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Abstract

Strong constraint 4D-Variational data assimilation (4D-Var) is a method used to create an initialisation for a numerical
model, that best replicates subsequent observations of the system it aims to recreate. The method does not take into
account the presence of errors in the model, using the model equations as a strong constraint. This paper gives a
rigorous and quantitative analysis of the errors introduced into the initialisation through the use of finite difference
schemes to numerically solve the model equations. The 1D linear advection equation together with circulant boundary
conditions, are chosen as the model equations of interest as they are representative of the advective processes relevant
to numerical weather prediction, where 4D-Var is widely used. We consider the deterministic error introduced by finite
difference approximations in the form of numerical dissipation and numerical dispersion and identify the relationship
between these properties and the error in the 4D-Var initialisation. In particular, we find that a solely numerically
dispersive scheme has the potential to introduce destructive interference resulting in the loss of some wavenumber
components in the initialisation. Bounds for the error in the initialisation due to finite difference approximations
are determined with and without observation errors. The bounds are found to depend on the smoothness of the
true initial condition we wish to recover and the numerically dissipative and dispersive properties of the scheme.
Numerical results are presented to demonstrate the effectiveness of the bounds. These lead to the conclusion that there
exists a critical number of discretisation points when considering full sets of observations, where the effects of both
the considered numerical model error and observational errors on the initialisation are minimised. The numerically
dissipative and dispersive properties of the finite difference schemes also have the potential to alter the properties of
the noise found in observations. Correlated noise structures may be introduced into the 4D-Var initialisation as a
result. We determine when this occurs for observational errors in the form of additive white noise and find that the
effect is reduced through the use of numerically non-dissipative finite difference schemes.

Keywords: data assimilation, numerical model error, observation error, deterministic error

1. Introduction

1.1. Summary of problem and results

This paper presents a rigorous and quantitative study of the influence of finite difference approximations on the
accuracy of the initialisation produced by strong constraint Four-Dimensional Variational data assimilation (4D-Var).
Given a forward model for the considered model equations, 4D-Var compares the forecast from this model using an a
priori initialisation, with data obtained from observing the physical system, to create an improved initialisation. This
leads to an improved forecast for the system. This is accomplished through the minimisation of a cost functional with
respect to the initialisation for the forward model, creating an optimal initialisation. The method is described, for
example in [1, 2, 3, 4]. 4D-Var is of particular interest due to its applications in numerical weather prediction (NWP).
In this instance, the model equations are typically a system of advection dominated PDEs.
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The accuracy of the optimal initialisation (also known as the analysis vector) and its subsequent forecast are
affected by many different sources of error [5]. Examples are observation errors due to systematic errors in instrumen-
tation [4] and model errors in the forward model [3]. Model error in a deterministic forward model can be viewed in
two forms; inaccurate model equations and numerical model error. The former is introduced by a failure of the model
equations to capture a property of the physical system, whilst the latter is due to errors introduced when numerically
solving the model equations in the forward model. Solving the model equations numerically utilising finite differ-
ence approximations, is one such source of numerical model error. These errors then enter into the 4D-Var problem,
affecting the resulting initialisation and subsequent forecast.

Here we consider the 1D linear advection equation together with circulant boundary conditions, as our prototype
problem. This system is representative of the advective processes relevant to NWP and can be solved using various
well known finite difference schemes [6, 7]. The study of linear problems in the context of data assimilation is relevant
to both linear and non-linear data assimilation problems. The adjoint method and the tangent linear model assumption
in incremental 4D-Var, make use of local linearisations of non-linear problems to identify the optimal initialisation [1],
making the analysis of a linear problem important. Pfeffer et al. [8] analysed the sensitivity of the non-linear NASA-
GLAS forecast model to the time-differencing scheme used to solve the model equations. It was found that some
aspects of the results exhibited the effects of properties indicated by their linear analysis of the considered scheme.
Hence the results of a linear problem may also be relevant to the results from a non-linear problem. The analysis of
the behaviour of strong constraint 4D-Var for the problem given in this paper, is quite involved despite the apparent
simplicity of the equation itself. Our aim is to use the insights into the nature of the errors in 4D-Var (particularly
the effects of the smoothness of the initial condition and the nature of the errors from the numerical method) given by
the analysis of this equation, as a stepping stone towards understanding the effects of numerical model errors on the
accuracy of the initialisation from 4D-Var for more complex advective processes.

The numerical model error introduced by the finite difference schemes used to solve the 1D linear advection
equation can be completely described in terms of numerical dissipation and numerical dispersion, including aliasing
errors [7]. However, it is not sufficient to study the impact of these errors alone as in practice, many different forms
of error will interact to affect the accuracy of the initialisation produced through strong constraint 4D-Var. To this
end, we initially analyse the effects of this form of numerical model error without any other form of error and then
together with observational errors. The forecast from 4D-Var experiments have been shown to be most sensitive to
observational errors [9] so it is key to understand their combined impact on the initialisation.

In this paper, Section 2 states the assumptions placed upon strong constraint 4D-Var throughout this paper and
introduces the 1D linear advection equation as the forward problem. Three finite difference schemes are chosen as
forward models; the Upwind, Preissman Box and Lax-Wendroff schemes. The effects of numerical dissipation and
dispersion on the initialisation are then reviewed through these representative schemes. Section 3 develops a formula-
tion for the initialisation which allows the effects of numerical dissipation and dispersion on the true initial condition
to be analysed using spectral methods. Section 4 estimates bounds for the l2-norm of the error in the initialisation, in
terms of the numerically dissipative and dispersive properties of the scheme, along with the smoothness of the true
initial condition. These are found in Lemmas 3 and 4 and form the main results of the paper. We find that in the
absence of observation errors the rate of decay of the error in the initialisation, with respect to the number of spatial
mesh points N when considering full sets of observations, increases with the smoothness of the true initial condition.
In the presence of observation errors, the same result holds until a critical value of N is reached when considering full
sets of observations. At this point, the error begins to increase due to observation errors. Performing strong constraint
4D-Var at this value of N when considering full sets of observations, minimises the error in the initialisation due to the
numerical model error and observation errors. Section 5 presents a discussion of the relevance of the results presented
in this paper to non-linear systems and possible future work to extend this to more meteorologically relevant problems.

1.2. Background
Data assimilation is a vibrant and active area of research. We will present the results presented in this paper in

the context of research already conducted in the area. The derivation of strong constraint 4D-Var data assimilation
makes the assumption that the forward model used to solve the model equations is perfect [3]. In order to account for
the effects of model error on strong constraint 4D-Var, a modified formulation was proposed by Sasaki [10] that did
not rely as heavily on satisfying the constraints of the forward model. This was termed weak constraint 4D-Var data
assimilation leading to the original formulation being termed strong constraint 4D-Var. Strong constraint 4D-Var uses
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the model as a strong constraint for the minimisation process, not altering the form of the model to account for model
errors. This method is described in Section 2. Le Dimet et al. [9] performed sensitivity analyses to identify the impact
of different forms of error associated with strong constraint 4D-Var, on the accuracy of the forecast produced by the
analysis vector. They identified that the error in this forecast is most sensitive to observation errors and advocate the
use of regularisation to ensure that the prediction error remains stable. The strong constraint 4D-Var cost function
can be interpreted as a Tikhonov regularisation problem [11]. Budd et al. showed using this formulation and a mixed
total variation L1 − L2-norm regularisation in the presence of model error, that sharp fronts can be recovered more
accurately [12]. Zou et al. [13] also make use of penalty functions to reduce the effects of model error in the shallow
water equations. They also investigate the effects of incomplete observations on the minimisation process of the cost
function and how penalty functions can be used to improve results.

Weak constraint 4D-Var uses the model as a weak constraint for the minimisation process where an alternative
formulation for the numerical model is chosen to account for model errors [14, 15, 16]. The model equations are
augmented with a model error term, usually assumed to be a Gaussian random variable. However the Gaussian
assumption is unlikely to be valid in practical situations [14]. The cost function gains an additional term for the square
error of the model error, weighted by the model error covariance matrix, similar to the minimisation terms for the
background and observation errors. The cost functional is then minimised with respect to the initialisation and the
model errors. However the computational cost of applying this to large systems such as those used in NWP, makes
this method impractical [14]. The work by Trémolet [17] investigates the formulation of the model error covariance
matrix and some of the limitations of weak constraint 4D-Var.

Griffith et al. [14] propose treating model error in the form of a time evolving function together with the addition of
a stochastic term so as to account for both the deterministic and stochastic properties of model error. Vidard et al. [16]
also propose a similar form focusing on the deterministic errors. When only deterministic errors are considered, this
approach simplifies the control of the errors so that only the initial error needs to be considered in the minimisation
problem, reducing the number of variables to be controlled [14]. Results in [14, 16, 18] have shown that treating
deterministic errors in this way can be effective. However, there is still the problem of gathering prior knowledge of
the model error to constrain the initial error in the minimisation problem [18]. Akella et al. [15] investigate the impact
of choosing growing, constant and decaying linear forms for the deterministic errors.

Numerical model errors in advection problems can lead to physically unrealistic anomalies in the solution that can
have wide reaching consequences on the model results over time [19]. Vukićević et al. [20] examined the numerical
values of and errors in the analysis vector achieved through strong constraint 4D-Var data assimilation experiments,
using three different schemes to solve the 2D linear advection equation. The observations used were assumed to
be perfect and three different initial errors were considered for the background estimate in the minimisation of the
cost function. The numerical results obtained exhibited behaviours due to the effects of numerical dissipation and
dispersion in the advection schemes. The accuracy of the results was also found to be positively correlated to the
accuracy of the forward and adjoint models. Both Gerdes et al. [19] and Vukićević et al. [20] discuss the impact of
numerically dissipative and dispersive effects from their advection schemes on the results of their 4D-Var experiments.
Some of these can be desirable whilst others can lead to physically unrealistic results. Hence it is important to
understand analytically the impact of numerical dissipation and dispersion on the results of 4D-Var.

