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Abstract

Reliable machining monitoring systems are essential for lowering production time and manufacturing costs. Existing

expensive monitoring systems focus on prevention/detection of tool malfunctions and provide information for process

optimisation by force measurement. An alternative and cost-effective approach is monitoring acoustic emissions

(AEs) from machining operations by acting as a robust proxy. The limitations of AEs include high sensitivity to

sensor position and cutting parameters. In this paper, a novel multi-sensor data fusion framework is proposed to

enable identification of the best sensor locations for monitoring cutting operations, identifying sensors that provide

the best signal, and derivation of signals with an enhanced periodic component. Our experimental results reveal

that by utilising the framework, and using only three sensors, signal interpretation improves substantially and the

monitoring system reliability is enhanced for a wide range of machining parameters. The framework provides a route

to overcoming the major limitations of AE based monitoring.

Keywords: CNC machining, Acoustic emission, Process monitoring, Multi-sensor data fusion

1. Introduction

In the manufacturing sector there is an ever growing-demand to increase the quality and diversity of products, as

well as lowering production time and costs. This is mostly due to intensified global competition, diversified demand

and shrinkage of product life cycles [1, 2]. To meet the above demands, manufacturers’ interests are turning increas-

ingly towards automated machining systems, where there is less dependence on the operator during the production

process. The success of an automated machining system depends vastly on a robust and reliable monitoring system

for on-line and off-line supervision of key machining processes. This is considered a challenging task due to the

following main reasons [3]:

1. The geometrical complexity of the components that form the final machined product requires complex tool path

strategies along with a variety of machining techniques, as found, for instance, in high-speed milling [4, 5] and

machining of sculptured surfaces [6].

2. Materials that possess low machinability such as difficult-to-cut nickel based and titanium superalloys can lead

to tool failure during machining operations since they require more energy than that of lower strength materials.

Some typical wear features that are caused during machining include rapid flank wear and notching [7].

3. Sensory signals derived from machining operations that could indicate the presence of machine failure are not

always easy to interpret owing to the complexity of the cutting tool, and also due to its geometry and paths.

4. The high-cost associated with certain machining components which prevent the occurrence of wastage and/or

any additional machining.

The application of intelligent systems to monitor computer numerical control (CNC) machining operations is

rapidly increasing in the industry. Several approaches have been proposed that accomplish tool monitoring and some
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of them have been successfully adapted to industrial applications. An extensive review on sensor-based systems for

tool condition monitoring with a special focus on industrial applications can be found in [8]. Despite earlier effors,

and due to the reasons mentioned above, the existing intelligent monitoring systems are still not considered reliable

enough to completely replace human supervision. In that, human operators are still essential in the industry to detect

the end of tool life and to correct the cutting parameters whenever it is required [9]. Currently, there are three main

goals related to machining process monitoring:

(i) Prevent and detect any machining tool and workpiece malfunctions. This can reduce the number of scrapped

components during machining operations and prevent any irreversible damage to the tool and/or final machined

product.

(ii) Provision of information that can be utilised towards the machining process optimisation. For instance, in [10]

energy consumption readings are utilised to optimise the process planning in CNC machining.

(iii) Contribution to the development of a database towards the determination of an optimal set of cutting (control)

parameters for the given machining process.

An approach that is becoming increasingly popular is to analyse the acoustic emissions (AEs) derived from ma-

chining cutting operations. Despite their advantages, AE-based systems are not considered to be totally reliable due

to: (a) their sensitivity to AE generated by sources other than tool and workpiece which can be picked up by the

sensor and confuse the signal processing task [11], (b) the requirements of adjusting the signal amplification which

is dependent on the process to be monitored [12], (c) the sensitivity of the AE measurements to sensor location and

cutting parameters [2], and (d) limitations related to the practical implementation of a microphone in an industrial set-

ting, such as directional consideration, frequency response, and environmental sensitivity [13]. To address the above

limitations, this paper proposes a multi-sensor data fusion framework that relies on the information captured by more

than one sensor and subsequent processing allows for:

1. Identification of which sensor provides the best signal representation and best location for monitoring the cutting

operation. The identified sensor yields the highest periodic component strength that corresponds to the cutting

tool rotation period.

2. Derivation of a signal with an enhanced periodic component corresponding to the cutting tool rotation period

when compared with individual sensor signals. The derived signal, known as signal estimate, improves the

signal representation by further enhancing the signal over the noise that best describes the cutting operation for

the given cutting parameters.

To validate the proposed framework a set of three microphones are placed at different locations inside a CNC

machining structure and measurements are taken for a wide range of cutting parameters.

The remaining structure of the paper is as follows: an introduction to acoustic emissions with special focus on

machining applications is provided in Section 2, two approaches that form the basis for the proposed framework are

described in Section 3 while Section 4 presents the framework. The experimental results on CNC machining data are

covered in Section 5 and the paper concludes with Section 6.

2. Acoustic Emissions Monitoring in Machining

The acoustic emissions (AEs), also known as “stress wave emission” or “microseismic activity”, is a phenomenon

of sound and ultrasound wave radiation where elastic energy is released in the form of mechanical vibration from a

material (tool, workpiece, machine body) as it undergoes deformation and fracture processes [11]. AE signals derived

from machining operations (metal cutting in this instance) can be either: (i) a transient signal, also called “burst”,

characterised by a short duration signal with high-amplitude and associated with chip and tool fracture; or (ii) a con-

tinuous signal characterised by a long duration signal with variations in the amplitude and frequency, often associated

with unwanted (noise) signals such as friction, deformation and flow noise [14, 15]. The spectrum of a typical AE

spans the kilohertz (kHz) to megahertz (MHz) range which is well above the machining operation frequency, charac-

terised by the spindle rotation and the frequencies of the normal modes of operation. This has allowed the application

of AE sensors for machining process monitoring that includes characterising the tool/workpiece surface/subsurface

(roughness and anomalies), tool condition (e.g. tool wear and tool breakage), and dimensional accuracy (bore size

tolerance). A selection of applications currently found in the literature is summarised as follows:
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1. AE as a single sensor: tool breakage [16], tool wear [17, 18, 19], tool wear and chipping [20], tool and workpiece

malfunctions [3, 21], and tool wear and surface roughness [22, 23];

2. AE together and/or combined with other sensors: tool wear [24, 25, 26, 27, 28, 29], tool breakage detection [30,

31], surface roughness prediction [32], and dimensionality accuracy and surface roughness [33].

