Citation for published version:

Paine, HA, Nathubhai, A, Woon, ECY, Sunderland, PT, Wood, PJ, Mahon, MF, Lloyd, MD, Thompson, AS, Haikarainen, T, Narwal, M, Lehtio, L \& Threadgill, MD 2015, 'Exploration of the nicotinamide-binding site of the tankyrases, identifying 3 -arylisoquinolin-1-ones as potent and selective inhibitors in vitro', Bioorganic and Medicinal Chemistry, vol. 23, no. 17, pp. 5891-5908. https://doi.org/10.1016/j.bmc.2015.06.061

DOI:
10.1016/j.bmc.2015.06.061

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication

Publisher Rights

CC BY-NC-ND
Published version available at: http://dx.doi.org/10.1016/j.bmc.2015.06.061

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

SUPPORTING INFORMATION

Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-aryliso-quinolin-1-ones as potent and selective inhibitors

Helen A. Paine, ${ }^{\text {a }}$ Amit Nathubhai, ${ }^{\text {a }}$ Esther C. Y. Woon, ${ }^{\text {a,b }}$ Peter T. Sunderland, ${ }^{\text {a Pauline J. }}$ Wood, ${ }^{\text {a }}$ Mary F. Mahon, ${ }^{\text {c }}$ Matthew D. Lloyd, ${ }^{\text {a }}$ Andrew S. Thompson, ${ }^{\text {a }}$ Teemu Haikarainen, ${ }^{\text {d }}$ Mohit Narwal, ${ }^{\mathrm{d}}$ Lari Lehtiöd ${ }^{\text {d }}$ and Michael D. Threadgill ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Medicinal Chemistry, Department of Pharmacy \& Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
${ }^{\text {b }}$ Department of Pharmacy, National University of Singapore, Block S4, Science Drive 4, Singapore 117543, Republic of Singapore
${ }^{\text {c }}$ X-Ray Crystallographic Suite, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
${ }^{d}$ Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland

Table of contents

Section A: General synthetic methods 2
Section B: Experimental methods - chemical synthesis 3
Section C: Examples of graphs of enzyme activity vs. concentration for
inhibition of tankyrase-2 by isoquinolin-1-ones.
Section D: Examples of graphs of enzyme activity vs. concentration for
inhibition of tankyrase-1 by isoquinolin-1-ones.
Section E: Graphs of enzyme activity vs. concentration for inhibition of human 30 PARP-2 by isoquinolin-1-ones.

Section F: Data from NCI 60-cell-line evaluations of selected isoquinolinones 31
Section G: Crystal data for small-molecule X-ray crystallography 42
Section H: Details of the diffraction data and refinement of the structures of
complexes of selected isoquinolin-1-ones with tankyrase-2
Section I: References for Supporting Information 68

Section A: General synthetic methods

Chemical reagents, solvents and starting materials were purchased from Sigma Aldrich, Goss Scientific, Alfa Aesar and Fisher Scientific and were used without further purification. Proton and carbon magnetic resonance spectra were recorded at 400.04 MHz or 500.13 MHz for ${ }^{1} \mathrm{H}$ NMR, at 100.59 MHz or 125.76 MHz for ${ }^{13} \mathrm{C}$ NMR and at 376 MHz for ${ }^{19} \mathrm{~F}$ NMR, using $\mathrm{CD}_{3} \mathrm{OD},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and CDCl_{3}, containing SiMe_{4} as an internal standard. Reactions were monitored by thin-layer chromatography (TLC) on silica gel $60 \AA$ (particle size $40-63 \mu \mathrm{~m}$). Most mass spectrometric data were obtained by means of electrospray ionisation using a microTOF instrument from Bruker Daltonics (Bremen, Germany) and calibrated using sodium formate solution. Melting points were obtained using a heated stage microscope (Reichert-Jung). Experiments were conducted at ambient temperature, unless otherwise noted. Solutions in organic solvents were dried with $\mathrm{MgSO}_{4} . \mathrm{Pd}_{2} \mathrm{dba}_{3}$ refers to tris(dibenzylideneacetone)dipalladium, SPhos refers to 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ refers to bis(triphenylphosphine)palladium(II) dichloride. The brine was saturated.

Section B: Experimental methods - chemical synthesis

5-Amino-3-(3-methoxyphenyl)isoquinolin-1-one hydrobromide (12e). Compound 31e (31 $\mathrm{mg}, 110 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.1 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 5 h . Evaporation yielded 12e ($29 \mathrm{mg}, 73 \%$) as a pale buff solid: $\mathrm{mp} 202-205^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.89$ (3 H, s, Me), $6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{dt}, J=8.2,0.6 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.35$ $\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Ph} 2,6-\mathrm{H}_{2}\right), 7.46(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \operatorname{Ph} 5-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 7.83$ (1 $\mathrm{H}, \mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 8.42(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)(\mathrm{HSQC} /$ HMBC) $\delta 56.14$ (Me), 98.49 (4-C), 113.73 ($\mathrm{Ph} 2-\mathrm{C}$), 116.98 ($\mathrm{Ph} 4-\mathrm{C}$), 120.39 ($\mathrm{Ph} 6-\mathrm{C}$), 127.56 ($8 \mathrm{a}-\mathrm{C}$), 127.66 ($4 \mathrm{a}-\mathrm{C}$), 127.82 (7-C), 128.96 (6-C), 129.47 (8-C), 131.60 (Ph 5-C), 134.01 (5-C), 136.68 ($\mathrm{Ph} 1-\mathrm{C}$), 144.29 (3-C), 161.82 ($\mathrm{Ph} 3-\mathrm{C}$), 164.54 ($1-\mathrm{C}$); MS m/z $267.1115(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 267.1135).

5-Amino-3-(2-trifluoromethylphenyl)isoquinolin-1-one hydrobromide (12g). Compound $31 \mathrm{~g}(22.4 \mathrm{mg}, 70 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.25 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 5 h . Evaporation yielded $\mathbf{1 2 g}(25.2 \mathrm{mg}, 94 \%)$ as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.65(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.69\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+\mathrm{Ph} 4,5,6-\mathrm{H}_{3}\right), 7.85(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 6-\mathrm{H}), 7.88$ (1 $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} /$ HMBC) $\delta 100.84(4-\mathrm{C}), 125.24\left(\mathrm{q}, J=271.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 127.40(\mathrm{q}, J=5.3 \mathrm{~Hz}, \mathrm{Ph} 1-\mathrm{C})$, 127.56 (q, $J=4.8 \mathrm{~Hz}, \operatorname{Ph} 3-\mathrm{C}$), 128.21 (7-C), 128.94 (6-C), 129.36 ($8-\mathrm{C}$), 131.44 (Ph 6-C), 130.10 (q, $J=30.6 \mathrm{~Hz}, \operatorname{Ph} 2-\mathrm{C}), 132.95$ (5-C), 133.23 (Ph 4-C), 133.50 (Ph 5-C), 141.90 (3C), $163.54(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta-59.36\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 305.0872(\mathrm{M}+\mathrm{H})^{+}$ $\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 305.0904).

5-Amino-3-(3-trifluoromethylphenyl)isoquinolin-1-one hydrobromide (12h). Compound 31h ($70.5 \mathrm{mg}, 220 \mu \mathrm{~mol}$) was stirred with HBr in $\mathrm{AcOH}\left(33 \%, 3.75 \mathrm{~mL}\right.$) at $65^{\circ} \mathrm{C}$ for 7 h . Evaporation yielded 12h $(82.4 \mathrm{mg}, 97 \%)$ as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $7.05(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 6-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 7-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}$, $J=7.7 \mathrm{~Hz}, 8-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \operatorname{Ph} 5-\mathrm{H}), 7.77(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 8.11(1$ $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph} 2-\mathrm{H}), 11.56(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 99.07$ (4-C), 116.52 (8-C), 119.27 (6-C), 123.26 (q, $J=3.9 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{C}$), 125.67 (q, J=3.9 Hz, Ph 4-C), 126.19 ($4 \mathrm{a}-\mathrm{C}$), 127.27 (7-C), 129.74 (q, $J=31.8 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{C}$), 129.89 (Ph 5-C), 130.52 (Ph 6-C), 134.85 (5-C), 136.28 (Ph 1-C), 137.31 (3-C), 162.53 (1C); ${ }^{19}$ F NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-61.03\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 303.0740(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 303.0743).

5-Amino-3-(4-trifluoromethylphenyl)isoquinolin-1-one hydrobromide (12i). Compound 31i ($85 \mathrm{mg}, 270 \mu \mathrm{~mol}$) was stirred with HBr in $\mathrm{AcOH}\left(33 \%, 4.0 \mathrm{~mL}\right.$) at $65^{\circ} \mathrm{C}$ for 7 h . Evaporation yielded $\mathbf{1 2 i}(101 \mathrm{mg}, 98 \%)$ as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$ (lit. ${ }^{1} \mathrm{mp} 214-215^{\circ} \mathrm{C}$ for free base); ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.17\left(2 \mathrm{H}, \mathrm{m}, 4,6-\mathrm{H}_{2}\right), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.67(1 \mathrm{H}$, d, $J=7.5 \mathrm{~Hz}, 8-\mathrm{H}), 7.88\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right)$, $11.63(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 99.53$ (4-C), 117.08 (8-C), 118.87 (6-C), 124.11 (q, $J=270.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.64 (q, $J=3.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 126.28 (4aC), 127.41 ($7-\mathrm{C}+\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.20 ($\mathrm{q}, J=31.8 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}$), 136.82 ($\mathrm{Ph} 1-\mathrm{C}$), 137.83 (3C), $139.92(5-\mathrm{C}), 162.46(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-61.02\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 303.0756(\mathrm{M}$ $-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 303.0743$)$.

5-Amino-3-(4-fluorophenyl)isoquinolin-1-one hydrobromide (12j). Compound 31j (65 $\mathrm{mg}, 24 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 3.5 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 5 h . Evaporation
yielded $\mathbf{1 2 j}$ ($80 \mathrm{mg}, 98 \%$) as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.99(1 \mathrm{H}, \mathrm{s}, 4-$ H), $7.34\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H} \& \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.39(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, 6-H), $7.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 11.71(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 98.62$ (4-C), 115.48 ($8-\mathrm{C}$), 115.68 (d, $J=6.1 \mathrm{~Hz}$, Ph 3,5-C2), 124.75 (Ph 1-C), 125.72 (3-C), 126.66 (7-C), 128.99 (d, $J=17.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{C}_{2}$), 130.11 (6-C), 137.96 (Ph 4-C), 141.34 (5C), 162.63 (1-C); ${ }^{19}$ F NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-112.47(\mathrm{~m}, \mathrm{~F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 253.0756(\mathrm{M}-\mathrm{H}){ }^{-}$ $\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FN}_{2} \mathrm{O}\right.$ requires 253.0777).

5-Amino-3-(2-chlorophenyl)isoquinolin-1-one hydrobromide (12k). Compound 31k (40.4 $\mathrm{mg}, 140 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.6 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 5 h . Evaporation yielded 12k ($47.5 \mathrm{mg}, 95 \%$) as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.71(1 \mathrm{H}, \mathrm{s}, 4-$ H), $7.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 4,5-\mathrm{H}_{2}\right), 7.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,6-\mathrm{H}_{2}\right), 7.66(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.85(1$ $\mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 6-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)(\mathrm{HSQC} /$ HMBC) $\delta 100.92$ (4-C), 127.61 (4a-C), 128.14 (7-C), 128.55 (Ph 5-C), 128.83 (6-C), 129.34 (8-C), 131.22 (Ph 3-C or Ph 6-C), 132.35 (Ph 6-C or Ph 3-C), 132.51 (Ph 4-C), 133.54 (5-C), 134.17 (Ph 2-C), 134.98 (Ph 1-C), 142.26 (3-C), 163.87 (1-C); MS m/z 273.0597 (M + H) $\left(\mathrm{C}_{15} \mathrm{H}_{12}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}\right.$ requires 273.0609), 271.0623 (M+H) $\left(\mathrm{C}_{15} \mathrm{H}_{12}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}\right.$ requires 271.0638).

5-Amino-3-(3-chlorophenyl)isoquinolin-1-one hydrobromide (12l). Compound 311 (38.5 $\mathrm{mg}, 140 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.5 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 5 h . Evaporation yielded $\mathbf{1 2 1}(46.1 \mathrm{mg}, 97 \%)$ as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.93(1 \mathrm{H}, \mathrm{s}, 4-$ H), $7.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 4,6-\mathrm{H}_{2}\right), 7.63(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 5-\mathrm{H}), 7.79(1 \mathrm{H}$, d, $J=7.5 \mathrm{~Hz}, 6-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph} 2-\mathrm{H}), 8.41(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right)$ (HSQC / HMBC) $\delta 98.93$ (4-C), 126.52 (Ph 5-C), 128.09 (7-C), 128.17 (Ph 2-C), 128.47 (6C), 128.93 ($8-\mathrm{C}$), 131.16 ($\mathrm{Ph} 4-\mathrm{C}$ or $\mathrm{Ph} 6-\mathrm{C}$), 131.84 ($\mathrm{Ph} 6-\mathrm{C}$ or $\mathrm{Ph} 4-\mathrm{C}$), 133.56 (5-C), 136.19 (Ph 1-C), 137.24 (Ph 3-C), 142.63 (3-C), 166.31 (1-C); MS m/z 273.0584 (M + H) ${ }^{+}$ $\left(\mathrm{C}_{15} \mathrm{H}_{12}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}\right.$ requires 273.0609), 271.0616 (M+H) $\left(\mathrm{C}_{15} \mathrm{H}_{12}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}\right.$ requires 271.0638).

5-Amino-3-(2,6-dichlorophenyl)isoquinolin-1-one hydrobromide (12n). Compound 31n $(12.7 \mathrm{mg}, 40 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.0 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 5 h . Evaporation yielded 12n ($9.0 \mathrm{mg}, 58 \%$) as an amber solid: mp $226-228^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.73$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), $7.56\left(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}\right.$, Ph 4-H), $7.63\left(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right)$), 7.74 (1 $\mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 7.91(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 6-\mathrm{H}), 8.53(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$) (HSQC / HMBC) $\delta 101.69$ (4-C), 128.44 (7-C), 128.98 (6-C), 129.47 (8-C), 129.57 (Ph 3,5-C2), 133.13 ($\mathrm{Ph} 4-\mathrm{C}$), 133.42 (5-C), 133.88 (Ph 1-C), 136.46 (Ph 2,6-C2), 139.26 (3C), 164.19 (1-C); MS $m / z 327.0065(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{15} \mathrm{H}_{10}{ }^{35} \mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{NaO}\right.$ requires 327.0068).

5-Amino-3-(4-hydroxyphenyl)isoquinolin-1-one hydrobromide (12p). Compound 31p (55 $\mathrm{mg}, 210 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 2.5 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 16 h . Evaporation yielded 12p ($68.5 \mathrm{mg}, 98 \%$) as a buff solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 6.88(3 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}+\mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.36\left(2 \mathrm{H}, \mathrm{m}, 6,7-\mathrm{H}_{2}\right), 7.67\left(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.88(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.46(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 96.01$ (4-C), 115.55 (Ph 3,5-C2), 124.59 (7-C), 125.36 (6-C), 125.94 (8-C), 128.09 (Ph 2,6-C2), 139.99 (3C), $158.69(\mathrm{Ph} 4-\mathrm{C}), 162.45(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 253.0958(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 253.0977).

5-Amino-3-(2-phenylethyl)isoquinolin-1-one hydrobromide (12s). Compound 39 (40 mg , $140 \mu \mathrm{~mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 2.0 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 16 h . Evaporation yielded 12s ($35 \mathrm{mg}, 70 \%$) as a red-brown solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.95(2 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}$, ethyl 1-H2), $3.06\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}\right.$, ethyl $\left.2-\mathrm{H}_{2}\right), 6.48(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.24(5 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.56(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 8.38(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) (HSQC $\left./ \mathrm{HMBC}\right) \delta 35.83$ (ethyl 2-C), 36.51 (ethyl 1-C), 97.82 (4-C), 126.76 (7-C), 127.07 (Ph 3-C), 127.48 (6-C), 129.36 ($8-\mathrm{C}$), 129.43 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.62 (Ph 3,5-C2), 134.04 (5-C), 141.57 (Ph 1-C), 145.88 (3-C), 164.03 (1-C); MS m/z $265.1320(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 265.1341).

5-Amino-3-(4-aminocarbonylphenyl)isoquinolin-1-one hydrobromide (12u). Compound 31r ($14 \mathrm{mg}, 50 \mu \mathrm{~mol}$) was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.0 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 16 h . Evaporation yielded $\mathbf{1 2 u}(17.0 \mathrm{mg}, 98 \%)$ as an amber solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $4.4\left(3 \mathrm{H}, \mathrm{m},{ }^{+} \mathrm{NH}_{3}\right), 7.14(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$, 7-H), $7.46(1 \mathrm{H}, \mathrm{br}, \mathrm{CONHH}), 7.66(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 8-\mathrm{H}), 7.92(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}$ $\left.2,6-\mathrm{H}_{2}\right), 7.99\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.08(1 \mathrm{H}, \mathrm{br}, \mathrm{CONH} H), 11.55(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 98.81$ (4-C), 119.83 (8-C), 120.91 (6-C), 126.12 (Ph 4-C), 126.30 (Ph 2,6-C2), 127.09 (7-C), 127.89 (Ph 3,5-C2), 134.48 (3-C), 136.30 (Ph 1C), $138.15(5-\mathrm{C}), 162.50(1-\mathrm{C}), 167.13\left(\mathrm{CONH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 278.0947(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ requires 278.0930).

3-(4-(1,1-Dimethylethyl)phenyl)-5-methylisoquinolin-1-one (13c). BuLi (2.5 M in hexanes, $0.46 \mathrm{~mL}, 1.14 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(127.5 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}$, $1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-(1,1-Dimethylethyl)benzonitrile ($180 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave 13c ($96.5 \mathrm{mg}, 29 \%$) as a white solid: mp 204-206 ${ }^{\circ} \mathrm{C}$; IR $v_{\max } 3295$, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ((CD $\left.)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 1.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.55(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 6.82(1$ H, s, 4-H), $7.35(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.51\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.54(1 \mathrm{H}, \mathrm{d}, J$ $=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.75\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.06(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.48(1$ $\mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.75(\mathrm{Me}), 30.97\left(\mathrm{CMe}_{3}\right), 34.44$ (CMe_{3}), 99.60 (4-C), 124.56 (8-C), 124.86 ($8 \mathrm{a}-\mathrm{C}$), 125.51 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 125.72 (7-C), 126.56 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 131.44 ($\mathrm{Ph} 1-\mathrm{C}$), 133.15 (6-C), 133.60 (4a-C), 136.69 (5-C), 139.84 (3-C), 151.87 ($\mathrm{Ph} 4-\mathrm{C}$), 162.97 (1-C); MS m/z 292.1686 (M + H) ${ }^{+}\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}\right.$ requires 292.1703).

3-(4-Methoxyphenyl)-5-methylisoquinolin-1-one (13d). BuLi (1.6 M in hexanes, 0.7 mL , 1.1 mmol) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(141 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Methoxybenzonitrile (151 $\mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave 13d (48 $\mathrm{mg}, 17 \%$) as a white solid: mp $207-208^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.54(1 \mathrm{H}, \mathrm{s}, 5-$ Me), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.77(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}\right.$, $\left.\operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 7.33(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.53(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, 6-\mathrm{H}), 7.78\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.05(1$ $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.45(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.81$ ($5-\mathrm{Me}$), 55.34 (OMe), 98.87 ($4-\mathrm{C}$), 114.15 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 124.57 ($8-\mathrm{C}$), 124.63 ($8 \mathrm{a}-\mathrm{C}$), 125.51 (7-C), 126.51 ($\mathrm{Ph} 1-\mathrm{C}$), 128.23 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 133.15 (6-C), 133.49 ($4 \mathrm{a}-\mathrm{C}$), 136.86 (5-C), 139.70 (3-C), 160.14 (Ph 4-C), 163.02 (1-C); MS m/z $553.2099(2 \mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4}\right.$ requires 553.2104); $288.0994(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}_{2}\right.$ requires 288.1000), $266.1179(\mathrm{M}+$ $\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}\right.$ requires 266.1181).

5-Methyl-3-(4-trifluoromethylphenyl)isoquinolin-1-one (13e). BuLi (1.6 M in hexanes, 1.1 $\mathrm{mL}, 1.7 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(202 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(300 \mathrm{mg}, 1.7 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .4$-Trifluoromethylbenzonitrile ($289 \mathrm{mg}, 1.7 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) $(25 \mathrm{~mL})$ gave 13e $(242 \mathrm{mg}, 47 \%)$ as white crystals: $\mathrm{mp} 251-$ $252^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.96(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.84\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.03(2 \mathrm{H}$, d, $\left.J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.08(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.75(1 \mathrm{H}, \mathrm{br}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left.\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.77(\mathrm{Me}), 101.54(4-\mathrm{C}), 124.62$ ($\left.8-\mathrm{C}\right), 125.23$ (q, $J=$ $295.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.51 ($8 \mathrm{a}-\mathrm{C}$), 125.56 (q, $J=3.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 126.54 ($7-\mathrm{C}$), 129.25 (q, J $=31.6 \mathrm{~Hz}$, Ph 4-C), 133.40 (6-C), 134.21 ($4 \mathrm{a}-\mathrm{C}$), 136.29 (5-C), 138.10 (Ph 1-C), 138.36 (3C), 162.91 ($1-\mathrm{C}$); ${ }^{19} \mathrm{~F}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$) -61.08 ($\mathrm{s}, \mathrm{CF}_{3}$); MS m/z $302.0808(\mathrm{M}-\mathrm{H})^{-}$ ($\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}$ requires 308.0798).

