6(2)	C(10)-C(9)-C(15)	119.1(2)
C(10)-C(9)-C(8)	118.8(2)	C(15)-C(9)-C(8)	122.1(2)
C(12)-C(10)-C(9)	120.5(3)	C(12)-C(10)-C(11)	119.6(2)
C(9)-C(10)-C(11)	119.9(2)	O(1)-C(11)-N(1)	119.5(2)
O(1)-C(11)-C(10)	124.5(2)	N(1)-C(11)-C(10)	116.0(2)
C(13)-C(12)-C(10)	119.8(3)	C(12)-C(13)-C(14)	120.2(3)
C(15)-C(14)-C(13)	121.6(3)	C(14)-C(15)-C(9)	118.8(2)

		-	
C(14)-C(15)-C(16)	121.2(3)	C(9)-C(15)-C(16)	120.0(2)
O(2)-C(17)-C(18)	107.6(3)	C(11A)-N(1A)-C(7A)	124.1(2)
C(2A)-C(1A)-C(6A)	122.8(3)	C(2A)-C(1A)-Cl(1A)	117.6(2)
C(6A)-C(1A)-Cl(1A)	119.6(2)	C(1A)-C(2A)-C(3A)	119.1(3)
C(4A)-C(3A)-C(2A)	120.6(3)	C(3A)-C(4A)-C(5A)	118.8(3)
C(4A)-C(5A)-C(6A)	123.1(3)	C(4A)-C(5A)-Cl(2A)	118.0(2)
C(6A)-C(5A)-Cl(2A)	118.8(2)	C(5A)-C(6A)-C(1A)	115.5(2)
C(5A)-C(6A)-C(7A)	121.2(2)	C(1A)-C(6A)-C(7A)	123.4(2)
C(8A)-C(7A)-N(1A)	119.7(2)	C(8A)-C(7A)-C(6A)	124.7(2)
N(1A)-C(7A)-C(6A)	115.6(2)	C(7A)-C(8A)-C(9A)	121.0(2)
C(15A)-C(9A)-C(10A)	119.0(2)	C(15A)-C(9A)-C(8A)	122.6(2)
C(10A)-C(9A)-C(8A)	118.5(2)	C(12A)-C(10A)-C(9A)	120.7(3)
C(12A)-C(10A)-C(11A)	119.4(2)	C(9A)-C(10A)-C(11A)	119.8(2)
O(1A)-C(11A)-N(1A)	120.2(2)	O(1A)-C(11A)-C(10A)	123.0(2)
N(1A)-C(11A)-C(10A)	116.9(2)	C(13A)-C(12A)-C(10A)	119.7(3)
C(12A)-C(13A)-C(14A)	120.2(3)	C(15A)-C(14A)-C(13A)	122.0(3)
C(14A)-C(15A)-C(9A)	118.4(3)	C(14A)-C(15A)-C(16A)	120.6(3)
C(9A)-C(15A)-C(16A)	121.1(3)		

Atom	U11	U22	U33	U23	U13	U12
Cl(1)	36(1)	30(1)	64(1)	15(1)	9(1)	7(1)
Cl(2)	43(1)	27(1)	34(1)	4(1)	7(1)	-2(1)
O(1)	36(1)	20(1)	34(1)	-4(1)	9(1)	2(1)
O(2)	54(2)	55(2)	44(2)	11(1)	14(1)	15(1)
N(1)	28(1)	19(1)	32(1)	-1(1)	4(1)	1(1)
C(1)	34(2)	25(2)	33(2)	-2(1)	4(1)	0(1)
C(2)	30(2)	35(2)	39(2)	-5(1)	4(1)	6(1)
C(3)	28(2)	47(2)	40(2)	-9(2)	7(1)	2(1)
C(4)	36(2)	39(2)	36(2)	-6(1)	9(1)	-9(1)
C(5)	33(2)	24(1)	30(2)	-6(1)	3(1)	-1(1)
C(6)	28(2)	20(1)	29(1)	-5(1)	6(1)	0(1)
C(7)	30(2)	19(1)	26(1)	2(1)	6(1)	3(1)
C(8)	31(2)	20(1)	28(1)	0(1)	4(1)	3(1)
C(9)	28(1)	22(1)	23(1)	4(1)	4(1)	2(1)
C(10)	31(2)	21(1)	24(1)	4(1)	4(1)	1(1)
C(11)	31(2)	20(1)	26(1)	5(1)	5(1)	5(1)
C(12)	33(2)	28(2)	30(2)	2(1)	8(1)	7(1)
C(13)	27(2)	37(2)	35(2)	3(1)	7(1)	5(1)
C(14)	33(2)	33(2)	29(2)	2(1)	1(1)	-2(1)
C(15)	30(2)	25(1)	24(1)	3(1)	1(1)	2(1)
C(16)	32(2)	27(2)	41(2)	-3(1)	0(1)	-3(1)
C(17)	40(2)	40(2)	61(2)	4(2)	10(2)	-1(2)
C(18)	50(2)	61(2)	44(2)	-9(2)	10(2)	-11(2)
Cl(1A)	35(1)	27(1)	53(1)	-13(1)	1(1)	1(1)
Cl(2A)	50(1)	25(1)	35(1)	-7(1)	-3(1)	5(1)
O(1A)	34(1)	20(1)	32(1)	6(1)	2(1)	4(1)
N(1A)	28(1)	19(1)	28(1)	2(1)	4(1)	3(1)
C(1A)	30(2)	20(1)	29(2)	1(1)	2(1)	0(1)
C(2A)	35(2)	22(1)	34(2)	2(1)	7(1)	7(1)
C(3A)	30(2)	35(2)	37(2)	8(1)	2(1)	3(1)
C(4A)	35(2)	30(2)	33(2)	1(1)	-2(1)	-5(1)
C(5A)	34(2)	20(1)	28(2)	3(1)	2(1)	2(1)
C(6A)	30(2)	22(1)	24(1)	3(1)	2(1)	2(1)
C(7A)	32(2)	18(1)	23(1)	-2(1)	2(1)	3(1)
C(8A)	32(2)	17(1)	27(1)	1(1)	3(1)	4(1)
C(9A)	29(2)	21(1)	22(1)	-3(1)	4(1)	0(1)

Table 4. Anisotropic displacement parameters (Å² × 10³) for **13i**. The anisotropic displacement factor exponenttakes the form: -2 gpi² [h² a*² U11 + ... + 2 h k a* b* U

