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ABSTRACT29

This research addresses the development and in vitro evaluation of lipid nanoparticle (NP)-based30

dressings to optimize the delivery of human recombinant epidermal growth factor (rhEGF) for the31

topical treatment of chronic wounds. The systems investigated were rhEGF-loaded solid lipid32

nanoparticles (rhEGF-SLN) and rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC)33

formulated in wound dressings comprising either semi-solid hydrogels or fibrin-based solid34

scaffolds. Following detailed characterisation of the NP, in vitro diffusion cell experiments (coupled35

with dermatopharmacokinetic measurements), together with confocal microscopic imaging,36

conducted on both intact skin samples, and those from which the barrier (the stratum corneum) had37

been removed, revealed that (a) the particles remained essentially superficially located for at least38

up to 48 hours post-application, (b) rhEGF released on the surface of intact skin was unable to39

penetrate to the deeper, viable layers, and (c) sustained release of growth factor from the NP “drug40

reservoirs” into barrier-compromised skin was observed. There were no significant differences41

between the in vitro performance of rhEGF-SLN and rhEGF-NLC, irrespective of the formulation42

employed. It is concluded that, because of their potentially longer-term stability, the fibrin-based43

scaffolds may be the most suitable approach to formulate rhEGF-loaded lipid nanoparticles.44

45

Keywords: EGF (epidermal growth factor), wound dressing, lipid nanoparticles, skin, stratum46

corneum, Solid Lipid Nanoparticles, Nanostructured Lipid Carriers.47

Abbreviations: Nanoparticle (NP), rhEGF-loaded solid lipid nanoparticles (rhEGF-SLN), rhEGF-48

loaded nanostructured lipid carriers (rhEGF-NLC), stratum corneum (SC), Epidermal growth factor49

(EGF), encapsulation efficiency (EE), occlusion factor (F), Polydispersity indices (PDI), laser50

scanning confocal microscopy (LSCM), Nile red (NR), 16-NBD palmitic acid (16-NBD).51
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53

1. INTRODUCTION54

The skin is an attractive route for the administration of drugs intended for both local and systemic55

effects (Campbell, et al. 2012). In particular, the topical route for local treatment lowers the risk of56

systemic side effects, because the stratum corneum (SC), the most superficial skin layer, provides a57

significant barrier to drug penetration (Curdy, et al. 2004). Given that nanoparticles (NP) larger than58

10 nm are unable to penetrate either intact or partially impaired skin to any great extent (Campbell,59

et al. 2012; Prow, et al. 2011), novel drug delivery systems for local effect based on this technology60

have been proposed as topical reservoirs from which the sustained release of an active compound61

may be achieved over a prolonged period of time. These characteristics support a strategy, therefore,62

of using biodegradable, drug-loaded nanoparticles for the topical treatment of skin disease-63

associated lesions and chronic wounds.64

The administration of growth factors, such as epidermal growth factor (EGF), to accelerate wound65

healing has been extensively described (Choi, et al. 2008; Chu, et al. 2010; Gainza, et al. 2013;66

Hardwicke, et al. 2008; Hori, et al. 2007; Johnson and Wang 2013), however, topical delivery of67

EGF is severely limited by its high molecular weight, hydrophilicity and, above all, its short half68

life at the wound site (Al Haushey, et al. 2010; Choi, et al. 2012; Ulubayram, et al. 2001). To address69

these shortcomings, the nano-encapsulation of growth factors, like EGF, may enhance their stability70

at the wound and may allow their controlled release, thereby optimising efficacy. In this regard, the71

in vivo performance of topically applied recombinant human EGF (rhEGF)-loaded solid lipid72

nanoparticles (rhEGF-SLN) and nanostructured lipid carriers (rhEGF-NLC) in a superficially73

wounded animal model has been reported (Gainza, et al. 2014).74

The topical administration of a NP-based delivery system may be facilitated by their incorporation75

into either semi-solid hydrogels or solid scaffolds. Bioadhesive hydrogels (e.g., Noveon® AA-176

polycarbophil, a high molecular weight polymer of acrylic acid chemically cross-linked with divinyl77