3-(2-Chlorophenyl)-5-methylisoquinolin-1-one (13f). BuLi (1.6 M in hexanes, $0.7 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(141 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 2-Chlorobenzonitrile (155 mg , $1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This mixture was washed thrice with brine and dried. The evaporation residue was washed (EtOH) to give $\mathbf{1 3 f}(4.9 \mathrm{mg}, 2 \%)$ as a white solid: mp $178-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.58(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H})$, 7.47 ($1 \mathrm{H}, \mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.59(3 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}+\mathrm{Ph} 3,6-\mathrm{H}_{2}\right), 8.08(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.59(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 18.69$ (Me), 102.43 (4-C), 124.61 ($8-\mathrm{C}$), 125.33 ($8 \mathrm{a}-\mathrm{C}$), 126.25 (7-C), 127.34 ($\mathrm{Ph} 4-\mathrm{C}$), 129.70 ($\mathrm{Ph} 6-\mathrm{C}$), 130.84 ($\mathrm{Ph} 5-\mathrm{C}$), 131.56 ($\mathrm{Ph} 3-\mathrm{C}$), 132.29 ($\mathrm{Ph} 2-\mathrm{C}$), 133.22 (6-C), 133.69 (4a-C), 134.24 (Ph 1-C), 136.31 (5-C), 138.15 (3-C), 162.24 (1-C); MS $m / z 292.0514(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{ClNNaO}\right.$ requires 292.0505).

3-(3-Chlorophenyl)-5-methylisoquinolin-1-one (13g). BuLi (1.6 M in hexanes, $0.7 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(141 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $42(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 3-Chlorobenzonitrile (155 mg , $1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave $\mathbf{1 3 g}(33 \mathrm{mg}, 11 \%)$ as a white solid: $\mathrm{mp} 275-276{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.57(3$ H, s, Me), $6.93(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 4,5-\mathrm{H}_{2}\right), 7.57$ (1 $\mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 6-\mathrm{H}), 7.93(1 \mathrm{H}, \mathrm{s}, \operatorname{Ph} 2-\mathrm{H}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $8-\mathrm{H}), 11.61(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.82(\mathrm{Me})$, 100.92 (4C), 124.57 ($8-\mathrm{C}$), 125.28 ($8 \mathrm{a}-\mathrm{C}$), 125.64 (Ph 6-C), 126.32 (7-C), 126.74 (Ph 2-C), 129.01 (Ph $4-\mathrm{C}$), 130.54 ($\mathrm{Ph} 5-\mathrm{C}$), 133.33 (6-C), 133.55 (Ph 1-C), 134.14 (4a-C), 136.20 (Ph 3-C), 136.41 (5-C), 138.31 (3-C), 162.87 (1-C); MS $m / z 292.0453(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{CINNaO}\right.$ requires 292.0506), 270.0661 ($\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{13}{ }^{35} \mathrm{CINO}\right.$ requires 270.0686).

3-(4-Chlorophenyl)-5-methylisoquinolin-1-one (13h). BuLi (1.6 M in hexanes, $1.1 \mathrm{~mL}, 1.7$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(202 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(300 \mathrm{mg}, 1.7 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Chlorobenzonitrile (233 mg , $1.7 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 2 h . Water (1.0 mL) was added, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The precipitate was collected by filtration to give $\mathbf{1 3 h}(456 \mathrm{mg}, 99 \%)$ as a white solid: mp $>360^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.93(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.61\left(3 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 6-\mathrm{H}+\mathrm{Ph} 2,6-\mathrm{H}_{3}\right), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-$ $\left.\mathrm{H}_{2}\right), 8.12(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 8-\mathrm{H}), 11.70(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left.\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right)(\mathrm{HSQC} /$ HMBC) $\delta 18.80$ (Me), 100.49 (4-C), 124.60 (8-C), 125.11 (8a-C), 126.19 (7-C), 128.73 (Ph 2,6-C2), 128.78 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 133.01 (4a-C), 133.34 (6-C), 133.96 (Ph 1,4-C C_{2}), 136.49 (5-C), 138.67 (3-C), 162.95 (1-C); MS m/z $270(\mathrm{M}-\mathrm{H})^{-}, 268.0533(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{11}{ }^{35} \mathrm{ClNO}\right.$ requires 268.0535).

3-(2,6-Dichlorophenyl)-5-methylisoquinolin-1-one (13i). BuLi (1.6 M in hexanes, 0.7 mL , 1.1 mmol) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(141 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .2,6$-Dichlorobenzonitrile $(194 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave $13 i(35 \mathrm{mg}, 10 \%)$ as a pale buff solid: mp $202-204^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $6.58(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ph} 4-$ H), $7.58(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 6-\mathrm{H}), 7.59\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.09(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}, 8-\mathrm{H}), 11.62(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.66(\mathrm{Me}), 102.81$ (4-C), 124.61 ($8-\mathrm{C}$), 125.58 ($8 \mathrm{a}-\mathrm{C}$), 126.45 ($7-\mathrm{C}$), 128.28 (Ph 3,5-C2), 131.67 (Ph 4-C), 133.19 (Ph 1-C), 133.29 (6-C), 133.75 (4a-C), 134.69 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 135.20 (3-C), 136.24 (5C), $162.37(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 326.0991(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{11}{ }^{35} \mathrm{Cl}_{2} \mathrm{NNaO}\right.$ requires 326.0115), $304.0286\left((\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}\right.\right.$ requires 304.0296).

3-(4-Bromophenyl)-5-methylisoquinolin-1-one (13j). BuLi (1.6 M in hexanes, $0.9 \mathrm{~mL}, 1.4$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(162 \mathrm{mg}, 1.6 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(241 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Bromobenzonitrile (248 mg , $1.4 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solid was collected by filtration and washed (EtOH) to give $\mathbf{1 3 j}$ (181 $\mathrm{mg}, 42 \%)$ as a white solid: $\mathrm{mp} 278-279^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $6.88(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.69(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.5 \mathrm{~Hz}, \operatorname{Ph} 2,6-\mathrm{H}_{2}\right), 7.78\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 8.07(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H})$, 11.59 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 18.81$ (Me), 100.47 (4C), 122.66 ($\mathrm{Ph} 4-\mathrm{C}$), 124.62 ($8-\mathrm{C}$), 125.13 ($8 \mathrm{a}-\mathrm{C}$), 126.20 (7-C), 129.03 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 131.66 (Ph 2,6-C 2), 133.34 (6-C), 133.43 (Ph 1-C), 133.97 ($4 \mathrm{a}-\mathrm{C}$), 136.51 (5-C), 138.81 (3-C), 162.99 (1-C); MS m/z $335.9966(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{79} \mathrm{BrNNaO}\right.$ requires 336.0000)

5-Methyl-3-(4-phenylethynylphenyl)isoquinolin-1-one (13k). BuLi (1.6 M in hexanes, 0.7 $\mathrm{mL}, 1.1 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(141 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 10 min . Compound $41(230 \mathrm{mg}, 1.1 \mathrm{mmol})$
in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Compound 43 $(194 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water $(1.0 \mathrm{~mL})$ was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solid was collected by filtration and washed (EtOH) to give $\mathbf{1 3 k}(117 \mathrm{mg}, 31 \%)$ as a white solid: mp $285-287^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta(2.57$, s, Me), $6.94(1 \mathrm{H}$, s, $4-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.45\left(3 \mathrm{H}, \mathrm{m}, \operatorname{Ph} 3,4,5-\mathrm{H}_{3}\right), 7.56(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 6-$ H), $7.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.67\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, Ar 2,6-H2), $8.08(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 8-\mathrm{H}), 11.62(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{CNMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC}$ / HMBC) $\delta 18.82$ (Me), 88.99 (ethyne 1-C), 90.86 (ethyne 2-C), 100.64 (4-C), 122.09 (Ph 1C), 122.92 ($\mathrm{Ar} 4-\mathrm{C}$), 124.61 ($8-\mathrm{C}$), 125.18 ($8 \mathrm{a}-\mathrm{C}$), 126.21 (7-C), 126.15 ($\operatorname{Ar} 2,6-\mathrm{C}_{2}$), 128.84 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 129.03 ($\mathrm{Ph} 10-\mathrm{C}$), 131.47 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 131.66 ($\mathrm{Ar} 3,5-\mathrm{C}_{2}$), 133.29 (6-C), 134.03 (4a-C), 134.17 (Ar 1-C), 136.50 (5-C), 139.00 (3-C), 163.00 (1-C); MS m/z 358.1218 (M + $\mathrm{Na})^{+}\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NNaO}\right.$ requires 358.1208), $336.1402(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}\right.$ requires 336.1388).

5-Methyl-3-(4-(piperidin-1-ylmethyl)phenyl)isoquinolin-1-one (13m). BuLi (1.6 M in hexanes, $0.7 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(142 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF (2.0 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.1$ mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Compound 45b ($226 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at this temperature, then at room temperature for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with saturated brine and dried. Evaporation and washing (EtOH) gave $\mathbf{1 3 m}(78 \mathrm{mg}, 21 \%)$ as a white solid: $\mathrm{mp} 196-197^{\circ} \mathrm{C}$; IR $v_{\text {max }} 3440(\mathrm{NH}), 1644(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 1.40\left(2 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.4-\mathrm{H}_{2}\right), 1.50$ $\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.3,5-\mathrm{H}_{4}\right), 2.34\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.2,6-\mathrm{H}_{4}\right), 2.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.47(2 \mathrm{H}, \mathrm{s}$, PhCH_{2}), $6.84(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.40(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-$ $\left.\mathrm{H}_{2}\right), 7.54(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, 6-\mathrm{H}), 7.76\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.06(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}, 8-\mathrm{H}), 11.48(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.76(\mathrm{Me}), 23.96$ (piperidine 4), 25.55 (piperidine 3,5- C_{2}), 53.91 (piperidine 2,6-C2), $62.37\left(\mathrm{PhCH}_{2}\right), 99.73$ (4C), 124.56 ($8-\mathrm{C}$), 124.90 ($8 \mathrm{a}-\mathrm{C}$), 125.79 ($7-\mathrm{C}$), 126.61 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.01 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 132.67 (Ph 1-C), 133.18 (6-C), 133.68 (4a-C), 136.66 (5-C), 139.78 (Ph 4-C), 140.06 (3-C), $162.95(1-\mathrm{C}) ; \mathrm{MS} m / z 665.3884(2 \mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{2}\right.$ requires 665.3855), $355.1805(\mathrm{M}+$ $\mathrm{Na})^{+}\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}\right.$ requires 355.1786$)$.

5-Methyl-3-(4-(pyrrolidin-1-ylmethyl)phenyl)isoquinolin-1-one hydrochloride (13n). BuLi (2.5 M in hexanes, $0.46 \mathrm{~mL}, 1.14 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(127.5 \mathrm{mg}, 1.3$ $\mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.13 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Compound $\mathbf{4 5 c}(210.5 \mathrm{mg}, 1.13 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water $(1.0 \mathrm{~mL})$ was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave 13n ($32 \mathrm{mg}, 9 \%$) as a pale yellow solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR $v_{\max } 3413$, $1640 \mathrm{~cm}^{-1}$; The solid was then treated for 16 h with aq. $\mathrm{HCl}(6.0 \mathrm{M}, 2.0 \mathrm{~mL})$. Evaporation and drying gave the HCl salt as a white solid: $\mathrm{mp}>360^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 1.70(4 \mathrm{H}$, m , pyrrolidine $\left.3,4-\mathrm{H}_{4}\right)$, $2.44\left(4 \mathrm{H}\right.$, m, pyrrolidine $\left.2,5-\mathrm{H}_{4}\right)$, $2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.61(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-$ $\left.\mathrm{H}_{2}\right), 7.54(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.76\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.05(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}, 8-\mathrm{H}), 11.52(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.77(\mathrm{Me}), 23.12$ (pyrrolidine 3,4- C_{2}), 53.50 (pyrrolidine 2,5- C_{2}), $59.15\left(\mathrm{PhCH}_{2}\right), 99.72$ (4-C), 124.55 (8-C), 124.92 ($8 \mathrm{a}-\mathrm{C}$), 125.80 (7-C), 126.64 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 128.71 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 132.64 ($\mathrm{Ph} 1-\mathrm{C}$),
133.30 (6-C), 133.68 (4a-C), 136.81 (5-C), 139.86 (3-C), 140.96 (Ph 4-C), 163.24 (1-C); MS $\mathrm{m} / \mathrm{z} 319.1788(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 319.1810).

5-Methyl-3-(4-((4-methylpiperazin-1-yl)methyl)phenyl)isoquinolin-1-one dihydro-

 chloride (130). BuLi (2.5 M in hexanes, $0.46 \mathrm{~mL}, 1.14 \mathrm{mmol}$) was added to dry $\mathrm{Pr}^{i}{ }_{2} \mathrm{NH}$ (128 $\mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF (2.0 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound 41 ($200 \mathrm{mg}, 1.13 \mathrm{mmol}$) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Compound $\mathbf{4 5 d}(243 \mathrm{mg}, 1.13 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. The evaporation residue was washed (EtOH) to give $\mathbf{1 3 0}(8 \mathrm{mg}, 2 \%)$ as a white solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$. The solid was treated for 16 h with aq. $\mathrm{HCl}(6 \mathrm{M}, 1.0 \mathrm{~mL})$. Evaporation and drying gave the 2. HCl salt: $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR $v_{\text {max }} 3419,1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $2.35\left(8 \mathrm{H}, \mathrm{m}\right.$, piperazine- $\left.\mathrm{H}_{8}\right), 2.54(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.49\left(\mathrm{PhCH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.35(1$ $\mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.39\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.54(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H})$, $7.76\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.05(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 8-\mathrm{H}), 11.51(1 \mathrm{H}, \mathrm{br}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.76$ (5-Me), 40.08 (NMe), 52.57 (piperazine 2,6-C C_{2}), 54.70 (piperazine 3,5-C2), $61.57\left(\mathrm{PhCH}_{2}\right), 99.75$ (4-C), 124.56 (8-C), 124.92 (8a-C), 125.81 (7-C), 126.65 (Ph 2,6-C2), 129.65 (Ph 3,5-C2), 132.79 (Ph 1-C), 133.18 (6-C), 133.69 (4a-C), 136.65 (5-C), 139.67 (Ph 4-C), 139.75 (3-C), 162.94 (1-C); MS m/z 348.2076 (M + H) ${ }^{+}$ $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}\right.$ requires 348.2076).5-Methyl-3-(pyridin-4-yl)isoquinolin-1-one (13p). BuLi (1.6 M in hexanes, $0.7 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(142 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Cyanopyridine ($118 \mathrm{mg}, 1.1$ $\mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave $\mathbf{1 3 p}(16.5 \mathrm{mg}, 6 \%)$ as white crystals: mp $268-269^{\circ} \mathrm{C}$; IR $v_{\max } 3450,1654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) δ $2.59(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.11(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$, $6-\mathrm{H}), 7.87\left(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.10(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 8.69(2 \mathrm{H}, \mathrm{d}, J=6.2$ Hz, , Ph 2,6-H2), $11.70(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}){ }^{13}{ }^{3} \mathrm{C}$ NMR ((CD $\left.)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.76$ (Me), 101.87 (4-C), 120.96 (pyridine 3,5-C2), 124.65 ($8-\mathrm{C}$), 125.83 ($8 \mathrm{a}-\mathrm{C}$), 126.91 (7-C), 133.49 (6C), 134.50 ($4 \mathrm{a}-\mathrm{C}$), 136.06 ($5-\mathrm{C}$), 137.06 (pyridine $4-\mathrm{C}$), 141.03 (3-C), 150.13 (pyridine 2,6C_{2}), 162.85 (1-C); MS $m / z 235.0864(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 235.0871).

3-(Benzo-1,3-dioxol-5-yl)-5-methylisoquinolin-1-one (13q). BuLi (1.6 M in hexanes, 0.70 $\mathrm{mL}, 1.1 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(141 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF (2.0 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $41(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .5$-Cyanobenzo-1,3-dioxole ($166 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solid was collected by filtration, washed (EtOH) and dried to give 13q ($199 \mathrm{mg}, 63 \%$) as a white solid. $\mathrm{mp}>360^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 2.54(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 6.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.78(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, benzodioxole 6-H), $7.33(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}$, benzodioxole $7-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}$, benzodioxole 4-H), $7.52(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H})$, 11.44 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 18.83$ (Me), 99.37 (4-C), $101.52\left(\mathrm{CH}_{2}\right)$, 107.27 (benzodioxole 4-C), 108.46 (benzodioxole 7-C), 121.07 (benzodioxole

6-C), 124.56 ($8-\mathrm{C}$), 124.72 ($8 \mathrm{a}-\mathrm{C}$), 125.60 (7-C), 128.40 (benzodioxole 5-C), 133.12 (6-C), 133.62 (4a-C), 136.80 (5-C), 139.77 (3-C), 147.71 (benzodioxole 7a-C), 148.17 (benzodioxole 3a-C), $163.14(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 278.0797(\mathrm{M} \mathrm{-} \mathrm{H})^{-}\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{3}\right.$ requires 278.0817).

5-Methyl-3-(thiophen-3-yl)isoquinolin-1-one (13r). BuLi (2.5 M in hexanes, $0.46 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(127.5 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $\mathbf{4 1}(200 \mathrm{mg}, 1.13 \mathrm{mmol}$) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 3-Cyanothiophene ($123 \mathrm{mg}, 1.1$ mmol) in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed thrice with saturated brine. Drying, evaporation and washing (EtOH) gave $\mathbf{1 3 r}(17 \mathrm{mg}, 6 \%)$ as a pale buff solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR $v_{\max } 3448,1647 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) δ $2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.99(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $6-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{m}$, thiophene $4-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}$, thiophene $5-\mathrm{H}), 8.04(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 8.28(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$, thiophene $2-\mathrm{H}), 11.47(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 18.80(\mathrm{Me}), 99.09$ (4-C), 123.46 (thiophene 2-C), 124.58 (8C), 124.95 ($8 \mathrm{a}-\mathrm{C}$), 125.74 (7-C), 126.16 (thiophene 5-C), 127.27 (thiophene 4-C), 133.25 (6C), 133.73 (4 a-C), 134.95 (thiophene 1-C), 135.37 (3-C), 136.72 (5-C), 162.80 (1-C); MS m/z $264.0454(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNaOS}\right.$ requires 264.0459).

5-Fluoro-3-(4-methylphenyl)isoquinolin-1-one (14b). BuLi (1.6 M in hexanes, $0.7 \mathrm{~mL}, 1.1$ mmol) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(142 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $49(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Methylbenzonitrile (129 mg , $1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave $\mathbf{1 4 b}(50 \mathrm{mg}, 18 \%)$ as white crystals: mp $232-233^{\circ} \mathrm{C}$; IR $v_{\max } 3481,1668,1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) $\delta 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.30\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.48(1$ $\mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, 6-\mathrm{H}), 7.71\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.03(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.70(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 20.83(\mathrm{Me})$, 94.19 (d, $J=5.1 \mathrm{~Hz}, 4-\mathrm{C}), 117.57(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 6-\mathrm{C}), 122.77(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 8-\mathrm{C}), 126.46$ (d, $J=3.4 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{C}) ; 126.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 7-\mathrm{C}), 126.79\left(\mathrm{Ph} 2,6-\mathrm{C}_{2}\right), 127.06(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $4 \mathrm{a}-\mathrm{C})$, $129.40\left(\mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 130.74$ (Ph 1-C), 139.38 (Ph 4-C), 141.40 (3-C), 157.26 (d, $J=$ $248.1 \mathrm{~Hz}, 5-\mathrm{C}), 161.81(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-122.08(\mathrm{dd}, J=10.4$, $5.2 \mathrm{~Hz}, \mathrm{~F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 252.0807(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FNO}\right.$ requires 252.0824$)$.