C(10A)	30(2)	21(1)	22(1)	-4(1)	4(1)	2(1)
C(11A)	32(2)	21(1)	21(1)	-3(1)	0(1)	3(1)
C(12A)	30(2)	29(2)	27(1)	-3(1)	-1(1)	6(1)
C(13A)	26(2)	34(2)	33(2)	-4(1)	2(1)	4(1)
C(14A)	31(2)	36(2)	29(2)	-5(1)	5(1)	-6(1)
C(15A)	32(2)	23(1)	26(1)	-4(1)	2(1)	1(1)
C(16A)	39(2)	31(2)	36(2)	4(1)	7(1)	-5(1)

Atom	X	У	Z	U(eq)
H(2)	6631	2896	3756	104(19)
H(1)	7422	3459	5359	31
H(2B)	4883	6299	5633	41
H(3)	4072	5124	6347	46
H(4)	4890	3753	6953	44
H(8)	8289	5821	6646	32
H(12)	10648	3260	5436	36
H(13)	11897	4282	5943	39
H(14)	11594	5774	6586	38
H(16A)	9279	6701	6921	50
H(16B)	10192	7153	6544	50
H(16C)	10301	6663	7472	50
H(16D)	10568	6977	7037	50
H(16E)	9656	6525	7414	50
H(16F)	9547	7015	6486	50
H(17A)	7049	1633	2975	56
H(17B)	7949	2267	3373	56
H(18A)	6976	2542	1702	77
H(18B)	8024	2092	1899	77
H(18C)	7837	3221	2099	77
H(1A)	7952	1627	5276	30
H(2A)	10290	-1468	5602	36
H(3A)	11350	-377	6354	41
H(4A)	10780	1032	6972	40
H(8A)	7139	-673	6519	30
H(12A)	4779	2148	5287	35
H(13A)	3543	1267	5772	38
H(14A)	3837	-239	6443	38
H(16G)	6106	-1427	6845	53
H(16H)	5059	-1765	6464	53
H(16I)	5220	-1245	7378	53
H(16J)	4818	-1530	6946	53
H(16K)	5864	-1193	7327	53
H(16L)	5703	-1713	6414	53

Table 5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **13i**.

 Table 6. Dihedral angles [°] for 13i.

Atom1 - Atom2 - Atom3 - Atom4	Dihedral
C(6) - C(1) - C(2) - C(3)	-0.1(4)
Cl(1) - C(1) - C(2) - C(3)	179.8(2)
C(1) - C(2) - C(3) - C(4)	0.7(4)
C(2) - C(3) - C(4) - C(5)	0.1(4)
C(3) - C(4) - C(5) - C(6)	-1.6(4)
C(3) - C(4) - C(5) - Cl(2)	175.9(2)
C(4) - C(5) - C(6) - C(1)	2.1(4)
Cl(2) - C(5) - C(6) - C(1)	-175.4(2)
C(4) - C(5) - C(6) - C(7)	-176.8(3)
Cl(2) - C(5) - C(6) - C(7)	5.8(4)
C(2) - C(1) - C(6) - C(5)	-1.2(4)
Cl(1) - C(1) - C(6) - C(5)	178.9(2)
C(2) - C(1) - C(6) - C(7)	177.6(3)
Cl(1) - C(1) - C(6) - C(7)	-2.3(4)
C(11) - N(1) - C(7) - C(8)	4.3(4)
C(11) - N(1) - C(7) - C(6)	-174.6(2)
C(5) - C(6) - C(7) - C(8)	-117.3(3)
C(1) - C(6) - C(7) - C(8)	63.9(4)
C(5) - C(6) - C(7) - N(1)	61.6(3)
C(1) - C(6) - C(7) - N(1)	-117.2(3)
N(1) - C(7) - C(8) - C(9)	-0.7(4)
C(6) - C(7) - C(8) - C(9)	178.2(2)
C(7) - C(8) - C(9) - C(10)	-3.1(4)
C(7) - C(8) - C(9) - C(15)	176.7(2)
C(15) - C(9) - C(10) - C(12)	2.4(4)
C(8) - C(9) - C(10) - C(12)	-177.8(2)
C(15) - C(9) - C(10) - C(11)	-176.3(2)
C(8) - C(9) - C(10) - C(11)	3.5(4)
C(7) - N(1) - C(11) - O(1)	177.1(2)
C(7) - N(1) - C(11) - C(10)	-3.8(4)
C(12) - C(10) - C(11) - O(1)	0.2(4)
C(9) - C(10) - C(11) - O(1)	178.9(2)
C(12) - C(10) - C(11) - N(1)	-178.9(2)
C(9) - C(10) - C(11) - N(1)	-0.3(4)
C(9) - C(10) - C(12) - C(13)	-0.6(4)
C(11) - C(10) - C(12) - C(13)	178.1(2)

C(10) - C(12) - C(13) - C(14)	-1.1(4)
C(12) - C(13) - C(14) - C(15)	1.0(4)
C(13) - C(14) - C(15) - C(9)	0.9(4)
C(13) - C(14) - C(15) - C(16)	-177.6(3)
C(10) - C(9) - C(15) - C(14)	-2.5(4)
C(8) - C(9) - C(15) - C(14)	177.7(2)
C(10) - C(9) - C(15) - C(16)	176.0(2)
C(8) - C(9) - C(15) - C(16)	-3.8(4)
C(6A) - C(1A) - C(2A) - C(3A)	-0.4(4)
Cl(1A) - C(1A) - C(2A) - C(3A)	179.4(2)
C(1A) - C(2A) - C(3A) - C(4A)	1.8(4)
C(2A) - C(3A) - C(4A) - C(5A)	-0.9(4)
C(3A) - C(4A) - C(5A) - C(6A)	-1.4(4)
C(3A) - C(4A) - C(5A) - Cl(2A)	175.2(2)
C(4A) - C(5A) - C(6A) - C(1A)	2.7(4)
Cl(2A) - C(5A) - C(6A) - C(1A)	-173.95(19)
C(4A) - C(5A) - C(6A) - C(7A)	-177.0(3)
Cl(2A) - C(5A) - C(6A) - C(7A)	6.4(3)
C(2A) - C(1A) - C(6A) - C(5A)	-1.7(4)
Cl(1A) - C(1A) - C(6A) - C(5A)	178.4(2)
C(2A) - C(1A) - C(6A) - C(7A)	177.9(3)
Cl(1A) - C(1A) - C(6A) - C(7A)	-1.9(4)
C(11A) - N(1A) - C(7A) - C(8A)	2.9(4)
C(11A) - N(1A) - C(7A) - C(6A)	-175.9(2)
C(5A) - C(6A) - C(7A) - C(8A)	-115.8(3)
C(1A) - C(6A) - C(7A) - C(8A)	64.6(4)
C(5A) - C(6A) - C(7A) - N(1A)	63.0(3)
C(1A) - C(6A) - C(7A) - N(1A)	-116.7(3)
N(1A) - C(7A) - C(8A) - C(9A)	-1.7(4)
C(6A) - C(7A) - C(8A) - C(9A)	177.0(2)
C(7A) - C(8A) - C(9A) - C(15A)	178.9(2)
C(7A) - C(8A) - C(9A) - C(10A)	-1.2(4)
C(15A) - C(9A) - C(10A) - C(12A)	2.1(4)
C(8A) - C(9A) - C(10A) - C(12A)	-177.8(2)
C(15A) - C(9A) - C(10A) - C(11A)	-177.0(2)
C(8A) - C(9A) - C(10A) - C(11A)	3.0(4)
C(7A) - N(1A) - C(11A) - O(1A)	178.5(2)
C(7A) - N(1A) - C(11A) - C(10A)	-1.0(4)
C(12A) - C(10A) - C(11A) - O(1A)	-0.7(4)