An acoustic emission wave travels omni-directionally from the source material to the AE sensor via the material

itself and/or by air. This means that the AE sensors can be either attached or separated from the material. A direct

measurement of the cutting process is possible if the sensor is either placed close or attached to the tool or workpiece.

However, it is often the case that in the proximity of the cutting operation there is a substantial amount of material

being removed and coolant fluid being delivered which makes it difficult, if not impossible, to conduct a direct mea-

surement. On the other hand, although the remote placement provides more security to the capturing process itself, it

might result in filtering and distortion of the signal. This can be attributed to the structures and substances that exists

in the path of the cutting process and the sensor location [13].

The AE sensors have been categorised in [11] as either piezoelectric or dynamic microphones, and the two main

differences are:

(i) the frequency range: where the typical piezoelectric AE sensor ranges from 10kHz to 10MHz while the micro-

phones ranges from a few Hertz to a hundred kHz; and

(ii) the sensor placement: where the piezoelectric AE sensors are usually attached to the material to be monitored

(often the tool or workpiece) while the microphones are placed away from the cutting operation.

Although most AE sensors applications in machining belong to the piezoelectric category [34], microphones have

been utilised in the past for chatter detection in milling operations [13], for acoustic sensing in laser drilling [35],

and more recently for CNC machining in woodworking operations [36] and for monitoring a gas metal arc welding

process [37]. In [13] a comparison was made between a microphone and other remotely placed sensors, such as force

dynamometers and accelerometers, and it is shown that the microphone provides the best balance in satisfying the

many requirements of a sensor for the purpose of chatter detection and control in milling operations.

Another important aspect is the superior sensitivity and higher signal-to-noise ratio (SNR) of AE sensors for mon-

itoring the most critical processes in precision machining when compared with other conventional types of sensors,

such as force and vibration [38, 39]. Conventional sensors suffer from inaccuracies due to loss of sensitivity in the

extremely high frequency range, while AE sensors exhibit improved response in the high-frequency range where

frequencies from submicrometre-level precision machining activity are more prominent. The sensors sensitivity is

affected by the level of precision required by the machining process and as well by the control parameters to be moni-

tored, as represented in Figure 1. Notably, AE sensors are the most reliable sensors in dealing with surface roughness

and subsurface damage when the level of precision increases to ultra-precision scale (1 nm). This means that AE

sensors are suitable for monitoring micro cutting mechanisms since noise from disturbance sources (bearings, slides,

etc.) can be minimised.

3. Background Theory

This section presents two approaches that form the basis of this paper’s framework, namely: maximum likelihood

estimation and auto-correlation coefficient. The former provides a signal estimate based on the signal variance, under

the assumption that a reasonable model for the noise is white Gaussian noise (WGN). The latter provides a measure

of the periodic component strength that corresponds to the cutting tool rotation period, given that AE signals derived

from rotary cutters are periodic by nature. The maximum likelihood estimation and the auto-correlation coefficient

are detailed in Sections 3.1 and 3.2, respectively.

3.1. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) [40] is a standard approach for estimating the parameters of a given

statistical model which is widely used due to its simplicity and often because it yields the most natural estimates [41].
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Figure 1: Sensor sensitivity to different levels of machining precision and error control parameters. Taken from [38] and edited.
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n = 0, 1, . . . ,N − 1, (1)

where xi[n] is the output of the ith sensor at instant n. A reasonable observation model for xi[n] is given by

xi[n] = s[n] + wi[n] (2)

where s[n] and wi[n] correspond to the signal and noise components of xi[n], respectively. Here, it is assumed that

wi[n] for all i’s is a sequence of random variables independent and identically distributed by some probability density

function (PDF). A reasonable PDF for the noise is the WGN [42], where each random variable is uncorrelated with

all the others. This leads to wi[n] ∼ N(0, σ2
i
), which denotes a Gaussian distribution with mean zero and variance σ2

i
,

where σ2
i

is the variance of the ith sensor signal. Letting 1 ∈ RM be a vector with all entries one, rewrite (2) as

x[n] = 1⊺s[n] + w[n], (3)

where w[n] is an M × 1 observation noise vector given by w[n] = [w1[n] w2[n] . . . wM[n]]⊺.

The MLE approach is now utilised to provide an estimate of the signal s[n], denoted by ŝ[n], such that the condi-

tional PDF of the noise given s[n] is maximised. This MLE optimisation problem is posed as:

ŝ[n] = arg max
s[n]

p(w[n]|s[n]), (4)

where p(w[n]|s[n]) is the conditional PDF of the noise given s[n], also known as the likelihood function. By noting

(3) it is easy to see that w[n] = x[n] − 1⊺s[n], then the likelihood function is

p(w[n]|s[n]) =p(w1[n],w2[n], . . . ,wM[n]|s[n])

=p(w1[n]|s[n]) × p(w2[n]|s[n]) × . . . × p(wM[n]|s[n])

=

M
∏

i=1

1

2πσ2
i

exp











−
1

2σ2
i

(xi[n] − s[n])2











.

(5)

4



To maximise the likelihood function it is easier to take the log of the expression since s[n] is inside an exponent.

This is known as the log-likelihood function and is given by

log p(w[n]|s[n]) =

M
∑

i=1













log













1

2πσ2
i













−
(xi[n] − s[n])2

2σ2
i













. (6)

The next step is to take the derivative of the log-likelihood function, which gives

∂

∂s
log p(w[n]|s[n]) =

M
∑

i=1

1

σ2
i

[xi[n] − s[n]] . (7)

Then, by setting (7) equal to zero we can determine the value of ŝ[n] that maximises the likelihood function leading

to

ŝ[n] =















M
∑

i=1

1

σ2
i















−1 M
∑

i=1

1

σ2
i

xi[n]. (8)

To prove that (8) is a maximum, we can check the sign of the second derivative as follows

∂2

∂2s
log p(w[n]|s[n]) =

M
∑

i=1

−
1

σ2
i

< 0, (9)

and since the term σ2
i

is always positive, it is easy to see that the expression tends to be always negative. Hence, it

is shown that the signal estimate in (8) is indeed an MLE estimate. Notably, the estimate provided by (8) will better

resemble the ith sensor signal, xi[n], that yields the lowest variance among the sensor’s signal.