5-Fluoro-3-(4-methoxyphenyl)isoquinolin-1-one (14c). BuLi (1.6 M in hexanes, 0.7 mL , $1.1 \mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(131 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $49(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF $\left(2.0 \mathrm{~mL}\right.$) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Methoxybenzonitrile (147 $\mathrm{mg}, 1.1 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave $\mathbf{1 4 c}$ (8.1 $\mathrm{mg}, 3 \%)$ as an off-white solid: $\mathrm{mp} 238-240^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.78$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.05\left(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 7.45(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{t}, J=8.9$ $\mathrm{Hz}, 6-\mathrm{H}), 7.77\left(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.02(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.66(1 \mathrm{H}, \mathrm{br}$, $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 55.37(\mathrm{Me}), 93.59(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 4-\mathrm{C})$, 114.23 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 117.52 (d, $\left.J=19.6 \mathrm{~Hz}, 6-\mathrm{C}\right), 122.74(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 8-\mathrm{C}), 125.84$ (Ph 1-
C), $126.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{C}), 126.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 7-\mathrm{C}), 129.20(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{C})$, 128.35 (Ph 2,6-C2), 141.19 (3-C), 157.19 (d, $J=247.5 \mathrm{~Hz}, 5-\mathrm{C}), 160.41$ (Ph 4-C), 161.82 (1C); ${ }^{19}$ F NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-122.20(\mathrm{dd}, J=9.9,5.2 \mathrm{~Hz}, \mathrm{~F}) ; \mathrm{MS} m / z 561.1593(2 \mathrm{M}+\mathrm{Na})^{+}$ $\left(\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}\right.$ requires 561.1602), $292.0747(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNNaO}_{2}\right.$ requires 292.0750).

5-Fluoro-3-(4-trifluoromethylphenyl)isoquinolin-1-one (14d). BuLi (1.6 M in hexanes, 0.9 $\mathrm{mL}, 1.4 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(170 \mathrm{mg}, 1.7 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $49(250 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .4$-Trifluoromethylbenzonitrile ($236 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solid was collected by filtration and washed (EtOH) to give $\mathbf{1 4 d}(424 \mathrm{mg}, 99 \%)$ as a white solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 6.97$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{td}, J=7.6,5.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 7.86(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.1 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.05\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}+8-\mathrm{H}\right), 11.92(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) d 96.30 (d, $\left.J=4.9 \mathrm{~Hz}, 4-\mathrm{C}\right), 117.86$ (d, $\left.J=19.5 \mathrm{~Hz}, 6-\mathrm{C}\right)$, 122.83 (d, $J=3.4 \mathrm{~Hz}, 8-\mathrm{C}), 124.07\left(\mathrm{q}, J=270.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.63\left(\mathrm{q}, J=3.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right)$, 126.59 (d, $J=16.3 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{C}), 126.91$ ($8 \mathrm{a}-\mathrm{C}$), 127.52 (d, $J=7.6 \mathrm{~Hz}, 7-\mathrm{C}$), 127.99 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.58 (q, $J=31.9 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{C}), 137.47$ (1-C), 139.86 (3-C), 157.44 (d, $J=248.5 \mathrm{~Hz}, 5-\mathrm{C}$), 161.70 (1-C); ${ }^{19} \mathrm{~F}$ NMR (DMSO) $\delta-61.19\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-121.55(1 \mathrm{~F}, \mathrm{~m}, \mathrm{~F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $306.0559(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{NO}\right.$ requires 306.0548)

3-(4-Chlorophenyl)-5-fluoroisoquinolin-1-one (14f). BuLi (1.6 M in hexanes, $0.9 \mathrm{~mL}, 1.4$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(170 \mathrm{mg}, 1.7 \mathrm{mmol})$ in dry tetrahydrofuran $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 10 min . Compound $49(250 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .4$-Chlorobenzonitrile ($190 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solid was collected by filtration and washed (EtOH) to give $\mathbf{1 4 f}(269 \mathrm{mg}, 71 \%)$ as a white solid: mp $296-297^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) δ $6.86(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.57\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}+\mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.84(2 \mathrm{H}, \mathrm{d}, J=8.6$ Hz , $\left.\mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.05(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 8-\mathrm{H}), 11.63(1 \mathrm{H}, \mathrm{br}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 94.91$ (d, $J=5.4 \mathrm{~Hz}, 4-\mathrm{C}), 117.36$ (d, $J=19.6 \mathrm{~Hz}, 6-\mathrm{C}), 122.53$ (d, $J=$ $3.5 \mathrm{~Hz}, 8-\mathrm{C}), 126.73$ (d, $J=8.0 \mathrm{~Hz}, 7-\mathrm{C}$), 126.52 ($8 \mathrm{a}-\mathrm{C}$), 126.65 (d, $J=16.2 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{C}$), 128.51 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 128.57 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 132.26 ($\mathrm{Ph} 1-\mathrm{C}$), 134.15 ($\mathrm{Ph} 4-\mathrm{C}$), 140.00 (3-C), $157.15(\mathrm{~d}, J=248.4 \mathrm{~Hz}, 5-\mathrm{C}), 161.42(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-122.79(\mathrm{~m}, \mathrm{~F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $272.0762(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{15} \mathrm{H}_{8}{ }^{35} \mathrm{C}\right.$ IFNO requires 272.0784).

3-(4-Bromophenyl)-5-fluoroisoquinolin-1-one (14g). BuLi (1.6 M in hexanes, $0.64 \mathrm{~mL}, 1.2$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(121 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $49(180 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Bromobenzonitrile (186 mg , $1.0 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solid was collected by filtration and washed (EtOH) to give $\mathbf{1 1 g}$ (238 $\mathrm{mg}, 61 \%)$ as a white solid: $\mathrm{mp}>360^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) $\delta 6.86(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $7.47(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, 6-\mathrm{H}), 7.67\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.78$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 8.03(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 8-\mathrm{H}), 11.87(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ((CD $\left.)_{2} \mathrm{SO}\right) \delta(\mathrm{HSQC} / \mathrm{HMBC}) \delta 94.61(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4-\mathrm{C}), 117.08(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 6-$
C), $122.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 8-\mathrm{C}), 122.66(\mathrm{Ph} 4-\mathrm{C}), 126.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 7-\mathrm{C}), 126.53$ ($8 \mathrm{a}-\mathrm{C}$), 126.80 (d, $J=16.3 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{C}), 128.85\left(\mathrm{Ph} 3,5-\mathrm{C}_{2}\right), 131.45$ (Ph 2,6-C2), 133.27 (Ph 1-C), 140.87 (3-C), $157.20(\mathrm{~d}, J=248.3 \mathrm{~Hz}, 5-\mathrm{C}), 162.10(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-121.89$ (m, F); MS m/z $317.9760(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{15} \mathrm{H}_{8}{ }^{81} \mathrm{BrFNO}\right.$ requires 317.9753$)$, $315.9773(\mathrm{M}-\mathrm{H})^{-}$ $\left(\mathrm{C}_{15} \mathrm{H}_{8}{ }^{79} \mathrm{BrFNO}\right.$ requires 315.9773).

5-Fluoro-3-(pyridin-4-yl)isoquinolin-1-one (14h). BuLi (1.6 M in hexanes, 0.7 mL , 1.1 mmol) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(131 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $49(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Cyanopyridine ($114 \mathrm{mg}, 1.1$ $\mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave $\mathbf{1 4 h}(264 \mathrm{mg}, 99 \%)$ as a white solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR $v_{\max } 3435,1675,1244 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.10(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.86(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$, pyridine $\left.3,5-\mathrm{H}_{2}\right), 8.06(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 8-\mathrm{H}), 8.70\left(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}\right.$, pyridine $\left.2,6-\mathrm{H}_{2}\right), 11.90(1 \mathrm{H}$, $\mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 96.61$ (4-C), 117.89 (d, $\left.J=19.8 \mathrm{~Hz}, 6-\mathrm{C}\right)$, 121.10 (pyridine $3,5-\mathrm{C}_{2}$), 122.86 ($8-\mathrm{C}$), 126.40 (d, $J=15.9 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{C}$), 127.26 ($8 \mathrm{a}-\mathrm{C}$), 127.86 (d, $J=7.9 \mathrm{~Hz}, 7-\mathrm{C}$), 138.75 (3-C), 140.57 (pyridine 4-C), 150.19 (pyridine 2,6-C C_{2}), 157.52 (d, $J=248.8 \mathrm{~Hz}, 5-\mathrm{C}), 161.79(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-121.19(\mathrm{~m}, \mathrm{~F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $239.0622(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{FN}_{2} \mathrm{O}\right.$ requires 239.0621).

5-Methoxy-3-(4-methylphenyl)isoquinolin-1-one (15b). BuLi (1.6 M in hexanes, 0.8 mL , 1.3 mmol) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(156 \mathrm{mg}, 1.55 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $51(250 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Methylbenzonitrile (151 $\mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave 15b ($16 \mathrm{mg}, 5 \%$) as pale yellow crystals: mp $249-251^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) $\delta 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{Me}), 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.92(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}$, $6-\mathrm{H}), 7.29\left(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 7.41(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.66(2 \mathrm{H}, \mathrm{d}, J=8.2$ Hz , Ph $\left.2,6-\mathrm{H}_{2}\right), 7.77(1 \mathrm{H}, \mathrm{dt}, J=8.0,0.8 \mathrm{~Hz}, 8-\mathrm{H}), 11.54(1 \mathrm{H}, \mathrm{br}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 20.81(\mathrm{Me}), 55.92(\mathrm{OMe}), 96.35$ (4-C), 112.22 (6-C), 118.23 (8-C), 125.66 ($4 \mathrm{a}-\mathrm{C}$), 126.51 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 126.64 (7-C), 128.52 ($8 \mathrm{a}-\mathrm{C}$), 129.40 (Ph 3,5-C2), 131.22 ($\mathrm{Ph} 1-\mathrm{C}$), 138.88 (3-C), 139.62 (Ph 4-C), 154.33 (5-C), 162.54 (1-C); MS m/z $288.0995(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NaNO}_{2}\right.$ requires 288.1001).

3-(4-(1,1-Dimethylethyl)phenyl)-5-methoxyisoquinolin-1-one (15c). BuLi (2.5 M in hexanes, $0.42 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was added to dry $\mathrm{Pr}^{i}{ }_{2} \mathrm{NH}(126 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dry THF (2.0 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $51(200 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .4-(1,1-$ Dimethylethyl)benzonitrile ($164 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed thrice with brine. Drying, evaporation and washing (EtOH) gave $\mathbf{1 5 c}(72 \mathrm{mg}, 23 \%)$ as a white solid: $\mathrm{mp} 249-250^{\circ} \mathrm{C}$; IR $v_{\max } 3451,1633$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 1.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\dagger}\right), 3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.95(1 \mathrm{H}, \mathrm{s}, 4-$ H), $7.27(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 6-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.52(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph}$ $\left.3,5-\mathrm{H}_{2}\right), 7.72\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.54(1 \mathrm{H}, \mathrm{br}$,
$\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 30.96\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.43\left(\mathrm{CMe}_{3}\right), 55.90$ (OMe), 96.43 (4-C), 112.19 (6-C), 118.19 (8-C), 125.59 (Ph 3,5-C2), 125.59 ($8 \mathrm{a}-\mathrm{C}$), 126.30 (Ph 3,5-C2), 126.63 (7-C), 128.46 ($4 \mathrm{a}-\mathrm{C}$), 131.19 (Ph 1-C), 139.45 (3-C), 151.85 (Ph 4-C), $154.28(5-\mathrm{C}), 162.47(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 308.1639\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}\right.$ requires 308.1652).

5-Methoxy-3-(4-trifluoromethylphenyl)isoquinolin-1-one (15d). BuLi (1.6 M in hexanes, $0.8 \mathrm{~mL}, 1.3 \mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(157 \mathrm{mg}, 1.55 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $51(250 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .4$-Trifluoromethylbenzonitrile ($221 \mathrm{mg}, 1.3 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed thrice with brine and dried. Evaporation and recrystallisation (EtOH) gave $\mathbf{1 5 d}(113 \mathrm{mg}, 27 \%)$ as white crystals: mp $259-260^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ((CD $\left.)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.04(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6-$ H), $7.48(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 7.83(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $\left.\mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.98\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}\right.$, $\left.\mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 11.75(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 55.93$ (Me), 98.28 (4-C), 112.46 (6-C), 118.18 (8-C), 124.03 (q, J = $270.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.51 ($\mathrm{q}, J=3.8 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 126.15 ($4 \mathrm{a}-\mathrm{C}$), 127.40 (7-C), 127.49 (Ph $2,6-\mathrm{C}_{2}$), 127.93 ($8 \mathrm{a}-\mathrm{C}$), 129.14 (q, $J=31.9 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}$), 137.85 ($\mathrm{Ph} 1-\mathrm{C}$), 137.96 (3-C), 154.54 (5-C), $162.30(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-61.20\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 318.0740(\mathrm{M}-$ $\mathrm{H})^{-}\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2}\right.$ requires 318.0747).

3-(4-Chlorophenyl)-5-methoxyisoquinolin-1-one (15e). BuLi (1.6 M in hexanes, 0.8 mL , $1.3 \mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(156 \mathrm{mg}, 1.55 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $51(250 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $\left(2.0 \mathrm{~mL}\right.$) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Chlorobenzonitrile (178 $\mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF (2.0 mL) was added $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave 15e (86 $\mathrm{mg}, 23 \%)$ as an off-white solid: $\mathrm{mp} 243-245^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 4.00(3 \mathrm{H}, \mathrm{s}$, Me), $7.01(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.60(2$ $\left.\mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 7.84\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}+\mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 11.71(1 \mathrm{H}, \mathrm{br}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 55.95$ (Me), 97.34 (4-C), 112.39 (6-C), 118.23 (8-C), 125.89 ($4 \mathrm{a}-\mathrm{C}$), 127.11 (7-C), 128.20 ($8 \mathrm{a}-\mathrm{C}$), 128.56 (Ph 2,6-C2), 128.79 (Ph 3,5-C2), 132.88 (Ph 1C), 133.91 (Ph 4-C), 138.42 (3-C), 154.44 (5-C), 162.44 (1-C); MS m/z 308.0413 (M + Na) ${ }^{+}$ $\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{ClNNaO} 2\right.$ requires 308.0449).

3-(4-Bromophenyl)-5-methoxyisoquinolin-1-one (15f). BuLi (1.6 M in hexanes, 0.70 mL , $1.1 \mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(131 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $51(200 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry THF $\left(2.0 \mathrm{~mL}\right.$) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Bromobenzonitrile (188 $\mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave $\mathbf{1 5 f}(48 \mathrm{mg}, 14 \%)$ as a white solid: mp $263-264^{\circ} \mathrm{C}$; IR $v_{\max } 3526,1665,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 3.94$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $6.95(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H})$, $7.69\left(4 \mathrm{H}, \mathrm{m}, \operatorname{Ph} 2,3,5,6-\mathrm{H}_{4}\right), 7.78(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 11.64(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 55.95$ (Me), 97.30 (4-C), 112.39 (6-C), 118.23 (8-C), 122.58 (Ph 4-C), 125.90 (4a-C), 127.11 (7-C), 128.19 ($8 \mathrm{a}-\mathrm{C}$), 128.79 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 131.70 (Ph 3,5-
C_{2}), 133.24 (Ph 1-C), 138.49 (3-C), 154.44 (5-C), 162.44 (1-C); MS m/z 682.9978 (2 M + $\mathrm{Na})\left(\mathrm{C}_{32} \mathrm{H}_{24}{ }^{79} \mathrm{Br}^{81} \mathrm{BrN}_{2} \mathrm{NaO}_{4}\right.$ requires 682.9981$) ; 661.0145(2 \mathrm{M}+\mathrm{H})\left(\mathrm{C}_{32} \mathrm{H}_{25}{ }^{79} \mathrm{Br}^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}\right.$ requires 661.0161); $351.9959(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{79} \mathrm{BrNNaO}_{2}\right.$ requires 351.9949); $332.0098(\mathrm{M}$ $+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{13}{ }^{81} \mathrm{BrNO}_{2}\right.$ requires 332.0110); $330.0113(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{13}{ }^{79} \mathrm{BrNO}_{2}\right.$ requires 330.0130).

5-Methoxy-3-(pyridin-4-yl)isoquinolin-1-one (15g). BuLi (1.6 M in hexanes, $0.80 \mathrm{~mL}, 1.3$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(157 \mathrm{mg}, 1.55 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $\mathbf{5 1}(250 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 4-Cyanopyridine ($135 \mathrm{mg}, 1.3$ $\mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for 16 h . Water (1.0 mL) was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave $\mathbf{1 5 g}(284 \mathrm{mg}, 87 \%)$ as a white solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR $v_{\max } 3431,1673 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{COSY}) \delta 3.96(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 7.16(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 6-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.80$ $\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}+\right.$ pyridine $\left.3,5-\mathrm{H}_{2}\right), 8.66\left(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}\right.$, pyridine $\left.2,6-\mathrm{H}_{2}\right), 11.74(1 \mathrm{H}, \mathrm{br}$, $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 56.04$ (Me), 98.74 (4-C), 112.64 (6-C), 118.26 ($8-\mathrm{C}$), 120.76 (pyridine 3,5-C2), 126.55 ($4 \mathrm{a}-\mathrm{C}$), 127.70 ($8 \mathrm{a}-\mathrm{C}$), 127.93 (7-C), 136.82 (pyridine 4-C), 140.86 (3-C), 150.19 (pyridine 2,6-C2), 154.70 ($5-\mathrm{C}$), 162.39 (1-C); MS m / z $253.0972(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 253.0977).

3-(Benzo-1,3-dioxol-5-yl)-5-methoxyisoquinolin-1-one (15h). BuLi (1.6 M in hexanes, 0.7 $\mathrm{mL}, 1.1 \mathrm{mmol}$) was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(125 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dry THF (2.0 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $51(200 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} .5$-Cyanobenzo-1,3dioxole ($152 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with brine and dried. Evaporation and washing (EtOH) gave $\mathbf{1 5 h}(32 \mathrm{mg}, 11 \%)$ as an off-white solid: $\mathrm{mp} 282-284^{\circ} \mathrm{C}$; IR $v_{\max } 3445,1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.86(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{C}), 7.01(1 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H})$, 11.45 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC} / \mathrm{DEPT}) \delta 55.91$ (OMe), 96.29 (4-C), $101.53\left(\mathrm{CH}_{2}\right), 107.03$ (Ph 4-C), 108.54 (Ph 7-C), 112.17 (6-C), 118.21 (8-C), 120.92 (Ph 6-C), 125.54 (4a-C), 126.52 (7-C), 128.20 (Ph 5-C), 128.54 (8a-C), 139.42 (3-C), 147.72 (Ph 7a-C), 148.16 (Ph 3a-C), 154.27 (5-C), 162.51 (1-C); MS m/z 613.1595 ($2 \mathrm{M}+\mathrm{Na}$) $\left(\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{8}\right.$ requires 613.1587); $591.1768(2 \mathrm{M}+\mathrm{H})\left(\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8}\right.$ requires 591.1767); $318.0765(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NNaO}_{4}\right.$ requires 318.0742); $296.0907(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4}\right.$ requires 296.0923).

5-Methoxy-3-(thiophen-3-yl)isoquinolin-1-one (15i). BuLi (2.5 M in hexanes, $0.42 \mathrm{~mL}, 1.0$ $\mathrm{mmol})$ was added to dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(126 \mathrm{mg}, 1.24 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Compound $\mathbf{5 1}(200 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF (2.0 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. 3-Cyanothiophene ($112 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in dry THF (2.0 mL) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then at $20^{\circ} \mathrm{C}$ for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed thrice with brine. Evaporation and washing (EtOH) gave $\mathbf{1 5 i}(37 \mathrm{mg}, 14 \%)$ as a pale buff solid: mp $286-287^{\circ} \mathrm{C}$; IR $v_{\max } 3503,1652,746 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (COSY) δ $3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.04(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 6-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}$, $7-\mathrm{H}), 7.66\left(2 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.4,5-\mathrm{H}_{2}\right), 7.75(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 8.23(1 \mathrm{H}, \mathrm{d}, J=1.2$

Hz , thiophene 2-H), $11.48(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 55.88$ (Me), 95.99 (4-C), 112.28 (6-C), 118.24 (8-C), 123.36 (thiophene 2-C), 125.71 ($8 \mathrm{a}-\mathrm{C}$), 125.78 (thiophene 5-C), 126.63 (7-C), 127.44 (thiophene 4-C), 128.44 (4a-C), 134.71 (thiophene 1-C), 135.20 (3-C), 154.30 (5-C), 162.29 (1-C); MS m/z $280.0399\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNaO}_{2} \mathrm{~S}\right.$ requires 280.0409).

5-Hydroxy-3-(4-trifluoromethylphenyl)isoquinolin-1-one (16b). Compound $\mathbf{1 5 d}$ (51 mg , $0.16 \mathrm{mmol})$ was heated with BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{M}, 4.0 \mathrm{~mL})$ at reflux for 16 h . The evaporation residue was treated with aq. $\mathrm{NaOH}(2.5 \mathrm{M}, 3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 3 h . The solution was acidified with aq. $\mathrm{HCl}(2 \mathrm{M})$. The solid was collected by filtration. Chromatography (EtOAc / petroleum ether $2: 3 \rightarrow 1: 1$) gave 16b ($3.9 \mathrm{mg}, 8 \%$) as a pale buff solid: mp $258-260^{\circ} \mathrm{C}$; IR $v_{\text {max }} 3399,3197,1640,1329,1113,1068 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.14(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}$, 7-H), $7.81\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}+\mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.92\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) (HSQC / HMBC) $\delta 102.03$ (4-C), 117.66 (6-C), 118.54 (8-C), 125.54 (q, $J=268.9$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 126.94 (q, $J=3.8 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 127.41 ($4 \mathrm{a}-\mathrm{C}$), 128.36 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 128.90 (7-C), 129.23 ($8 \mathrm{a}-\mathrm{C}$), 131.88 ($\mathrm{q}, ~ J=32.4 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{C}$), 138.33 (3-C), 139.73 ($\mathrm{Ph} 1-\mathrm{C}$), 154.84 (5-C), $165.60(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 328.0568(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NNaO}_{2}\right.$ requires 328.0561), 306.0740 $(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2}\right.$ requires 306.0742); MS m/z $304.0577(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{2}\right.$ requires 304.0585).