The work presented in this paper extends the results of Vukićević et al. [20] by making rigorous quantitative
error estimates of the initialisation, using spectral methods to investigate the effects of numerical dissipation and
dispersion in finite difference schemes on the results of strong constraint 4D-Var. The aim is both to provide some
prior knowledge on the deterministic error in the considered problem and to inform the choice of model error term in
weak constraint 4D-Var.

2. Problem formulation

The method of 4D-Var is a procedure used to solve a particular inverse problem; given a set of (typically sparse)
observations ({yl}

L
l=0), of a physical system taken over a period of time, a numerical model of the system (Ml+1,l(·))

and a priori information on the initial condition for the system (xb), the method estimates an initial condition for the
numerical model that best replicates the true state of the system. Here we consider the effects of numerical model error
on strong constraint 4D-Var. To find the best estimate for the initial condition xa ∈ RN , the following cost function is
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minimised with respect to the initial condition x0 ∈ RN of the numerical model:

J(x0) = (xb − x0)T B−1(xb − x0) +

L∑
l=0

[
yl −Hl (xl)

]T R−1
l

[
yl −Hl (xl)

]
, (1)

xl+1 = Ml+1,l(xl). (2)

The minimiser xa, the optimal initialisation for the numerical model, will be termed the analysis vector (following the
convention of NWP literature) and satisfies ∇J(xa) = 0. The period of time the observations are taken over is known
as the assimilation window. Here the cost function uses L + 1 sets of observations and subscript l denotes the state of
a variable at the time of the lth set of observations. A set of observations contains observations of all observed points
in space at the considered point in time.

The variable xb ∈ RN is the estimated initial condition termed the background estimate;Ml+1,l : RN → RN is the
forward model taking the lth state of the numerical model to its (l + 1)th state; xl ∈ RN is the lth state of the numerical
model; ỹl ∈ Rml is the lth set of perfect observations of the physical system (that is, no observation errors); ε l ∈ Rml is
the observation error in the lth set of observations; yl ∈ Rml is the lth set of observations of the true physical system
such that yl = ỹl + ε l; Hl : RN → Rml is the lth observation operator; B ∈ RN×N is the symmetric positive definite
(SPD) background error covariance matrix; and Rl ∈ Rml×ml is the SPD lth observation error covariance matrix. Here
N,ml ∈ N for all l. More details on these variables and 4D-Var can be found in [2, 3, 4, 21, 22].

We choose the 1D linear advection equation as the physical system, which can be solved using several numerical
schemes. This problem is representative of (and a prototype for) the advective processes in more complex systems of
interest in NWP. Despite looking deceptively simple, this system provides a challenge numerically and has historically
been an essential test equation for the development and analysis of many numerical methods, for example see [23].
Such linear problems are also directly relevant for adjoint methods and to tangent linear models used in incremental
4D-Var [22]. The schemes introduce numerical model error through the approximation of derivatives [7]. In order
to fully investigate the effects of this deterministic numerical model error, all other errors present in the problem will
be initially removed. Therefore, the background term of the cost function is neglected as in Griffith et al. [14] and
Vukićević et al. [20] in order to allow the full impact of deterministic numerical model error to be seen. We take a
set of observations at every time step of the numerical model. Hence ml = N andHl = IN for all l. Each set contains
observations at every spatial grid point of the numerical model, which results in the set of observations taken at time
t = 0 acting to regularise the problem so it remains well-posed. This is demonstrated in Section 3. Also, ε l is assumed
to be an iid Gaussian random variable,N(0, σ2

oIN), σo ∈ R+, leading to Rl = σ2
oIN for all l. These assumptions result

in the following cost function,

J(x0) =
1
σ2

o

L∑
l=0

[
yl −Ml,0(x0)

]T [
yl −Ml,0(x0)

]
. (3)

Initially the problem will be investigated in the absence of observation errors. If R−1
l was chosen so as to reflect

the statistical properties of numerical model error, then at this initial point we know nothing about these statistics, so
we choose R−1

l = IN for all l by taking σo = 1. This choice gives the observations an equal weighting, assuming
nothing about the error statistics of the numerical model. These values were also chosen by Daley [2], Griffith et al.
[14] and Vukićević et al. [20]. In Section 4.2, observation errors will be reintroduced to the problem.

2.1. The physical system
Consider the 1D linear advection equation for the function u : R ×R→ R, (x, t) 7→ u(x, t), together with circulant

boundary conditions and initial condition u0 : R→ R given by,

ut(x, t) + µux(x, t) = 0, x ∈ [0, 1), t > 0,
u(x, t) = u(x + 1, t), x ∈ R, t ≥ 0,
u(x, 0) = u0(x), x ∈ [0, 1).

(4)

Here the wave speed µ ∈ R remains constant. In the context of data assimilation, this problem is also considered in
Freitag et al. [12] and Griffith et al. [14]. It is important to note that the scalar x is the spatial dimension whilst the
vectors {xl}

L
l=0 denote the state of the numerical model.
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Definition 1. We define u0(x) to have regularity r ∈ N0 over (0, 1) when r denotes the maximum number of times the
function u0(x) can be differentiated with respect to x, such that u(α)

0 (x) is continuous and piecewise differentiable over
(0, 1), for α = 0, . . . , r − 1 and u(r)

0 (x) is piecewise continuous over (0, 1).

The solution to this problem, u(x, t) = u(x − µt, 0) = u0([x − µt]1) [6], preserves the shape of the initial condition
over time and propagates it through space with speed µ. Here [·]1 denotes modulo one. Problem (4) can be solved
numerically using a finite difference scheme as the forward model. These find a numerical approximation to the
analytic solution, introducing numerical model error, which will be considered in the form of numerical dissipation
and numerical dispersion [24].

2.2. Numerical dissipation and dispersion
In order to introduce the concept of numerical dissipation and dispersion, it is helpful to represent the solution

u(x, t) as a Fourier series, with Fourier basis function e2πikx and corresponding coefficients ck : R→ C,

u(x, t) ∼
∞∑

k=−∞

ck(t)e2πikx, where ck(t) :=
∫ 1

0
u0(x, t)e−2πikxdx.

Also, define ck(0) := ck ∈ C for the Fourier series of u0(x),

u(x, 0) ∼
∞∑

k=−∞

cke2πikx, where ck =

∫ 1

0
u0(x)e−2πikxdx. (5)

We term the kth Fourier basis function, multiplied by its corresponding coefficient ck, the kth wavenumber component.
In a linear problem, the finite difference scheme propagates the wavenumber components of (5) through time, by
multiplying each coefficient ck by the eigenvalue dk of the matrix used to implement the scheme (see below and
Section 3). The variable N denotes the number of discretisation points of the scheme and hence the number of
eigenvalues associated with it. This creates a new Fourier series where, in an ideal situation, the kth wavenumber
coefficient is equal to the wavenumber coefficient ck(∆t) ie: ck(∆t) = dkck, dk ∈ C. However, most of the time this
is not the case and the coefficient dkck forms an approximation to ck(∆t). The error in dkck when compared to ck(∆t)
can be described in terms of amplitude and phase errors. Amplitude errors are described as numerical dissipation and
phase errors as numerical dispersion [24].

In the case of problem (4), we have ck(t) = cke−2πikµt. Therefore the coefficient required to multiply ck to create
ck(∆t) is e−2πikµ∆t. The numerically dissipative and dispersive properties of the scheme are analysed in comparison to
these coefficients. The magnitude of each coefficient is 1, so that the magnitude of ck(t) does not change with time. Its
phase is −2πkµ∆t, a linear function with respect to k. In the case of problem (4), numerical dissipation occurs when at
least one eigenvalue of the scheme does not have unit magnitude ie: there exists k such that |dk | , 1. This results in the
amplitude of at least one wavenumber component of (5) not being preserved over time. Numerical dispersion occurs
when at least one wavenumber component is out of phase from the others [24]. This occurs when eiψk , e−2πikµ∆t for
some k, where ψk ∈ R is the phase of dk, that is dk = |dk |eiψk . This results in an out of phase wavenumber component
travelling with an incorrect phase speed. Numerical dissipation and dispersion are important forms of numerical error
to consider as their impact can be widespread and lead to physically unrealistic results. Limitations may sometimes
be placed on model variables to avoid these effects, restricting the accuracy of the model [19].

This paper will consider three finite difference schemes which solve problem (4) numerically over the domain
[0, 1]. These schemes are chosen to be representative of solely numerically dissipative, solely numerically disper-
sive or both numerically dissipative and numerically dispersive schemes with respect to the resolvable wavenumber
components. In order to define these scheme, we require the following assumptions.

Assumptions 1. Divide the domain [0, 1] into N + 1 equally spaced mesh points, N ∈ N. This gives a spatial step size
of ∆x = 1/N and grid points x j = j∆x, j = 0, . . . ,N. Define the time step ∆t ∈ R+ for the finite difference schemes
and tn = n∆t for n ∈ N0. Let Un

j be the numerical solution at (x j, tn), such that Un
j ≈ u(x j, tn) for j = 0, . . . ,N and

n ∈ N. When n = 0, U0
j is created by sampling u(x, 0), such that U0

j := u(x j, 0) for j = 0, . . . ,N. Define the vector
Un ∈ RN such that the jth element of Un is defined by {Un} j := Un

j−1 for j = 1, . . . ,N. Also, define h := |µ|∆t/∆x, the
CFL number [25] and set h ≤ 1 so all considered schemes are numerically stable.
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Each scheme is implemented by applying the matrix M ∈ RN×N to Un, which advances the numerical solution
at x0, . . . , xN−1, forward ∆t in time, ie: Un+1 = MUn for all n. The circulant boundary conditions mean that M is a
circulant matrix [26] and u(xN , tn) = u(x0, tn) for all n, hence Un

N = Un
0 for all n.