glycol) are widely used as wound dressings and their prolonged residence time in the skin offers the78

opportunity for sustained drug release (Ceschel, et al. 2001; Padamwar, et al. 2011). Semisolid79

hydrogels can be prepared using amphiphilic surfactants, such as Pluronic F-127 (Poloxamer 407),80

the reversible thermo-gelling behaviour of which creates an extremely versatile material for drug81

delivery (Antunes, et al. 2011; El-Kamel 2002; Kant, et al. 2014). Solid scaffolds, such as fibrin-82

based biomaterials with slow degradation kinetics, have also been frequently used as immune-83

compatible polymeric dressings from which drug delivery can be controlled (Briganti, et al. 2010;84

Moura, et al. 2014). A further advantage of this approach is that fibrin is an important haemostatic85
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mediator acting as a matrix for tissue repair, providing support for new capillaries, and generating86

an array of cell signalling compounds and growth factors following an injury (Brown and Barker87

2014).88

The present work aimed to further advance the development of local therapies with rhEGF. For this,89

the previously developed rhEGF-SLN and rhEGF-NLC (Gainza, et al. 2014) were embedded in90

three different vehicles Noveon® AA-1 hydrogels, Pluronic F-127 hydrogels and fibrin-based solid91

scaffolds proposed as potential wound dressings. The performance of these integrated wound92

dressing-delivery systems was characterized and compared to that of the corresponding93

nanoparticles suspension. This allowed investigating whether incorporation of the nanoparticles into94

semi-solid hydrogels and fibrin scaffolds modified the rate and extent of rhEGF release as well as95

the nanoparticle disposition through intact and partially damaged skin. Finally, we aimed to96

establish whether their hypothetical role of these systems as drug reservoirs for topical therapies97

could be demonstrated.98

99

2. MATERIALS AND METHODS100

2.1 Chemicals101

Precirol® ATO 5 was from Gattefossé (Nanterre, France); Noveon® AA-1 Polycarbophil, USP, was102

purchased from Lubrizol (Barcelona, Spain); Pluronic F127, fibrinogen from bovine plasma, and103

thrombin, also from bovine plasma, were acquired from Sigma-Aldrich, Chemie GmbH (Steinhelm,104

Germany); Nile Red (analytical grade) was obtained from Sigma-Aldrich (St. Louis, MO, USA),105

16-NBD palmitic acid from Avanti Polar Lipids, Inc. (Alabaster, AL, USA), and rhEGF was106

supplied by the Center for Genetic Engineering and Biotechnology, Cuba.107

2.2 Skin108

Dorsal, full-thickness porcine skin was obtained post-sacrifice from locally sourced female pigs.109

The skin was cleaned under cold running water and the subcutaneous fat was removed with a scalpel.110

The remaining tissue was then dermatomed to a thickness of ~750 μm and stored frozen at -20°C111

for up to at most one month before use.112

2.3 Lipid nanoparticle (NP) preparation113

rhEGF-SLN and rhEGF-NLC were prepared as previously described (Gainza, et al. 2014). Briefly,114

rhEGF-SLN were obtained by emulsifying 1% w/v Tween® 80 in milliQ water with an organic phase115

comprising 0.1% (w/v) rhEGF and 5% (w/v) Precirol® ATO 5 in dichloromethane using a 30 s116

period of sonication at 50 W (Branson® 250 Sonifier, CT, USA). The resulting emulsion was then117
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vigorously stirred for 2 h to evaporate the organic solvent. Subsequently, the rhEGF-SLN were118

collected by centrifugation/filtration at 2500 rpm for 10 minutes using a filter with a 100 kDa pore119

size (Amicon® Ultra, Millipore, Spain), and washed three times with milliQ water. Finally, particles120

were freeze-dried using trehalose (15% w/w of the lipid weight) as a cryoprotectant.121

rhEGF-NLC were prepared at 40ºC by adding an aqueous solution of 0.67% w/v Poloxamer and122

1.33% w/v Polysorbate 80 to a lipidic blend of melted Precirol® ATO 5 (200 mg) and Miglyol® 182123