C(9A) - C(10A) - C(11A) - O(1A)	178.5(2)
C(12A) - C(10A) - C(11A) - N(1A)	178.9(2)
C(9A) - C(10A) - C(11A) - N(1A)	-1.9(4)
C(9A) - C(10A) - C(12A) - C(13A)	-1.4(4)
C(11A) - C(10A) - C(12A) - C(13A)	177.8(2)
C(10A) - C(12A) - C(13A) - C(14A)	0.0(4)
C(12A) - C(13A) - C(14A) - C(15A)	0.5(4)
C(13A) - C(14A) - C(15A) - C(9A)	0.2(4)
C(13A) - C(14A) - C(15A) - C(16A)	-178.5(3)
C(10A) - C(9A) - C(15A) - C(14A)	-1.5(4)
C(8A) - C(9A) - C(15A) - C(14A)	178.4(2)
C(10A) - C(9A) - C(15A) - C(16A)	177.2(2)
C(8A) - C(9A) - C(15A) - C(16A)	-2.8(4)

Tuble 7. Crystal data and structure reminiment for 150.	
Identification code	k12farm10
Formula weight	265.30
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$a = 12.5690(8)$ Å $\alpha = 90^{\circ}$
	$b = 17.0250(11)$ Å $\beta = 104.837(2)^{\circ}$
	$c = 13.3300(11)$ Å $\gamma = 90^{\circ}$
Volume	2757.3(3) Å ³
Z	8
Density (calculated)	1.278 Mg m ⁻³
Absorption coefficient	0.084 mm ⁻¹
F(000)	1120
Crystal size	$0.30 \times 0.08 \times 0.08 \text{ mm}$
θ range for data collection	3.52 to 25.03°
Index ranges	-14<=h<=14; -20<=k<=20; -11<=l<=15
Reflections collected	12394
Independent reflections	4788 [R(int) = 0.1450]
Reflections observed (> 2σ)	1941
Data Completeness	0.982
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.710
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4788 / 0 / 365
Goodness-of-fit on F ²	0.895
Final R indices [I>2 σ (I)]	$R1 = 0.0717 \ wR2 = 0.1299$
R indices (all data)	$R1 = 0.2113 \ wR2 = 0.1699$
Largest diff. peak and hole	0.259 and -0.241 eÅ ⁻³

 Table 7. Crystal data and structure refinement for 15b.

Notes:

Two independent molecules in the asymmetric unit, which form hydrogen-bonded dimers.

Crystal quality poor - small fragment taken from a non-merohedrally twinned needle. Unit cell parameters reflect the sample quality. However, the structure is unambiguous. Data truncated to 25 degree Bragg angle.

Hydrogen bonds	with H.	A < r(A)	+ 2.000	Angstroms	and	<dha></dha>	110	deg.
D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>A</th><th></th><th></th><th></th></dha<>	d(DA)	A			
N1-H1	0.880	1.917	168.55	2.785	01A			
N1A-H1A	0.880	2.095	163.52	2.950	01			

Atom	x	v	7	[](ea)	
0(1)	4518(2)	<i>3</i>	-78(2)	50(1)	
O(2)	701(2)	3499(1)	-299(3)	76(1)	
N(1)	3249(2)	1302(2)	854(2)	42(1)	
$\mathbf{C}(1)$	3670(3)	1634(2)	109(3)	46(1)	
C(2)	3060(3)	2313(2)	-435(3)	44(1)	
C(3)	3416(3)	2679(2)	-1231(3)	53(1)	
C(4)	2872(3)	3325(2)	-1706(4)	65(1)	
C(5)	1944(4)	3608(2)	-1412(4)	72(1)	
C(6)	1590(3)	3260(2)	-636(4)	62(1)	
C(7)	2139(3)	2589(2)	-126(3)	48(1)	
C(8)	1785(3)	2199(2)	675(3)	53(1)	
C(9)	2328(3)	1560(2)	1161(3)	44(1)	
C(10)	2011(3)	1117(2)	1975(3)	48(1)	
C(11)	1408(3)	1453(2)	2609(4)	68(1)	
C(12)	1129(4)	1037(3)	3386(4)	83(2)	
C(13)	1447(4)	257(3)	3583(4)	71(1)	
C(14)	2019(3)	-74(2)	2953(4)	69(1)	
C(15)	2300(3)	331(2)	2160(4)	59(1)	
C(16)	1147(4)	-195(3)	4464(5)	117(2)	
C(17)	19(4)	4110(3)	-875(4)	103(2)	
O(1A)	4580(2)	54(1)	1769(2)	59(1)	
O(2A)	8876(2)	-1580(1)	3110(2)	68(1)	
N(1A)	6113(2)	279(2)	1218(2)	44(1)	
C(1A)	5547(3)	-119(2)	1807(3)	45(1)	
C(2A)	6148(3)	-725(2)	2490(3)	48(1)	
C(3A)	5629(3)	-1157(2)	3129(3)	54(1)	
C(4A)	6200(3)	-1722(2)	3751(4)	59(1)	
C(5A)	7298(3)	-1886(2)	3788(3)	59(1)	
C(6A)	7818(3)	-1469(2)	3165(3)	56(1)	
C(7A)	7252(3)	-868(2)	2501(3)	43(1)	
C(8A)	7758(3)	-417(2)	1841(3)	49(1)	
C(9A)	7206(3)	148(2)	1208(3)	40(1)	
C(10A)	7670(3)	638(2)	512(3)	42(1)	
C(11A)	8796(3)	628(2)	582(4)	63(1)	
C(12A)	9240(3)	1053(2)	-91(4)	66(1)	
C(13A)	8608(3)	1518(2)	-851(4)	58(1)	

Table 8. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for 1.U(eq) is defined as one third of the trace of the orthogonallised Uij tensor for **15b**.