As Un is an N-dimensional vector, it can be constructed from the N vectors of the Discrete Fourier Transform
(DFT) basis [27] {vp}

N
p=1 such that,

{vp}q =
1
√

N
e

2πi(p−1)(q−1)
N =

1
√

N
e2πi(p−1)xq−1 , p, q = 1, . . . ,N, (6)

is the qth element of the pth vector, vp ∈ CN . This is the (p−1)th Fourier basis function of the Fourier series, sampled
at xq−1, with amplitude 1/

√
N. The numerical solution is constructed from N Fourier basis functions of the Fourier

series, that are resolvable on the finite grid, represented by the basis vectors. The remaining Fourier basis functions of
the Fourier series are indistinguishable on the discrete mesh, due to aliasing [28]. As a result, the coefficients of the N
resolvable wavenumber components are determined by the Poisson summation [27] when u0(x) is continuous and has
a convergent Fourier series. There is no spectral leakage in this problem due to 1-periodicity, see [27]. This allows M
to propagate all the wavenumber components of the Fourier series, by only directly acting on N of them.

Aliasing results in M applying the same magnitude and phase changes to unresolvable wavenumber components,
as it applies to the resolvable wavenumber component they alias to. This is not necessarily the correct magnitude or
phase change for the considered unresolvable wavenumber component. The matrix M can also introduce numerical
dissipation and dispersion into the resolvable wavenumber components of the solution. In the case of problem (4),
if M is numerically non-dissipative and non-dispersive with respect to the resolvable wavenumber components, then
aliasing is solely a form of numerical dispersion.

2.3. Forward models for the linear advection equation

There are many numerical methods for solving the 1D linear advection equation. Rather than studying them all
we consider the Upwind, Preissman Box and Lax-Wendroff schemes as three quantitatively different finite difference
schemes used to solve problem (4). These are ‘representative schemes’ chosen as they exhibit three different types of
deterministic numerical model error. These schemes are defined by the following schematics when µ > 0.

• Upwind scheme (explicit scheme) [6],

Un+1
j = hUn

j−1 + (1 − h)Un
j . (7)

• Preissman Box scheme (implicit scheme) [29],

(1 − h)Un+1
j + (1 + h)Un+1

j+1 = (1 + h)Un
j + (1 − h)Un

j+1. (8)

• Lax-Wendroff scheme (explicit scheme) [6],

Un+1
j =

h
2

(h + 1)Un
j−1 + (1 − h2)Un

j +
h
2

(h − 1)Un
j+1. (9)

Selecting h = 0.5 allows the effects of numerical dissipation and numerical dispersion on the resolvable wavenumber
components to be investigated as individual processes and in combination. For simplicity, µ = 1 is chosen in the
following.

Let M denote the matrix used to implement either the Upwind, Preissman Box or Lax-Wendroff scheme as in
Section 4. As M is a circulant matrix, its eigenvalue decomposition can be constructed using the unitary DFT matrix,
denoted V ∈ CN×N [26],

M = VΛV−1 = VΛV∗, (10)

where ·∗ denotes Hermitian. The columns of V are the DFT basis vectors in (6), ie: {V}p,q = {vp}q, p, q = 1, . . . ,N. The
corresponding eigenvalues are found in Λ := diag(λp) ∈ CN×N . The eigenvalues of M are scheme dependent, whereas
the eigenvectors are scheme independent. In the case of a linear system, the eigenvalues affect the propagation of the
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initial state of the system through time and introduce any numerical dissipation and dispersion into the state of the
system [7] (this is not physical dissipation or dispersion).

The eigenvalues λp := |λp|eiθp , θp ∈ [−π, π) for p = 1, . . . ,N, are such that the magnitude |λp| and phase θp

affect the magnitude and phase of the corresponding wavenumber component of the DFT basis, respectively. Aliasing
results in dk = λ[k]N +1 where [·]N denotes modulo N. The DFT basis is complex; given an eigenpair of M, its complex
conjugate is also an eigenpair of M [30]. This results in λ1 ∈ R and λp = λN−p+2 for p = 2, . . . ,N, hence θ1 = 0
and θp = −θN−p+2 for p = 2, . . . ,N. Summing the conjugate pair of eigenvectors, scaled by their respective complex
coefficients for the state of the system, results in a real wavenumber component for the linear system. We consider
these real wavenumber components in Sections 3.1-3.4 of this paper.

2.4. Generating perfect observations
Consider the following finite difference scheme, the Numerical Implementation of the Method of Characteristics

(NIMC):
Un+1

j = sgn(µ)hUn
j−1. (11)

This is an explicit finite difference scheme and can be implemented as described in Section 2.2, via a circulant matrix
MNIMC ∈ RN×N . This scheme is only consistent when h = 1. At this value of h, the scheme is numerically non-
dissipative and non-dispersive with respect to all wavenumber components. The scheme can be used to generate
perfect observations for the physical system in this instance. This leads to MNIMC generating a perfect observation
every ∆t = ∆x/|µ| in time. However, the imperfect schemes in this paper progress the forward model ∆t = h∆x/|µ| in
time with each application of M, where h is not necessarily equal to one. This means that given the same ∆t, ∆x and
µ, the NIMC cannot provide perfect observations at every time step of the imperfect forward model.

Hence another finite difference scheme is used to create perfect observations. This scheme will be known as the
Modified NIMC (MNIMC) scheme.

Definition 2 (The MNIMC scheme). Let Assumptions 1 hold true with Un replaced by Ũn to mark the difference in
the schemes. Define the matrix M̃ ∈ RN×N where N is odd, by M̃ := VΛ̃V∗, where V is defined as in Section 2.3 and
Λ̃ := diag(λ̃p) the diagonal matrix of eigenvalues of the scheme, λ̃p ∈ C for p = 1, . . . ,N. The eigenvalues of the
MNIMC scheme are defined by λ̃p = eiθ̃p such that,

θ̃p =

{
−2π(p−1)sgn(µ)h

N , for p = 1, . . . , N+1
2 ,

2π(N−p+1)sgn(µ)h
N , for p = N+3

2 , . . . ,N.
(12)

The scheme is implemented by multiplying Ũn by the matrix M̃ to move the state of the system forward ∆t in time, ie:
Ũn+1 = M̃Ũn.

This scheme is numerically non-dissipative with respect to all wavenumber components and non-dispersive with
respect to the resolvable wavenumber components for any h ∈ R+, producing the state of the system every ∆t =

h∆x/|µ| in time. It is also numerically stable for any h ∈ R+. If the current time of the solution is divisible by ∆x/|µ|,
then the solution of the system is exact. However in between these times, the state of the system at each spatial
mesh point is interpolated in time, due to aliasing errors. This is due to the scheme being dispersive for unresolvable
wavenumber components of the solution. Let x̃0 ∈ RN denote the true initial condition u0(x), sampled at the spatial
grid points x0, . . . , xN−1 defined in Assumptions 1, such that {x̃0} j := u0(x j−1). Now define x̃l ∈ RN by x̃l := M̃lx̃0 for
all l ∈ N. The global error in the MNIMC scheme is defined by,

rl := ỹl − M̃lx̃0, (13)

where yl := ỹl denotes the lth set of perfect observations. As only aliasing errors are introduced by the MNIMC
scheme, rl can be viewed as an additive correction term to correct for aliasing errors in M̃lx̃0 such that,

ỹl = M̃lx̃0 + rl. (14)

Choosing h = 1 results in M̃ = MNIMC and consequently rl = 0 for all l ∈ N0. Lemma 1 provides some insight into
the properties of the aliasing error introduced by the MNIMC scheme.
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Lemma 1. Let the conditions in Assumptions 1 hold true so the MNIMC scheme can be defined as in Definition 2.
Also, let u0(x) be bounded and piecewise continuous on [0, 1) and suppose that the left- and right-hand derivatives of
u0(x) exist for all x ∈ [0, 1].

Additionally, consider the CFL number to be a rational number h ∈ Q+ expressed as h = q/b, q, b ∈ N such that
gcd(q, b) = 1 (greatest common divisor). Then the global error in the MNIMC scheme at time l∆t, defined by Equation
(13), is such that,

rl =

{
0, for [l]b = 0,
M̃l−[l]b r[l]b , for [l]b = 1, . . . , b − 1, (15)

for all l ∈ N0 where [·]b denotes modulo b.

The proof of Lemma 1 can be found in [31]. Examining expression (15), we see that the aliasing error in M̃ has
a shifted b-periodic nature. Raising the matrix M̃ to the power l − [l]b results in M̃ being raised to a power which
is an integer multiple of b. Suppose l − [l]b = sb for some s ∈ N0, then M̃l−[l]b = Msq

NIMC (here M̃ is defined using
any h ∈ Q+, and MNIMC is defined using h = 1). Applying this matrix to r[l]b shifts it sq∆x in space introducing no
numerical dissipation or dispersion. This means that rl is r[l]b shifted an integer number of discretisation points in
space.

3. The effect of numerical dissipation and dispersion on the analysis vector

Numerical dissipation and dispersion are introduced into the inverse problem through the forward model. This
Section explores how these errors affect the analysis vector. This is achieved by formulating the analysis vector in
terms of the true initial condition, allowing the direct impact of numerically dissipative and/or dispersive eigenvalues
of the imperfect scheme, to be seen. Under Assumptions 1 Ml+1,l := M and xl ≡ Ul for all l ∈ N0, and the cost
function becomes,

J(x0) =

L∑
l=0

[yl − Mlx0]T [yl − Mlx0]. (16)

Let F : RN → CN , x 7→ F (x) := V∗x, be the DFT operator and Fp(·) denote the pth element of F (·), p = 1, . . . ,N.
The analysis vector xa, is the solution to the inverse problem, ie: ∇J(xa) = 0. Then,

xa =

 L∑
k=0

(MT M)k

−1 L∑
l=0

(MT )lyl = V

 L∑
k=0

(Λ∗Λ)k

−1 L∑
l=0

(Λ∗)lV∗yl, (17)

using (10). This can be re-written using the DFT,

F (xa) =

 L∑
k=0

(Λ∗Λ)k

−1  L∑
l=0

(Λ∗)lF (yl)

 =

IN +

L∑
k=1

(Λ∗Λ)k

−1  L∑
l=0

(Λ∗)lF (yl)

 . (18)

Here the diagonal matrices Λ and Λ∗ are known as the forward and adjoint models [4] respectively, in the DFT
basis. In the inverse problem, each set of observations is mapped back in time to t = 0, by the adjoint model MT .
Once the observations have been mapped back to the initial time, they are then summed. This process has the potential
to create interference between the corresponding wavenumber components constructing each set of observations in
time. The result is then normalised with respect to the eigenvalues of the scheme. The observation at t = 0 acts to
regularise the solution of the inverse problem so that the matrix applying the normalisation is always invertible.