(20 mg). Subsequently, 100 µl of rhEGF in milliQ water (20 mg/ml) were added to the124

aqueous/lipidic mixture, which was then emulsified with sonication for 15s at 50 W. The resulting125

emulsion was stored for 12 h at 4ºC to allow lipid re-crystallisation and NLC formation. Finally,126

particles were collected, washed and freeze-dried as previously described.127

In the experiments examining the disposition of the nanoparticles on the skin, the lipid phase of the128

formulations was labelled with two fluorophores: Nile Red (0.5% w/w of the lipid weight) and 16-129

NBD-palmitic acid (1% w/w of the lipid weight).130

2.4 Preparation of wound dressings131

For the hydrogel based wound dressings, either (a) rhEGF-SLN or rhEGF-NLC particles containing132

20 µg of protein were added to an aqueous solution of 1% w/w Noveon® AA-1 and the dispersion133

was neutralised with triethanolamine to induce polymer gelation (Figure 1), or (b) a 30 % w/w134

Pluronic F-127 aqueous solution (prepared with vigorous stirring for 24 h at 4ºC) was added to a135

water suspension of rhEGF-SLN or rhEGF-NLC, again containing 20 µg of protein, and the mixture136

was stirred for 10 min, before being left at room temperature for 2 min to allow gel formation (Figure137

1).138

For the fibrin-based wound dressings, 5 mg of fibrinogen in 0.4 ml milliQ water at 37ºC and 0.1 ml139

of an aqueous dispersion of rhEGF-SLN and rhEGF-NLC (with 20 µg of protein) such that the final140

fibrinogen concentration was 10 mg/ml. Subsequently, 50 U/ml of thrombin were added and the141

resulting fibrin gel was freeze-dried to obtain the solid scaffold (Figure 1).142

143

2.5 Nanoparticle characterisation144

The nanoparticles in the formulations were characterised (Zetasizer Nano ZS, Malvern Instruments,145

Worcestershire, UK) in triplicate by their mean size (z-average), polydispersity index (PDI), and146

zeta potential (ζ). The pH of the reconstituted NP suspension, and of the NP-loaded Noveon® AA-147

1 and Pluronic F-127 hydrogels was also measured (Crison micropH 2001, Crison Instruments,148

S.A., Barcelona, Spain).149
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The encapsulation efficiency (EE) of rhEGF was determined indirectly by measuring the150

concentration of free protein removed in the filtration/centrifugation step described in section 2.3.151

The rhEGF assay used a commercially available sandwich enzyme-linked immunosorbent kit152

(Human EGF ELISA Development Kit, Peprotech, London, UK). EE was expressed as the153

percentage of the encapsulated rhEGF relative to the total amount used in the nanoparticle154

preparation. All measurements were performed in triplicate, and the results reported as the mean ±155

S.D.156

2.6 Rheological studies157

The rheological behaviour of the reconstituted NP suspensions, and of the Noveon® AA-1 and158

Pluronic F-127 hydrogels, was characterised at 25ºC using an Advanced Rheometer (AR 1000, TA159

Instruments, New Castle, USA) with a Peltier plate (17 mm diameter and 4 mm gap) for temperature160

control. Measurements on 1 ml samples were made in triplicate at 0.5, 1, 2.5 and 5 rpm.161

2.7 Occlusivity test162

The protocol for this in vitro test was adapted from one previously described (Souto, et al. 2004).163

Franz cells were filled with 5 ml of water and covered with a cellulose membrane (D9652,164

MWCO~12,000, Sigma-Aldrich, Madrid, Spain). 5 mg of NP in the reconstituted suspensions, the165

Noveon® AA-1 and Pluronic F-127 hydrogels, and the fibrin scaffold were applied to the exposed166

surface of the cellulose membrane and the system was maintained at 32ºC for 48 h. Water loss from167

the Franz cell was determined gravimetrically and compared to that when no formulation was168

applied to the membrane. An occlusion factor (F) was calculated from the results using the following169

equation:170

F = Water loss without formulation −Water loss with formulationWater loss without formulation x100171

2.8 In vitro drug release172

Vertical Franz diffusion cells (area = 1 cm2) and cellulose membranes (MWCO~12,000, avg. flat width173