C(14A)	7495(3)	1542(2)	-908(3)	56(1)	
C(15A)	7029(3)	1111(2)	-254(3)	50(1)	
C(16A)	9095(3)	1960(2)	-1614(4)	77(1)	
C(17A)	9459(3)	-2218(2)	3716(4)	82(2)	

Table 9. Bond lengths [Å] and angles [°] for 15b.

O(1)-C(1)	1.238(4)	O(2)-C(6)	1.369(4)
O(2)-C(17)	1.438(5	N(1)-C(1)	1.360(4)
N(1)-C(9)	1.395(4)	C(1)-C(2)	1.472(5)
C(2)-C(3)	1.399(5)	C(2)-C(7)	1.405(4)
C(3)-C(4)	1.364(5)	C(4)-C(5)	1.406(5)
C(5)-C(6)	1.363(5)	C(6)-C(7)	1.416(5)
C(7)-C(8)	1.423(5)	C(8)-C(9)	1.357(5)
C(9)-C(10)	1.459(5)	C(10)-C(15)	1.392(5)
C(10)-C(11)	1.394(5)	C(11)-C(12)	1.373(6)
C(12)-C(13)	1.394(6)	C(13)-C(14)	1.360(5)
C(13)-C(16)	1.529(6)	C(14)-C(15)	1.382(5)
O(1A)-C(1A)	1.239(4)	O(2A)-C(6A)	1.364(4)
O(2A)-C(17A)	1.438(4	N(1A)-C(1A)	1.367(4)
N(1A)-C(9A)	1.394(4)	C(1A)-C(2A)	1.453(5)
C(2A)-C(7A)	1.404(4)	C(2A)-C(3A)	1.406(5)
C(3A)-C(4A)	1.350(5)	C(4A)-C(5A)	1.397(5)
C(5A)-C(6A)	1.377(5)	C(6A)-C(7A)	1.420(5)
C(7A)-C(8A)	1.434(5)	C(8A)-C(9A)	1.348(5)
C(9A)-C(10A)	1.476(5)	C(10A)-C(15A)	1.385(5)
C(10A)-C(11A)	1.395(5)	C(11A)-C(12A)	1.377(5)
C(12A)-C(13A)	1.369(6)	C(13A)-C(14A)	1.382(5)
C(13A)-C(16A)	1.514(5)	C(14A)-C(15A)	1.380(5)
C(6)-O(2)-C(17)	117.7(4)	C(1)-N(1)-C(9)	126.2(3)
O(1)-C(1)-N(1)	121.0(3)	O(1)-C(1)-C(2)	123.2(4)
N(1)-C(1)-C(2)	115.8(3)	C(3)-C(2)-C(7)	121.4(3)
C(3)-C(2)-C(1)	119.8(3)	C(7)-C(2)-C(1)	118.8(4)
C(4)-C(3)-C(2)	119.5(4)	C(3)-C(4)-C(5)	120.0(4)
C(6)-C(5)-C(4)	121.2(4)	C(5)-C(6)-O(2)	125.0(4)
C(5)-C(6)-C(7)	120.1(4)	O(2)-C(6)-C(7)	114.9(4)
C(2)-C(7)-C(6)	117.8(4)	C(2)-C(7)-C(8)	120.3(3)
C(6)-C(7)-C(8)	122.0(4)	C(9)-C(8)-C(7)	121.1(3)
C(8)-C(9)-N(1)	117.8(3)	C(8)-C(9)-C(10)	124.8(3)
N(1)-C(9)-C(10)	117.4(3)	C(15)-C(10)-C(11)	116.5(4)
C(15)-C(10)-C(9)	121.4(3)	C(11)-C(10)-C(9)	122.1(3)
C(12)-C(11)-C(10)	121.9(4)	C(11)-C(12)-C(13)	121.2(4)
C(14)-C(13)-C(12)	116.7(4)	C(14)-C(13)-C(16)	122.7(4)
C(12)-C(13)-C(16)	120.6(4)	C(13)-C(14)-C(15)	123.1(4)
C(14)-C(15)-C(10)	120.5(4)	C(6A)-O(2A)-C(17A)	116.0(3)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
O(1A)-C(1A)-C(2A)122.8(3)N(1A)-C(1A)-C(2A)116.6(3)C(7A)-C(2A)-C(3A)120.9(3)C(7A)-C(2A)-C(1A)118.9(3)C(3A)-C(2A)-C(1A)120.2(3)C(4A)-C(3A)-C(2A)119.3(4)C(3A)-C(4A)-C(5A)122.0(4)C(6A)-C(5A)-C(4A)119.5(4)O(2A)-C(6A)-C(5A)125.5(4)O(2A)-C(6A)-C(7A)114.0(3)C(5A)-C(6A)-C(7A)120.6(3)C(2A)-C(7A)-C(6A)117.8(3)C(2A)-C(7A)-C(8A)119.6(3)C(6A)-C(7A)-C(6A)117.8(3)C(2A)-C(7A)-C(8A)119.6(3)C(6A)-C(7A)-C(8A)122.6(3)C(9A)-C(8A)-C(7A)121.8(3)C(8A)-C(9A)-N(1A)117.4(3)C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(12A)-C(13A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(1A)-N(1A)-C(9A)	125.8(3)	O(1A)-C(1A)-N(1A)	120.5(3)
C(7A)-C(2A)-C(3A)120.9(3)C(7A)-C(2A)-C(1A)118.9(3)C(3A)-C(2A)-C(1A)120.2(3)C(4A)-C(3A)-C(2A)119.3(4)C(3A)-C(4A)-C(5A)122.0(4)C(6A)-C(5A)-C(4A)119.5(4)O(2A)-C(6A)-C(5A)125.5(4)O(2A)-C(6A)-C(7A)114.0(3)C(5A)-C(6A)-C(7A)120.6(3)C(2A)-C(7A)-C(6A)117.8(3)C(2A)-C(7A)-C(8A)119.6(3)C(6A)-C(7A)-C(6A)117.8(3)C(9A)-C(8A)-C(7A)121.8(3)C(6A)-C(7A)-C(8A)122.6(3)C(9A)-C(8A)-C(7A)121.8(3)C(8A)-C(9A)-N(1A)117.4(3)C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	O(1A)-C(1A)-C(2A)	122.8(3)	N(1A)-C(1A)-C(2A)	116.6(3)
C(3A)-C(2A)-C(1A)120.2(3)C(4A)-C(3A)-C(2A)119.3(4)C(3A)-C(4A)-C(5A)122.0(4)C(6A)-C(5A)-C(4A)119.5(4)O(2A)-C(6A)-C(5A)125.5(4)O(2A)-C(6A)-C(7A)114.0(3)C(5A)-C(6A)-C(7A)120.6(3)C(2A)-C(7A)-C(6A)117.8(3)C(2A)-C(7A)-C(8A)119.6(3)C(6A)-C(7A)-C(8A)122.6(3)C(9A)-C(8A)-C(7A)121.8(3)C(6A)-C(7A)-C(8A)122.6(3)C(9A)-C(8A)-C(7A)121.8(3)C(8A)-C(9A)-N(1A)117.4(3)C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(7A)-C(2A)-C(3A)	120.9(3)	C(7A)-C(2A)-C(1A)	118.9(3)