3.2. Periodicity Strength Measure

The noise-corrupted signal captured by the AE sensor can be decomposed into signal and noise components as

shown in (2). The signal component is a k-periodic waveform that corresponds to the cutting tool rotation, where k is

the cutting tool rotation period. The noise component is aperiodic since its PDF is WGN. To determine the strength

of the periodic component in a N-point discrete-time signal {x[0], x[1], . . . , x[N − 1]}, the auto-correlation coefficient

is given by

C[k] =
1

(N − k)σ2
x

N−k−1
∑

n=0

(x[n] − µx)(x[n + k] − µx), (10)

where the terms µx and σ2
x denote the mean and the variance of the signal x[n], respectively. The auto-correlation

coefficient provides a scale-free measure of the similarity between samples as a function of the lag k. Given this, the

coefficient is able to measure the system stability, such that:

(i) when the system is stable or when the periodic component is dominant, the auto-correlation coefficient tends to

1; and

(ii) when the system is unstable or when the aperiodic component is dominant, the auto-correlation coefficient tends

to 0.

Thus, the auto-correlation coefficient is able to provide an indication of the periodic component strength, which in

this case corresponds to the cutting tool rotation period. This allows us to evaluate the quality of a signal measurement

during a CNC machining cutting operation that involves rotary tools.

The two approaches described above are utilised by the multi-sensor data fusion framework which is presented in

the following section.
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4. Multi-Sensor Data Fusion Framework

Multi-sensor data fusion [43] is comprised of techniques and tools that are used for combining sensor data, or any

other data that is derived from the sensory measurements, into a common representation format. The aim of multi-

sensor data fusion is to improve the quality and accuracy of the collected information such that the final representation

is better than, or at least not worse than, any data source collected by an individual sensor.

The multi-sensor data fusion framework proposed here aims to: (i) identify which of the sensors provides the

best signal representation and best location for monitoring the cutting operation, and (ii) derive a signal estimate by

combining the sensory information from individual AE sensors with enhanced signal characteristics associated with

the cutting operation. To achieve this aim, the steps of the framework are as follows:

1. Signal extraction: Collect from each sensor a discrete-time signal comprised of N observations, during a CNC

machining cutting operation. It is assumed that the signals from the different sensors are in-phase1.

2. Digital filtering: Filter the ith sensor signal by applying a digital filtering technique and let it be denoted by

xi. It is recommended to use a band-pass filter with an upper and lower cutoff frequency higher and lower,

respectively, than the theoretical tool cutting frequency. Let fup and fdown denote the upper and lower cutoff

frequency, respectively.

3. Signal normalisation: Given that the AE sensors have been positioned at different locations within the CNC

machine, different levels of signal attenuation are expected between them. To account for the disparate levels

of signal attenuation, each sensor signal level is normalised as follows:

(i) let the amplitude of the jth peak in the ith sensor signal be denoted by p j then determine the median of

the amplitude of the first 20 peaks as

Ri = median({p1, p2, . . . , p20}); (11)

(ii) determine a normalisation factor for the ith sensor as

ai = min
j=1,...,M

(R j)/Ri; (12)

(iii) let the normalised ith sensor signal be given by

yi[n] = aixi[n] n = 0, 1, . . . ,N − 1. (13)

4. Sensor preference-weight: Let the auto-correlation coefficient (10) of yi be given by Ci. The preference-weight

towards the ith sensor signal is

Wi =
Ci
∑M

i=1 Ci

, where

M
∑

i=1

Wi = 1. (14)

Notably, for two sensors denoted by a and b, the preference-weight indicates that: (i) if Wa > Wb then sensor

a is preferred over sensor b; (ii) if Wa < Wb then sensor b is preferred over sensor a, and; (iii) if Wa = Wb (or

Wa ≈ Wb) then sensors a and b are equally important.

5. Framework Output:

I Sensor selection: Select the sensor with the highest preference-weight and let it be denoted by

S = arg max
1≤i≤M

(Wi) . (15)

1Since a set of discrete-time signals are collected, these need to be in-phase to ensure that the waveforms in the generated signal do not cancel

out. This issue has been handled directly by the multi-channel sound card used in this study.
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II Signal estimate: A signal estimate is determined by combining the MLE estimate in (8) with the sensor’s

preference-weight (14) as given by

ŝ[n] =















M
∑

i=1

Wi

σ2
i















−1 M
∑

i=1

Wi

σ2
i

yi[n] n = 0, 1, . . . ,N − 1, (16)

where σ2
i

is the variance of the signal yi. The signal estimate in (16) favours the sensor signals with the

highest preference-weight and the sensor signals with the lowest variance. The latter is true when the

two signals have the same (or approximately the same) preference-weight. For instance, if the signals of

sensors a and b have differing preference-weights, then: (i) ŝ ≈ ya if Wa > Wb and (ii) ŝ ≈ yb if Wa < Wb.

Otherwise, if the two are equally important, i.e. Wa = Wb (or Wa ≈ Wb), then: (a) ŝ ≈ ya if σ2
a < σ

2
b
; and

(b) ŝ ≈ yb if σ2
a > σ

2
b
.

The above procedure is summarised in Framework 1. Depending on the application the user can specify: (i)

the number of signal samples, (ii) the number of sensors, and (iii) the upper and lower cutoff frequency for digital

filtering. The above framework is limited to periodic transient signals generated by the interaction between the cutting

tool and the workpiece, such as CNC machines with rotary cutters. We now demonstrate this framework by analysis

of experimental data.

Framework 1: Multi-Sensor Data Fusion Framework for CNC Machining Monitoring

Input:

N: Number of samples selected for analysis.

M: Number of sensors.

fup: Upper cutoff frequency for digital filtering.

fdown: Lower cutoff frequency for digital filtering.