33 mm, D9652, Sigma-Aldrich) as above were used. The receptor chamber was filled with 5 ml of174

30% v/v ethanol in PBS and magnetically stirred. 0.5 ml of the formulations (containing 20 μg of175

rhEGF) were spread on the exposed membrane surface in the donor chamber, which was sealed with176

a layer of petrolatum gauze (Tegaderm®, 3M, St. Paul, MN, USA) to mimic a practical application.177

Release of the active was measured over one week at 32ºC, 0.5 ml samples of the receptor solution178

being taken (and replaced with an equal volume of fresh medium) over time. The rhEGF released179

was measured by ELISA (n=3).180
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2.9 Penetration of rhEGF into stratum corneum181

Before the experiments, skin was thawed and any large hairs were carefully trimmed. The skin182

sample was clamped in a vertical Franz cell with a diffusion area of 3.14 cm2 and the receptor183

chamber was filled with 8 ml of milliQ water. The NP formulations (the Noveon® AA-1 and184

Pluronic F-127 hydrogels, the fibrin-based scaffold, and the reconstituted NP suspension) were185

applied to the skin and the donor chamber and sealed using Tegaderm® film. A suspension of free186

rhEGF (20 µg in 0.5 ml of milliQ water) acted as a control. Experiments (n = 3) were carried out187

for 48 h at 32ºC. The diffusion cells were then disassembled and the skin cleaned with wet tissue.188

A plastic template was applied to delimit a constant area, which was repetitively stripped with 12189

adhesive tapes (Tesafilm® 5529, Beiersdorf, Hamburg, Germany) of area 0.5 cm2. The {tapes +190

stratum corneum} were placed into vials and rhEGF was extracted with 1 ml of 0.05% Tween-20191

and 0.1% BSA in PBS under a gentle agitation for 17 h. The first 4 tapes were extracted individually192

while tapes 5-12 were treated together as the protein concentration therein was expected to be much193

lower. A few (3 – 5) tape-strips were also taken from untreated skin and acted as controls. The194

extracted rhEGF was measured by ELISA.195

2.10 Uptake of rhEGF into damaged skin196

Skin was first tape-stripped (Tesafilm® 5529) 20 times to substantially undermine its barrier197

function as measured by transepidermal water loss (Aquaflux, Biox Systems Ltd., London, UK).198

The uptake and permeation of rhEGF from the various NP formulations through the compromised199

skin was determined as before in Franz diffusion cells.  Post-treatment and surface cleaning, rhEGF200

was extracted from the entire skin into 4 ml of 0.05% Tween-20 and 0.1% BSA in PBS. A control201

experiment was performed using intact skin and a 40 µg/ml suspension of rhEGF in milliQ water202

as the donor.203

2.11 Penetration of rhEGF into skin from fluorescently-labeled NP formulations204

These experiments were conducted as described in section 2.10 for 6, 24 and 48 h with formulations205

labeled with either Nile Red or 16-NBD-palmitic acid. The damaged skin was then examined by206

laser scanning confocal microscopy (510 Meta inverted confocal laser scanning microscope, Carl207

Zeiss, Jena, Germany). The samples were excited sequentially using argon (excitation line 488 nm,208

green) and HeNe (excitation line 543 nm,red) lasers; a Plan-Neofluar 40×/1.30 oil objective (DIC209

M27, Carl Zeiss, Jena, Germany) was used for acquisition of all images. Fluorescence signals were210

recorded at 505–530 nm (green) for the 16-NBD-palmitic acid labelled formulations and at 560 nm211
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(red) for the Nile Red labeled formulations. Confocal images (xy-plane) were obtained every 2 μm212

in the z-direction parallel to the sample surface.213

3. RESULTS AND DISCUSSION214
215

3.1. rhEGF-SLN and rhEGF-NLC characterisation, rheological studies and occlusion tests.216

The topical disposition of nanoparticles is related to particle size and skin integrity (Jensen, et al.217