C(3A)-C(4A)-C(5A)122.0(4)C(6A)-C(5A)-C(4A)119.5(4)O(2A)-C(6A)-C(5A)125.5(4)O(2A)-C(6A)-C(7A)114.0(3)C(5A)-C(6A)-C(7A)120.6(3)C(2A)-C(7A)-C(6A)117.8(3)C(2A)-C(7A)-C(8A)119.6(3)C(6A)-C(7A)-C(8A)122.6(3)C(9A)-C(8A)-C(7A)121.8(3)C(8A)-C(9A)-N(1A)117.4(3)C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)116.4(4)C(13A)-C(12A)-C(11A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(3A)-C(2A)-C(1A)	120.2(3)	C(4A)-C(3A)-C(2A)	119.3(4)
O(2A)-C(6A)-C(5A)125.5(4)O(2A)-C(6A)-C(7A)114.0(3)C(5A)-C(6A)-C(7A)120.6(3)C(2A)-C(7A)-C(6A)117.8(3)C(2A)-C(7A)-C(8A)119.6(3)C(6A)-C(7A)-C(8A)122.6(3)C(9A)-C(8A)-C(7A)121.8(3)C(8A)-C(9A)-N(1A)117.4(3)C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(3A)-C(4A)-C(5A)	122.0(4)	C(6A)-C(5A)-C(4A)	119.5(4)
$\begin{array}{ccccccc} C(5A)-C(6A)-C(7A) & 120.6(3) & C(2A)-C(7A)-C(6A) & 117.8(3) \\ C(2A)-C(7A)-C(8A) & 119.6(3) & C(6A)-C(7A)-C(8A) & 122.6(3) \\ C(9A)-C(8A)-C(7A) & 121.8(3) & C(8A)-C(9A)-N(1A) & 117.4(3) \\ C(8A)-C(9A)-C(10A) & 125.0(3) & N(1A)-C(9A)-C(10A) & 117.6(3) \\ C(15A)-C(10A)-C(11A) & 116.5(3) & C(15A)-C(10A)-C(9A) & 122.9(3) \\ C(11A)-C(10A)-C(9A) & 120.6(4) & C(12A)-C(11A)-C(10A) & 121.5(4) \\ C(13A)-C(12A)-C(11A) & 122.1(4) & C(12A)-C(13A)-C(14A) & 116.4(4) \\ C(12A)-C(13A)-C(16A) & 121.8(4) & C(14A)-C(15A)-C(10A) & 121.8(4) \\ \hline \end{array}$	O(2A)-C(6A)-C(5A)	125.5(4)	O(2A)-C(6A)-C(7A)	114.0(3)
$\begin{array}{cccccc} C(2A)-C(7A)-C(8A) & 119.6(3) & C(6A)-C(7A)-C(8A) & 122.6(3) \\ C(9A)-C(8A)-C(7A) & 121.8(3) & C(8A)-C(9A)-N(1A) & 117.4(3) \\ C(8A)-C(9A)-C(10A) & 125.0(3) & N(1A)-C(9A)-C(10A) & 117.6(3) \\ C(15A)-C(10A)-C(11A) & 116.5(3) & C(15A)-C(10A)-C(9A) & 122.9(3) \\ C(11A)-C(10A)-C(9A) & 120.6(4) & C(12A)-C(11A)-C(10A) & 121.5(4) \\ C(13A)-C(12A)-C(11A) & 122.1(4) & C(12A)-C(13A)-C(14A) & 116.4(4) \\ C(12A)-C(13A)-C(16A) & 121.8(4) & C(14A)-C(13A)-C(16A) & 121.8(4) \\ C(15A)-C(14A)-C(13A) & 122.5(4) & C(14A)-C(15A)-C(10A) & 120.9(3) \\ \end{array}$	C(5A)-C(6A)-C(7A)	120.6(3)	C(2A)-C(7A)-C(6A)	117.8(3)
C(9A)-C(8A)-C(7A)121.8(3)C(8A)-C(9A)-N(1A)117.4(3)C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(2A)-C(7A)-C(8A)	119.6(3)	C(6A)-C(7A)-C(8A)	122.6(3)
C(8A)-C(9A)-C(10A)125.0(3)N(1A)-C(9A)-C(10A)117.6(3)C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(9A)-C(8A)-C(7A)	121.8(3)	C(8A)-C(9A)-N(1A)	117.4(3)
C(15A)-C(10A)-C(11A)116.5(3)C(15A)-C(10A)-C(9A)122.9(3)C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(8A)-C(9A)-C(10A)	125.0(3)	N(1A)-C(9A)-C(10A)	117.6(3)
C(11A)-C(10A)-C(9A)120.6(4)C(12A)-C(11A)-C(10A)121.5(4)C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(15A)-C(10A)-C(11A)	116.5(3)	C(15A)-C(10A)-C(9A)	122.9(3)
C(13A)-C(12A)-C(11A)122.1(4)C(12A)-C(13A)-C(14A)116.4(4)C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(11A)-C(10A)-C(9A)	120.6(4)	C(12A)-C(11A)-C(10A)	121.5(4)
C(12A)-C(13A)-C(16A)121.8(4)C(14A)-C(13A)-C(16A)121.8(4)C(15A)-C(14A)-C(13A)122.5(4)C(14A)-C(15A)-C(10A)120.9(3)	C(13A)-C(12A)-C(11A)	122.1(4)	C(12A)-C(13A)-C(14A)	116.4(4)
C(15A)-C(14A)-C(13A) 122.5(4) C(14A)-C(15A)-C(10A) 120.9(3)	C(12A)-C(13A)-C(16A)	121.8(4)	C(14A)-C(13A)-C(16A)	121.8(4)
	C(15A)-C(14A)-C(13A)	122.5(4)	C(14A)-C(15A)-C(10A)	120.9(3)