1 begin

2 Signal extraction: Collect from each sensor a discrete-time signal comprised of N observations during a CNC machining cutting

operation. The signals collected have to correspond to the same event and need to be in-phase.

3 Digital filtering: apply a band-pass digital filtering technique with upper and lower cutoff frequency denoted by fup and fdown,

respectively.

4 Signal normalisation: determine a normalisation factor (Equation 12) based on the median amplitude of the signal first 20 peaks

(Equation 11) and use it to normalise each sensor signal as given by Equation 13.

5 Sensor preference-weight: determine a sensor preference-weight (Equation 14) based on the auto-correlation coefficient

(Equation 10).

6 Framework Output:

7 I: Sensor selection: select the sensor with the highest preference-weight by using Equation 15.

8 II: Signal estimate: determine the signal estimate by combining the MLE estimate (Equation 8) with the sensor’s preference-weight

(Equation 14) as given by Equation 16.

9 end

5. Experimental Results on CNC Machining Data

5.1. Experimental Setup

Throughout the tests, the CNC milling machine used is a Bridgeport VMC 610XP2. This is a 3-axis high speed

machining centre capable of spindle speeds up to 8,000rpm and a maximum spindle motor power of 13kW. The

workpiece material is aluminium alloy 6061-0 and the tool used for cutting is a two flute high speed steel 14 mm slot

drill. The selected material was chosen because it is considered to be one of the most widely used alloys in the 6000

series and also due to its good workability properties2. The same water based cutting fluid (V-Cut SS semi-synthetic)

was delivered through the tool, for all the tests.

2Although different types of materials might have an influence on the generated acoustic emissions, it is not within the scope of this work to

study these effects.
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Figure 2: Position of the AE sensors, spindle and workpiece, inside the CNC milling machine.
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Figure 3: Frequency response for microphone Behringer ECM8000. The calibration data has been provided by Behringer upon request.
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The acoustic emissions were measured by three3 omnidirectional condenser microphones (Behringer ECM8000)

with a signal bandwidth ranging from 20Hz to 22kHz and a sensitivity of 8.06 mV/Pa. Omnidirectional micro-

phones, as opposed to directional microphones, have been selected to avoid having to consider directionalization

techniques [13] which could further complicate the installation of the microphones inside the workspace enclosure.

The frequency response of the microphone is shown in Figure 3. The microphones were connected to a multi-channel

sound card (Edirol UA-101) with measurements logged at 44.1kHz. The Nyquist-Shannon sampling theorem [44]

asserts that for a complete representation of the signal the bandwidth needs to be less than half of the sampling rate.

This is the case for this setup since the bandwidth (22kHz-20Hz=21980Hz) is less than half of the sampling rate

(44.1kHz/2=22050Hz), i.e., 21980Hz<22050Hz.

The position of the AE sensors inside the CNC milling machine is shown in Figure 2. Note that the AE sensors

have been positioned around the workpiece but have not been attached to the cutting tool or workpiece, which is a

common trend throughout the literature. The justification for this lies in the fact that there is a water based cutting

fluid being delivered through the tool and also that there is a significant amount of vibration close to the cutting

area due to the contact between workpiece and the cutting tool. Hence, to reduce the contamination of the measured

signal by those two noise sources it has been decided to position the AE sensors at a safety distance away from the

workpiece centre. The cables that connect the AE sensors to the multi-channel sound card were then fixed to the walls

of the CNC milling machine interior using adhesive tape to prevent the AE sensors from moving during the cutting

operation. The three chosen locations were selected apart from each other deliberately by taking into account the

safety of the microphones from the water based cutting fluid and also from the vibration of the structure. As a result,

the chosen locations meant that the distance between each sensor and the workpiece centre is: 63cm for Sensor-1,

105cm for Sensor-2, and 119cm for Sensor-3. During the cutting operation tests, it is expected that the amplitude of

the measured AE signal to change when measured from a fixed position since the spindle (with a cutting tool attached)

moves 23cm horizontally along the workpiece whilst cutting a slot. Hence, for consistency and to reduce the Doppler

effect4, all the AE signals that have been considered for analysis have been extracted when the spindle is in the centre

of the workpiece. This is shown in Figure 4 on top and on the bottom figure the selected segment corresponds to a time

frame of 0.3 seconds (the exact number of points is N = 13232). In subsequent plots the signal waveform represented

is many times truncated to the first 0.1 seconds, or to lower time frames, in order to improve the signal visualisation.

To reduce any source of noise that might affect the signal information, a band-pass second-order Butterworth

filter [45] is utilised, with parameters:

(i) a lower cutoff frequency ( fdown) equal to 20Hz which corresponds to the microphone lowest bandwidth fre-

quency; and

(ii) an upper cutoff frequency ( fup) equal to 1000Hz since the microphone frequency response in the range ]1000;22000]

(Hz) is characterised by high oscillations as reported in Figure 3.

5.2. Acoustic Transient Signals

The cutting tool in milling operations is utilised to remove material from the workpiece by shear deformation.

This is accomplished by the movement of the teeth, present in the tool, which hit the workpiece and the vibration of

the impact produces the acoustic emission. For one particular set of cutting parameters the waveform of the acoustic

emission captured by Sensor-1 is represented in Figure 5(a). For this particular dataset it is expected for the tool to

conduct approximately 2.4 rotations which leads to four transient signals since there are two teeth on the tool. This

is by knowing that the spindle speed has been set to 1700rpm and that the selected time frame corresponds to 0.085

seconds. The same signal is also represented in the frequency domain in Figure 5(b), where the frequency of the

tool teeth hitting the workpiece, denoted here by tooth-impact frequency, is represented by the highest peak. The

other lower peaks that are integer multiples of the tooth-impact frequency, are known as harmonics. The tooth-impact

frequency is given by

ftool = n ×
m

60
, (17)

3The given framework does not have an upper limit on the number of microphones that can be used, however, for safety reasons it was decided

that a maximum of three microphones could be placed inside the CNC machine during the cutting operation.
4Given that the distance between the spindle and each sensor changes during the cutting process (caused by the spindle movement), it is expected

that the captured signal would change as well. The Doppler effect in this situation can lead to change in frequency of the signal which affects the

reliability of the framework since the periodic component strength of the signal would change as well.
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Figure 4: AE signal captured during a complete cutting operation is shown on top and the selected segment is shown on the bottom. Note that the

signal segment selected corresponds to the time instant when the spindle is in the centre of the workpiece.

where n is the number of teeth on the tool, m is the spindle speed in rpm and the tooth-impact frequency is given in

cycles per second, or Hz. For a spindle speed of 1700rpm the tooth-impact frequency is approximately 56.7Hz and

this frequency is shown in Figure 5(b) by a dotted vertical line. The waveform in Figure 5(a) is not purely sinusoidal

and this means that the energy released by the cutting forces is not totally concentrated on the tooth-impact frequency,

and as a result, some energy gets distributed along the frequency spectrum. In particular, the frequency components

that are integer multiples of the tooth-impact frequency, also known as harmonics, are boosted since they are easier to

excite and therefore they can be easily identified in the frequency spectrum as shown in Figure 5(b).