Expression (18) forms the coefficients of the DFT basis in the construction of the analysis vector xa, ie: xa =

VF (xa). The following Lemma provides an expression for the analysis vector in terms of the sum of a matrix operation
on x̃0, ALx̃0 and an aliasing correction term ρL. The matrix AL is constructed from the MNIMC scheme and the matrix
M implementing the considered numerically dissipative and/or numerically dispersive scheme.
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Lemma 2. Let the assumptions of Lemma 1 hold true, allowing xa to be stated as in (17). Consider perfect obser-
vations of the physical system ie: yl := ỹl for all l = 0, . . . , L, where L ∈ N0 is finite, in the form of (14). Then the
analysis vector can be expressed as,

xa = ALx̃0 + ρL, (19)

where the model resolution matrix AL ∈ RN×N is such that,

AL := V

 L∑
k=0

(Λ∗Λ)k

−1  L∑
l=0

(Λ∗Λ̃)l

 V∗, (20)

and ρL ∈ RN is given by,

ρL := V

 L∑
k=0

(Λ∗Λ)k

−1



L−[L]b
b −1∑
l=0

(Λ∗Λ̃)lb




b−1∑
j=1

(Λ∗) jV∗r j

 +
(
Λ∗Λ̃

)L−[L]b


[L]b∑
j=1

(Λ∗) jV∗r j


 . (21)

Here we consider
∑0

j=1 (Λ∗) j V∗r j = 0 and
∑−1

l=0

(
Λ∗Λ̃

)lb
= 0N ∈ RN×N as we assume r0 = 0.

The proof of Lemma 2 can be found in [31]. Expression (19) can be viewed as the sum of two analysis vectors
created when solving the same problem but with two different sets of observations; yl = x̃l and yl = rl. As a result the
aliasing error in yl := x̃l does not play a part in AL, and is solely found in ρL. Consequently, ρL acts as a correction
term for the aliasing errors introduced into the analysis vector by the MNIMC scheme.

The eigenvalues of AL in (20) determine the magnitude and phase change applied to each wavenumber component
of x̃0, in the construction of xa. In this way, they can be described as amplification factors for the wavenumber
components of x̃0. Let νp be an eigenvalue of AL such that νp = |νp|eiκp , κp ∈ [−π, π) for p = 1, . . . ,N. Due to the
diagonal structures of Λ and Λ̃, νp is constructed solely from λp and λ̃p, the pth eigenvalues of M and M̃ respectively,

νp =

∑L
l=0 λ

l
pλ̃

l
p∑L

k=0 |λp|
2k
. (22)

Numerical model error can enter into νp via both λp and λ̃p. In the case of λ̃p, any error introduced is due to aliasing.

As λp = λN−p+2 and λ̃p = λ̃N−p+2 for p = 2, . . . ,N, νp = νN−p+2 and κp = −κN−p+2 for p = 2, . . . ,N. Define
φp := θ̃p − θp, for p = 1, . . . ,N as the error in the phase shift applied by λp with respect to the corresponding
resolvable wavenumber component of the DFT basis. The complex conjugate property of the eigenvalues results in
−φp = φN−p+2 for p = 2, . . . ,N. Then,

νp =



1, for |λp| = 1 and φp = 2πs,
1+|λp |

1+|λp |
L+1 , for |λp| < 1 and φp = 2πs,

1
L+1

∣∣∣∣∣ sin
[
(L+1) φp

2

]
sin

[ φp
2

] ∣∣∣∣∣ eiκp , for |λp| = 1 and φp , 2πs,
[1−|λp |

L+1ei(L+1)φp ][1−|λp |
2][1−|λp |e−iφp ]

[1−|λp |
2(L+1)][1+|λp |

2−2|λp | cos(φp)] , for |λp| < 1 and φp , 2πs,

(23)

where s ∈ Z, by the sum of a geometric progression. When |λp| = 1 and φp , 2πs for some s ∈ Z,

tan(κp) = tan
(

Lφp

2

)
, κp ∈ [−π, π),

for p = 1, . . . ,N.
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When λp does not introduce numerical model error into the corresponding resolvable wavenumber component,
νp = 1, so the corresponding resolvable wavenumber component of x̃0 is preserved in xa. A solely numerically
dissipative λp with respect to the corresponding resolvable wavenumber component, creates an amplification factor
that affects the amplitude and not the phase of the corresponding resolvable wavenumber component.

In the case of a solely numerically dispersive eigenvalue of M, the amplification factor affects both the phase
and amplitude of the corresponding resolvable wavenumber component of x̃0. The affect on the magnitude is due to
interference between the corresponding resolvable wavenumber components making up each set of observations yl in
the construction of xa, as discussed in Section 3 after Equation (18).

A numerically dissipative and dispersive eigenvalue of M, creates an amplification factor that appears to combine
the solely numerically dissipative and solely numerically dispersive amplification factors. However, it is not possible
to isolate the dissipative and dispersive effects from one another. The magnitude and phase of the spectra of the model
resolution matrix for each scheme are plotted in Figures 1, 3 and 5.

The contribution of ρL to the analysis vector is not as easy to analyse, but can be reduced by choosing an x̃0 that is
minimally constructed from unresolvable wavenumber components or by increasing N. As a result, a higher regularity
initial condition will reduce ρL. Choosing h = 1 leads to ρL = 0.

We begin our analysis by examining the effects of the model resolution matrix on x̃0 and the contribution of ρL to
the analysis vector, by considering a low regularity u0(x) in the form of a square function defined by,

u0(x) =

{
0.5, for x ∈ [0.25, 0.5],
−0.5, for x ∈ [0, 0.25) ∪ (0.5, 1). (24)

This square function has regularity zero, requiring many high wavenumber components to resolve the edges of the
function. The vector x̃0 is then a discrete sample of the square function. The square function allows us to analyse
the ability of strong constraint 4D-Var data assimilation, to reconstruct initial conditions that contain unresolvable
wavenumber components, in the presence of numerical dissipation and/or dispersion. This tests the effects of numer-
ical dissipation and/or dispersion on strong constraint 4D-Var, in the same way as Durran’s “spike test” [24].

In Sections 3.1-3.4, the magnitude and phase of the spectra of AL are analysed for the three schemes, in terms of
the real wavenumber components of the solution, together with the result of applying AL to x̃0 for the square function
when using L = 4. Here L = 4 is chosen so as to be consistent with our results in Section 4. Here we remind the
reader that L is the number of sets of observations in time. The corresponding ρL and xa for the square function are
also shown for L = 4. The reader is reminded that AL acts upon all wavenumber components of x̃0 through the effects
of aliasing. The eigenpair property of νp can be seen through the line of symmetry in the centre of the plots for the
magnitude of νp and the rotational symmetry in the plots for the phase of νp ie: κp.

We remind the reader here the effects of AL on the real wavenumber components of x̃0, can be seen in the first
(N + 1)/2 (N odd) values of p, due to the complex conjugate properties of the eigenvalues of the schemes. This
property results in the discontinuity seen in Figure 5(b). The magnitude and phase of νp are plotted against (p − 1)
as these are the wavenumbers of the resolvable wavenumber components of the Fourier series for the numerical
solution. Increasing p over p = 1, . . . , N+1

2 , represents increasing the wavenumber of the resolvable real wavenumber
component from low to high. The discussions below will make use of this terminology.

3.1. The Upwind scheme

When h = 0.5, the Upwind scheme is a numerically dissipative and non-dispersive scheme with respect to the
resolvable wavenumber components of the numerical solution. This results in the aliasing error introduced by the
scheme, being both numerically dissipative and dispersive [31]. These properties of the Upwind scheme and the
numerically dispersive aliasing errors introduced by the MNIMC scheme, dictate the oscillations in ALx̃0 and ρL,
compared to x̃0 and 0 ∈ RN respectively.

Examining the phase of the eigenvalues of AL in Figure 1(b), we see that all the resolvable wavenumber com-
ponents of x̃0 are propagated with the correct phase speed. As a result, there are no destructive or constructive
interference effects affecting the magnitude of the eigenvalues of AL in Figure 1(a). Examining the magnitude of the
eigenvalues of AL, we see that all but the lowest real resolvable wavenumber components (ie: p = 1) of x̃0 are ampli-
fied by AL. The greatest amplification effects are experienced by the medium real resolvable wavenumber components.
As L increases, the amplification of the lower real resolvable wavenumber components of x̃0 increases.
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The plots of ALx̃0 and ρL in Figure (2) demonstrate oscillations at the locations of the discontinuities making
up the square function in x̃0. The discontinuities are formed from the unresolvable wavenumber components of the
square function, so these oscillations represent a failure to propagate the unresolvable wavenumber components of x̃0.
As ρL corrects for the aliasing errors introduced by the MNIMC scheme, this verifies that the oscillations are due to
errors in the propagation of the unresolvable wavenumber components of x̃0. Adding ρL to ALx̃0 removes the effects
of aliasing introduced by the MNIMC scheme into ALx̃0, in order to construct xa in Figure 2(c). This visibly improves
the width of the oscillations in xa in Figure 2(c) when compared to ALx̃0 in Figure 2(a). This indicates how important
accounting for the effects of aliasing can be. The error in xa is solely due to numerical model error introduced by
using the Upwind scheme as the forward model. Similar results follow for the remaining schemes in Figures (4) and
(6), with regard to the effects of aliasing errors.