5-Nitro-3-(4-trifluoromethylphenyl)isoquinolin-1-one (22i). Compound 30i (78 mg, 220 $\mu \mathrm{mol})$ was stirred with HBr in $\mathrm{AcOH}(33 \%, 3.5 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 7 h . Evaporation yielded $221(34.5 \mathrm{mg}, 47 \%)$ as a yellow solid: mp: 292-294 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.30(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.89\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 7.99(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\left.\mathrm{Hz}, \operatorname{Ph} 2,6-\mathrm{H}_{2}\right), 8.49(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 8-\mathrm{H}), 8.60(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 6-\mathrm{H}), 12.26(1 \mathrm{H}, \mathrm{br}$, $\mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 98.63(4-\mathrm{C}), 124.01\left(\mathrm{q}, J=270.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 125.81 ($\mathrm{q}, J=3.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 126.36 (7-C), 126.89 ($8 \mathrm{a}-\mathrm{C}$), 128.27 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.99 ($8-\mathrm{C}$), 130.04 (q, $J=31.8 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}$), 130.59 ($4 \mathrm{a}-\mathrm{C}$), 133.19 (6-C), 137.44 (Ph 1-C), 142.64 (3-C), 144.94 (5-C), 161.33 (1-C); ${ }^{19}$ F NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-61.22\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 333.0493$ $(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 333.0493).

3-(4-Fluorophenyl)-5-nitroisoquinolin-1-one (22j). Compound 30j ($16 \mathrm{mg}, 50 \mu \mathrm{~mol}$) was stirred with HBr in $\mathrm{AcOH}(33 \%, 1.0 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ for 7 h . Evaporation yielded $\mathbf{2 2 j}(7.8 \mathrm{mg}$, $55 \%)$ as a yellow solid: $\mathrm{mp}>360^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.19(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.36(2 \mathrm{H}, \mathrm{t}, J$ $\left.=8.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.65(1 \mathrm{H}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 7.84\left(2 \mathrm{H}, \mathrm{dd}, J=8.2,5.3 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right)$, $8.46(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 8-\mathrm{H}), 8.59(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 6-\mathrm{H}), 11.95(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 96.94$ (4-C), $115.56(\mathrm{~d}, J=21.8 \mathrm{~Hz}$, Ph 3,5-C2), 125.41 (7C), 126.38 ($8 \mathrm{a}-\mathrm{C}$), 129.36 ($8-\mathrm{C}$), 129.43 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.86 ($4 \mathrm{a}-\mathrm{C}$), 130.63 ($\mathrm{Ph} 1-\mathrm{C}$), 132.83 (6-C), 143.07 (3-C), 144.55 (5-C), 160.99 (1-C), 162.94 (d, $J=246.6 \mathrm{~Hz}$, Ph 4-C); ${ }^{19}$ F NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-110.96(\mathrm{~m}, \mathrm{~F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 283.0524(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{FN}_{2} \mathrm{O}_{3}\right.$ requires 283.0524).

1,3-Dichloro-5-nitroisoquinoline (27). Aq. $\mathrm{HNO}_{3}(67 \%, 430 \mathrm{mg})$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(3.0 \mathrm{~mL})$ was added dropwise to 1,3 -dichloroisoquinoline $26(1.00 \mathrm{~g}, 5.1 \mathrm{mmol})$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (5.0 mL) at $5^{\circ} \mathrm{C}$. The mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 2 h , then poured onto ice. The precipitate was collected, washed ($\mathrm{H}_{2} \mathrm{O}$), dried and recrystallised ($\mathrm{EtOAc} /$ petroleum ether) to give 27 $(1.12 \mathrm{~g}, 91 \%)$ as a yellow powder: mp $168-170^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{2}{ }^{2} \mathrm{mp} 168-170^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.80(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 7-\mathrm{H}), 8.55(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.62(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 6-\mathrm{H}), 8.72$ (1 $\mathrm{H}, \mathrm{dt}, J=8.5,1.1 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 115.16$ (4-C), $126.00(4 \mathrm{a}-$
C), 126.64 (7-C), 129.63 (6-C), 131.60 ($8 \mathrm{a}-\mathrm{C}), 133.12$ ($8-\mathrm{C}$), 144.01 ($5-\mathrm{C}), 147.08$ (3-C), 151.75 (1-C).

1-Methoxy-3-(3-methylphenyl)-5-nitroisoquinoline (30b). Compound 28 ($0.84 \mathrm{~g}, 3.5$ $\mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(0.18 \mathrm{~g}, 0.35 \mathrm{mmol})$, $\mathrm{SPhos}(0.14 \mathrm{~g}, 0.70 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.5 \mathrm{~g}, 7.1 \mathrm{mmol})$ and 3-methylphenylboronic acid (720 mg 5.3 mmol) were placed in a dry flask. Degassed toluene (20 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . Evaporation and chromatography (hexane / EtOAc 15:1) gave 30b ($700 \mathrm{mg}, 67 \%$) as yellow crystals: mp 166$169^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 4.11(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.13(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, Ar $4-\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \operatorname{Ar} 5-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} 2-$ H), $7.85(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$ Ar $6-\mathrm{H}), 8.23-8.26(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $4-\mathrm{H}), 8.39(1 \mathrm{H}, \mathrm{d}, J=7.4$ $\mathrm{Hz} 8-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (HMBC / HMQC) $\delta 21.6$ (ArMe), 54.0 (OMe), 104.9 (4-C), 124.2 (Ar 6C), $124.2(7-\mathrm{C}), 127.6(\mathrm{Ar} 2-\mathrm{C}) 128.5(6-\mathrm{C}), 128.6$ ($\mathrm{Ar} 5-\mathrm{C}$), 130.1 ($\mathrm{Ar} 4-\mathrm{C}$), 131.1 ($8-\mathrm{C}$), $131.3\left(\mathrm{C}_{\mathrm{q}}\right), 138.2$ ($\left.\operatorname{Ar} 1-\mathrm{C}\right), 138.5\left(\mathrm{C}_{\mathrm{q}}\right), 151.8$ (3-C), 151.9 (5-C), 160.3 (1-C); MS m/z $295.1076(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 295.1083).

1-Methoxy-3-(2-methoxyphenyl)-5-nitroisoquinoline (30d). Degassed $\mathrm{PhMe}(3.0 \mathrm{~mL}$) was added to $28(102 \mathrm{mg}, 430 \mu \mathrm{~mol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(11.5 \mathrm{mg}, 13 \mu \mathrm{~mol})$, SPhos ($23 \mathrm{mg}, 56 \mu \mathrm{~mol}$), 2methoxybenzeneboronic acid ($150 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(204 \mathrm{mg}, 1.0 \mathrm{mmol})$ in a dry flask. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave 30d ($74 \mathrm{mg}, 58 \%$) as a yellow solid: mp 115-117 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.97(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOMe}), 4.23(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 7.06$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \operatorname{Ph} 3-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 8.15(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 8.43(1 \mathrm{H}$, dd, $J=7.8,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 8.59(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.1 \mathrm{~Hz}, 8-\mathrm{H}), 8.78(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) (HSQC / HMBC) $\delta 54.06$ (1-OMe), 55.71 (PhOMe), 110.12 (4-C), 111.79 ($\mathrm{Ph} 3-\mathrm{C}$), 119.70 ($8 \mathrm{a}-\mathrm{C}$), 120.87 (Ph 4-C), 124.36 (7-C), 128.18 (6-C), 130.17 (Ph 5-C), 130.91 (8-C), 131.22 (Ph 6-C), 146.81 (5-C), 157.82 ($\mathrm{Ph} 2-\mathrm{C}$), 160.04 (1-C); MS m/z 333.0858 (M + Na) ${ }^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{4}\right.$ requires 333.0852), $311.1030(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 311.1034).

1-Methoxy-3-(3-methoxyphenyl)-5-nitroisoquinoline (30e). Degassed PhMe (3.0 mL) was added to 28 ($103 \mathrm{mg}, 430 \mu \mathrm{~mol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(11.6 \mathrm{mg}, 13 \mu \mathrm{~mol}$), SPhos ($22 \mathrm{mg}, 54 \mu \mathrm{~mol}$), 3methoxybenzeneboronic acid ($153 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(203 \mathrm{mg}, 0.96 \mathrm{mmol}$). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave $\mathbf{3 0 e}(81 \mathrm{mg}, 81 \%)$ as a yellow solid: $\mathrm{mp} 87-$ $90^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{PhOMe}), 4.28(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 7.00(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 6-$ H), $7.42(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \operatorname{Ph} 5-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.78\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Ph} 2,4-\mathrm{H}_{2}\right)$, 8.48 ($1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 8.51(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.61(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}, 8-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.16$ (PhOMe), 56.00 (1-OMe), 105.38 (4-C), 112.98 (Ph 4-C), 114.79 (Ph 6-C), 119.62 (Ph 2-C), 124.53 (7-C), 128.54 (6-C), 129.76 (Ph 5-C), 131.20 (8-C), 139.72 (Ph 3-C), 144.35 (5-C), 160.26 (1-C); MS m/z 311.1030 (M + H) ${ }^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 311.1034).

1-Methoxy-5-nitro-3-(3-trifluoromethylphenyl)isoquinoline (30h). Method A. Degassed PhMe (3.0 mL) was added to $28\left(101 \mathrm{mg}, 420 \mu \mathrm{~mol}\right.$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(41 \mathrm{mg}, 45 \mu \mathrm{~mol}$), SPhos (40 $\mathrm{mg}, 100 \mu \mathrm{~mol}$), 3-trifluoromethylbenzeneboronic acid ($161 \mathrm{mg}, 850 \mu \mathrm{~mol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (179 $\mathrm{mg}, 840 \mu \mathrm{~mol})$. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether $1: 199$) gave 30h $(80.4 \mathrm{mg}$, $55 \%)$ as a yellow solid: mp $135-137{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.62(2 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}+\mathrm{Ph} 5-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{H}), 8.34(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 8.47(1$

H, s, Ph 2-H), 8.49 ($1 \mathrm{H}, \mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.53(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.62(1 \mathrm{H}, \mathrm{dt}, J=7.2$, $1.0 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.31(\mathrm{Me}), 105.70(4-\mathrm{C}), 120.30$ ($8 \mathrm{a}-$ C), 123.98 ($\mathrm{q}, J=3.9 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{C}$), 124.19 ($\mathrm{q}, J=270.4 \mathrm{~Hz}, \mathrm{CF}_{3}$), 125.08 (7-C), 125.84 (q, J $=3.9 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{C}), 126.89,128.77$ (6-C), 128.78, 29.20 (Ph 5-C), 130.12 (Ph 6-C), 131.27 (8C), 131.27 ($4 \mathrm{a}-\mathrm{C}$), 131.30 (q, $J=32.3 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{C}$), 139.47 (Ph 1-C), 145.04 (5-C), 150.25 (3C), $160.75(1-\mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-62.66\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 349.0826(\mathrm{M}+\mathrm{H})^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 349.0802).

1-Methoxy-5-nitro-3-(3-trifluoromethylphenyl)isoquinoline (30h). Method B. Dry DMF $(8.0 \mathrm{~mL})$ was added to $37(300 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(97 \mathrm{mg}, 106 \mu \mathrm{~mol})$, SPhos (99 mg , 0.21 mmol), 3-trifluoromethyl)benzeneboronic acid ($403 \mathrm{mg}, 2.1 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(675 \mathrm{mg}$, 3.2 mmol) and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered (Celite ${ }^{\circledR}$ and the solvent was evaporated. Chromatography (EtOAc / petroleum ether 1:49) gave 30h ($232 \mathrm{mg}, 63 \%$) as a yellow solid, with properties as above.

1-Methoxy-5-nitro-3-(4-trifluoromethylphenyl)isoquinoline (30i). To 37 (300 mg , 1.1 mmol) in a dry flask was added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(97 \mathrm{mg}, 110 \mu \mathrm{~mol}$), SPhos ($99 \mathrm{mg}, 210 \mu \mathrm{~mol}$), 4-trifluoromethylphenylbenzeneboronic acid ($403 \mathrm{mg}, 2.1 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(675 \mathrm{mg}, 3.2 \mathrm{mmol})$. Dry DMF (8.0 mL) was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered through Celite ${ }^{\circledR}$ and the solvent was evaporated. Chromatography (EtOAc / petroleum ether 3:197) gave 30i ($209 \mathrm{mg}, 57 \%$) as a yellow solid: $\mathrm{mp} 125-127^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.58(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-$ H_{2}), $8.25(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, Ph 2,6-H2), $8.46(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 8.50(1 \mathrm{H}, \mathrm{s}, 4-$ H), $8.58(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.1 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.23(\mathrm{Me})$, 105.94 (4-C), 120.18 ($4 \mathrm{a}-\mathrm{C}$), 125.11 (7-C), 125.57 ($\mathrm{q}, J=3.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 126.42 (q, $J=$ $275.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.20 (Ph 2,6-C2), 128.75 (6-C), 131.17 ($8 \mathrm{a}-\mathrm{C}$), 131.20 (8-C), 141.79 (Ph 1C), 144.82 ($5-\mathrm{C}$), 150.01 (3-C), 160.56 (1-C); ${ }^{19} \mathrm{~F}$ NMR (CDCl_{3}) $\delta-62.56\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $371.0601(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\right.$ requires 371.0622$), 349.0775(\mathrm{M}+\mathrm{H})^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 349.0780).

3-(4-Fluorophenyl)-1-methoxy-5-nitroisoquinoline (30j). To 37 ($200 \mathrm{mg}, 710 \mu \mathrm{~mol}$) in a dry flask was added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(65 \mathrm{mg}, 70 \mu \mathrm{~mol}$), SPhos ($66 \mathrm{mg}, 140 \mu \mathrm{~mol}$), 4-fluorobenzeneboronic acid ($148 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(448 \mathrm{mg}, 2.1 \mathrm{mmol})$. Dry DMF (6.0 mL) was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered through Celite ${ }^{\circledR}$. Chromatography (EtOAc / petroleum ether 1:99 \rightarrow 1:49) gave $\mathbf{3 0 j}$ $(60 \mathrm{mg}, 28 \%)$ as a yellow solid: mp $199-200^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.19$ $\left(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.57(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 8.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.47$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.49(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 8.61\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz} ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)\right.$ (HSQC / HMBC) $\delta 54.11$ (Me), 104.79 (4-C), 115.68 (d, $J=21.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 119.91 (4aC), 124.53 (7-C), 128.72 (6-C), 128.97 (d, $J=8.3 \mathrm{~Hz}, \operatorname{Ph} 2,6-\mathrm{C}_{2}$), 131.26 ($8-\mathrm{C}$), 131.56 ($8 \mathrm{a}-$ C), 134.81 ($\mathrm{Ph} 1-\mathrm{C}$), 144.91 ($5-\mathrm{C}$), 150.93 (3-C), 160.58 (1-C), 163.75 (d, $J=248.3 \mathrm{~Hz}, \mathrm{Ph}$ $4-\mathrm{C})$; MS $m / z 299.0808(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{3}\right.$ requires 299.0834).

3-(2-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30k). Method A. To 28 ($102 \mathrm{mg}, 0.43$ $\mathrm{mmol})$ were added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(13 \mathrm{mg}, 14 \mu \mathrm{~mol})$, SPhos ($22 \mathrm{mg}, 54 \mu \mathrm{~mol}$), 2-chlorobenzeneboronic acid ($202 \mathrm{mg}, 1.3 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(202 \mathrm{mg}, 0.95 \mathrm{mmol})$. Degassed PhMe (3.0 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$. After 4.5 h , further $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(33.5 \mathrm{mg}, 40$ $\mu \mathrm{mol}$) and SPhos ($20.5 \mathrm{mg}, 40 \mu \mathrm{~mol}$) were added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for a further 11.5 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave $\mathbf{3 0 k}(135 \mathrm{mg}, 100 \%)$ as a yellow solid, with properties as below.

3-(2-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30k). Method B. To 37 ($200 \mathrm{mg}, 710$ $\mu \mathrm{mol})$ were added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(65 \mathrm{mg}, 70 \mu \mathrm{~mol}$), SPhos ($66 \mathrm{mg}, 140 \mu \mathrm{~mol}$), 2-chlorobenzeneboronic acid ($165 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(450 \mathrm{mg}, 2.1 \mathrm{mmol})$. Dry DMF $(7.5 \mathrm{~mL})$ was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated. The residue, in CHCl_{3}, was filtered through Celite ${ }^{\circledR}$. Chromatography (EtOAc / petroleum ether 3:197 $\rightarrow 1: 19$) gave $\mathbf{3 0 k}(132 \mathrm{mg}, 60 \%)$ as a yellow solid: $\mathrm{mp} 122-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.39(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.53$ $(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7$ Hz , Ph $3-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.49(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 8.65(1 \mathrm{H}, \mathrm{dt}, J=8.2$, $1.1 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.39(\mathrm{Me}), 110.19$ (4-C), 119.79 (8aC), 125.05 (7-C), 126.84 (Ph 4-C), 128.46 (6-C), 129.62 (Ph 5-C), 130.48 (Ph 6-C), 130.74 (4a-C), 131.13 ($8-\mathrm{C}$), 131.67 ($\mathrm{Ph} 3-\mathrm{C}$), 144.95 (5-C), 160.29 (1-C); MS m/z 315.0533 (M + $\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{3}\right.$ requires 315.0538$)$.

3-(3-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (301). Method A. To 28 (104 mg, 0.44 $\mathrm{mmol})$ in a dry flask was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(44.0 \mathrm{mg}, 48 \mu \mathrm{~mol})$, SPhos ($40.3 \mathrm{mg}, 98 \mu \mathrm{~mol}$), 3chlorobenzeneboronic acid ($198 \mathrm{mg}, 1.3 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(180 \mathrm{mg}, 0.85 \mathrm{mmol})$. Degassed toluene (3.0 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 40 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography ($\mathrm{Et}_{2} \mathrm{O}$ / petroleum ether 1: 99) gave 301 (46 $\mathrm{mg}, 34 \%$) as a yellow solid, with properties as below.

3-(3-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (301). Method B. To 37 ($200 \mathrm{mg}, 710$ $\mu \mathrm{mol})$ were added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(65 \mathrm{mg}, 70 \mu \mathrm{~mol}$), SPhos ($66 \mathrm{mg}, 140 \mu \mathrm{~mol}$), 3-chlorobenzeneboronic acid ($166 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(450 \mathrm{mg}, 2.1 \mathrm{mmol})$. Dry DMF (7.5 mL) was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated. The residue, in CHCl_{3}, was filtered through Celite ${ }^{\circledR}$. Chromatography (EtOAc / petroleum ether 3:197 $\rightarrow 1: 19$) gave $301(116 \mathrm{mg}, 52 \%)$ as a yellow solid: mp $134-141^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.18$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 5,6-\mathrm{H}_{2}\right), 7.58(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 8.03(1 \mathrm{H}, \mathrm{dt}, J=6.9$, $1.9 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{H}), 8.18(1 \mathrm{H}, \mathrm{s}, \operatorname{Ph} 2-\mathrm{H}), 8.47(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.48(1 \mathrm{H}, \mathrm{s}, 4-$ H), $8.60(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.1,8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.29(\mathrm{Me})$, 105.53 (4-C), 120.18 ($8 \mathrm{a}-\mathrm{C}$), 124.90 (7-C), 125.05 ($\mathrm{Ph} 4-\mathrm{C}$), 127.21 ($\mathrm{Ph} 2-\mathrm{C}$), 128.73 (6-C), 129.24 (Ph 6-C), 129.93 (Ph 5-C), 131.26 ($8-\mathrm{C}$), 131.33 ($4 \mathrm{a}-\mathrm{C}$), 134.81 ($\mathrm{Ph} 3-\mathrm{C}$), 140.43 (3aC), 144.95 (5-C), 150.30 (3-C), 160.58 (1-C); MS m/z $315.0529(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{3}\right.$ requires 315.0538).

3-(4-Chlorophenyl)-1-methoxy-5-nitroisoquinoline (30m). Degassed toluene (3.0 mL) was added to 37 ($96 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(31 \mathrm{mg}, 34 \mu \mathrm{~mol})$, SPhos ($31.5 \mathrm{mg}, 68 \mu \mathrm{~mol}$), 4 chlorobenzeneboronic acid ($79.3 \mathrm{mg}, 0.51 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(215 \mathrm{mg}, 1.01 \mathrm{mmol})$. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered (Celite ${ }^{\circledR}$). Chromatography (EtOAc / petroleum ether 1:39) gave 30m ($104 \mathrm{mg}, 98 \%$) as a yellow solid: mp $168-169^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=6.8$, $\left.2.0 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.56(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 8.13\left(2 \mathrm{H}, \mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right)$, 8.46 ($1 \mathrm{H}, \mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.59(1 \mathrm{H}, \mathrm{dt}, J=8.2,0.92 \mathrm{~Hz}, 8-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.15(\mathrm{Me}), 105.06$ (4-C), 120.04 (4a-C), 124.66 (7C), 128.31 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 128.65 (6-C), 128.87 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 131.18 (8-C), 131.29 ($8 \mathrm{a}-\mathrm{C}$), 135.41 (Ph 4-C), 137.07 (3-C), 150.67 (5-C), 160.81 (1-C); MS m/z $315.0531(\mathrm{M}+\mathrm{H})^{+}$ $\left(\mathrm{C}_{16} \mathrm{H}_{11}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{3}\right.$ requires 315.0536).