The signal in Figure 5(a) along with the corresponding frequency spectrum (Figure 5(b)) provides the machinist

(or operator) the information that the cutting tool is hitting the workpiece at a rate that corresponds to the tooth-impact

frequency for the given spindle speed. That is, for a spindle speed of 1700rpm the measured highest frequency peak

corresponds to the tooth-impact frequency of 56.7Hz and any other peaks in the frequency spectrum are the harmonics

of the tooth-impact frequency.

In the given application the framework operates in the frequency range 20-1000Hz and the acoustic transient signal

generated in that range is then used to monitor the cutting operation. This implies that a good SNR for AE in this case

depends on other events (or simply noise) that might exist in the same frequency range. The event of interest in this

application is the interaction between cutting tool and workpiece that is defined by the spindle speed, set here between

1700-4000rpm.

5.3. Demonstration of Framework 1 on a Single Set of Machining Parameters

This section demonstrates the working of Framework 1 when applied to a single set of sensor measurements,

corresponding to one set of machining parameters. The parameters are: 4000rpm spindle speed, 1800mm/min feed

rate, and 2mm depth of cut. These parameters have been selected because the captured signals by the AE sensors

present disparate levels among their periodic component strength. The application of the framework steps is as

follows:
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Figure 5: Acoustic transient signals captured during a milling operation. The signal as been captured by Sensor-1 and the cutting parameters are

1700rpm spindle speed, 510mm/min feed rate, and 4mm depth of cut. The signal has been filtered by a band-pass filter as detailed in Section 5.1.

The vertical dotted line in (b) denotes the tooth-impact frequency.

1. Signal extraction: for the above set of parameters the signal waveform obtained by Sensor-1, Sensor-2 and

Sensor-3 is represented in Figures 6(a), 6(b), and 6(c), respectively. In the three cases it is difficult to visualise

the signal waveform since the SNR is low. Also, note that the amplitude of the signal changes with the sensor

proximity to the workpiece. In that, Sensor-1 is the closest to the cutting operation while the farthest sensor is

Sensor-3.

2. Digital filtering: The application of the Butterworth band-pass filter with fdown = 20Hz and fup = 1000Hz

improves the SNR and unveils the signal waveform as evident in Figures 6(d), 6(e), and 6(f), for Sensor-1,

Sensor-2 and Sensor-3, respectively. For the represented time frame of 0.1 seconds, it is expected for the tool

to execute approximately 6.7 rotations given that the spindle speed has been set to 4000rpm. As a result, it is

expected for the tool teeth to hit the workpiece at least thirteen times and the same number of transient signals

have to be represented in the signal waveform captured by the sensors. The thirteen transient signals can be

visualised in Sensor-1 waveform while the quality deteriorates as we move to Sensor-2 and to Sensor-3. This

indicates that Sensor-1 provides a signal with the highest periodic component strength when compared with the

other sensors.

3. Signal normalisation: for each sensor signal the average peak amplitude and the corresponding normalisation

factor obtained are:

(a) R1 = 0.0431 and a1 = 0.0171/0.0431 = 0.3975;

(b) R2 = 0.0240 and a2 = 0.0171/0.0240 = 0.7120;

(c) R3 = 0.0171 and a3 = 0.0171/0.0171 = 1.0000.

This leads to the normalised waveforms as shown in Figures 6(g), 6(h), and 6(i), for Sensor-1, Sensor-2 and

Sensor-3, respectively. Sensor-3 yields the lowest peak amplitude among the sensors and therefore it is used

as a reference for normalising the other sensors signals while its amplitude remains unchanged. Whereas, the

lowest factor is attributed to Sensor-1 since its peak amplitude is the highest among the sensors.

4. Sensor preference-weight: for each sensor the periodicity strength measure and the corresponding preference-

weight obtained are:

(a) C1 = 0.7035 and W1 = 0.4575;

(b) C2 = 0.4516 and W2 = 0.2937;

(c) C3 = 0.3827 and W3 = 0.2489.

5. Framework Output:

I Sensor selection: Sensor-1 yields the highest periodic component strength while the lowest one is at-

tributed to Sensor-3. This implies that the selected sensor for the given cutting parameters is Sensor-1,

that is, S = 1. To analyse this, consider the frequency spectrum shown for the three sensor signals in
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Figure 7. Note that the tooth-impact frequency peak in Sensor-1 (Figure 7(a)) is comparatively higher than

the corresponding harmonics when compared with the same peak in Sensor-2 (Figure 7(b)) and Sensor-

3 (Figure 7(c)). This explains why it is possible to better identify the transient signals generated by the

cutting operation which are represented in the waveform for Sensor-1 (Figure 6(g)), than that shown for

both Sensor-2 (Figure 6(h)) and Sensor-3 (Figure 6(i)). This validates the identification of Sensor-1 as the

selected sensor since it is shown to capture better the cutting operation when compared with the other sen-

sors. Moreover, Sensor-3 reports the tooth-impact frequency with the lowest amplitude which makes the

signal waveform more susceptible to be affected by the harmonics and any other sources of noise. This ex-

plains why Sensor-3 reports the lowest periodic component strength among the sensors. Consequently, the

preference-weights reported above reflects the relative strength of the periodic component among sensors

and by decreasing order of magnitudes it gives W1 > W2 > W3.