2011; Müller, et al. 2002). For instance, particles larger than 10 nm in diameter appear unable to218

penetrate either intact or partially impaired skin (Campbell, et al. 2012; Prow, et al. 2011). The219

research described in this paper aims to explore whether rhEGF-loaded lipid nanoparticles are220

suitable platforms for the local treatment of chronic wounds, an objective best served (it is believed)221

by large enough particles to prolong residence time at the injury site and to avoid or minimize222

systemic uptake. Table 1 shows that all the nanoparticles studied in this work were similar in size223

(320-350 nm in diameter) and not expected, therefore, to penetrate the skin, whether neither intact224

or damaged. Polydispersity indices (PDI) were less than 0.5 and zeta potentials were approximately225

-30 to -20 mV; hence, the particles could be considered relatively monodisperse and stable against226

coalescence (Aznar, et al. 2013; Kuchler, et al. 2009). The encapsulation efficiencies were 95227

(±3.59) % and 74 (±1.39)% for the rhEGF-NLC and rhEGF-SLN, respectively. The higher EE of228

the former is probably a reflection of the amorphous structure of NLC particles that minimizes drug229

expulsion during the encapsulation process; these results are in agreement with those described230

previously (Gainza, et al. 2014; Pardeike, et al. 2009).231

The pH values of the NP formulations fell within the 4-7 range recommended for topical products232

(Duncan, et al. 2013) (Table 2). The rheology and occlusivity results show that rhEGF-SLN and233

rhEGF-NLC had similar properties (Table 2). As expected, all hydrogels had significantly higher234

viscosities (p < 0.05) than the suspensions, suggesting that the former would have an increased235

residence time at a wound site and permit the prolonged release of rhEGF.236

The SLN-based suspensions and the integrated wound dressing-delivery systems were more237

occlusive than those prepared with NLC (Table 2), possibly because the SLN lipid matrix impedes238

water evaporation more than the semisolid NLC (Mandawgade and Patravale 2008). The fibrin-239

based scaffolds were the most occlusive. No differences in occlusivity were found between the two240

hydrogel-based formulations. In other words, it appears that it is solely the nature of the lipid film241

formed on the skin by the NP, which confers occlusive properties to the formulations. This242

characteristic is particularly relevant because it increase skin hydration and thus allows the sustained243

release of drugs (Souto, et al. 2004).244
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3.2. In vitro drug release245

The release profiles of rhEGF from the reconstituted NP suspensions and from the integrated wound246

dressing-drug delivery systems are depicted in Figure 2. As expected, rhEGF was released faster247

and in a greater extent (~80%) from the aqueous suspensions of the nanoparticles than from the248

integrated wound dressing-delivery systems (p < 0.05). When the nanoparticles were incorporated249

into the hydrogel formulations, there is an additional barrier to rhEGF release (Hu, et al. 2005)250

(relative to that from the aqueous dispersions), which is markedly retarded for the first 4 days. Drug251

release from hydrogel formulations is reported to depend primarily on the polymer concentration,252

degree of crosslinking and mesh size, as well as the hydrophilicity and molecular weight of the253

active compound (Amsden 1998; Hamidi, et al. 2008). It is noted that blends of polymeric hydrogels254

(such as Noveon® AA-1 or Pluronic F-127) and lipid nanoparticles can manifest higher viscosity255

conferred by strong intermolecular forces and thereby liberate an encapsulated drug more slowly256

(Antunes, et al. 2011). Despite the similar viscosities of the hydrogels, the concentration of Pluronic257

F-127 used is 30-fold higher than that of Noveon® AA-1 and this may explain the slower rhEGF258

release from the former (for example, 20% rhEGF released after 7 days from F-127 compared to259

30% from Noveon®.260

The fibrin-based wound dressings released more rhEGF than the hydrogels. The difference was261

significant throughout the study with respect to the Pluronic F-127, but only at 2 and 4 days262

compared with the Noveon® AA-1 hydrogel (p < 0.05). However, rhEGF release from the fibrin-263

based scaffolds was less than that from the reconstituted NP suspensions, supporting the potential264

of these platforms for controlled drug delivery. Fibrin also represents a useful model for the265

extracellular matrix by stabilising growth factors and promoting healing (Briganti, et al. 2010; Losi,266