3-(2,6-Dichlorophenyl)-1-methoxy-5-nitroisoquinoline (30n). To 37 ($240 \mathrm{mg}, 850 \mu \mathrm{~mol}$) was added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(78 \mathrm{mg}, 85 \mu \mathrm{~mol}$), SPhos ($79 \mathrm{mg}, 170 \mu \mathrm{~mol}$), 2,6-dichlorobenzeneboronic
acid ($243 \mathrm{mg}, 1.3 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(541 \mathrm{mg}, 2.5 \mathrm{mmol})$. Dry DMF (8.0 mL) was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . Filtration (Celite ${ }^{\circledR}$), evaporation and chromatography (EtOAc / petroleum ether 1: 99) gave 30n ($35 \mathrm{mg}, 12 \%$) as a yellow solid: mp 122$124^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.30(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.44(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}$, Ph $\left.3,5-\mathrm{H}_{2}\right), 7.66(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, 7-\mathrm{H}), 8.08(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.52(1 \mathrm{H}, \mathrm{dd}, J=$ $7.8,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 8.67(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.1 \mathrm{~Hz}, 8-\mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta$ 54.61 (Me), 111.16 (4-C), 120.08 ($4 \mathrm{a}-\mathrm{C}$), 125.36 ($7-\mathrm{C}$), 128.24 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 128.56 (6-C), 129.82 (Ph 4-C), 130.75 ($8 \mathrm{a}-\mathrm{C}$), 131.32 ($8-\mathrm{C}$), 134.86 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 138.19 (Ph 1-C), 144.94 (5-C), 149.95 (3-C), 160.73 (1-C); MS m/z $348.9740(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{11}{ }^{35} \mathrm{Cl}^{37} \mathrm{ClN}_{2} \mathrm{O}_{3}\right.$ requires 348.9961).

3-(3-Cyanophenyl)-1-methoxy-5-nitroisoquinoline (30q). Method A. To 37 ($152 \mathrm{mg}, 0.64$ $\mathrm{mmol})$ in a dry flask was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(58.3 \mathrm{mg}, 64 \mu \mathrm{~mol})$, SPhos ($60.8 \mathrm{mg}, 0.15 \mathrm{mmol}$), 3-cyanobenzeneboronic acid ($147 \mathrm{mg}, 1.3 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(270 \mathrm{mg}, 1.3 \mathrm{mmol})$. Degassed toluene (4.5 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography (EtOAc / petroleum ether 1:40) gave $\mathbf{3 0 q}$ ($15.6 \mathrm{mg}, 8 \%$) as a yellow solid, with properties as below.

3-(3-Cyanophenyl)-1-methoxy-5-nitroisoquinoline (30q). Method B. To 37 ($200 \mathrm{mg}, 710$ $\mu \mathrm{mol}$) were added $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($65 \mathrm{mg}, 70 \mu \mathrm{~mol}$), SPhos ($66 \mathrm{mg}, 140 \mu \mathrm{~mol}$), 3-cyanobenzeneboronic acid ($148 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(448 \mathrm{mg}, 2.1 \mathrm{mmol})$. Dry DMF $(6.0 \mathrm{~mL})$ was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated. The residue, in CHCl_{3}, was filtered through Celite ${ }^{\circledR}$. Chromatography (EtOAc / petroleum ether $1: 99 \rightarrow 1: 10)$ gave 30q ($20 \mathrm{mg}, 9 \%$): mp $195-196^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.29(3 \mathrm{H}, \mathrm{s}$, Me), $7.62(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{dt}, J=7.8$, $1.3 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 8.38(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.2 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 8.52(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 6-\mathrm{H})$, $8.55(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.56(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph} 2-\mathrm{H}), 8.65(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.1 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 54.44(\mathrm{Me}), 105.90(4-\mathrm{C}), 113.31$ (Ph 1-C), 121.03 (4a-C), 125.39 (7-C), 128.88 (6-C), 129.55 (Ph 2,5-C2), 130.98 (Ph 6-C), 131.30 (8-C), 132.45 (Ph 4C), 140.32 (CN), 145.67 (5-C), 160.92 (1-C).

3-(4-Cyanophenyl)-1-methoxy-5-nitroisoquinoline (30r). To 28 ($151 \mathrm{mg}, 630 \mu \mathrm{~mol}$) were added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(58 \mathrm{mg}, 63 \mu \mathrm{~mol}$), SPhos ($58 \mathrm{mg}, 140 \mu \mathrm{~mol}$), 4-cyanobenzeneboronic acid $(150 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(279 \mathrm{mg}, 1.3 \mathrm{mmol})$. Degassed $\mathrm{PhMe}(4.5 \mathrm{~mL})$ was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The evaporation residue, in CHCl_{3}, was filtered. Chromatography (EtOAc / petroleum ether 1:99) gave 30r ($53 \mathrm{mg}, 28 \%$) as a yellow solid: mp 206-210 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.66(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H})$, $7.81\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 8.32\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.53(1 \mathrm{H}, \mathrm{dd}, J=$ $7.8,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.59(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.66(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (HSQC / HMBC) $\delta 54.36$ (Me), 106.64 (4-C), 112.68 (CN), 118.79 (Ph 4-C), 120.80 (8a-C), 125.56 (7-C), 127.58 (Ph 2,6-H2), 128.85 (6-C), 129.67 (4a-C), 131.26 (8-C), 132.53 (Ph 3,5H_{2}), 142.86 (3-C), 145.16 (5-C), 149.59 (Ph 1-C), 160.84 (1-C).

5-Amino-1-methoxy-3-(3-methoxyphenyl)isoquinoline (31e). Compound 30e ($40 \mathrm{mg}, 140$ $\mu \mathrm{mol})$ was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 44 \mathrm{mg})$ in $\mathrm{EtOH}(9 \mathrm{~mL})$ under H_{2} for 5 h . Filtration (Celite ${ }^{\circledR}$) and evaporation yielded 31e $(31 \mathrm{mg}, 81 \%)$ as a pale yellow solid: mp 146 $149^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{Ph} \mathrm{OMe}), 4.21(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 6.93(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 6-$ $\mathrm{H}+6-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 7-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, 7.71 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,4-\mathrm{H}_{2}+8-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 53.60$ (1-OMe), 55.31
(Ph-OMe), 104.17 (4-C), 112.39 (Ph 2-C), 113.47 (Ph 6-C), 114.05 (6-C), 114.47 (8-C), 118.94 (Ph 4-C), 119.57 ($8 \mathrm{a}-\mathrm{C}$), 126.75 (7-C), 128.36 ($4 \mathrm{a}-\mathrm{C}$), 129.54 (Ph 5-C), 141.22 (Ph 1C), 141.58 (5-C), 146.53 (3-C), 159.92 ($\mathrm{Ph} 3-\mathrm{C}$), 160.68 (1-C); MS $\mathrm{m} / \mathrm{z} 303.1110(\mathrm{M}+\mathrm{Na})^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right.$ requires 303.1110), 281.1278 (M+H) ${ }^{+}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 281.1290).

5-Amino-1-methoxy-3-(2-trifluoromethylphenyl)isoquinoline (31g). Compound $\mathbf{3 0 g}$ (48 $\mathrm{mg}, 140 \mu \mathrm{~mol})$ was stirred vigorously with $\mathrm{Pt} / \mathrm{C}(1 \%, 53 \mathrm{mg})$ in $\mathrm{EtOH}(6.0 \mathrm{~mL})$ under H_{2} for 4 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave $\mathbf{3 1 g}$ ($29 \mathrm{mg}, 66 \%$) as a yellow solid: mp 172$174^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.13(\mathrm{OMe}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=7.5,0.5 \mathrm{~Hz}, 6-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{s}, 4-$ H), $7.37(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 4,6-\mathrm{H}_{2}\right)$, $7.73(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}), 7.81(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} /$ HMBC) $\delta 53.85$ (Me), 108.10 (4-C), 114.03 (6-C), 114.32 (8-C), 119.34 ($8 \mathrm{a}-\mathrm{C}$), 124.28 (q, J $=272 \mathrm{~Hz}, \mathrm{CF}_{3}$), $126.69(\mathrm{q}, J=5.1 \mathrm{~Hz}$, Ph 3-C), 127.17 (7-C), 127.57 (4a-C), 127.81 (Ph 5C), 128.54 (q, $J=30.1 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{C}$), 131.41 (Ph 6-C), 131.90 (Ph 4-C), 140.55 (Ph 1-C), 141.56 (5-C), 147.56 (3-C), 160.35 (1-C); MS m/z 341.0872 (M + Na) ${ }^{+}\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}\right.$ requires 341.0880).

5-Amino-1-methoxy-3-(3-trifluoromethylphenyl)isoquinoline (31h). Compound 30h (152 $\mathrm{mg}, 440 \mu \mathrm{~mol})$ was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 165 \mathrm{mg})$ in $\mathrm{EtOH}(8.0 \mathrm{~mL})$ under H_{2} for 5.5 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave $\mathbf{3 1 h}(120 \mathrm{mg}, 87 \%)$ as a pale buff solid: mp 89-91 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.94(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.33(1 \mathrm{H}$, $\mathrm{t}, J=7.8 \mathrm{~Hz}, 7-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.62(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}+\mathrm{Ph} 4-\mathrm{H}), 7.70(1 \mathrm{H}$, d, $J=8.2 \mathrm{~Hz}, 8-\mathrm{H}), 8.32(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph} 2-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) (HSQC / HMBC) $\delta 53.70$ (Me), 104.50 (4-C), 114.37 (6-C), 114.57 (8-C), 119.87 ($4 \mathrm{a}-\mathrm{C}$), 123.23 ($\mathrm{q}, J=3.9 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{C}$), $124.39\left(\mathrm{q}, J=270.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $124.63(\mathrm{q}, J=3.9 \mathrm{~Hz}$, Ph 4-C), 127.24 (7-C), 128.22 ($8 \mathrm{a}-\mathrm{C}$), 129.00 ($\mathrm{Ph} 5-\mathrm{C}$), 129.66 (Ph 6-C), 130.95 (q, $J=31.8$ $\mathrm{Hz}, \mathrm{Ph} 3-\mathrm{C}), 140.44$ (Ph 1-C), 141.75 (5-C), 145.16 (3-C), 160.97 (1-C); ${ }^{19} \mathrm{~F}$ NMR (CDCl_{3}) δ-62.50 ($\mathrm{s}, \mathrm{CF}_{3}$); MS m/z $319.1048(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 319.1060).

5-Amino-1-methoxy-3-(4-trifluoromethylphenyl)isoquinoline (31i). Compound 30i (151 $\mathrm{mg}, 430 \mu \mathrm{~mol})$ was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 165 \mathrm{mg})$ in $\mathrm{EtOH}(8.0 \mathrm{~mL})$ under H_{2} for 5.5 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave 31i ($120 \mathrm{mg}, 87 \%$) as a buff solid: mp $141-142^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=7.5,0.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.34$ $(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.71\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}+\mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.25(2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 53.70(\mathrm{Me}), 104.97(4-\mathrm{C}), 114.40$ (6-C), 114.58 ($8-\mathrm{C}$), 119.96 ($4 \mathrm{a}-\mathrm{C}$), 123.26 (q, $J=269.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), $125.48(\mathrm{q}, J=3.9 \mathrm{~Hz}, \mathrm{Ph}$ 3,5-C2), 126.68 (Ph 2,6-C2), 127.37 (7-C), 128.16 ($8 \mathrm{a}-\mathrm{C}$), 129.86 (q, $J=31.9 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}$), 141.78 (5-C), 143.06 (Ph 1-C), 145.21 (3-C), 160.97 (1-C); ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta-62.40$ (s, CF_{3}); MS m/z $317.0907(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 317.0900).

5-Amino-3-(4-fluorophenyl)-1-methoxyisoquinoline (31j). Compound 30j (108 mg, 360 $\mu \mathrm{mol}$) was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 118 \mathrm{mg})$ in $\mathrm{EtOH}(8.0 \mathrm{~mL})$ under H_{2} for 6 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave 31j ($90 \mathrm{mg}, 69 \%$) as an off-white solid: mp 154$155^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.15(2 \mathrm{H}$, m , Ph 3,5-H2), $7.31(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}$, 8-H), $8.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) (HSQC / HMBC) $\delta 53.62(\mathrm{Me}), 103.64$ (4C), 114.31 (6-C), 114.67 ($8-\mathrm{C}$), 115.42 (d, $J=21.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 119.40 (4a-C), 126.72 (7C), 128.62 (d, $J=10.4 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{C}_{2}$), 128.53 ($8 \mathrm{a}-\mathrm{C}$), 135.85 (d, $J=3.3 \mathrm{~Hz}, \mathrm{Ph} 1-\mathrm{C}$), 141.37 (5-C), 145.98 (3-C), 160.82 (1-C), 163.04 (d, $J=246.0 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}$); MS $m / z 269.1074$ (M +
$\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}\right.$ requires 269.1092); ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$-114.31 (m, F); MS m/z 267.0925 $(\mathrm{M}-\mathrm{H})^{-}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}\right.$ requires 267.0932).

5-Amino-3-(2-chlorophenyl)-1-methoxyisoquinoline (31k). Compound 30k ($75 \mathrm{mg}, 240$ $\mu \mathrm{mol})$ was stirred vigorously with $\mathrm{Pt} / \mathrm{C}(1 \%, 84 \mathrm{mg})$ in $\mathrm{EtOH}(6.0 \mathrm{~mL})$ under H_{2} for 5 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave 31k ($70 \mathrm{mg}, 100 \%$) as a yellow solid: mp 102-103 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.18(\mathrm{Me}), 6.93(1 \mathrm{H}, \mathrm{dd}, J=7.5 \mathrm{~Hz}, 6-\mathrm{H}), 7.35(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+\mathrm{Ph} 4,5-$ H_{2}), $7.51(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}$, Ph 3-H), $7.56(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H})$, $7.76(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 53.78(\mathrm{Me})$, 109.13 (4-C), 113.89 (6-C), 114.14 (8-C), 119.29 ($4 \mathrm{a}-\mathrm{C}$), 126.75 ($\mathrm{Ph} 4-\mathrm{C}$), 127.17 (7-C), 127.59 ($8 \mathrm{a}-\mathrm{C}$), 128.83 ($\mathrm{Ph} 5-\mathrm{C}$), 130.27 ($\mathrm{Ph} 3-\mathrm{C}$), 131.75 (Ph 6-C), 132.32 (Ph 1-C), 139.34 (Ph 2-C), 141.65 (5-C), 145.86 (3-C), 160.57 (1-C); MS m/z 285.0803 (M + H)+ ($\mathrm{C}_{16} \mathrm{H}_{14}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}$ requires 285.0796).

5-Amino-3-(3-chlorophenyl)-1-methoxyisoquinoline (311). Compound 301 ($75 \mathrm{mg}, 240$ $\mu \mathrm{mol}$) was stirred vigorously with $\mathrm{Pt} / \mathrm{C}(1 \%, 84 \mathrm{mg})$ in $\mathrm{EtOH}(6.0 \mathrm{~mL})$ under H_{2} for 5 h . Filtration $\left(\right.$ Celite $^{\circledR}$) and evaporation gave $311(62 \mathrm{mg}, 91 \%)$ as a yellow solid: mp $94-95^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $4.20(\mathrm{Me}), 6.93(1 \mathrm{H}, \mathrm{dd}, J=7.5,0.5 \mathrm{~Hz}, 6-\mathrm{H}), 7.33(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+\mathrm{Ph} 5,6-$ $\left.\mathrm{H}_{2}\right), 7.57(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}), 8.01(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{H}), 8.14$ (1 H, s, Ph 2-H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (HSQC / HMBC) 53.69 (Me), 104.39 (4-C), 114.31 (6C), 114.53 ($8-\mathrm{C}$), 119.72 ($4 \mathrm{a}-\mathrm{C}$), 124.47 ($\mathrm{Ph} 4-\mathrm{C}$), 126.57 ($\mathrm{Ph} 2-\mathrm{C}$), 127.07 (7-C), 128.19 ($8 \mathrm{a}-$ C), 128.01 ($\mathrm{Ph} 5-\mathrm{C}$), 129.74 ($\mathrm{Ph} 6-\mathrm{C}$), 134.56 ($\mathrm{Ph} 3-\mathrm{C}$), 141.47 (5-C), 141.57 ($\mathrm{Ph} 1-\mathrm{C}$), 145.18 (3-C), 160.78 (1-C); MS $m / z 285.0793(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{14}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}\right.$ requires 285.0796).

5-Amino-3-(2,6-dichlorophenyl)-1-methoxyisoquinoline (31n). Compound 30n (30 mg, 90 $\mu \mathrm{mol}$) was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 33 \mathrm{mg})$ in $\mathrm{EtOH}(5.0 \mathrm{~mL})$ under H_{2} for 5 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave 31n (27 mg , 94%) as a pale orange solid: mp 103$104^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.19(1 \mathrm{H}$, d, $J=0.9 \mathrm{~Hz}, 4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.42(2$ $\left.\mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \operatorname{Ph} 3,5-\mathrm{H}_{2}\right), 7.74(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} /$ HMBC) $\delta 54.02$ (Me), 109.70 (4-C), 114.00 (6-C), 114.37 (8-C), 127.36 (7-C), 128.15 (Ph 3,5-C2), 129.30 (Ph 4-C), 119.69 ($4 \mathrm{a}-\mathrm{C}$), 127.62 ($8 \mathrm{a}-\mathrm{C}$), 135.25 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 138.92 (Ph 1-C), 141.65 (5-C), 144.58 (3-C), 160.94 (1-C); MS m/z $321.0356(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}^{37} \mathrm{ClN}_{2} \mathrm{O}\right.$ requires 321.0375$)$, $319.0387(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 319.0405).

5-Amino-3-(4-hydroxyphenyl)-1-methoxyisoquinoline (31p). Compound 30p (65 mg, 220 $\mu \mathrm{mol}$) was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 71.5 \mathrm{mg})$ in $\mathrm{EtOH}(5.0 \mathrm{~mL})$ under H_{2} for 6 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave 31p ($63 \mathrm{mg}, 98 \%$) as a yellow solid: $\mathrm{mp}>230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 6.94(1 \mathrm{H}, \mathrm{d}, J=$ $7.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.53(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 8-\mathrm{H}), 7.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $8.07\left(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 53.84(\mathrm{Me})$, 104.35 ($4-\mathrm{C}$), 114.14 ($8-\mathrm{C}$), 114.63 (6-C), 116.24 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 120.52 ($4 \mathrm{a}-\mathrm{C}$), 127.40 (7-C), 128.85 (Ph 2,6-C2), 130.19 ($8 \mathrm{a}-\mathrm{C}$), 132.74 (Ph 1-C), 144.38 (5-C), 147.73 (3-C), 158.86 (Ph $4-\mathrm{C}), 161.74(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 267.1123(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 267.1135).

5-Amino-3-(3-cyanophenyl)-1-methoxyisoquinoline (31q). Compound 30q (34 mg, 110 $\mu \mathrm{mol}$) was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 38 \mathrm{mg})$ in $\mathrm{EtOH}(5.0 \mathrm{~mL})$ under H_{2} for 6.5 h . Filtration (Celite ${ }^{\circledR}$), evaporation and chromatography (ethyl acetate / petroleum ether 1:39 \rightarrow 1:4) gave 31q ($11.2 \mathrm{mg}, 37 \%$) as a golden buff solid: $\mathrm{mp} 183-184^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $4.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.56$ (1
$\mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{dt}, J=7.9,1.5 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 7.70(1$ $\mathrm{H}, \mathrm{dt}, J=8.2,0.9 \mathrm{~Hz}, 8-\mathrm{H}), 8.36(1 \mathrm{H}, \mathrm{dt}, J=7.9,1.3 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{H}), 8.46(1 \mathrm{H}, \mathrm{t}, J=1.3 \mathrm{~Hz}$, Ph 2-H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 53.80(\mathrm{Me}), 104.72$ (4-C), 112.74 (Ph 3-C), 114.52 (6-C), 114.58 ($8-\mathrm{C}$), 119.14 (CN), 120.03 ($8 \mathrm{a}-\mathrm{C}$), 127.53 (7-C), 128.08 ($4 \mathrm{a}-\mathrm{C}$), 129.31 (Ph 5-C), 130.26 (Ph 2-C), 130.49 ($\mathrm{Ph} 4-\mathrm{C}$), 131.27 ($\mathrm{Ph} 6-\mathrm{C}$), 140.84 ($\mathrm{Ph} 1-\mathrm{C}$), 141.81 (5-C), 144.22 (3-C), $161.09(1-\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 276.1128(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}\right.$ requires 276.1137).