II Signal estimate: The obtained signal estimate is shown against the signal of each individual sensor in

Figures 6(j), 6(k) and 6(l), for Sensor-1, Sensor-2 and Sensor-3, respectively. Notably, the signal estimate

resembles better that obtained by Sensor-1 when compared with Sensor-2 and Sensor-3. This is expected

since the preference-weight attributed to Sensor-1 is the highest among the sensors. The signal estimate

waveform is represented on its own in Figure 8(a) and the corresponding frequency spectrum in Figure 8(b).

Note that the transient signals that characterise the tooth-impact frequency are all perceptible in Figure 8(a)

while in Figure 8(b) the highest peak corresponds to the tooth-impact frequency. The strength of the

periodic component of the signal estimate as measured by the periodic strength measure (Equation 10) is

equal to 0.8217 which is considered to be an improvement over the individual sensors given above.

Remarkably, for the selected set of cutting parameters, if only one AE sensor is available and its position is the

same as Sensor-2 or Sensor-3, it would not be possible to monitor the machining cutting process with precision.

Hence, endowing a monitoring system with a multi-sensor data fusion framework is clearly justified given that:

(i) The effect of noise is minimised since the system relies on more than one sensor. Note that relying on Sensor-1

is clearly better than relying on either Sensor-2 or Sensor-3.

(ii) The signal interpretation is likely to improve, which leads to a more reliable and robust monitoring system.

The signal characteristics that better describe the machining cutting operation, that is, the transient signals

that characterise the tool-impact frequency have been transferred to the signal estimate. This is reflected in

Figures 8(a) and 8(b) for time and frequency domain, respectively.

5.4. Experimental Results for a Wider Range of Machining Parameters

In this section a set of experimental results have been conducted for a wider range of machining parameters which

includes the following machining conditions: spindle speed ranging from 1700 to 4000 (rpm), feed rate ranging from

510 to 2000 (mm/min), and depth of cut ranging from 1 to 4 (mm). For these parameters, the strength of the signal

periodic component (C) is reported first among the sensors in Table 1 and then between the selected sensor and the

signal estimate in Table 2. To facilitate the analysis, the best results reported in the tables have been highlighted in

bold. Now considering Table 1, note that the strength of the signal periodic component is influenced by the spindle

speed and the selected sensor corresponds to:

(i) Sensor-1: for all cases corresponding to 4000rpm and for the majority of cases corresponding to 2850rpm.

(ii) Sensor-2: for all cases corresponding to 2275rpm and 3425rpm, and for some cases corresponding to 2850rpm.

(iii) Sensor-3: for the majority of cases corresponding to 1700rpm.

The above observations indicates that the strength of the signal periodic component is highly influenced by the

position of the sensors and by the spindle speed. This further suggests that the AE sensors are sensitive to other

sources of noise that could occur inside the CNC machine at different locations, and that these sources of noise

change depending on the selected cutting parameters. This would mean that determining the ideal position of a single

sensor that would maximise the strength of the periodic component for a wide range of cutting parameters might be

difficult due to the following reasons:
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(c) Sensor-3: Signal extraction
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(d) Sensor-1: Digital filtering
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(e) Sensor-2: Digital filtering
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(f) Sensor-3: Digital filtering
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(g) Sensor-1: Signal normalisation
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(h) Sensor-2: Signal normalisation
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(i) Sensor-3: Signal normalisation
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(j) Sensor-1: Signal estimate
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(k) Sensor-2: Signal estimate
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(l) Sensor-3: Signal estimate

Figure 6: Demonstration of Framework 1 on a single set of machining parameters. The plots shows the signal waveform obtained along the

framework steps. The cutting parameters are: 4000rpm spindle speed, 1800mm/min feed rate, and 2mm depth of cut.
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(b) Sensor-2
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(c) Sensor-3

Figure 7: Frequency spectrum for Sensor-1, Sensor-2, and Sensor-3. The cutting parameters are: 4000rpm spindle speed, 1800mm/min feed rate,

and 2mm depth of cut. The vertical dashed line indicates the theoretical tooth-impact frequency which corresponds to approximately to 133.33Hz.
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Figure 8: Time and frequency domain for signal estimate. The cutting parameters are: 4000rpm spindle speed, 1800mm/min feed rate, and 2mm

depth of cut. In (b) the vertical dashed line indicates the theoretical tooth-impact frequency which corresponds to approximately to 133.33Hz.
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Table 1: Periodicity Strength Measure (C): Comparative analysis between the sensor signals for a wide range of machining parameters. The values

in bold correspond to the selected sensor (S).

Depth of Cut (mm)

Feed rate Sensor-1 Sensor-2 Sensor-3

(mm/min) 1 2 3 4 1 2 3 4 1 2 3 4

Spindle speed: 1700rpm

510 0.5963 0.8408 0.8391 0.9438 0.6960 0.8678 0.8924 0.9796 0.7549 0.8963 0.9257 0.9714

595 0.5675 0.8212 0.7798 0.9433 0.6949 0.8786 0.9321 0.9826 0.6640 0.9147 0.9035 0.9749

680 0.6525 0.8184 0.9000 0.9336 0.6746 0.8811 0.9605 0.9768 0.7236 0.9104 0.9575 0.9627

765 0.6503 0.8162 0.8935 0.9380 0.7332 0.8545 0.9582 0.9757 0.7467 0.9025 0.9550 0.9582

850 0.6691 0.7966 0.8887 0.9391 0.7341 0.8681 0.9478 0.9530 0.7482 0.9030 0.9483 0.9213

Spindle speed: 2275rpm

682 0.6694 0.8070 0.8591 0.8784 0.7693 0.9446 0.9712 0.9703 0.4927 0.8458 0.9248 0.9508

796 0.7091 0.8130 0.8502 0.8610 0.7350 0.9517 0.9751 0.9398 0.4473 0.8962 0.9496 0.9181

910 0.6805 0.8803 0.8738 0.8795 0.7784 0.9661 0.9613 0.9251 0.4485 0.9458 0.9294 0.9056

1024 0.7350 0.8439 0.9128 0.8647 0.8337 0.9714 0.9854 0.9275 0.6521 0.9674 0.9842 0.9163