(a) Magnitude of the amplification factors. (b) Phase of the amplification factors.

Figure 1: The magnitude and phase of the spectrum of the model resolution matrix, AL for L = 4, together with their limit as L → ∞, for the
Upwind scheme when h = 0.5, µ = 1 and N = 101 (∆t = 1

202 ). The magnitude and phase of the spectrum of AL for the MNIMC scheme is included
for comparison, using the same variables.

3.2. The Preissman Box scheme

The Preissman Box scheme is always numerically non-dissipative with respect to all wavenumber components
of the numerical solution, when solving the 1D linear advection problem. When h = 0.5 the scheme is numerically
dispersive with respect to the resolvable wavenumber components except when p = 1. Aliasing is also introduced in
the form of numerical dispersion [31]. These properties of the Preissman Box scheme and the numerically dispersive
aliasing errors introduced by the MNIMC scheme, determine the oscillations in ALx̃0 and ρL compared to x̃0 and
0 ∈ RN respectively, in Figure 4. This means that only numerically dispersive effects introduce errors into ALx̃0 and
ρL.

Examining the eigenvalues of AL in Figure 3, we see that the numerically dispersive effects of the schemes affect
both the magnitude (Figure 3(a)) and phase (Figure 3(b)) of the eigenvalues. As there is no numerical dissipation
taking place, it is solely the affects of destructive interference between the wavenumber components of the sets of
observations in time, that is causing the attenuation of the resolvable wavenumber components of x̃0. This was
discussed in Section 3 after Equation (18). The amplitude of the lowest resolvable real wavenumber component is the
only one not affected (p = 1) by destructive interference, as this wavenumber is always correctly propagated by the
Preissman Box and MNIMC schemes. In this instance, the low to medium resolvable real wavenumber components
experience a small attenuation effect, whilst the medium to high resolvable real wavenumber components experience
a much larger attenuation. The highest resolvable real wavenumber components are almost attenuated to zero. As
the number of observations is increased, it is not possible to define a limit for the phase of the eigenvalues of AL as
L → ∞. However Figure 3(a) shows that as L → ∞, the magnitude of all eigenvalues of AL except ν1, decay to zero.
This will be discussed in Section 3.4. The effects of destructive interference on the square function initial condition in
x̃0, can be seen in Figure 4. The discussion of the effects of adding ALx̃0 and ρL in Figures 4(a) and 4(b) respectively,
to create xa in Figure 4(c), is similar to that in Section 3.1 for the Upwind scheme.
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(a) ALx̃0 (b) ρL

(c) xa = ALx̃0 + ρL

Figure 2: The analysis vector, xa = ALx̃0 + ρL, for the square function initial condition, when using the Upwind scheme and perfect observations,
yl = ỹl = x̃l + rl, for h = 0.5, µ = 1, N = 101 and L = 4 (∆t = 1

202 ).

(a) Magnitude of the amplification factors (b) Phase of the amplification factors

Figure 3: The magnitude and phase of the spectrum of the model resolution matrix, AL for L = 4, together with the limit as L → ∞ for the
magnitudes, for the Preissman Box scheme when h = 0.5, µ = 1 and N = 101 (∆t = 1

202 ). The magnitude and phase of the spectrum of AL for the
MNIMC scheme is included for comparison, using the same variables.

3.3. The Lax-Wendroff scheme

When h = 0.5, the Lax-Wendroff scheme is both numerically dissipative and dispersive with respect to the resolv-
able wavenumber components of the numerical solution. This results in the aliasing error introduced by the scheme
being both numerically dissipative and dispersive [31]. These properties of the scheme, along with the numerically
dispersive aliasing errors introduced by the MNIMC scheme, dictate the oscillations present in ALx̃0 and ρL compared
to x̃0 and 0 ∈ RN , respectively.

Examining the eigenvalues of AL in Figure 5, we see that the amplitude of the eigenvalues in 5(a) appear to
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(a) ALx̃0 (b) ρL

(c) xa = ALx̃0 + ρL

Figure 4: The analysis vector, xa = ALx̃0 + ρL, for the square function initial condition, when using the Preissman Box scheme and perfect
observations, yl = ỹl = x̃l + rl, for h = 0.5, µ = 1, N = 101 and L = 4 (∆t = 1

202 ).

experience a combination of the amplification affects seen in Figure 1(a) for the Upwind scheme and the attenuation
affects seen in Figure 3(a) for the Preissman Box scheme. This was also observed in the formulation of νp for this type
of scheme, in the text between Equations (23) and (24). The combination of effects sees the medium and the highest
real resolvable wavenumber components of x̃0, amplified and attenuated respectively for the Lax-Wendroff scheme,
when L = 4. The amplification effects seem to balance the attenuation effects so no real resolvable wavenumber
components are attenuated to zero. The discussion of the effects of adding ALx̃0 and ρL in Figures 6(a) and 6(b)
respectively, to create xa in Figure 6(c), is similar to that in Section 3.1 for the Upwind scheme.

(a) Magnitude of the amplification factors (b) Phase of the amplification factors

Figure 5: The magnitude and phase of the spectrum of the model resolution matrix, AL for L = 4, together with their limit as L → ∞, for the Lax
Wendroff scheme when h = 0.5, µ = 1 and N = 101 (∆t = 1

202 ). The magnitude and phase of the spectrum of AL for the MNIMC scheme is
included for comparison, using the same variables.
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(a) ALx̃0 (b) ρL

(c) xa = ALx̃0 + ρL

Figure 6: The analysis vector, xa = ALx̃0 + ρL, for the square function initial condition, when using the Lax-Wendroff scheme and perfect
observations, yl = ỹl = x̃l + rl, for h = 0.5, µ = 1, N = 101 and L = 4 (∆t = 1

202 ).

3.4. The length of the assimilation window

Another factor that affects the behaviour of numerical model error is the length of the assimilation window. It is
important to understand whether the extra time and processing power required to include more observations will yield
an improvement in the solution. To understand the behaviour of νp for large L, we consider νp as L→ ∞. As L→ ∞,

νp →


1, for |λp| = 1 and φp = 2πs, s ∈ Z,
1 + |λp|, for |λp| < 1 and φp = 2πs, s ∈ Z,
0, for |λp| = 1 and φp , 2πs, s ∈ Z,
(1−|λp |

2)(1−|λp |e−iφp )
1+|λp |

2−2|λp | cos(φp) , for |λp| < 1 and φp , 2πs, s ∈ Z.

(25)

When |λp| � 1, νp is very close to its limit for L→ ∞, for a relatively small value of L when considering numeri-
cally dissipative eigenvalues. This can be seen in Figures 1(a) and 5(a) where the amplification factors for the highest
real resolvable wavenumber components are approaching their limit for L → ∞, when L = 4. Hence increasing the
length of the assimilation window for the Upwind and Lax-Wendroff schemes, will not affect the contribution of the
high resolvable real wavenumber components to the analysis vector and its forecast. The amplification factor for the
lower resolvable real wavenumber components can be altered by increasing the length of the assimilation window.

In the case of a numerically non-dissipative and dispersive eigenvalue λp, such as those found in the Preissman
Box scheme, νp → 0 as L → ∞. This can be seen in Figure 3(a). This leads to ALx̃0 → 0 as L → ∞. Therefore as
the length of the assimilation window is increased, by adding extra sets of observations in time, the contribution of
ALx̃0 to xa decreases. This shows that as more observations are included, destructive interference increases between
the corresponding wavenumber components of each set of observations in time, leading to a loss of information in xa

and its subsequent forecast. Hence for a solely numerically dispersive scheme, increasing the number of observations
does not necessarily improve the accuracy of the analysis vector and its forecast.
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4. Error analysis

Numerical model error can be measured through the direct error on the analysis vector or by its effect on the
subsequent forecast. Both quantities are important in different applications of the inverse problem. These errors can
be shown to converge to zero for sufficiently smooth initial conditions, when measured in the l2-norm, by considering
the global and truncation errors associated with the forward model of each scheme [31]. To investigate these errors
for any regularity initial condition, a spectral approach is taken, using the formulation for the analysis vector found in
Lemma 2.

4.1. Spectral approach in the absence of observation errors
A spectral approach can be used to provide a bound for the l2-norm of the error in the analysis vector, for any

regularity initial condition. Lemma 3 derives such a bound making use of the results from Lemmas 1 and 2. Here we
remind the reader that the regularity of u0(x) over (0, 1) is defined in Definition 1.

Lemma 3. Let the assumptions of Lemma 2 hold true. Also let u0(x) have regularity r ∈ N0 over (0, 1), be piecewise
monotone over (0, 1) and u(r)

0 (x) be bounded and piecewise monotone over (0, 1). Then,

‖x̃0 − xa‖
2
2 ≤ N

{
|1 − ν1|D1 + (|1 − ν1| + 2ξ1)

D3

Nr+1

}2

+ 2N

N+1
2∑

p=2

{
|1 − νp|

D2

(p − 1)r+1 + (|1 − νp| + 2ξp)
D3

Nr+1

}2

, (26)

where D1 := v1 ∈ R is the bound on u0(x) over (0, 1), D2 := 4v2 sT r

(2π)r+1 where v2 ∈ R is the bound on u(r)
0 (x) over (0, 1) and

s ∈ N is the number of monotone pieces u(r)
0 (x) can be broken up into over (0, 1) and

D3 :=
{

D2
[
4 + 2ζ(2)

]
+ 2v1w, for r = 0,

D2

[
2r+1 + 2ζ(r + 1)

]
, for r ∈ N,

(27)

such that w ∈ N is the number of sub-domains [x j, x j+1] for j = 0, . . . ,N − 1, where u0(x) contains a discontinuity.
Here ζ(·) denotes the Riemann Zeta function. Also define,

ξp :=

∣∣∣∣∣∑ L−[L]b
b −1

l=0

[
|λp|

beibφp
]l
∣∣∣∣∣ {∑b−1

j=1 |λp|
j
}

+ |λp|
L−[L]b

∑[L]b
j=1 |λp|

j∑L
k=0 |λp|

2k
. (28)

The proof of Lemma 3 can be found in [31]. This bound can be used to analyse the order of convergence of the
error to zero, with respect to either N the number of discretisation points, or L the number of sets of observations.
Examining (26) indicates that the order of convergence of the bound will be explicitly dependent on the regularity of
the initial condition, given by r. It should be noted here that in the following experiments, the order of convergence
with respect to either N or L is found for constant h, resulting in ∆t = h/(|µ|N) varying with N. Consequently,
the length of the assimilation window is altered by varying either N or L, T := L∆t = Lh/(|µ|N). As each set of
observations in time contains observations at every spatial location, increasing N increases the density of observations
in space and time. Increasing L lengthens the assimilation window by adding more sets of observations in time,
keeping their density constant.