exponent tak	5 uie 101111. 2			0 0			
Atom	U11	U22	U33	U23	U13	U12	
O(1)	43(2)	49(2)	58(2)	2(1)	12(1)	3(1)	
O(2)	82(2)	59(2)	93(3)	16(2)	30(2)	29(2)	
N(1)	39(2)	35(2)	49(2)	6(2)	4(2)	2(1)	
C(1)	44(2)	41(2)	52(3)	-5(2)	10(2)	-8(2)	
C(2)	42(2)	39(2)	47(3)	-4(2)	3(2)	-1(2)	
C(3)	61(2)	44(2)	50(3)	5(2)	8(2)	0(2)	
C(4)	80(3)	53(3)	62(4)	5(2)	19(3)	3(2)	
C(5)	92(3)	56(3)	65(4)	12(2)	17(3)	20(2)	
C(6)	70(3)	48(2)	67(4)	0(2)	17(3)	9(2)	
C(7)	48(2)	36(2)	55(3)	1(2)	2(2)	3(2)	
C(8)	50(2)	47(2)	62(3)	-3(2)	12(2)	5(2)	
C(9)	39(2)	45(2)	48(3)	-3(2)	9(2)	-1(2)	
C(10)	40(2)	45(2)	59(3)	-6(2)	10(2)	2(2)	
C(11)	83(3)	62(3)	62(4)	-2(3)	26(3)	15(2)	
C(12)	86(3)	105(4)	68(4)	-2(3)	39(3)	19(3)	
C(13)	77(3)	81(3)	64(4)	9(3)	35(3)	6(3)	
C(14)	73(3)	64(3)	80(4)	13(3)	39(3)	8(2)	
C(15)	57(2)	50(2)	80(4)	2(2)	38(2)	2(2)	
C(16)	133(4)	135(5)	112(6)	43(4)	86(4)	29(4)	
C(17)	117(4)	91(4)	102(5)	35(3)	30(4)	69(3)	
O(1A)	43(2)	59(2)	77(2)	20(2)	19(1)	10(1)	
O(2A)	56(2)	73(2)	71(2)	30(2)	10(2)	20(1)	
N(1A)	44(2)	35(2)	51(2)	5(2)	11(2)	4(1)	
C(1A)	45(2)	40(2)	50(3)	-3(2)	13(2)	-4(2)	
C(2A)	50(2)	35(2)	62(3)	2(2)	19(2)	2(2)	
C(3A)	58(2)	52(2)	55(3)	4(2)	17(2)	4(2)	
C(4A)	70(3)	50(2)	60(3)	11(2)	21(2)	-4(2)	
C(5A)	76(3)	48(2)	53(3)	8(2)	16(2)	4(2)	
C(6A)	54(2)	51(2)	63(3)	7(2)	16(2)	7(2)	
C(7A)	48(2)	38(2)	36(3)	0(2)	-1(2)	4(2)	
C(8A)	41(2)	48(2)	57(3)	1(2)	9(2)	0(2)	
C(9A)	39(2)	45(2)	32(3)	-8(2)	2(2)	3(2)	
C(10A)	41(2)	41(2)	46(3)	-2(2)	12(2)	1(2)	
C(11A)	50(2)	63(3)	73(4)	24(2)	11(2)	-4(2)	
C(12A)	44(2)	75(3)	74(4)	10(3)	6(2)	-9(2)	
C(13A)	57(3)	52(2)	64(3)	9(2)	16(2)	-4(2)	

Table 10. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **15b**. The anisotropic displacement factor exponent takes the form: -2 gpi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U$

C(14A)	62(3)	55(2)	53(3)	11(2)	18(2)	9(2)
C(15A)	47(2)	50(2)	55(3)	5(2)	15(2)	9(2)
C(16A)	74(3)	87(3)	70(4)	18(3)	20(3)	-10(2)
C(17A)	75(3)	85(3)	84(4)	46(3)	17(3)	35(3)

Atom	Х	У	Z	U(eq)	
H(1)	3591	886	1172	51	
H(3)	4032	2478	-1439	63	
H(4)	3119	3585	-2236	78	
H(5)	1558	4050	-1761	86	
H(8)	1157	2389	873	64	
H(11)	1183	1986	2499	81	
H(12)	712	1286	3798	99	
H(14)	2235	-608	3063	83	
H(15)	2695	70	1737	71	
H(16A)	374	-358	4245	175	
H(16B)	1257	144	5076	175	
H(16C)	1618	-660	4636	175	
H(17A)	436	4602	-799	155	
H(17B)	-632	4180	-609	155	
H(17C)	-210	3964	-1610	155	
H(1A)	5757	651	808	53	
H(3A)	4885	-1053	3123	65	
H(4A)	5844	-2017	4175	71	
H(5A)	7684	-2282	4239	71	
H(8A)	8504	-518	1850	59	
H(11A)	9268	320	1107	75	
H(12A)	10010	1022	-26	79	
H(14A)	7033	1868	-1417	67	
H(15A)	6257	1139	-330	60	
H(16D)	9513	1596	-1935	115	
H(16E)	9586	2374	-1247	115	
H(16F)	8502	2197	-2152	115	
H(17D)	9103	-2716	3453	123	
H(17E)	9449	-2151	4443	123	
H(17F)	10222	-2223	3662	123	

Table 5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **15b**.

Table 6. Dihedral angles [°] for 15b.