1137 0.7374 0.8004 0.9115 0.7100 0.8806 0.9656 0.9833 0.8954 0.7172 0.9637 0.9785 0.8825

Spindle speed: 2850rpm

855 0.9151 0.9619 0.9769 0.9785 0.9214 0.9679 0.9549 0.9533 0.7371 0.8946 0.9472 0.9391

997 0.9270 0.9708 0.9741 0.9727 0.9383 0.9700 0.9460 0.9733 0.7523 0.8417 0.9467 0.9544

1140 0.9552 0.9719 0.9652 0.9595 0.9450 0.9643 0.8728 0.9702 0.7421 0.8480 0.8734 0.9497

1282 0.9498 0.9688 0.9809 0.9380 0.9458 0.9383 0.9623 0.9715 0.7554 0.8471 0.9444 0.8712

1425 0.9548 0.9699 0.9653 0.9469 0.9508 0.9264 0.9690 0.9621 0.7367 0.8354 0.9034 0.8778

Spindle speed: 3425rpm

1027 0.5666 0.8837 0.9335 0.9433 0.9105 0.9818 0.9915 0.9950 0.6663 0.9242 0.9698 0.9751

1199 0.7095 0.9241 0.9159 0.9450 0.9315 0.9879 0.9915 0.9944 0.7994 0.9630 0.9613 0.9738

1370 0.7371 0.9203 0.9299 0.9407 0.9432 0.9873 0.9928 0.9942 0.8383 0.9631 0.9762 0.9690

1586 0.7567 0.9068 0.9423 0.9481 0.9564 0.9828 0.9935 0.9958 0.8488 0.9650 0.9793 0.9757

1712 0.8246 0.8955 0.9407 0.9545 0.9670 0.9832 0.9929 0.9947 0.8992 0.9628 0.9800 0.9749

Spindle speed: 4000rpm

1200 0.4972 0.5869 0.7885 0.8475 0.1892 0.3097 0.4468 0.6844 0.3900 0.2330 0.5104 0.7679

1400 0.6307 0.5620 0.8223 0.8245 0.2097 0.2678 0.5330 0.7515 0.4094 0.2620 0.5638 0.6895

1600 0.6029 0.5810 0.8633 0.8585 0.1554 0.1866 0.6269 0.7604 0.3780 0.2322 0.7109 0.6429

1800 0.5473 0.7035 0.8585 0.8281 0.1639 0.4516 0.6253 0.7630 0.1756 0.3827 0.6750 0.5805

2000 0.5887 0.7206 0.8628 0.8720 0.1004 0.5714 0.6885 0.8400 0.2239 0.6158 0.7317 0.7002
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Table 2: Periodicity Strength Measure (C): Comparative analysis between the best sensor signals and the signal estimate for a wide range of

machining parameters. The entries in “Selected Sensor” correspond to the bold values in Table 1. The entries in “Absolute Difference” are

determined between the values in “Selected Sensor’ and “Signal Estimate”. The best results correspond to the values in bold.

Depth of Cut (mm)

Feed rate Selected Sensor Signal Estimate Absolute Difference

(mm/min) 1 2 3 4 1 2 3 4 1 2 3 4

Spindle speed: 1700rpm

510 0.7549 0.8963 0.9257 0.9796 0.8217 0.9320 0.9492 0.9822 0.0668 0.0357 0.0235 0.0026

595 0.6949 0.9147 0.9321 0.9826 0.7727 0.9308 0.9340 0.9805 0.0778 0.0161 0.0019 0.0021

680 0.7236 0.9104 0.9605 0.9768 0.7997 0.9248 0.9681 0.9781 0.0761 0.0144 0.0076 0.0013

765 0.7467 0.9025 0.9582 0.9757 0.8230 0.9206 0.9646 0.9782 0.0763 0.0181 0.0064 0.0025

850 0.7482 0.9030 0.9483 0.9530 0.8380 0.9099 0.9554 0.9632 0.0898 0.0069 0.0071 0.0102

Spindle speed: 2275rpm

682 0.7693 0.9446 0.9712 0.9703 0.8126 0.9404 0.9552 0.9665 0.0433 0.0042 0.0160 0.0038

796 0.7350 0.9517 0.9751 0.9398 0.8424 0.9526 0.9592 0.9560 0.1074 0.0009 0.0159 0.0162

910 0.7784 0.9661 0.9613 0.9251 0.7968 0.9709 0.9637 0.9547 0.0184 0.0048 0.0024 0.0296

1024 0.8337 0.9714 0.9854 0.9275 0.8820 0.9658 0.9771 0.9414 0.0483 0.0056 0.0083 0.0139

1137 0.8806 0.9656 0.9833 0.8954 0.9072 0.9526 0.9767 0.8855 0.0266 0.0130 0.0066 0.0099

Spindle speed: 2850rpm

855 0.9214 0.9679 0.9769 0.9785 0.9531 0.9839 0.9735 0.9656 0.0317 0.0160 0.0034 0.0129

997 0.9383 0.9708 0.9741 0.9733 0.9529 0.9678 0.9796 0.9858 0.0146 0.0030 0.0055 0.0125

1140 0.9552 0.9719 0.9652 0.9702 0.9402 0.9659 0.9554 0.9849 0.0150 0.0060 0.0098 0.0147

1282 0.9498 0.9688 0.9809 0.9715 0.9383 0.9572 0.9844 0.9735 0.0115 0.0116 0.0035 0.0020

1425 0.9548 0.9699 0.9690 0.9621 0.9343 0.9652 0.9730 0.9734 0.0205 0.0047 0.0040 0.0113

Spindle speed: 3425rpm

1027 0.9105 0.9818 0.9915 0.9950 0.8390 0.9543 0.9795 0.9934 0.0715 0.0275 0.0120 0.0016

1199 0.9315 0.9879 0.9915 0.9944 0.9005 0.9769 0.9725 0.9927 0.0310 0.0110 0.0190 0.0017

1370 0.9432 0.9873 0.9928 0.9942 0.9020 0.9737 0.9824 0.9948 0.0412 0.0136 0.0104 0.0006