In the case of the Upwind, Preissman Box and Lax-Wendroff schemes, ν1 = 1. Hence the terms relating to ν1 in
the bound in Equation (26), are zero. In the case of the MNIMC scheme, AL = I, so the only contribution to the error
is from aliasing errors. The bound is consistent with this as only the bound on the aliasing error remains. Choosing
h = 1 results in both the error and its bound becoming zero.

The order of convergence of the bound with respect to either N or L, is in part determined by the order of con-
vergence of the |1 − νp| and ξp terms. The term |1 − νp| has a direct impact on the analysis vector, whilst ξp is a
consequence of applying a bound to the error in the analysis vector. The terms |1 − νp| and ξp are both dependent on
N and L; N determines the number of points, whilst L determines the shape, of the plots in Figure 7.
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(a) |1 − νp | (b) ξp

Figure 7: The values of |1 − νp | and ξp plotted against the corresponding normalised wavenumber ie: (p − 1)/N, of the corresponding eigenvalue,
for the Upwind, Preissman Box, Lax-Wendroff and MNIMC schemes, for N = 101 and L = 4 (∆t = 1/202).

The number of mesh points and observations used in NWP are typically O(107) [32] and O(105 − 106) [21]
respectively. As a result, it is realistic to consider the order of convergence of the bound in (26) when L is small in
comparison to N (ie: a small assimilation window).

The order of convergence of |1 − νp| to zero with respect to N, for fixed p, was found numerically using fixed
L = 4. The order was found to be less than or equal to zero for all p and the order remained constant for small p ie:
(p − 1)/N � 1, where |1 − νp| = O(N−2) for the Upwind scheme and |1 − νp| = O(N−3) for the Preissman Box and
Lax-Wendroff schemes, for such p, p , 1. As a result, |1 − νp| is either decaying to zero or remaining constant as N
increases.

Similarly, the order of convergence of |1 − νp| to zero with respect to L, for fixed p, was found numerically using
fixed N = 37. This was found to be positive for all p and at most |1 − νp| = O(L) for all three schemes, for each p,
p , 1. These results show that increasing the value of L causes the value of |1 − νp| to diverge from zero for p , 1.
The identical order of convergence with respect to L for each scheme (p , 1) is not surprising as the dependence of
|1 − νp| on L is similar for each scheme, unlike the dependence on N.

For the Upwind scheme, the numerical order of convergence for |1− νp| to zero, with respect to both N and L, can
be explained through its asymptotic expansion as N → ∞, for fixed p. Assuming L > 0, let z := (p − 1)/N. Then,
for fixed p, as N → ∞, z → 0, so we consider z as a continuous variable and Taylor expand |1 − ν(z)| about z = 0,
resulting in,

|1 − ν(z)| =
π2L

4
z2 + O(z4), for 0 < z <

1
2

,

as the 4th derivative of |1 − ν(z)| with respect to z is bounded over the interval (0, 0.5). Considering z = (p − 1)/N for
p = 2, . . . , (N − 1)/2 as N → ∞, we obtain,

|1 − νp| ∼
π2L

4

(
p − 1

N

)2

. (29)

Therefore we trial the use of Equation (29) as an approximation for |1 − νp|. This expansion indicates that |1 − νp| has
orders of convergence O(N−2) and O(L) for the Upwind scheme. These match the numerical orders of convergence
found for |1 − νp| to zero with respect to N when p is small (p , 1) and the maximum order of convergence with
respect to L, for the Upwind scheme.

As |1 − ν1| = 0 for the Upwind, Preissman Box and Lax-Wendroff schemes, the bound in (26) can be considered
as the sum of six distinct summations. Each summation has an order of convergence to zero with respect to N and L,
which influences the overall order of convergence for the bound. The order of convergence of each summation was
identified numerically, in order to identify the dominant summation in the bound.

The summation with the dominant order of convergence for each considered scheme and regularity initial condi-
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r α β
Upwind Preissman Box Lax-Wendroff Upwind Preissman Box Lax-Wendroff

0 −6.7708 × 10−15 −2.6329 × 10−10 −3.7260 × 10−9 5.7945 × 10−1 3.6188 × 10−1 4.0297 × 10−1

1 −2.0000 −2.0000 −2.0000 1.5053 9.394 × 10−1 1.0230
2 −3.0000 −4.0000 −4.0232 1.9957 1.6588 1.6731
3 −3.0000 −4.9565 −5.0600 2.0000 1.9990 1.9955
4 −3.0000 −4.9377 −5.0000 2.0000 2.0000 1.9999
5 −3.0000 −4.9345 −5.0000 2.0000 2.0000 2.0000
6 −3.0000 −4.9338 −5.0000 2.0000 2.0000 2.0000
7 −3.0000 −4.9336 −5.0000 2.0000 2.0000 2.0000

r � 1 −3.0000 −5.0000 −5.0000 2.0000 2.0000 2.0000

Table 1: Numerical orders of convergence to zero, with respect to N and L, for (30), O(NαLβ), using the Upwind, Preissman Box and Lax-Wendroff

schemes, given to 5sf (significant figures), with h = 0.5 a constant. The results for N were identified using fixed L = 4 (∆t = 1/2N) and larger
values of N than those used to produce the results for α in Table 2. As a result, the values of α displayed here are likely to have a greater accuracy
than those displayed in Table 2. The results for L were identified using fixed N = 37 (∆t = 1/(2 · 37)). The results for r � 1 were identified using
(31).

tion, with respect to both N and L was found to be,

N

N+1
2∑

p=2

|1 − νp|
2

(p − 1)2(r+1) . (30)

This summation is composed from the amplification factors and a bound on the continuous Fourier coefficients of
u0(x) ie: cp [27, 31, 33], giving it an explicit dependence on the regularity of u0(x).

In the case of an initial condition where r is infinite, such as for a Gaussian function initial condition, the bound on
the coefficients cp decays faster than any finite power of p as p→ ±∞ [34]. Boyd [34] states that it is not appropriate
to consider the bound on cp whilst taking the limit as r → ∞, as the bound is designed to consider cp as p→ ±∞ for
fixed r. If we were to consider the limit r → ∞, then for any p , 0, D2

|p|r+1 → 0 as 1
2π < |p|. This implies that cp = 0 for

all p , 0, which is not true. Since this bound is used to construct the bound in (26), it is not appropriate to consider
this bound in the infinite limit of r → ∞. Instead we will consider large r for this case.

Corollary 1. In the case of large r,

N

N+1
2∑

p=2

|1 − νp|
2

(p − 1)2(r+1) ∼ N|1 − ν2|
2, as N → ∞. (31)

This is due to the rapid decay of (p − 1)−2(r+1) to zero for large r, when p = 3, . . . , N+1
2 , as N → ∞. When p = 2,

(p − 1)−2(r+1) remains constant for any value of r, hence the term |1 − ν2|
2 determines the behaviour of (30) for large

r. In this instance,
N |1 − ν2|

2 = O(N1+2γ), (32)

where γ is the numerical order of convergence for |1 − νp| to zero with respect to N, for small p, p , 1, eg. for the
Upwind scheme γ = −2. The orders of convergence to zero for the summation in (30), with respect to both N and L,
are given in Table 1 for varying r. When r is large, the order of convergence of (31) to zero is considered.

Table 1 shows that the order of convergence of (30) to zero with respect to N, for an initial condition such that
r = 0, is O(N0). This indicates that the error in the analysis vector does not decay as N is increased. This is due to the
error that always exists when a Fourier series is used to approximate a discontinuous function.

Expression (30) decays to zero for initial conditions where r > 0, as N increases. As the regularity is increased,
the order of convergence to zero with respect to N is initially O(N−2r). However, once a critical regularity is achieved
the order of convergence saturates; O(N−3) for the Upwind scheme when r ≥ 2 and O(N−5) for the Preissman Box and
Lax-Wendroff schemes when r ≥ 3. The orders of convergence at saturation point match the orders of convergence
given by (32), when considering large r.
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Variable Upwind Scheme
Square Function (r = 0) Triangular Function

(r = 1)
Gaussian Function

(r � 1)

α 1.1838 × 10−12 −2.2612 −3.0000
β 5.6939 × 10−1 1.5096 2.0000

Variable Preissman Box Scheme
Square Function (r = 0) Triangular Function

(r = 1)
Gaussian Function

(r � 1)

α −6.5427 × 10−1 −1.2809 −4.9178
β 3.7952 × 10−1 9.8836 × 10−1 2.0662

Variable Lax-Wendroff Scheme
Square Function (r = 0) Triangular Function

(r = 1)
Gaussian Function

(r � 1)

α 5.5724 × 10−1 −2.0836 −4.9947
β 3.1248 × 10−1 1.0187 2.0194

Table 2: Numerical orders of convergence to zero, with respect to N and L, for the error in the analysis vector from strong constraint 4D-Var
numerical experiments, given to 5sf, ‖x̃0 − xa‖

2
2 = O(NαLβ), with h = 0.5 a constant. The results for N and L were identified using fixed L = 4

(∆t = 1/2N) and fixed N = 37 (∆t = 1/(2 · 37)), respectively.