Atom1 - Atom2 - Atom3 - Atom4	Dihedral
C(9) - N(1) - C(1) - O(1)	177.4(3)
C(9) - N(1) - C(1) - C(2)	-2.0(5)
O(1) - C(1) - C(2) - C(3)	2.2(5)
N(1) - C(1) - C(2) - C(3)	-178.4(3)
O(1) - C(1) - C(2) - C(7)	-176.6(3)
N(1) - C(1) - C(2) - C(7)	2.8(5)
C(7) - C(2) - C(3) - C(4)	1.2(6)
C(1) - C(2) - C(3) - C(4)	-177.6(3)
C(2) - C(3) - C(4) - C(5)	-1.5(6)
C(3) - C(4) - C(5) - C(6)	1.8(7)
C(4) - C(5) - C(6) - O(2)	179.7(4)
C(4) - C(5) - C(6) - C(7)	-1.6(7)
C(17) - O(2) - C(6) - C(5)	7.0(6)
C(17) - O(2) - C(6) - C(7)	-171.8(4)
C(3) - C(2) - C(7) - C(6)	-1.0(5)
C(1) - C(2) - C(7) - C(6)	177.8(3)
C(3) - C(2) - C(7) - C(8)	179.1(4)
C(1) - C(2) - C(7) - C(8)	-2.2(5)
C(5) - C(6) - C(7) - C(2)	1.2(6)
O(2) - C(6) - C(7) - C(2)	-179.9(3)
C(5) - C(6) - C(7) - C(8)	-178.9(4)
O(2) - C(6) - C(7) - C(8)	0.0(6)
C(2) - C(7) - C(8) - C(9)	0.5(6)
C(6) - C(7) - C(8) - C(9)	-179.4(4)
C(7) - C(8) - C(9) - N(1)	0.4(5)
C(7) - C(8) - C(9) - C(10)	-178.8(4)
C(1) - N(1) - C(9) - C(8)	0.4(5)
C(1) - N(1) - C(9) - C(10)	179.8(3)
C(8) - C(9) - C(10) - C(15)	154.8(4)
N(1) - C(9) - C(10) - C(15)	-24.5(5)
C(8) - C(9) - C(10) - C(11)	-25.3(6)
N(1) - C(9) - C(10) - C(11)	155.4(4)
C(15) - C(10) - C(11) - C(12)	1.1(7)
C(9) - C(10) - C(11) - C(12)	-178.8(4)
C(10) - C(11) - C(12) - C(13)	0.5(8)
C(11) - C(12) - C(13) - C(14)	-1.6(7)

C(11) - C(12) - C(13) - C(16)	178.9(5)
C(12) - C(13) - C(14) - C(15)	1.0(7)
C(16) - C(13) - C(14) - C(15)	-179.5(5)
C(13) - C(14) - C(15) - C(10)	0.6(7)
C(11) - C(10) - C(15) - C(14)	-1.7(6)
C(9) - C(10) - C(15) - C(14)	178.3(4)
C(9A) - N(1A) - C(1A) - O(1A)	178.8(3)
C(9A) - N(1A) - C(1A) - C(2A)	0.7(5)
O(1A) - C(1A) - C(2A) - C(7A)	-178.4(3)
N(1A) - C(1A) - C(2A) - C(7A)	-0.4(5)
O(1A) - C(1A) - C(2A) - C(3A)	1.4(6)
N(1A) - C(1A) - C(2A) - C(3A)	179.5(3)
C(7A) - C(2A) - C(3A) - C(4A)	-0.7(6)
C(1A) - C(2A) - C(3A) - C(4A)	179.4(4)
C(2A) - C(3A) - C(4A) - C(5A)	0.7(6)
C(3A) - C(4A) - C(5A) - C(6A)	-0.9(6)
C(17A) - O(2A) - C(6A) - C(5A)	3.8(6)
C(17A) - O(2A) - C(6A) - C(7A)	-175.9(4)
C(4A) - C(5A) - C(6A) - O(2A)	-178.7(4)
C(4A) - C(5A) - C(6A) - C(7A)	1.0(6)
C(3A) - C(2A) - C(7A) - C(6A)	0.9(6)
C(1A) - C(2A) - C(7A) - C(6A)	-179.3(4)
C(3A) - C(2A) - C(7A) - C(8A)	-180.0(4)
C(1A) - C(2A) - C(7A) - C(8A)	-0.1(5)
O(2A) - C(6A) - C(7A) - C(2A)	178.7(3)
C(5A) - C(6A) - C(7A) - C(2A)	-1.1(6)
O(2A) - C(6A) - C(7A) - C(8A)	-0.4(6)
C(5A) - C(6A) - C(7A) - C(8A)	179.8(4)
C(2A) - C(7A) - C(8A) - C(9A)	0.3(6)
C(6A) - C(7A) - C(8A) - C(9A)	179.4(4)
C(7A) - C(8A) - C(9A) - N(1A)	0.0(5)
C(7A) - C(8A) - C(9A) - C(10A)	179.7(3)
C(1A) - N(1A) - C(9A) - C(8A)	-0.6(5)
C(1A) - N(1A) - C(9A) - C(10A)	179.8(3)
C(8A) - C(9A) - C(10A) - C(15A)	168.2(4)
N(1A) - C(9A) - C(10A) - C(15A)	-12.2(5)
C(8A) - C(9A) - C(10A) - C(11A)	-10.0(6)
N(1A) - C(9A) - C(10A) - C(11A)	169.7(3)
C(15A) - C(10A) - C(11A) - C(12A)	-1.4(6)

C(9A) - C(10A) - C(15A) - C(14A)	-178.0(3)
C(11A) - C(10A) - C(15A) - C(14A)	0.2(6)
C(13A) - C(14A) - C(15A) - C(10A)	1.2(6)
C(16A) - C(13A) - C(14A) - C(15A)	176.5(4)
C(12A) - C(13A) - C(14A) - C(15A)	-1.3(6)
C(11A) - C(12A) - C(13A) - C(16A)	-177.7(4)
C(11A) - C(12A) - C(13A) - C(14A)	0.1(7)
C(10A) - C(11A) - C(12A) - C(13A)	1.2(7)
C(9A) - C(10A) - C(11A) - C(12A)	176.9(4)