1586 0.9564 0.9828 0.9935 0.9958 0.9111 0.9759 0.9836 0.9954 0.0453 0.0069 0.0099 0.0004

1712 0.9670 0.9832 0.9929 0.9947 0.9459 0.9733 0.9843 0.9809 0.0211 0.0099 0.0086 0.0138

Spindle speed: 4000rpm

1200 0.4972 0.5869 0.7885 0.8475 0.5591 0.5692 0.8266 0.8309 0.0619 0.0177 0.0381 0.0166

1400 0.6307 0.5620 0.8223 0.8245 0.5648 0.6928 0.8620 0.8044 0.0659 0.1308 0.0397 0.0201

1600 0.6029 0.5810 0.8633 0.8585 0.5398 0.6629 0.9129 0.8041 0.0631 0.0819 0.0499 0.0544

1800 0.5473 0.7035 0.8585 0.8281 0.5165 0.8173 0.9058 0.9066 0.0308 0.1138 0.0474 0.0785

2000 0.5887 0.7206 0.8628 0.8720 0.5243 0.8708 0.9003 0.9344 0.0644 0.1502 0.0375 0.0624
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1. The position of a single AE-sensor that is commonly adopted throughout the literature is as close as possible to

the machining zone to ensure minimum damping. However, this is not always possible due to other events that

might occur in the proximity of the machining zone, such as: water based cutting fluid being delivered through

the tool, and vibration close to the cutting area due to contact between workpiece and cutting tool. This meant

that for the given CNC machine and cutting operation the closest safest position to the workpiece centre was

63cm, which corresponds to Sensor-1.

2. The results in Table 1 have revealed that the best sensor location is highly influenced by the selected spindle

speed. Hence, attempting to select one single position for all tests might be ideal for a given spindle speed but

it is not ideal for a wide range of cutting parameters.

Consider now Table 2 where a comparison is conducted between the signal estimate provided by Framework 1 and

the best values reported by the sensors. The periodic component strength reported by the signal estimate is higher than

any sensor signal in 52 out of 100 cases. In the remaining cases the performance of the signal estimate is very close

to the best sensor values which is reflected on the absolute difference reported in the Table 2. The results have also

shown that when all the sensors have a strong periodic component then the periodicity strength of the signal estimate

is not likely to show much improvement. This is the case for instance when the spindle is equal to 3425rpm and the

depth of cut higher than 2mm.

One particular observation relates to the fact that the lowest periodicity component strength reported by the signal

estimate corresponds to a depth of cut of 1mm when compared with other cases. To analyse this, consider a single

test where the cutting parameters are: 4000rpm spindle speed, 1800mm/min feed rate, and 1mm depth of cut. For this

particular situation, Figure 9 shows the time and frequency domain of the sensors and the signal estimate. Notably, the

tooth-impact frequency peak of Sensor-2 is extremely low when compared with the corresponding harmonics which

is reflected on both time and frequency domain as shown in Figures 9(b) and 9(e), respectively. This is likely to have a

severe impact on the periodic component strength of the signal estimate despite the low preference-weight attributed

to the sensor by the framework. Besides this, it is also reported for Sensor-1 and Sensor-3 that the amplitude of the

tooth-impact frequency peak is relatively close to the corresponding harmonics as shown in Figures 9(d) and 9(f),

respectively. As a result, the amplitude of the tooth-impact frequency peak of the signal estimate as shown in Fig-

ure 9(h) is also relatively close to at least one of the harmonics which clearly affects the periodic component strength.

This suggests that when the periodic component strength of the signals involved in the ensemble is weak, it is very

likely for the periodic component strength of the signal estimate to be weak as well.

The above observations have shown experimentally that the proposed multi-sensor data fusion framework is able

to enhance the periodic component strength of the sensor signal when a comparison is conducted: (i) with the worst

performing sensor for all cutting conditions, and (ii) with the best performing sensor for the majority of the cutting

conditions. To achieve this, the signal estimate derivation relies on those AE sensors with a strong periodic component.

As a result, the interpretation of AE signals that have originated from CNC machining operations is likely to improve

which leads to a more reliable and robust monitoring system. As a remark, further improvements are expected if more

AE sensors are added to the monitoring system.

6. Conclusion

This paper proposed a multi-sensor data fusion framework for monitoring machining operations based on rotary

cutters. The framework was able to: (i) identify which of the sensors provides the best signal representation and

the best location for monitoring the cutting operation; and (ii) derive a signal estimate by combining the sensory

information from three AE sensors during a CNC machining cutting operation. The signal estimate is characterised

by an enhanced periodic component corresponding to the tool rotation period when compared with the individual AE

sensors. The performance of the proposed framework has been studied for a wide range of machining parameters and

a comparison has been conducted vis-à-vis the AE sensors. The experimental results have revealed that: (i) the AE

sensors are indeed highly sensitive to sensor location and to cutting parameters, (ii) the periodicity strength measure

could identify the sensor with the best signal representation and best location for the given set of cutting parameters,

and (iii) the derived signal estimate could outperform most of the individual sensor signals for the majority of the

experimental tests in terms of periodic component strength. Despite this, it has also been found that if the periodic
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(a) Sensor-1: Time Domain
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(b) Sensor-2: Time Domain
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(c) Sensor-3: Time Domain
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(d) Sensor-1: Frequency Domain
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(e) Sensor-2: Frequency Domain
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(f) Sensor-3: Frequency Domain
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(g) Signal estimate: Time Domain
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(h) Signal estimate: Frequency Domain

Figure 9: Time and frequency domain for Sensor-1, Sensor-2, Sensor-3 and signal estimate. The cutting parameters are: 4000rpm spindle speed,

1800mm/min feed rate, and 1mm depth of cut. In the frequency domain figures the vertical dashed line indicates the theoretical tooth-impact

frequency which corresponds to approximately to 133.3Hz.
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component strength of all the signal involved in the ensemble is weak, then the signal estimate is likely to have a weak

periodic component as well.

This study marks a new direction for machining monitoring systems that currently rely only on one sensor. For

future work, the authors endeavour to study the effect of scaling the number of sensors in the robustness and reliability

of the proposed framework. Also, it is intended to implement the framework for on-line monitoring and to adapt the

concept to other type of tools and machining processes.
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