The numerical results for N, for the Upwind scheme in Table 1, are seen when the right-hand side of Equation
(29) is substituted into (30) to replace |1 − νp|,

N

N+1
2∑

p=2

|1 − νp|
2

(p − 1)2(r+1) =

{
O(N−2r), for r = 0, 1,
O(N−3), for r ≥ 2. (33)

Table 1 shows that the order of convergence of (30) to zero, with respect to L, is positive for all values of r. This
indicates that the error in the analysis vector may increase as the length of the assimilation window is increased. The
order of convergence also increases with the value of r associated with the initial condition, until a critical value is
reached, where the order of convergence saturates at O(L2).

Numerical experiments were performed to investigate whether (26) was a good indicator for the growth and decay
of the error in the analysis vector. Strong constraint 4D-Var numerical experiments were performed using the same
conditions as in the above analysis, for the same finite difference schemes. The error ‖x̃0 − xa‖

2
2 was then determined

numerically and its order of convergence to zero with respect to N and L was found. The functions and their value of
r chosen for x̃0 were the square function (r = 0), a triangular function (r = 1) and a Gaussian function, N(0.5, 0.01)
(r � 1).

The numerical experiments were executed using the built-in PCG method in MATLAB®[35], a zero first guess
and a tolerance of 10−10 on the relative residual, to minimise the cost function. For comparison with the results in
Table 1, the same fixed values of N and L were chosen.

Initially consider the results for the order of convergence with respect to N in Table 2. The results are close to
those in Table 1 for initial conditions with the same value of r. Figure 8(a) plots the numerical order of convergence
with respect to N, as N is increased in powers of three. It shows that the order of convergence fluctuates about the
order of convergence shown in Table 1, for each value of r. This probably explains why the results in Tables 1 and
2 do not match exactly for N. Table 2 also shows that the order of convergence with respect to L is a good match to
those found in Table 1. These results indicate that (26) is an appropriate bound for the considered error in the analysis
vector, with respect to N and L. Taking observations every ∆x in space, every ∆t in time, combined with the initial
conditions chosen for the numerical experiments in this paper mean that the full set of properties of each considered
u0(x) can be observed through its discrete sample in x̃0. When this is not the case, it has been shown that the bound in
Equation (26) gives the worst case behaviour of the error in the analysis vector [31].

The next step is to re-introduce observation errors and understand how numerical model error and observation
errors interact.
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4.2. Spectral approach with observation errors

Section 4.1 provides a bound for the numerical model error in the analysis vector, for differing regularity initial
conditions u0(x), in problem (4). It is possible to apply a similar bound to the error in the analysis vector when
observation errors are also included.

Consider the case where each observation contains observation errors, yl = ỹl + ε l, as described in Section 2.
Specifically, let us consider the random error known as white noise [30] where ε l ∼ N(0, IN). The cost function
becomes,

J(x0) =
1
σ2

o

L∑
l=0

[
yl − Mlx0

]T [
yl − Mlx0

]
. (34)

Minimising (34) with respect to x0,

xa =

 L∑
k=0

(MT M)k

−1 L∑
l=0

(MT )l [ỹl + ε l
]
. (35)

Using the eigenvalue decomposition of M and M̃ as well as (19),

xa = ALx̃0 + ρL + V

 L∑
k=0

(Λ∗Λ)k

−1  L∑
l=0

(Λ∗)lV∗ε l

 . (36)

The analysis vector in the presence of observation errors, is expressed in part by xa without observation errors, as in
(19). The observation errors form a separate term. If the errors did not possess the same variance, (36) would not have
this property.

The term containing the observation errors in (36) would be the analysis vector when considering observations
of the form yl = ε l. The effect of numerical model error on the white noise may lead to correlations within the
observation noise component of (36). If correlations have been introduced, then this will create artifacts in the analysis
vector which will be propagated into its forecast. The autocorrelation function is used to determine if the observation
noise contribution to xa is still white noise.

The autocorrelation function is defined as in Mitra [30]. The autocorrelation of an N-periodic sample x ∈ RN , at
lag j − 1 for j = 1, . . . ,N, is defined as z j−1 : RN → R, such that x 7→ z j−1(x) where,

z j−1(x) =
1
N

N∑
p=1

{x}p{x}[p− j+1]N
, (37)

where {x}p denotes the pth element of x and [·]N denotes modulo N. Also, define z ∈ RN such that the jth element of
z(·) is z j−1(·). Then by the Wiener-Khintchine Theorem [30], the DFT of the autocorrelation of x is defined as,

F [y(x)] =
1
√

N

[
|F1(x)|2, |F2(x)|2, . . . , |FN(x)|2

]T
.

Using (36), the autocorrelation of the noise component of the analysis vector is given by,

z j−1

V
 L∑

k=0

(Λ∗Λ)k

−1 L∑
l=0

(Λ∗)lV∗ε l

 =
1
N

N∑
p=1

∣∣∣∣∣∣∣∣
∑L

l=0 λ
l
pFp(ε l)∑L

k=0 |λp|
2k

∣∣∣∣∣∣∣∣
2

e
2πi( j−1)(p−1)

N , (38)

for j = 1, . . . ,N. Hence [31],

E

z j−1

V
 L∑

k=0

(Λ∗Λ)k

−1 L∑
l=0

(Λ∗)lV∗ε l


 =

σ2
o

N

N∑
p=1

e
2πi( j−1)(p−1)

N∑L
k=0 |λp|

2k
, (39)
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for all j = 1, . . . ,N, which relies upon the values of j, N, L and σ2
o, together with the dissipative properties of the

considered finite difference scheme. It does not utilise the dispersive properties of the scheme. Expression (39) is po-
tentially non-zero for all j, for a numerically dissipative finite difference scheme, indicating that the noise component
of the analysis vector may no longer be random white noise. However, in the case of a non-dissipative scheme ie:
|λp| = 1 for all p, only j = 1 is non-zero. Using a non-dissipative scheme such as the Preissman Box scheme, means
that the noise component of the analysis vector will retain the white noise structure implicit in the observations.

A spectral approach as in Section 4.1 is now used to provide a bound for the l2-norm of the error in the analysis
vector, for any regularity initial condition, in the presence of observation errors.

Lemma 4. Let the assumptions of Lemma 3 hold true, but consider observations of the form yl := ỹl + ε l, allowing xa

to be stated as in (36). Then,
‖x̃0 − xa‖

2
2 ≤ EM + EO + EC , (40)

where

EM = N
{
|1 − ν1|D1 + (|1 − ν1| + 2ξ1)

D3

Nr+1

}2

+ 2N

N+1
2∑

p=2

{
|1 − νp|

D2

(p − 1)r+1 + (|1 − νp| + 2ξp)
D3

Nr+1

}2

, (41)

EO = Nz0


 L∑

k=0

(Λ∗Λ)k

−1 L∑
l=0

(Λ∗)lV∗ε l

 , (42)

EC = 2
√

N
{
|1 − ν1|D1 + (|1 − ν1| + 2ξ1)

D3

Nr+1

} ∣∣∣∣∣∣∣
∑L

l=0 λ
l
1F1(ε l)∑L

k=0 |λ1|
2k

∣∣∣∣∣∣∣
+4
√

N

N+1
2∑

p=2

{
|1 − νp|

D2

(p − 1)r+1 + (|1 − νp| + 2ξp)
D3

Nr+1

} ∣∣∣∣∣∣∣∣
∑L

l=0 λ
l
pFp(ε l)∑L

k=0 |λp|
2k

∣∣∣∣∣∣∣∣ ,
(43)

where D1 is a constant independent of p, N and r and D2 and D3 are constants independent of p and N but dependent
on r. Constants D1, D2 and D3 are defined in Lemma 3 and ξp is defined as in Equation (28).

The proof of Lemma 4 can be found in [31]. The bound is formed from the equivalent bound in the absence of
observation errors (EM), together with the autocorrelation at lag 0 of the noise component in the analysis vector (EO)
and cross terms (EC). It can be used to analyse the order of convergence of the error to zero, with respect to either N
or L.

The variables EO and EC are dependent on the random variables {ε l}
L
l=0. However by the strong law of large

numbers [36], if the experiments could be repeated, then as the number of experiments is increased, the sample means
of EO and EC would tend toward their expected values. As a consequence, we consider the expected values of EO and
EC ,

E [EO] = σ2
o

N∑
p=1

1∑L
k=0 |λp|

2k
, and E [EC] = 0, (44)

in order to identify the orders of convergence of the bound with respect to both N and L.
The expected value of EC is zero whilst the expected value of EO is dependent upon N, L, σ2

o and the dissipative
properties of the scheme. Hence the expected value is independent of both the regularity of the initial condition and
the dispersive properties of the finite difference scheme. A non-dissipative scheme leads to E [EO] = σ2

oN/(L + 1), so
that the order of convergence for E [EO] to zero with respect to N and L, is O(N) and O(L−1) respectively.

The order of convergence of the bound in (40) to zero, with respect to N or L, is determined by the dominant order
of convergence possessed by either EM or E[E0]. The orders of convergence to zero for EM were analysed in Section
4.1. Table 3 displays the numerical orders of convergence to zero, with respect to N and L, for E [EO].
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Variable Upwind Preissman Box Lax-Wendroff

α 1.0000 1.0000 1.0000
β −3.3207 × 10−4 −9.9719 × 10−1 −2.0866 × 10−3

Table 3: Numerical orders of convergence to zero, with respect to N and L, for E [EO] in (42), given to 5sf, E [E0] = O(NαLβ), with h = 0.5 a
constant. The results for N and L were identified using fixed L = 4 (∆t = 1/2N) and fixed N = 37 (∆t = 1/(2 · 37)), respectively.

Initially consider the order of convergence of the bound in (40) with respect to N. The results of Section 4.1 show
that EM remains constant or decays to zero, whilst Table 3 shows that E[EO] increases, as N is increased. Next we
consider the order of convergence of each variable to zero, with respect to L. EM increases, and E[EO] decreases, as
L is increased. Subsequently, the dominant order of convergence of (40) to zero, for both N and L, will be determined
by the order of magnitude of the coefficients of each term.