5-Amino-3-(4-cyanophenyl)-1-methoxyisoquinoline (31r). Compound 30r (37 mg, 120 $\mu \mathrm{mol}$) was stirred vigorously with $\mathrm{Pd} / \mathrm{C}(10 \%, 41 \mathrm{mg})$ in $\mathrm{EtOH}(5.5 \mathrm{~mL})$ under H_{2} for 6.5 h . Filtration (Celite ${ }^{\circledR}$), evaporation and chromatography (EtOAc / petroleum ether 1:39 \rightarrow 1:4) gave $\mathbf{3 1 r}(17.3 \mathrm{mg}, 52 \%)$ as an amber-coloured solid: $\mathrm{mp} 203-204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.67(1$ H, s, 4-H), $7.70(1 \mathrm{H}, \mathrm{dt}, J=7.3,0.9 \mathrm{~Hz}, 8-\mathrm{H}), 7.74\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 8.25(2$ $\left.\mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 53.76(\mathrm{Me}), 105.55(4-$ C), 111.27 ($\mathrm{Ph} 4-\mathrm{C}$), 114.58 ($6-\mathrm{C}$), 114.61 ($8-\mathrm{C}$), 119.17 (CN), 120.18 ($4 \mathrm{a}-\mathrm{C}$), 126.89 (Ph 2,6-C2), 127.77 (7-C), 127.98 ($8 \mathrm{a}-\mathrm{C}$), 132.39 (Ph 3,5-C2), 141.93 (5-C). 143.93 (Ph 1-C), 144.45 (3-C), $161.04(1-\mathrm{C}) ; \mathrm{MS} m / z 276.1124(\mathrm{M}+\mathrm{H})^{+}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}\right.$ requires 276.1137).

Isoquinoline-1,3-dione (33). 2-Carboxyphenylacetic acid 32 ($20.0 \mathrm{~g}, 111 \mathrm{mmol}$) was heated with finely ground urea ($7.33 \mathrm{~g}, 122 \mathrm{mmol}$) at $175-185^{\circ} \mathrm{C}$ for 2 h . Cooling and recrystallisation (MeOH) gave $33(12.0 \mathrm{~g}, 67 \% \%)$ as an off-white solid: $\mathrm{mp} 220-222^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 236-$ $\left.238^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 4.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.44(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.51(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.07(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 8-\mathrm{H})$, 11.36 ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ((CD $\left.)_{2} \mathrm{SO}\right)$ (HSQC / HMBC) $\delta 35.92$ (4-C), 124.95 (8a-C), 127.16 (7-C), 127.41 ($8-\mathrm{C}$), 127.87 (5-C), 133.47 (6-C), 136.66 ($4 \mathrm{a}-\mathrm{C}$), 165.34 (1-C), 170.99 (3-C).

1,3-Dibromoisoquinoline (34). Method A. $\mathrm{PBr}_{3}(10 \mathrm{~mL})$ was added slowly to $\mathbf{3 3}(1.41 \mathrm{~g}$, $8.7 \mathrm{mmol})$ and the mixture was heated at reflux for 16 h . The evaporation residue was quenched (sat. aq. NaHCO_{3}) and extracted thrice with CHCl_{3}. Chromatography (EtOAc / petroleum ether 3:17), followed by chromatography ($\mathrm{EtOAc} /$ petroleum ether 1:49) gave 34 $(358 \mathrm{mg}, 14 \%)$ as white crystals: mp $148-150^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp} 147-147.5^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.93(1 \mathrm{H}, \mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 6-\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 7-\mathrm{H}), 8.10(1$ $\mathrm{H}, \mathrm{dt}, J=8.1,0.6 \mathrm{~Hz}, 5-\mathrm{H}), 8.27(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 8-\mathrm{H}), 8.38(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 124.66$ (4-C), 126.85 (5-C), 127.13 ($\left.8 \mathrm{a}-\mathrm{C}\right), 127.68$ (4a-C), 127.89 (8-C), 130.69 (6-C), 132.69 (7-C), 138.74 (3-C), 143.18 (1-C). Further elution gave 35 ($66 \mathrm{mg}, 4 \%$) as white crystals: mp $61-63^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp} 63-64^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (NOE) $\delta 7.80(1 \mathrm{H}, \mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{dt}, J=8.3,1.2 \mathrm{~Hz}, 7-\mathrm{H}), 8.03(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, 5-\mathrm{H}), 8.23(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 8-\mathrm{H}), 8.27(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 9.24(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 123.53$ (4-C), 125.76 (5-C), 127.25 (4a-C), 127.80 (8C), 128.13 (6-C), 131.68 (7-C), 135.19 (3-C), 137.46 ($8 \mathrm{a}-\mathrm{C}$), 153.19 (1-C).

1,3-Dibromoisoquinoline (34). Method B. Isoquinoline-1,3-dione 33 ($3.00 \mathrm{~g}, 18.6 \mathrm{mmol}$) was heated under reflux with $\mathrm{POBr}_{3}(10.7 \mathrm{~g}, 37 \mathrm{mmol})$ in 1,4-dioxane $(20 \mathrm{~mL})$ for 22 h . The mixture was quenched with MeOH , then water. The mixture, in water, was extracted thrice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Drying, evaporation and recrystallisation (PhMe) gave $34(1.87 \mathrm{~g}, 35 \%)$ as an off-white solid, with properties as above.

4-Phenylethynylbenzonitrile (43). $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(96.5 \mathrm{mg}, 140 \mu \mathrm{~mol})$, $\mathrm{CuI}(52 \mathrm{mg}, 300$ $\mu \mathrm{mol}$), sodium ascorbate ($33 \mathrm{mg}, 160 \mu \mathrm{~mol}$) and 4-bromobenzonitrile $42(500 \mathrm{mg}, 2.75$ $\mathrm{mmol})$ were mixed in a dry flask. Degassed THF (10 mL) and dry $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(5.0 \mathrm{~mL})$ were added and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 30 min . Phenylethyne ($281 \mathrm{mg}, 2.75 \mathrm{mmol}$) was added and the mixture was stirred for 16 h at $50^{\circ} \mathrm{C}$. The mixture was filtered through Celite ${ }^{\circledR}$. Evaporation and chromatography (ethyl acetate / petroleum ether $1: 199 \rightarrow 1: 99$) gave 43 ($394 \mathrm{mg}, 70 \%$) as an off-white solid: mp $78-79^{\circ} \mathrm{C}$ (lit. $.^{5} \mathrm{mp} 91-92^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,4,5-\mathrm{H}_{3}\right), 7.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{NCPh} 2,3,5,6-$ $\left.\mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 87.66$ (ethyne 1-C), 93.69 ((ethyne 2-C), 111.34 (CN), 118.42 (NCPh 1-C), 122.11 (Ph 1-C), 128.11 (NCPh 4-C), 128.42 (Ph 3,5-C2), 129.04 (Ph 4-C), 131.69 (Ph 2,6-C2), 131.93 (NCPh 2,6-C2), 131.95 (NCPh 3,5-C2).

4-Dimethylaminomethylbenzonitrile (45a). 4-Bromomethylbenzonitrile ($1.00 \mathrm{~g}, 5.1 \mathrm{mmol}$) was stirred with aq. $\mathrm{Me}_{2} \mathrm{NH}(40 \%, 4.0 \mathrm{~mL})$ for 16 h . The mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with aqueous citric acid (10\%). The combined aqueous solutions were basified by addition of aq. NaOH (15%) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried and the solvent was evaporated to give 45a ($420 \mathrm{mg}, 51 \%$) as a colourless oil (lit. ${ }^{6}$ oil): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.24(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NMe}_{2}\right), 3.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.43\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 3,5-\mathrm{H}_{2}\right), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 2,6-$ $\left.\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 45.42\left(\mathrm{NMe}_{2}\right), 63.83\left(\mathrm{CH}_{2}\right), 110.92(1-\mathrm{C}), 118.95$ (CN), 129.51 (3,5-C2), 132.13 (2,6-C2), 144.62 (4-C).

4-(Piperidin-1-ylmethyl)benzonitrile (45b). 4-Bromomethylbenzonitrile ($500 \mathrm{mg}, 2.6$ mmol) was stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}(388 \mathrm{mg}, 2.8 \mathrm{mmol})$ and piperidine ($238 \mathrm{mg}, 2.8 \mathrm{mmol}$) in dry DMF (6.0 mL) at $20^{\circ} \mathrm{C}$ for 3 h , then at $90^{\circ} \mathrm{C}$ for 3 d . The mixture was then cooled to $20^{\circ} \mathrm{C}$. Water (18 mL) was added and the mixture was stirred for 30 min . This mixture was diluted with EtOAc. The suspension was washed thrice with brine and dried. Evaporation of the solvent gave $\mathbf{4 5 b}$ ($340 \mathrm{mg}, 67 \%$) as a pale orange oil (lit. ${ }^{7}$ oil): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.44(2 \mathrm{H}, \mathrm{m}$, piperidine $4-\mathrm{H}_{2}$), $1.57\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.3,5-\mathrm{H}_{4}\right), 2.36\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.2,6-\mathrm{H}_{4}\right), 3.50(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.59\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) (HSQC / HMBC) $\delta 24.20$ (piperidine 4-C), 25.94 (piperidine $3,5-\mathrm{C}_{2}$), 54.60 (piperidine 2,6-C ${ }_{2}$), $63.25\left(\mathrm{PhCH}_{2}\right), 110.58(\mathrm{Ph} 1-\mathrm{C}), 119.07(\mathrm{CN}), 129.46\left(\mathrm{Ph} 3,5-\mathrm{C}_{2}\right)$, 131.99 (Ph 2,6-C2), 144.84 (Ph 4-C).

4-(Pyrrolidin-1-ylmethyl)benzonitrile (45c). 4-Bromomethylbenzonitrile (1.00 g, 5.1 $\mathrm{mmol})$ in dry THF (15 mL) was stirred with $\mathrm{Et}_{3} \mathrm{~N}(1.08 \mathrm{~g}, 10.7 \mathrm{mmol})$ and pyrrolidine (760 $\mathrm{mg}, 10.7 \mathrm{mmol}$) for 2 d . This mixture was diluted with EtOAc, washed thrice with water and dried. Evaporation of the solvent gave $\mathbf{4 5 c}(935 \mathrm{mg}, 98 \%)$ as a pale orange oil (lit. ${ }^{8}$ oil): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.79(4 \mathrm{H}, \mathrm{m}$, pyrrolidine 2,3-H4$), 2.50\left(4 \mathrm{H}, \mathrm{m}\right.$, pyrrolidine $\left.1,4-\mathrm{H}_{4}\right), 3.65(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.59\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) ($\mathrm{HSQC} / \mathrm{HMBC}$) $\delta 23.53$ (pyrrolidine 2,3- C_{2}), 54.24 (pyrrolidine 1,4-C2), $60.23\left(\mathrm{PhCH}_{2}\right), 110.67(\mathrm{Ph} 1-\mathrm{C}), 119.05(\mathrm{CN}), 129.29\left(\mathrm{Ph} 3,5-\mathrm{C}_{2}\right), 132.10\left(\mathrm{Ph} 2,6-\mathrm{C}_{2}\right)$, 145.29 ($\mathrm{Ph} 4-\mathrm{C}$).

4-((4-Methylpiperazin-1-yl)methyl)benzonitrile (45d). 4-Bromomethylbenzonitrile (1.0 g , 5.1 mmol) was stirred for 24 h with $\mathrm{Et}_{3} \mathrm{~N}(1.03 \mathrm{~g}, 10.2 \mathrm{mmol})$ and 1-methylpiperazine (760 $\mathrm{mg}, 7.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. This mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed thrice with sat. aq. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$. Drying and evaporation gave $\mathbf{4 5 d}(650 \mathrm{mg}, 59 \%)$ as a white solid: mp $65-67^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{9} \mathrm{mp} 62-64^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.47(8 \mathrm{H}$, m, piperazine 2,3,5,6-H8), $3.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 7.43\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}\right.$, $\left.\mathrm{Ph} 3,5-\mathrm{H}_{2}\right)$, $7.58(2$
$\left.\mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 45.98(\mathrm{Me}), 53.08$ (piperazine 2,6-C2), 55.05 (piperazine 3,5- C_{2}), $62.38\left(\mathrm{PhCH}_{2}\right), 110.85(\mathrm{Ph} 1-\mathrm{C}), 118.97(\mathrm{CN})$, 129.49 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 132.10 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 144.23 ($\mathrm{Ph} 4-\mathrm{C}$).

Ferrocenenitrile (47). Ferrocenecarboxylic acid 46 ($500 \mathrm{mg}, 2.2 \mathrm{mmol}$) was stirred with oxalyl chloride ($634 \mathrm{mg}, 5.0 \mathrm{mmol}$) for 1 h . The evaporation residue, in dry THF (5.0 mL), was added dropwise to saturated NH_{3} in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and organic layer was washed thrice $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Drying and evaporation gave ferrocenecarboxamide ($370 \mathrm{mg}, 74 \%$) as a pale orange solid: mp 168-169 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{10} \mathrm{mp} 168-171^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 4.15\left(5 \mathrm{H}, \mathrm{s}, \mathrm{Fc}{ }^{\prime}-\mathrm{H}_{5}\right), 4.32\left(2 \mathrm{H}, \mathrm{br}, \mathrm{Fc} 3,4-\mathrm{H}_{2}\right), 4.74\left(2 \mathrm{H}, \mathrm{br}, \mathrm{Fc} 2,5-\mathrm{H}_{2}\right)$, $6.91(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.28(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 68.49$ (Fc 2,5- C_{2}), $69.31\left(\mathrm{Fc}^{\prime}-\mathrm{C}_{5}\right), 69.91\left(\mathrm{Fc} 3,4-\mathrm{C}_{2}\right), 76.42$ ($\mathrm{Fc} 1-\mathrm{C}$), 171.01 ($\mathrm{C}=\mathrm{O}$). This material (352 $\mathrm{mg}, 1.5 \mathrm{mmol})$ was stirred with $\mathrm{POCl}_{3}(3.5 \mathrm{~mL})$ at $120^{\circ} \mathrm{C}$ for 2 h , followed by cooling to $0^{\circ} \mathrm{C}$ and quench with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The mixture was diluted with EtOAc and washed thrice with $\mathrm{H}_{2} \mathrm{O}$. Drying and evaporation gave $47(360 \mathrm{mg}, 99 \%)$ as a dark orange solid: $\mathrm{mp} 105-107^{\circ} \mathrm{C}$ (lit. $\left.{ }^{11} \mathrm{mp} 106-106.5^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 4.34\left(5 \mathrm{H}, \mathrm{s}, \mathrm{Fc}^{\prime}-\mathrm{H}_{5}\right)$, $4.50(2 \mathrm{H}, \mathrm{s}$, Fc 3,4$\left.\mathrm{H}_{2}\right), 4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Fc} 2,5-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 51.05$ (Fc 1-C), 70.32 (Fc '- C_{5}), 71.00 ($\mathrm{Fc} 3,4-\mathrm{C}_{2}$), 71.61 ($\mathrm{Fc} 2,5-\mathrm{C}_{2}$), 120.21 (CN).

3-Fluoro-2,N,N-trimethylbenzamide (49). $\mathrm{SOCl}_{2}(3.0 \mathrm{~g}, 25 \mathrm{mmol})$ was added to $\mathbf{4 8}(1.00 \mathrm{~g}$, $6.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux for 16 h , then the excess SOCl_{2} was evaporated. The residue, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, was added dropwise to a stirred solution of $\mathrm{Me}_{2} \mathrm{NH}$ in water $(40 \%, 3.7 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$. The mixture was then stirred at $20^{\circ} \mathrm{C}$ for 2.5 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed thrice with water and dried. Evaporation gave $49(1.00 \mathrm{~g}, 85 \%)$ as a pale orange oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.19(3 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, 2-\mathrm{Me})$, $2.82(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.13(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 6.96(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{ddd}, J=$ $7.4,6.1,0.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)(\mathrm{HSQC} / \mathrm{HMBC}) \delta 11.20(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 2-\mathrm{Me}), 34.54(\mathrm{~N}-\mathrm{Me}), 38.28(\mathrm{~N}-\mathrm{Me}), 115.31(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 4-\mathrm{C}), 121.39(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 6-\mathrm{C}), 121.59$ (d, $J=18.3 \mathrm{~Hz}, 2-\mathrm{C}), 127.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{C}), 138.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1-\mathrm{C}), 161.25(\mathrm{~d}, J=244.5 \mathrm{~Hz}, 3-\mathrm{C}), 169.98(\mathrm{~d}, J=3.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta-115.66(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3-\mathrm{F}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} 182.0973\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}\right.$ requires 182.0976).

3-Methoxy-2,N,N-trimethylbenzamide (51). $\mathrm{SOCl}_{2}(2.74 \mathrm{~g}, 23 \mathrm{mmol})$ was added to $\mathbf{5 0}$ $(1.00 \mathrm{~g}, 6.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux for 16 h , then the excess SOCl_{2} was evaporated. The residue, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$, was added dropwise to a stirred solution of $\mathrm{Me}_{2} \mathrm{NH}$ in water $(40 \%, 3.7 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$. The mixture was then stirred at $20^{\circ} \mathrm{C}$ for 3.5 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed thrice with water and dried. The solvent was evaporated to give $51(980 \mathrm{mg}, 85 \%)$ as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.12(3 \mathrm{H}, \mathrm{s}, 2-$ Me), 2.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.76(1 \mathrm{H}, \mathrm{dd}, J=7.6,0.8$ $\mathrm{Hz}, 4-\mathrm{H}), 6.81(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (HSQC / HMBC) $\delta 12.42(\mathrm{Me}), 34.44(\mathrm{~N}-\mathrm{Me}), 38.24(\mathrm{~N}-\mathrm{Me}), 55.44$ (OMe), 110.10 (6-C), 117.73 (4-C), 122.69 (2-C), 126.97 (5-C), 137.99 (1-C), 157.76 (3-C), 171.23 (C=O); MS m/z $216.0988(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{2}\right.$ requires 216.0995).

Section C: Examples of graphs of enzyme activity $\boldsymbol{v s}$. concentration for inhibition of tankyrase-2 by isoquinolin-1-ones. X-Axes - concentration of inhibitor (nM); Y-axes optical density (490 nm).

Section D: Examples of graphs of enzyme activity $\boldsymbol{v s}$. concentration for inhibition of tankyrase-1 by isoquinolin-1-ones. X-Axes - concentration of inhibitor (nM); Y-axes optical density (490 nm).

Section E: Graphs of enzyme activity $v s$. concentration for inhibition of human PARP-2 by isoquinolin-1-ones. X-Axes - concentration of inhibitor (nM); Y-axes - \% Inhibition.

Section F: Data from NCI 60-cell-line evaluations of selected isoquinolinones

12c

Five concentrations:
$10 \mathrm{nM}, 100 \mathrm{nM}, 1.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 100 \mu \mathrm{M}$

Section G: Crystal data for small-molecule X-ray crystallography

Table 1. Crystal data and structure refinement for 13i.

Identification code	k12farm8
Empirical formula	C34 H28 Cl4 N2 O3
Formula weight	654.38
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$\mathrm{a}=14.1190(3) \AA$ 風 $\alpha=90^{\circ}$
	$b=13.6440(3) \AA$ ¢ $\beta=96.302(1)^{\circ}$
	$\mathrm{c}=15.7740(4) \AA \gamma=90^{\circ}$
Volume	3020.33(12) \AA^{3}
Z	4
Density (calculated)	$1.439 \mathrm{Mg} \mathrm{m}^{-3}$
Absorption coefficient	$0.431 \mathrm{~mm}^{-1}$
F(000)	1352
Crystal size	$0.25 \times 0.15 \times 0.08 \mathrm{~mm}$
θ range for data collection	3.62 to 26.37°
Index ranges	$-17<=\mathrm{h}<=17 ;-17<=\mathrm{k}<=17 ;-19<=\mathrm{l}<=19$
Reflections collected	56157
Independent reflections	$6157[\mathrm{R}(\mathrm{int})=0.0932]$
Reflections observed (>2 σ)	4274
Data Completeness	0.997
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.928 and 0.832
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6157 / 0 / 391
Goodness-of-fit on F^{2}	1.034
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0502 w R 2=0.1070$
R indices (all data)	$\mathrm{R} 1=0.0868 w R 2=0.1250$
Largest diff. peak and hole	0.382 and $-0.377 \mathrm{e}^{-3}$

Notes:

Small crystal - poor diffraction at higher Bragg angles, hence data truncated at $\theta=26.4^{\circ}$. Two molecules in the asymmetric unit plus one solvent entity (ethanol). Hydrogen-bonding present. Methyl hydrogen atoms attached to C16 and C16A are disordered.

D-H	$\mathbf{d}(\mathbf{D}-\mathrm{H})$	$\mathbf{d}(\mathrm{H} . \mathbf{A})$	<DHA	$\mathbf{d}(\mathrm{D} . \mathbf{A})$	\mathbf{A}
O2-H2	0.840	1.988	174.03	2.825	O1A
N1-H1	0.880	1.947	170.53	2.819	O1A
N1A-H1A	0.880	2.030	160.14	2.874	O1

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $1 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonallised Uij tensor for $\mathbf{1 3 i}$.