Compound	11a	11b	11c	11d	12a	12f
PDB code	4UVL	4UVP	4UVS	4UVT	4UVZ	4UVO
Data						
Beam line	ESRF ID23-1	ESRF ID23-1	ESRF ID14-1	ESRF ID23-1	ESRF ID23-1	ESRF ID23-2
Wavelength (Å)	1.07227	1.07227	0.93340	1.07227	1.07227	0.87260
Space group	C222 ₁					
Cell dimensions						
a, b, c (Å)	91.30, 97.78, 118.88	91.16, 97.70, 118.69	91.45, 98.68, 119.21	91.54, 97.62, 118.07	91.03, 98.06, 118.03	91.31, 98.25, 119.11
Resolution (Å)	50-2.0 (2.05-2.00)	50-1.75 (1.80-1.75)	50-2.0 (2.05-2.00)	50-1.95 (2.00-1.95)	50-1.60 (1.64-1.60)	50-1.85 (1.90-1.85)
\mathbf{R}_{merge}	0.090 (0.706)	0.049 (0.463)	0.080 (0.522)	0.070 (0.597)	0.057 (0.702)	0.071 (0.671)
$I \ / \ \sigma I$	15.50 (2.85)	16.29 (2.19)	14.48 (2.60)	18.62 (3.37)	20.38 (2.78)	17.10 (2.53)
Completeness (%)	100 (100)	98.4 (85.8)	99.7 (99.9)	99.3 (98.9)	98.4 (97.2)	99.8 (99.9)
Redundancy	7.2 (7.3)	3.5 (2.7)	3.7 (3.7)	7.2 (7.4)	7.3 (7.4)	5.6 (5.6)
Refinement						
R_{work} / R_{free}	0.17253 / 0.21402	0.16841 / 0.20541	0.18164 / 0.21424	0.16868 / 0.21306	0.16365 / 0.18851	0.16633 / 0.19735
B -factors						
Protein	26.6065	21.283	19.9235	26.6735	19.3375	21.6805
Inhibitor	32.4065	19.976	18.473	30.7105	14.0475	26.6415
R.m.s.d.						
Bond lengths (Å)	0.014	0.015	0.013	0.013	0.014	0.015
Bond angles (°)	1.389	1.491	1.305	1.370	1.431	1.441
Ramachandran plot (%)						
Favoured regions	98.53	99.27	98.78	98.78	99.02	99.27
Additionally allowed regions	-	0.57	0.28	0.85	1.13	1.13
Compound	12m	13h	13n	14f	15e	17
PDB code	4UVN	4UVV	4UVU	4UVX	4UVY	4UVW
Data						
Beam line	ESRF ID14-1	Diamond I038	Diamond I038	Diamond I038	Diamond I04-1	ESRF ID23-2
Wavelength (Å)	0.93340	0.976250	0.976250	0.976250	0.92000	0.87260
Space group	C222 ₁					

Section H: Details of the diffraction data and refinement of the structures of complexes of selected isoquinolin-1-ones with tankyrase-2.

	1						
Cell dimensions	91.23 97.72 117.						
a, b, c (Å)	90.69, 98.15, 118.0	91.23, 97.72, 117.81	90.23, 98.56, 118.94	90.58, 98.51, 118.50	91.38, 98.36, 119.51	93.56, 96.73, 117.09	
Resolution (Å)	50-2.20 (2.26-2.20)	50-1.90 (1.95-1.90)	30-1.95 (2.00-1.95)	30-1.95 (2.00-1.95)	30-1.95 (2.00-1.95)	50-2.10 (2.15-2.10)	
R _{merge}	0.095 (0.592)	5.7 (70.8)	8.9 (77.3)	8.2 (78.7)	12.3 (94.4)	9.0 (92.6)	
$I \ / \ \sigma I$	12.85 (2.27)	18.59 (2.45)	12.54 (2.38)	13.60 (2.27)	12.59 (2.07)	17.42 (2.87)	
Completeness (%)	97.1 (99.3)	99.9 (100)	99.9 (100)	99.9 (100)	99.9 (99.9)	99.9 (100)	
Redundancy	3.8 (3.7)	6.7 (6.7)	6.6 (6.6)	6.6 (6.6)	6.7 (6.9)	7.4 (7.5)	
Refinement							
$R_{work} \ / \ R_{free}$	0.18423 / 0.23870	0.16623 / 0.19803	0.1711 / 0.1918	0.1693 / 0.2112	0.1730 / 0.2126	0.1709 / 0.2098	
B -factors							
Protein	20.947	34.8	35.2	36.6	25.6	38.0	
Inhibitor	16.717	27.9	37.0	31.8	33.8	32.2	
R.m.s.d.							
Bond lengths (Å)	0.013	0.011	0.009	0.011	0.009	0.012	
Bond angles (°)	1.354	1.4	1.4	1.4	1.2	1.5	
Ramachandran plot (%)							
Favoured regions	99.02	99.27	98.29	98.53	98.80	98.04	
Additionally allowed regions	0.85	0.73	1.71	1.47	1.20	1.96	

Section I: References for Supporting Information

- 1. Woon, E. C. Y.; Sunderland, P. T.; Paine, H. A.; Lloyd, M. D.; Thompson, A. S.; Threadgill, M. D. *Bioorg. Med. Chem.* **2013**, *21*, 5218.
- 2. Nair, M. D.; Mehta, S. R. Indian. J. Chem. 1967, 5, 403.
- 3. Spangler, J. J.; Kim, J. H.; Cava, M. P. J. Org. Chem. 1977, 42, 1697.
- 4. Osborn, A. R.; Schjofield, K.; Short, L. N. J. Chem. Soc. 1956, 4191.
- 5. Lu, N.; Chen, Y.-C.; Chen, W.-S.; Chen, T.-L.; Wu, S.-J. J. Organometallic Chem. **2009**, 694, 278.
- 6. Cohen, S. G.; Stein, N. M.; J. Am. Chem. Soc. 1971, 93, 6542.
- 7. Raushel, J.; Sandrock, D. L.; Josyula, K. V.; Pakyz, D.; Molander, G. A. J. Org. Chem. **2011**, *76*, 2762.
- Gemma, S.; Camodeca, C.; Brindisi, M.; Brogi, S.; Kukreja, G.; Kunjir, S.; Gabellieri, E.; Lucantoni, L.; Habluetzel, A.; Taramelli, D.; Basilico, N.; Gualdani, R.; Tadini-Buoninsegni, F.; Bartolommei, G.; Moncelli, M. R.; Martin, R. E.; Summers, R. L.; Lamponi, S.; Savini, L.; Fiorini, I.; Valoti, M.; Novellino, E.; Campiani, G.; Butini, S. J. Med. Chem. 2012, 55, 10387.
- 9. Sairam, P.; Puranik, R.; Kelkar, A. S.; Sasikiran, S.; Veerender, M.; Parvathi, A. Synth. Commun. 2003, 33, 3597.
- 10. Little, W. F.; Eisenthal, R. Amides of ferrocenemonocarboxylic acid. J. Am. Chem. Soc. 1960, 82, 1577.
- 11. Wrona, A.; Palusiak, M.; Zakrzewski, J. J. Organometallic Chem. 2008, 693, 263.