Strong constraint 4D-Var experiments similar to those in Section 4.1 were run to investigate the appropriateness
of (40) as a bound for the error in the analysis vector in the presence of observation errors. The results can be seen
in Figures 9(a) and 9(b), for N and L respectively. Numerical results were generated using the same setup as for the
strong constraint 4D-Var experiments in Section 4.1.

Figure 9(a) shows that initially the error in the analysis vector decreases as N increases, according to the order
of convergence seen for EM . Once a critical value of N has been reached, the order of convergence then begins to
increase with the order of convergence demonstrated by E[EO]. This provides a critical value for N at which the
effect of both numerical model error and observation errors on the accuracy of the analysis vector is minimised. L
and σ2

o form part of the coefficient for N in E[EO]. Increasing L or decreasing σ2
o will result in the critical value of N

increasing, whilst decreasing L or increasing σ2
o will result in the critical value of N decreasing. The critical value for

N shown in Figure 9(a) is between 34 and 35, depending on the chosen finite difference scheme.
Figure 9(b) shows a similar picture to that seen in Figure 9(a). However in this instance, the initial decrease in

the error in the analysis vector corresponds to the order of convergence of E[EO]. As L is increased further, a critical
value is reached where EM becomes dominant over E[EO], and the error begins to increase with L. As with N, this
critical value of L is determined by the coefficients of E[EO]. Decreasing either N or σ2

o will result in the critical value
of L decreasing, whilst increasing either N or σ2

o will result in the critical value of L increasing.
When considering the orders of convergence with respect to either N or L, reducing σ2

o corresponds to reducing
the error in the observations. As a result, it is not surprising that reducing σ2

o results in EM becoming the dominant
order of convergence, for a given value of N or L.

This analysis suggests that (40) is an appropriate bound to demonstrate the order of convergence for the error in
the analysis vector. As a result, given a fixed value for σ2

o and either N or L, it is possible to choose a value for
L and N respectively, that minimises the error in the analysis vector due to numerical model error and observation
errors. The result for N in some way works towards answering the question posed by Akella et al. [15] as to whether
increasing the number of discretisation points would continue to decrease the effects of discretisation errors on the
results of 4D-Var. In this instance, we have shown that when considering numerical model and observation errors in
strong constraint 4D-Var, increasing the number of discretisation points past the optimal value of N when considering
a full sets of observations, would result in an increase in the error in the analysis vector.

5. Discussion

The results in this paper are for the chosen representative finite difference schemes; the Upwind, Preissman Box
and Lax-Wendroff schemes. However the theory in the paper is applicable to any finite difference scheme that can
be implemented to solve the 1D linear advection problem in a similar way. Lemma 3 can be used to identify the
theoretical order of convergence for the numerical model error in the analysis vector, once an asymptotic expansion
of |1 − νp| has been found for the new scheme. The orders of convergence for E(EO) and E(EC) are discussed in
Section 4.2 in terms of the numerically dissipative and dispersive properties of the finite difference scheme and hence
are applicable to an alternative scheme with these properties. If an optimal value of N at which to perform strong
constraint 4D-Var exists to minimise the effects of both numerical model and observations errors, this would require
further numerical experiments to identify.
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The analysis conducted in Section 3 into the numerically dissipative and dispersive properties of the considered
finite difference schemes is important for aiding our understanding into the impact of different forms of numerical error
on the quality of the analysis vector seen in Section 4. Williams [37] conducted a similar analysis for the Leapfrog
scheme to understand the “spurious computational modes” which occur in it. Through this analysis, he was able to
design a modification for the Robert-Asselin time filter to improve the results from meteorological models [38]. It is
envisioned that the results of Sections 3 and 4 can be used in a similar way to design modifications to numerically
dissipative and/or dispersive schemes, to improve the accuracy of the analysis vector. Williams [37] investigates the
Leapfrog scheme due to its wide-scale use in weather and climate models eg. [8], where it is chosen for being a simple
and computationally inexpensive scheme [37].

The results presented in this paper are for a linear problem. Most practical applications of 4D-Var are for non-
linear problems, so it is important to address the question of how these results relate to non-linear problems in 4D-Var.
The analysis conducted in this paper can be applied to quasi-linear PDEs such as Burgers’ equation. Pfeffer et al. [8]
performed a similar linear analysis to that of this paper, on the Matsuno and Leapfrog schemes, before using them to
solve the non-linear model equations of the NASA-GLAS climate model. The aim was to investigate the sensitivity
of the models’ forecast to the choice of time-differencing scheme used to produce the model results. Their results
showed that some of the properties of the schemes found through this analysis could be seen in the results of the
non-linear problem. This leads us to believe that the results of the linear analysis presented here, are to some extent,
directly relevant to non-linear problems.

Linear problems such as the one considered here, are of immediate relevance to applications such as incremental
4D-Var data assimilation. This method was developed by Courtier and Hollingsworth [39] to provide a computation-
ally viable implementation of strong constraint 4D-Var for non-linear systems. This iterative method updates the anal-
ysis vector through the minimisation of a linearised version of the 4D-Var cost function [40]. This involves linearising
Hl and Ml+1,l about the current iterative state of the numerical model x(k)

l , where k ∈ N0 is the iteration number.
The linearised numerical model and its transpose are referred to as the tangent linear model (TLM) and the adjoint
model [1, 22]. The resulting cost function to be minimised is then constructed in part from these linearised models.
As a result, they have a direct impact on the accuracy of the updates to the analysis vector. Therefore analysing the
numerical model error introduced by a linear numerical model in the context of 4D-Var data assimilation, is of direct
relevance to the numerical model error introduced by non-linear models in practical applications of strong constraint
4D-Var data assimilation ie: incremental 4D-Var. The 1D linear advection equation is of importance in this context as
it can result from the linearisation of the non-linear shallow water equations under certain assumptions [41].

Future work would be to compare the results of Section 3 with those of a non-linear problem solved with these
schemes, as in Pfeffer et al. [8]. Current research is being conducted to build upon the work in this paper to investigate
if a similar analysis can be applied to a higher dimensional, linear problem in the form of the linearised shallow
water equations, a meteorologically relevant problem. This is the next stepping stone in this line of research with
the final goal to achieve results for a non-linear problem. The work on the linear problem can also be extended by
re-introducing errors associated with 4D-Var such as errors in the model physics and representative errors.

6. Conclusion

This paper has detailed the results of a rigorous and quantitative analysis of the errors introduced into the initial-
isation produced by strong constraint 4D-Var due to finite difference approximations in the numerical model solving
the forward problem. This error was initially investigated alone in the absence of all other forms of error. It was found
that when using a purely numerically dispersive finite difference scheme, wavenumber components of the analysis
vector could be completely lost due to destructive interference. As a consequence these components would not be
present in the forecast.

The order of convergence of the error in the analysis vector to zero with respect to the number of discretisation
points when considering full sets of observations, was found to depend upon the numerically dissipative and dispersive
properties of the numerical scheme, together with the smoothness of the true initial condition we wish to recover. The
error remained constant for discontinuous true initial conditions, whilst smoother initial conditions allowed the error
to decay. A bound for the error was determined and numerical experiments on this bound, shown in this paper, support
these outcomes.
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Including observation errors resulted in a bound for the error in the analysis vector. As the number of discretisation
points was increased, when considering full sets of observations, the error in the analysis vector decayed due to the
decay of the numerical model error. However, past a critical number of grid points, the error began to increase due to
observational errors. This suggests there is a critical value of N when considering full sets of observations, at which
the effects of numerical model error and observation errors are both minimised. The same trend is seen as the length of
the assimilation window is increased, however the initial decay is due to the impact of observation errors decreasing,
whilst the subsequent increase is due to the impact of numerical model error increasing.

Observation errors in the form of white noise were found to have the potential to introduce correlated noise
structures into the analysis vector, possibly leading to artifacts in the analysis vector and its subsequent forecast.
Using a non-dissipative scheme would reduce the presence of these artifacts.
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(a) The order of convergence to zero, with respect to N, using fixed L = 4 (∆t = 1/2N).

(b) The order of convergence to zero, with respect to L using fixed N = 37 (∆t = 1/(2 · 37)).

Figure 8: The square of the l2-norm of the error in the analysis vector, calculated through strong constraint 4D-Var data assimilation numerical
experiments, solely under the influence of errors introduced by finite difference approximations in the forward model. The results were generated
using the Upwind (UW), Preissman Box (PB) and Lax-Wendroff (LW) schemes as the forward models for solving the 1D linear advection problem
in (4), using h = 0.5 and µ = 1. The functions considered for u0(x) in these experiments are the square function, a triangular function and a
Gaussian function, denoted by ‘squ IC’, ‘tri IC’ and ’N(0.5, 0.01) IC’ respectively. The results are plotted using logarithmic scales to demonstrate
the order of convergence of the error to zero.
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(a) The order of convergence to zero, with respect to N, using fixed L = 4 (∆t = 1/2N) and σ2
o = 5 × 10−6.

(b) The Order of convergence to zero, with respect to L, using fixed N = 37 (∆t = 1/(2 · 37)) and σ2
o = 5 × 10−3.

Figure 9: The square of the l2-norm of the error in the analysis vector, calculated through strong constraint 4D-Var data assimilation numerical
experiments, under the influence of errors introduced by finite difference approximations in the forward model and observation errors. The obser-
vations are Gaussian random variables with mean zero and variance σ2

o. The results were generated using the Upwind (UW), Preissman Box (PB)
and Lax-Wendroff (LW) schemes as the forward models for solving the 1D linear advection problem in (4), using h = 0.5 and µ = 1. The functions
considered for u0(x) in these experiments are the square function, a triangular function and a Gaussian function denoted by ‘squ IC’, ‘tri IC’ and
‘N(0.5, 0.01) IC’ respectively. The results are plotted using logarithmic scales to demonstrate the order of convergence of the error to zero.
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