Atom	\mathbf{x}	y	z	$\mathbf{U}(\mathbf{e q})$
$\mathrm{Cl}(1)$	6739(1)	6508(1)	5251(1)	43(1)
$\mathrm{Cl}(2)$	6779(1)	3145(1)	7104(1)	35(1)
$\mathrm{O}(1)$	8901(1)	2703(1)	5088(1)	30(1)
$\mathrm{O}(2)$	6729(2)	3007(2)	3249(2)	51(1)
$\mathrm{N}(1)$	7908(2)	3810(2)	5586(1)	26(1)
C(1)	6168(2)	5613(2)	5800(2)	31(1)
C(2)	5211(2)	5739(2)	5874(2)	34(1)
C(3)	4733(2)	5046(2)	6300(2)	38(1)
C(4)	5216(2)	4233(2)	6660(2)	36(1)
C(5)	6181(2)	4132(2)	6585(2)	29(1)
C(6)	6690(2)	4804(2)	6142(2)	26(1)
C(7)	7708(2)	4650(2)	6035(2)	25(1)
C(8)	8425(2)	5243(2)	6344(2)	26(1)
C(9)	9396(2)	5012(2)	6224(2)	24(1)
C(10)	9587(2)	4125(2)	5812(2)	25(1)
C(11)	8802(2)	3491(2)	5473(2)	26(1)
C(12)	10522(2)	3860(2)	5709(2)	30(1)
C(13)	11260(2)	4467(2)	6004(2)	33(1)
C(14)	11076(2)	5357(2)	6393(2)	32(1)
C(15)	10161(2)	5644(2)	6503(2)	26(1)
C(16)	9966(2)	6627(2)	6895(2)	34(1)
C(17)	7352(2)	2287(2)	2980(2)	47(1)
C(18)	7566(3)	2559(3)	2092(2)	51(1)
$\mathrm{Cl}(1 \mathrm{~A})$	8342(1)	-1484(1)	5145(1)	38(1)
$\mathrm{Cl}(2 \mathrm{~A})$	8970(1)	1794(1)	7072(1)	38(1)
$\mathrm{O}(1 \mathrm{~A})$	6463(1)	2497(1)	4942(1)	29(1)
N(1A)	7483(2)	1314(2)	5481(1)	25(1)
C(1A)	9101(2)	-663(2)	5728(2)	26(1)
$\mathrm{C}(2 \mathrm{~A})$	10060(2)	-884(2)	5836(2)	30(1)
C(3A)	10687(2)	-241(2)	6291(2)	34(1)
C(4A)	10352(2)	597(2)	6654(2)	33(1)
C(5A)	9385(2)	789(2)	6545(2)	28(1)
C(6A)	8723(2)	187(2)	6066(2)	25(1)
C(7A)	7699(2)	449(2)	5932(2)	25(1)
C(8A)	6993(2)	-75(2)	6225(2)	25(1)
C(9A)	6024(2)	259(2)	6099(2)	24(1)

$\mathrm{C}(10 \mathrm{~A})$	$5826(2)$	$1162(2)$	$5674(2)$	$24(1)$
$\mathrm{C}(11 \mathrm{~A})$	$6594(2)$	$1704(2)$	$5340(2)$	$25(1)$
$\mathrm{C}(12 \mathrm{~A})$	$4902(2)$	$1535(2)$	$5562(2)$	$29(1)$
$\mathrm{C}(13 \mathrm{~A})$	$4173(2)$	$1015(2)$	$5849(2)$	$31(1)$
$\mathrm{C}(14 \mathrm{~A})$	$4353(2)$	$114(2)$	$6253(2)$	$32(1)$
$\mathrm{C}(15 \mathrm{~A})$	$5261(2)$	$-279(2)$	$6385(2)$	$27(1)$
$\mathrm{C}(16 \mathrm{~A})$	$5426(2)$	$-1265(2)$	$6805(2)$	$35(1)$

Table 3. Bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ for 13i.

$\mathrm{Cl}(1)-\mathrm{C}(1)$	1.745(3)	$\mathrm{Cl}(2)-\mathrm{C}(5)$	1.744(3)
$\mathrm{O}(1)-\mathrm{C}(11)$	1.250(3)	$\mathrm{O}(2)-\mathrm{C}(17)$	1.414(4)
$\mathrm{N}(1)-\mathrm{C}(11)$	1.366(3	$\mathrm{N}(1)-\mathrm{C}(7)$	1.392(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.380(4)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.402(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.378(4)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.391(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.388(4)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.398(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.481(4)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.345(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.439(4)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.414(4)
$\mathrm{C}(9)-\mathrm{C}(15)$	1.414(4)	$\mathrm{C}(10)-\mathrm{C}(12)$	1.396(4)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.461(4)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.371(4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.398(4)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.379(4)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.514(4)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.511(5)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	1.741(3)	$\mathrm{Cl}(2 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.737(3)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.254(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.360(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.394(3)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.381(4)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.405(4)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	1.388(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.384(4)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.384(4)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.401(4)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.482(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	1.349(4)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	1.435(4)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.417(4)	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.416(4)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.394(4)	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.457(4)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.367(4)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	1.394(4)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.385(4)	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.506(4)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(7)$	124.8(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.9(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(1)$	117.7(2)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Cl}(1)$	119.4(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.5(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.1(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.1(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.7(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cl}(2)$	117.7(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cl}(2)$	119.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	115.6(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.5(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.9(2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	119.6(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	125.0(2)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	115.3(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.6(2)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(15)$	119.1(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	118.8(2)	$\mathrm{C}(15)-\mathrm{C}(9)-\mathrm{C}(8)$	122.1(2)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(9)$	120.5(3)	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)$	119.6(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.9(2)	$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{N}(1)$	119.5(2)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	124.5(2)	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	116.0(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(10)$	119.8(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.2(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	121.6(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(9)$	118.8(2)

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121.2(3)	$\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{C}(16)$	120.0(2)
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	107.6(3)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	124.1(2)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	122.8(3)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{Cl}(1 \mathrm{~A})$	117.6(2)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{Cl}(1 \mathrm{~A})$	119.6(2)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	119.1(3)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	120.6(3)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	118.8(3)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	123.1(3)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{Cl}(2 \mathrm{~A})$	118.0(2)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{Cl}(2 \mathrm{~A})$	118.8(2)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	115.5(2)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	121.2(2)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	123.4(2)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	119.7(2)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	124.7(2)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	115.6(2)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	121.0(2)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	119.0(2)	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	122.6(2)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	118.5(2)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	120.7(3)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	119.4(2)	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	119.8(2)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	120.2(2)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	123.0(2)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	116.9(2)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	119.7(3)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	120.2(3)	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	122.0(3)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	118.4(3)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	120.6(3)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	121.1(3)		

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 13i. The anisotropic displacement factor exponent takes the form: -2 gpi $^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U}\right.$

Atom	U11	U22	U33	U23	U13	U12
$\mathrm{Cl}(1)$	36(1)	30(1)	64(1)	15(1)	9(1)	7(1)
$\mathrm{Cl}(2)$	43(1)	27(1)	34(1)	4(1)	7(1)	-2(1)
$\mathrm{O}(1)$	36(1)	20(1)	34(1)	-4(1)	9(1)	2(1)
$\mathrm{O}(2)$	54(2)	55(2)	44(2)	11(1)	14(1)	15(1)
N(1)	28(1)	19(1)	32(1)	-1(1)	4(1)	1(1)
C(1)	34(2)	25(2)	33(2)	-2(1)	4(1)	0 (1)
C(2)	30(2)	35(2)	39(2)	-5(1)	4(1)	6(1)
C(3)	28(2)	47(2)	40(2)	-9(2)	7(1)	2(1)
C(4)	36(2)	39(2)	36(2)	-6(1)	9(1)	-9(1)
C(5)	33(2)	24(1)	30(2)	-6(1)	3(1)	-1(1)
C(6)	28(2)	20(1)	29(1)	-5(1)	6(1)	0 (1)
C(7)	30(2)	19(1)	26(1)	2(1)	6(1)	3(1)
C(8)	31(2)	20(1)	28(1)	0 (1)	4(1)	3(1)
C(9)	28(1)	22(1)	23(1)	4(1)	4(1)	2(1)
C(10)	31(2)	21(1)	24(1)	4(1)	4(1)	1(1)
C(11)	31(2)	20(1)	26(1)	5(1)	5(1)	5(1)
C(12)	33(2)	28(2)	30(2)	2(1)	8(1)	7(1)
C(13)	27(2)	37(2)	35(2)	3(1)	7(1)	5(1)
C(14)	33(2)	33(2)	29(2)	2(1)	1(1)	-2(1)
C(15)	30(2)	25(1)	24(1)	3(1)	1(1)	2(1)
C(16)	32(2)	27(2)	41(2)	-3(1)	0 (1)	-3(1)
C(17)	40(2)	40(2)	61(2)	4(2)	10(2)	-1(2)
C(18)	50(2)	61(2)	44(2)	-9(2)	10(2)	-11(2)
$\mathrm{Cl}(1 \mathrm{~A})$	35(1)	27(1)	53(1)	-13(1)	1(1)	1(1)
$\mathrm{Cl}(2 \mathrm{~A})$	50(1)	25(1)	35(1)	-7(1)	-3(1)	5(1)
$\mathrm{O}(1 \mathrm{~A})$	34(1)	20(1)	32(1)	6(1)	2(1)	4(1)
$\mathrm{N}(1 \mathrm{~A})$	28(1)	19(1)	28(1)	2(1)	4(1)	3(1)
$\mathrm{C}(1 \mathrm{~A})$	30(2)	20(1)	29(2)	1(1)	2(1)	0 (1)
$\mathrm{C}(2 \mathrm{~A})$	35(2)	22(1)	34(2)	2(1)	7(1)	7(1)
$\mathrm{C}(3 \mathrm{~A})$	30(2)	35(2)	37(2)	8(1)	2(1)	3(1)
$\mathrm{C}(4 \mathrm{~A})$	35(2)	30(2)	33(2)	1(1)	-2(1)	-5(1)
C(5A)	34(2)	20(1)	28(2)	3(1)	2(1)	2(1)
C(6A)	30(2)	22(1)	24(1)	3(1)	2(1)	2(1)
C(7A)	32(2)	18(1)	23(1)	-2(1)	2(1)	3(1)
C(8A)	32(2)	17(1)	27(1)	1(1)	3(1)	4(1)
C(9A)	29(2)	21(1)	22(1)	-3(1)	4(1)	0 (1)

$\mathrm{C}(10 \mathrm{~A})$	$30(2)$	$21(1)$	$22(1)$	$-4(1)$	$4(1)$	$2(1)$
$\mathrm{C}(11 \mathrm{~A})$	$32(2)$	$21(1)$	$21(1)$	$-3(1)$	$0(1)$	$3(1)$
$\mathrm{C}(12 \mathrm{~A})$	$30(2)$	$29(2)$	$27(1)$	$-3(1)$	$-1(1)$	$6(1)$
$\mathrm{C}(13 \mathrm{~A})$	$26(2)$	$34(2)$	$33(2)$	$-4(1)$	$2(1)$	$4(1)$
$\mathrm{C}(14 \mathrm{~A})$	$31(2)$	$36(2)$	$29(2)$	$-5(1)$	$5(1)$	$-6(1)$
$\mathrm{C}(15 \mathrm{~A})$	$32(2)$	$23(1)$	$26(1)$	$-4(1)$	$2(1)$	$1(1)$
$\mathrm{C}(16 \mathrm{~A})$	$39(2)$	$31(2)$	$36(2)$	$4(1)$	$7(1)$	$-5(1)$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 13i.

Atom	\mathbf{x}	y	z	U(eq)
H(2)	6631	2896	3756	104(19)
$\mathrm{H}(1)$	7422	3459	5359	31
$\mathrm{H}(2 \mathrm{~B})$	4883	6299	5633	41
H(3)	4072	5124	6347	46
H(4)	4890	3753	6953	44
H(8)	8289	5821	6646	32
H(12)	10648	3260	5436	36
H(13)	11897	4282	5943	39
H(14)	11594	5774	6586	38
H(16A)	9279	6701	6921	50
H(16B)	10192	7153	6544	50
H(16C)	10301	6663	7472	50
H(16D)	10568	6977	7037	50
H(16E)	9656	6525	7414	50
H(16F)	9547	7015	6486	50
H(17A)	7049	1633	2975	56
H(17B)	7949	2267	3373	56
H(18A)	6976	2542	1702	77
H(18B)	8024	2092	1899	77
H(18C)	7837	3221	2099	77
H(1A)	7952	1627	5276	30
H(2A)	10290	-1468	5602	36
H(3A)	11350	-377	6354	41
H(4A)	10780	1032	6972	40
H(8A)	7139	-673	6519	30
H(12A)	4779	2148	5287	35
H(13A)	3543	1267	5772	38
H(14A)	3837	-239	6443	38
H(16G)	6106	-1427	6845	53
H(16H)	5059	-1765	6464	53
H(16I)	5220	-1245	7378	53
H(16J)	4818	-1530	6946	53
H(16K)	5864	-1193	7327	53
H(16L)	5703	-1713	6414	53

Table 6. Dihedral angles [${ }^{\circ}$] for 13i.

Atom1 - Atom2 - Atom3 - Atom4	Dihedral
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-0.1(4)
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	179.8(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	0.7(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.1(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-1.6(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cl}(2)$	175.9(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	2.1(4)
$\mathrm{Cl}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	-175.4(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-176.8(3)
$\mathrm{Cl}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	5.8(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-1.2(4)
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	178.9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	177.6(3)
$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-2.3(4)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	4.3(4)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	-174.6(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-117.3(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	63.9(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	61.6(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	-117.2(3)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-0.7(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	178.2(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-3.1(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)$	176.7(2)
$\mathrm{C}(15)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	2.4(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	-177.8(2)
$\mathrm{C}(15)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-176.3(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	3.5(4)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{O}(1)$	177.1(2)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	-3.8(4)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	0.2(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	178.9(2)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	-178.9(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(1)$	-0.3(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)$	-0.6(4)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)$	178.1(2)

$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-1.1(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	1.0(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(9)$	0.9(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-177.6(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{C}(14)$	-2.5(4)
$C(8)-C(9)-C(15)-C(14)$	177.7(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{C}(16)$	176.0(2)
$C(8)-C(9)-C(15)-C(16)$	-3.8(4)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	-0.4(4)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	179.4(2)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.8(4)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	-0.9(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	-1.4(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{Cl}(2 \mathrm{~A})$	175.2(2)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	2.7(4)
$\mathrm{Cl}(2 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	-173.95(19)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	-177.0(3)
$\mathrm{Cl}(2 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	6.4(3)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	-1.7(4)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	178.4(2)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	177.9(3)
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	-1.9(4)
$C(11 A)-N(1 A)-C(7 A)-C(8 A)$	2.9(4)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	-175.9(2)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	-115.8(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	64.6(4)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	63.0(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	-116.7(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	-1.7(4)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	177.0(2)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	178.9(2)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	-1.2(4)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	2.1(4)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	-177.8(2)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	-177.0(2)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	3.0(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	178.5(2)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	-1.0(4)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	-0.7(4)

$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	$178.5(2)$
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	$178.9(2)$
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	$-1.9(4)$
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$-1.4(4)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$177.8(2)$
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$0.0(4)$
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$0.5(4)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	$0.2(4)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$-178.5(3)$
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$-1.5(4)$
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$178.4(2)$
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$177.2(2)$
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$-2.8(4)$

Table 7. Crystal data and structure refinement for $\mathbf{1 5 b}$.

Identification code	k12farm10
Formula weight	265.30
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$\mathrm{a}=12.5690(8) \AA$ A $\alpha=90^{\circ}$
	$\mathrm{c}=13.3300(11) \AA \begin{gathered}\text { ¢ }\end{gathered}$
Volume	2757.3(3) \AA^{3}
Z	8
Density (calculated)	$1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Absorption coefficient	$0.084 \mathrm{~mm}^{-1}$
F(000)	1120
Crystal size	$0.30 \times 0.08 \times 0.08 \mathrm{~mm}$
θ range for data collection	3.52 to 25.03°
Index ranges	$-14<=\mathrm{h}<=14 ;-20<=\mathrm{k}<=20 ;-11<=\mathrm{l}<=15$
Reflections collected	12394
Independent reflections	$4788[\mathrm{R}(\mathrm{int})=0.1450]$
Reflections observed (>2 σ)	1941
Data Completeness	0.982
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.710
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4788 / 0 / 365
Goodness-of-fit on F^{2}	0.895
Final R indices [I>2 $\sigma(\mathrm{I})$]	$R 1=0.0717$ wR2 $=0.1299$
R indices (all data)	$R 1=0.2113 w R 2=0.1699$
Largest diff. peak and hole	0.259 and -0.241 e^{-3}

Notes:

Two independent molecules in the asymmetric unit, which form hydrogen-bonded dimers.

Crystal quality poor - small fragment taken from a non-merohedrally twinned needle. Unit cell parameters reflect the sample quality. However, the structure is unambiguous. Data truncated to 25 degree Bragg angle.

Hydrogen bonds	with	$\mathrm{A}<\mathrm{r}(\mathrm{A})$	$+2.000$	Angstrom	and	<DHA > 110 deg.
D-H	d (D-H)	d(H. . A)	<DHA	d (D. . A)	A	
N1-H1	0.880	1.917	168.55	2.785	01A	
N1A-H1A	0.880	2.095	163.52	2.950	01	

Table 8. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $1 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonallised Uij tensor for $\mathbf{1 5 b}$.

Atom	\mathbf{x}	y	z	U(eq)
$\mathrm{O}(1)$	4518(2)	1373(1)	-78(2)	50(1)
$\mathrm{O}(2)$	701(2)	3499(1)	-299(3)	76(1)
$\mathrm{N}(1)$	3249(2)	1302(2)	854(2)	42(1)
C(1)	3670(3)	1634(2)	109(3)	46(1)
C(2)	3060(3)	2313(2)	-435(3)	44(1)
C(3)	3416(3)	2679(2)	-1231(3)	53(1)
C(4)	2872(3)	3325(2)	-1706(4)	65(1)
C(5)	1944(4)	3608(2)	-1412(4)	72(1)
C(6)	1590(3)	3260(2)	-636(4)	62(1)
C(7)	2139(3)	2589(2)	-126(3)	48(1)
C(8)	1785(3)	2199(2)	675(3)	53(1)
C(9)	$2328(3)$	1560(2)	1161(3)	44(1)
C(10)	2011(3)	1117(2)	1975(3)	48(1)
C(11)	1408(3)	1453(2)	2609(4)	68(1)
C(12)	1129(4)	1037(3)	3386(4)	83(2)
C(13)	1447(4)	257(3)	3583(4)	71(1)
C(14)	2019(3)	-74(2)	2953(4)	69(1)
C(15)	2300(3)	331(2)	2160(4)	59(1)
C(16)	1147(4)	-195(3)	4464(5)	117(2)
C(17)	19(4)	4110(3)	-875(4)	103(2)
$\mathrm{O}(1 \mathrm{~A})$	4580(2)	54(1)	1769(2)	59(1)
$\mathrm{O}(2 \mathrm{~A})$	8876(2)	-1580(1)	3110(2)	68(1)
$\mathrm{N}(1 \mathrm{~A})$	6113(2)	279(2)	1218(2)	44(1)
$\mathrm{C}(1 \mathrm{~A})$	5547(3)	-119(2)	1807(3)	45(1)
$\mathrm{C}(2 \mathrm{~A})$	6148(3)	-725(2)	2490(3)	48(1)
$\mathrm{C}(3 \mathrm{~A})$	5629(3)	-1157(2)	3129(3)	54(1)
$\mathrm{C}(4 \mathrm{~A})$	6200(3)	-1722(2)	3751(4)	59(1)
$\mathrm{C}(5 \mathrm{~A})$	7298(3)	-1886(2)	3788(3)	59(1)
C(6A)	7818(3)	-1469(2)	3165(3)	56(1)
C(7A)	7252(3)	-868(2)	2501(3)	43(1)
C(8A)	7758(3)	-417(2)	1841(3)	49(1)
C(9A)	7206(3)	148(2)	1208(3)	40(1)
C(10A)	7670(3)	638(2)	512(3)	42(1)
$\mathrm{C}(11 \mathrm{~A})$	8796(3)	628(2)	582(4)	63(1)
$\mathrm{C}(12 \mathrm{~A})$	9240(3)	1053(2)	-91(4)	66(1)
$\mathrm{C}(13 \mathrm{~A})$	8608(3)	1518(2)	-851(4)	58(1)

$\mathrm{C}(14 \mathrm{~A})$	$7495(3)$	$1542(2)$	$-908(3)$	$56(1)$
$\mathrm{C}(15 \mathrm{~A})$	$7029(3)$	$1111(2)$	$-254(3)$	$50(1)$
$\mathrm{C}(16 \mathrm{~A})$	$9095(3)$	$1960(2)$	$-1614(4)$	$77(1)$
$\mathrm{C}(17 \mathrm{~A})$	$9459(3)$	$-2218(2)$	$3716(4)$	$82(2)$

Table 9. Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{1 5 b}$.

$\mathrm{O}(1)-\mathrm{C}(1)$	1.238(4)	$\mathrm{O}(2)-\mathrm{C}(6)$	1.369(4)
$\mathrm{O}(2)-\mathrm{C}(17)$	$1.438(5$	$\mathrm{N}(1)-\mathrm{C}(1)$	1.360(4)
$\mathrm{N}(1)-\mathrm{C}(9)$	1.395 (4)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.472(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.399 (5)	$\mathrm{C}(2)-\mathrm{C}(7)$	1.405(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.364(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	1.406(5)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.363(5)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.416(5)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.423(5)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.357(5)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.459(5)$	$\mathrm{C}(10)-\mathrm{C}(15)$	1.392(5)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.394(5)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.373(6)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.394(6)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.360(5)
$\mathrm{C}(13)-\mathrm{C}(16)$	1.529(6)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.382(5)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	1.239(4)	$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.364(4)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	$1.438(4$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	1.367(4)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	1.394(4)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.453(5)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.404(4)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	$1.406(5)$
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.350(5)$	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.397(5)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.377(5)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.420(5)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	$1.434(5)$	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	1.348(5)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	$1.476(5)$	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.385(5)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$1.395(5)$	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.377(5)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.369 (6)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	1.382(5)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.514(5)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.380 (5)
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(17)$	117.7(4)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)$	126.2(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	121.0(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.2(4)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	115.8(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	121.4(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.8(3)	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	118.8(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.5(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.0(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	121.2(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	125.0(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.1(4)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	114.9(4)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	117.8(4)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	120.3(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.0(4)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	121.1(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)$	117.8(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	124.8(3)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	117.4(3)	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$	116.5(4)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$	121.4(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	122.1(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	121.9(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.2(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	116.7(4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	122.7(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	120.6(4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	123.1(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	120.5(4)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	116.0(3)

$\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	125.8(3)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	120.5(3)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	122.8(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	116.6(3)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	120.9(3)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	118.9(3)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	120.2(3)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	119.3(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	122.0(4)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	119.5(4)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	125.5(4)	$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	114.0(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	120.6(3)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	117.8(3)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	119.6(3)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	122.6(3)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	121.8(3)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	117.4(3)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	125.0(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	117.6(3)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	116.5(3)	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	122.9(3)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	120.6(4)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	121.5(4)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	122.1(4)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	116.4(4)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	121.8(4)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	121.8(4)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	122.5(4)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	120.9(3)

Table 10. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 5 b}$. The anisotropic displacement factor exponent takes the form: -2 gpi $^{2}\left[h^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{b}^{*} \mathrm{U}\right.$

Atom	U11	U22	U33	U23	U13	U12
$\mathrm{O}(1)$	43(2)	49(2)	58(2)	2(1)	12(1)	3(1)
$\mathrm{O}(2)$	82(2)	59(2)	93(3)	16(2)	30(2)	29(2)
$\mathrm{N}(1)$	39(2)	35(2)	49(2)	6(2)	4(2)	2(1)
C(1)	44(2)	41(2)	52(3)	-5(2)	10(2)	-8(2)
C(2)	42(2)	39(2)	47(3)	-4(2)	3(2)	-1(2)
C(3)	61(2)	44(2)	50(3)	5(2)	8(2)	0(2)
C(4)	80(3)	53(3)	62(4)	5(2)	19(3)	3(2)
C(5)	92(3)	56(3)	65(4)	12(2)	17(3)	20(2)
C(6)	70(3)	48(2)	67(4)	0 (2)	17(3)	9(2)
C(7)	48(2)	36(2)	55(3)	1(2)	2(2)	3(2)
C(8)	50(2)	47(2)	62(3)	-3(2)	12(2)	5(2)
C(9)	39(2)	45(2)	48(3)	-3(2)	9(2)	-1(2)
C(10)	40(2)	45(2)	59(3)	-6(2)	10(2)	2(2)
C(11)	83(3)	62(3)	62(4)	-2(3)	26(3)	15(2)
C(12)	86(3)	105(4)	68(4)	-2(3)	39(3)	19(3)
C(13)	77(3)	81(3)	64(4)	9(3)	35(3)	6(3)
C(14)	73(3)	64(3)	80(4)	13(3)	39(3)	8(2)
C(15)	57(2)	50(2)	80(4)	2(2)	38(2)	2(2)
C(16)	133(4)	135(5)	112(6)	43(4)	86(4)	29(4)
C(17)	117(4)	91(4)	102(5)	35(3)	30(4)	69(3)
$\mathrm{O}(1 \mathrm{~A})$	43(2)	59(2)	77(2)	20(2)	19(1)	10(1)
$\mathrm{O}(2 \mathrm{~A})$	56(2)	73(2)	71(2)	30(2)	10(2)	20(1)
$\mathrm{N}(1 \mathrm{~A})$	44(2)	35(2)	51(2)	5(2)	11(2)	4(1)
C(1A)	45(2)	40(2)	50(3)	-3(2)	13(2)	-4(2)
$\mathrm{C}(2 \mathrm{~A})$	50(2)	35(2)	62(3)	2(2)	19(2)	2(2)
C(3A)	58(2)	52(2)	55(3)	4(2)	17(2)	4(2)
$\mathrm{C}(4 \mathrm{~A})$	70(3)	50(2)	60(3)	11(2)	21(2)	-4(2)
$\mathrm{C}(5 \mathrm{~A})$	76(3)	48(2)	53(3)	8(2)	16(2)	4(2)
C(6A)	54(2)	51(2)	63(3)	7(2)	16(2)	7(2)
C(7A)	48(2)	38(2)	36(3)	0(2)	-1(2)	4(2)
C(8A)	41(2)	48(2)	57(3)	1(2)	9(2)	0(2)
C(9A)	39(2)	45(2)	32(3)	-8(2)	2(2)	3(2)
C(10A)	41(2)	41(2)	46(3)	-2(2)	12(2)	1(2)
$\mathrm{C}(11 \mathrm{~A})$	50(2)	63(3)	73(4)	24(2)	11(2)	-4(2)
$\mathrm{C}(12 \mathrm{~A})$	44(2)	75(3)	74(4)	10(3)	6(2)	-9(2)
C(13A)	57(3)	52(2)	64(3)	9(2)	16(2)	-4(2)

$\mathrm{C}(14 \mathrm{~A})$	$62(3)$	$55(2)$	$53(3)$	$11(2)$	$18(2)$	$9(2)$
$\mathrm{C}(15 \mathrm{~A})$	$47(2)$	$50(2)$	$55(3)$	$5(2)$	$15(2)$	$9(2)$
$\mathrm{C}(16 \mathrm{~A})$	$74(3)$	$87(3)$	$70(4)$	$18(3)$	$20(3)$	$-10(2)$
$\mathrm{C}(17 \mathrm{~A})$	$75(3)$	$85(3)$	$84(4)$	$46(3)$	$17(3)$	$35(3)$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 5 b}$.

Atom	x	y	z	U(eq)
H(1)	3591	886	1172	51
H(3)	4032	2478	-1439	63
H(4)	3119	3585	-2236	78
H(5)	1558	4050	-1761	86
H(8)	1157	2389	873	64
H(11)	1183	1986	2499	81
H(12)	712	1286	3798	99
H(14)	2235	-608	3063	83
H(15)	2695	70	1737	71
H(16A)	374	-358	4245	175
H(16B)	1257	144	5076	175
H(16C)	1618	-660	4636	175
H(17A)	436	4602	-799	155
H(17B)	-632	4180	-609	155
H(17C)	-210	3964	-1610	155
H(1A)	5757	651	808	53
H(3A)	4885	-1053	3123	65
H(4A)	5844	-2017	4175	71
H(5A)	7684	-2282	4239	71
H(8A)	8504	-518	1850	59
H(11A)	9268	320	1107	75
H(12A)	10010	1022	-26	79
H(14A)	7033	1868	-1417	67
H(15A)	6257	1139	-330	60
H(16D)	9513	1596	-1935	115
H(16E)	9586	2374	-1247	115
H(16F)	8502	2197	-2152	115
H(17D)	9103	-2716	3453	123
H(17E)	9449	-2151	4443	123
H(17F)	10222	-2223	3662	123

Table 6. Dihedral angles [${ }^{\circ}$] for $\mathbf{1 5 b}$.

Atom1 - Atom2 - Atom3 - Atom4	Dihedral
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	177.4(3)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-2.0(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	2.2(5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-178.4(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-176.6(3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	2.8(5)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	1.2(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-177.6(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-1.5(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	1.8(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	179.7(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-1.6(7)
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	7.0(6)
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-171.8(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	-1.0(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	177.8(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	179.1(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	-2.2(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	1.2(6)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	-179.9(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-178.9(4)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	0.0(6)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.5(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-179.4(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)$	0.4(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-178.8(4)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	0.4(5)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	179.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	154.8(4)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	-24.5(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-25.3(6)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	155.4(4)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	1.1(7)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-178.8(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	0.5(8)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-1.6(7)

$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	178.9(5)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	1.0(7)
$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-179.5(5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	0.6(7)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	-1.7(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	178.3(4)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	178.8(3)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	0.7(5)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	-178.4(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	-0.4(5)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	1.4(6)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	179.5(3)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	-0.7(6)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	179.4(4)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	0.7(6)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	-0.9(6)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	3.8(6)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	-175.9(4)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$	-178.7(4)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.0(6)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	0.9(6)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	-179.3(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	-180.0(4)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	-0.1(5)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	178.7(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	-1.1(6)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	-0.4(6)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	179.8(4)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	0.3(6)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	179.4(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	0.0(5)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	179.7(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	-0.6(5)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	179.8(3)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	168.2(4)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	-12.2(5)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	-10.0(6)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	169.7(3)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	-1.4(6)

$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$176.9(4)$
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$1.2(7)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$0.1(7)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$-177.7(4)$
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$-1.3(6)$
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$176.5(4)$
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	$1.2(6)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$0.2(6)$
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$-178.0(3)$

Section H: Details of the diffraction data and refinement of the structures of complexes of selected isoquinolin-1-ones with tankyrase-2.

Compound PDB code	$\begin{gathered} 11 \mathbf{a} \\ 4 \mathrm{UVL} \end{gathered}$	$\begin{gathered} \mathbf{1 1 b} \\ 4 \mathrm{UVP} \end{gathered}$	$\begin{gathered} \text { 11c } \\ 4 \mathrm{UVS} \end{gathered}$	$\begin{gathered} \text { 11d } \\ 4 \mathrm{UVT} \end{gathered}$	$\begin{gathered} \text { 12a } \\ 4 \mathrm{UVZ} \end{gathered}$	$\begin{gathered} \mathbf{1 2 f} \\ 4 \mathrm{UVO} \end{gathered}$
Data Beam line	$\begin{gathered} \text { ESRF } \\ \text { ID23-1 } \end{gathered}$	$\begin{gathered} \text { ESRF } \\ \text { ID23-1 } \end{gathered}$	$\begin{gathered} \text { ESRF } \\ \text { ID14-1 } \end{gathered}$	$\begin{gathered} \text { ESRF } \\ \text { ID23-1 } \end{gathered}$	$\begin{gathered} \text { ESRF } \\ \text { ID23-1 } \end{gathered}$	$\begin{aligned} & \text { ESRF } \\ & \text { ID23-2 } \end{aligned}$
Wavelength (A)	1.07227	1.07227	0.93340	1.07227	1.07227	0.87260
Space group	C222 ${ }_{1}$					
Cell dimensions $\mathrm{a}, \mathrm{~b}, \mathrm{c}(\AA)$	$\begin{gathered} 91.30,97.78 \\ 118.88 \end{gathered}$	$\begin{gathered} 91.16,97.70 \\ 118.69 \end{gathered}$	$\begin{gathered} 91.45,98.68, \\ 119.21 \end{gathered}$	$\begin{gathered} 91.54,97.62, \\ 118.07 \end{gathered}$	$\begin{gathered} 91.03,98.06 \\ 118.03 \end{gathered}$	$\begin{gathered} 91.31,98.25, \\ 119.11 \end{gathered}$
Resolution (\AA)	$\begin{gathered} 50-2.0 \\ (2.05-2.00) \end{gathered}$	$\begin{gathered} 50-1.75 \\ (1.80-1.75) \end{gathered}$	$\begin{gathered} 50-2.0 \\ (2.05-2.00) \end{gathered}$	$\begin{gathered} 50-1.95 \\ (2.00-1.95) \end{gathered}$	$\begin{gathered} 50-1.60 \\ (1.64-1.60) \end{gathered}$	$\begin{gathered} 50-1.85 \\ (1.90-1.85) \end{gathered}$
$\mathrm{R}_{\text {merge }}$	$\begin{gathered} 0.090 \\ (0.706) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.463) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.522) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.597) \end{gathered}$	$\begin{gathered} 0.057 \\ (0.702) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.671) \end{gathered}$
I / σ I	15.50 (2.85)	16.29 (2.19)	14.48 (2.60)	18.62 (3.37)	20.38 (2.78)	17.10 (2.53)
Completeness (\%)	100 (100)	98.4 (85.8)	99.7 (99.9)	99.3 (98.9)	98.4 (97.2)	99.8 (99.9)
Redundancy	7.2 (7.3)	3.5 (2.7)	3.7 (3.7)	7.2 (7.4)	7.3 (7.4)	5.6 (5.6)
Refinement						
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	$\begin{gathered} 0.17253 / \\ 0.21402 \end{gathered}$	$\begin{gathered} 0.16841 / \\ 0.20541 \end{gathered}$	$\begin{gathered} 0.18164 / \\ 0.21424 \end{gathered}$	$\begin{gathered} 0.16868 / \\ 0.21306 \end{gathered}$	$\begin{gathered} 0.16365 / \\ 0.18851 \end{gathered}$	$\begin{gathered} 0.16633 / \\ 0.19735 \end{gathered}$
B-factors						
Protein	26.6065	21.283	19.9235	26.6735	19.3375	21.6805
Inhibitor R.m.s.d.	32.4065	19.976	18.473	30.7105	14.0475	26.6415
Bond lengths (A)	0.014	0.015	0.013	0.013	0.014	0.015
Bond angles (${ }^{\circ}$)	1.389	1.491	1.305	1.370	1.431	1.441
Ramachandran plot (\%)						
Favoured regions	98.53	99.27	98.78	98.78	99.02	99.27
Additionally allowed regions	-	0.57	0.28	0.85	1.13	1.13
Compound PDB code	$\begin{gathered} \mathbf{1 2 m} \\ 4 \mathrm{UVN} \end{gathered}$	$\begin{gathered} \mathbf{1 3 h} \\ 4 \mathrm{UVV} \end{gathered}$	$\begin{gathered} \text { 13n } \\ 4 \mathrm{UVU} \end{gathered}$	$\begin{gathered} \mathbf{1 4 f} \\ 4 \mathrm{UVX} \end{gathered}$	$\begin{gathered} 15 \mathrm{e} \\ 4 \mathrm{UVY} \end{gathered}$	$\begin{gathered} 17 \\ \text { 4UVW } \\ \hline \end{gathered}$
Data						
Beam line	$\begin{aligned} & \text { ESRF } \\ & \text { ID14-1 } \end{aligned}$	$\begin{gathered} \text { Diamond } \\ \text { I038 } \end{gathered}$	$\begin{gathered} \text { Diamond } \\ \text { I038 } \end{gathered}$	$\begin{gathered} \text { Diamond } \\ \text { I038 } \end{gathered}$	$\begin{aligned} & \text { Diamond } \\ & \text { I04-1 } \end{aligned}$	$\begin{aligned} & \text { ESRF } \\ & \text { ID23-2 } \end{aligned}$
Wavelength (A)	0.93340	0.976250	0.976250	0.976250	0.92000	0.87260
Space group	C222 ${ }_{1}$	$\mathrm{C} 222{ }_{1}$				

Cell dimensions$\mathrm{a}, \mathrm{~b}, \mathrm{c}(\AA)$					91.23	97.72117 .81
	$\begin{gathered} 90.69,98.15 \\ 118.0 \end{gathered}$	$\begin{gathered} 91.23,97.72 \\ 117.81 \end{gathered}$	$\begin{gathered} 90.23,98.56 \\ 118.94 \end{gathered}$	$\begin{gathered} 90.58,98.51 \\ 118.50 \end{gathered}$	$\begin{gathered} 91.38,98.36 \\ 119.51 \end{gathered}$	$\begin{gathered} 93.56,96.73 \\ 117.09 \end{gathered}$
Resolution (A)	$\begin{gathered} 50-2.20 \\ (2.26-2.20) \end{gathered}$	$\begin{gathered} 50-1.90 \\ (1.95-1.90) \end{gathered}$	$\begin{gathered} 30-1.95 \\ (2.00-1.95) \end{gathered}$	$\begin{gathered} 30-1.95 \\ (2.00-1.95) \end{gathered}$	$\begin{gathered} 30-1.95 \\ (2.00-1.95) \end{gathered}$	$\begin{gathered} 50-2.10 \\ (2.15-2.10) \end{gathered}$
$\mathrm{R}_{\text {merge }}$	$\begin{gathered} 0.095 \\ (0.592) \end{gathered}$	$\begin{gathered} 5.7 \\ (70.8) \end{gathered}$	$\begin{gathered} 8.9 \\ (77.3) \end{gathered}$	$\begin{gathered} 8.2 \\ (78.7) \end{gathered}$	$\begin{gathered} 12.3 \\ (94.4) \end{gathered}$	$\begin{gathered} 9.0 \\ (92.6) \end{gathered}$
I / σ I	12.85 (2.27)	18.59 (2.45)	12.54 (2.38)	13.60 (2.27)	12.59 (2.07)	17.42 (2.87)
Completeness (\%)	97.1 (99.3)	99.9 (100)	99.9 (100)	99.9 (100)	99.9 (99.9)	99.9 (100)
Redundancy	3.8 (3.7)	6.7 (6.7)	6.6 (6.6)	6.6 (6.6)	6.7 (6.9)	7.4 (7.5)
Refinement						
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	$\begin{gathered} 0.18423 / \\ 0.23870 \end{gathered}$	$\begin{gathered} 0.16623 / \\ 0.19803 \end{gathered}$	$\begin{gathered} 0.1711 / \\ 0.1918 \end{gathered}$	$\begin{gathered} 0.1693 / \\ 0.2112 \end{gathered}$	$\begin{gathered} 0.1730 / \\ 0.2126 \end{gathered}$	$\begin{gathered} 0.1709 \text { / } \\ 0.2098 \end{gathered}$
B-factors						
Protein	20.947	34.8	35.2	36.6	25.6	38.0
Inhibitor	16.717	27.9	37.0	31.8	33.8	32.2
R.m.s.d.						
Bond lengths (A)	0.013	0.011	0.009	0.011	0.009	0.012
Bond angles (${ }^{\circ}$)	1.354	1.4	1.4	1.4	1.2	1.5
Ramachandran plot (\%)						
Favoured regions	99.02	99.27	98.29	98.53	98.80	98.04
Additionally allowed regions	0.85	0.73	1.71	1.47	1.20	1.96

Section I: References for Supporting Information

1. Woon, E. C. Y.; Sunderland, P. T.; Paine, H. A.; Lloyd, M. D.; Thompson, A. S.; Threadgill, M. D. Bioorg. Med. Chem. 2013, 21, 5218.
2. Nair, M. D.; Mehta, S. R. Indian. J. Chem. 1967, 5, 403.
3. Spangler, J. J.; Kim, J. H.; Cava, M. P. J. Org. Chem. 1977, 42, 1697.
4. Osborn, A. R.; Schjofield, K.; Short, L. N. J. Chem. Soc. 1956, 4191.
5. Lu, N.; Chen, Y.-C.; Chen, W.-S.; Chen, T.-L.; Wu, S.-J. J. Organometallic Chem. 2009, 694, 278.
6. Cohen, S. G.; Stein, N. M.; J. Am. Chem. Soc. 1971, 93, 6542.
7. Raushel, J.; Sandrock, D. L.; Josyula, K. V.; Pakyz, D.; Molander, G. A. J. Org. Chem. 2011, 76, 2762.
8. Gemma, S.; Camodeca, C.; Brindisi, M.; Brogi, S.; Kukreja, G.; Kunjir, S.; Gabellieri, E.; Lucantoni, L.; Habluetzel, A.; Taramelli, D.; Basilico, N.; Gualdani, R.; TadiniBuoninsegni, F.; Bartolommei, G.; Moncelli, M. R.; Martin, R. E.; Summers, R. L.; Lamponi, S.; Savini, L.; Fiorini, I.; Valoti, M.; Novellino, E.; Campiani, G.; Butini, S. J. Med. Chem. 2012, 55, 10387.
9. Sairam, P.; Puranik, R.; Kelkar, A. S.; Sasikiran, S.; Veerender, M.; Parvathi, A. Synth. Commun. 2003, 33, 3597.
10. Little, W. F.; Eisenthal, R. Amides of ferrocenemonocarboxylic acid. J. Am. Chem. Soc. 1960, 82, 1577.
11. Wrona, A.; Palusiak, M.; Zakrzewski, J. J. Organometallic Chem. 2008, 693, 263.