et al. 2013; Oju Jeon, et al. 2005).267

3.3. Penetration of rhEGF into stratum corneum268

Uptake of rhEGF from the various formulations into the stratum corneum (SC) was assessed by269

tape-stripping after a 48 h exposure. All the NP-based formulations (whether with SLN or NLC, the270

performance of which were very similar) resulted in greater uptake of rhEGF into the SC than271

treatment with a simple solution of the protein (Table 3), even though release from the integrated272

wound dressing-drug delivery systems was far from complete in this time period (as discussed above273

see Figure 2). However, regardless of the formulation, most of the rhEGF taken up into the SC was274

constrained to the skin surface, i.e., was resident on the first tape-strip (Figure 3A), with very little275

retrieved from the subsequent 11 strips (Figure 3B). Taken together, these results imply that there276

is minimal, if any, movement of rhEGF from the intact skin surface into the deeper SC (Al Haushey,277
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et al. 2010; Almeida and Souto 2007). The presence of the protein in tape-strips 2-12 is most likely278

a reflection of formulation which has been incompletely removed from ‘furrows’ in the skin surface,279

or hair follicle openings, by the cleaning procedure performed prior to tape-stripping (Lademann, et280

al. 2005). Nonetheless, the retention of the delivery systems on the skin surface is a positive feature281

(the fibrin-based scaffolds were particularly substantive and difficult to remove) that points to their282

potential to sustain drug release over time when the barrier is absent or compromised (as was283

examined in the subsequent series of experiments now discussed).284

3.4. Uptake of rhEGF into damaged skin285

The uptake of rhEGF from the formulations examined into skin samples from which the SC had286

been essentially removed prior to dosing is shown in Table 3. The recovery of the protein was higher287

from all the wound dressing-drug delivery systems, and from the reconstituted NP suspensions, than288

that from damaged skin treated with free rhEGF in solution, suggesting that associating the protein289

with nanoparticles had a positive effect on drug stability (Gokce, et al. 2012; Magdassi 1997; Schäfer-290

Korting, et al. 2007). For each type of wound dressing considered (i.e., the two hydrogels and the291

fibrin scaffolds), the uptake of rhEGF was independent of the type of lipid used (SLC or NLC).292

Protein uptake was highest from the simple NP suspensions, presumably due to the faster release of293

drug relative to that from the hydrogel and fibrin-based systems. With respect to the latter, protein294

recovery from the skin from the Noveon hydrogel and the fibrin scaffold was similar and slightly295

better than that from the Pluronic-based formulations probably explained by the greater polymer296

concentration and the slower release (see discussion above) (Antunes, et al. 2011). It was again297

observed that the fibrin vehicles adhered particularly well to the skin suggesting that this formulation298

may be able to prolong rhEGF residence time at the wound site.299

3.5. Penetration of rhEGF into skin from fluorescently-labeled NP formulations300

Laser scanning confocal microscopy (LSCM) is a non-invasive imaging technique for the study of301

the skin disposition and penetration of labeled nanoformulations which permits the direct imaging302

of the fluorescent target at different depths without any mechanical sectioning (Alvarez-Román, et303

al. 2004a; Alvarez-Román, et al. 2004b). In this study, SLN and NLC were labeled first with Nile304

Red (NR), a lipophilic compound that was encapsulated into the NP. The potential limitation of NR305

is that it can be released from the NP, dye the skin and give unreal information of the NP penetration.306

For this reason, 16-NBD palmitic acid (16-NBD), a fluorescent lipid, which labels the NP directly,307

was used to give an accurate localization of NP in the skin. In this regard, the LSCM study also308

seeks to investigate the differences between labeling NP with NR or 16-NBD palmitic acid.309
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LSCM and reflectance images of barrier-impaired skin samples treated for 6, 24 and 48 hours with310

the labeled SLN and NLC formulations were recorded (Figures 4-5). With respect to the311

nanoparticles, whose disposition was monitored by 16-NBD fluorescence, no differences were312

observed as a function of time: the particles were only found at the skin surface and did not migrate313

further into the tissue during the treatment period (a finding in complete agreement with a recent314

study that demonstrated the inability of 20-200 nm NP to penetrate beyond the superficial layer of315

the SC even when the skin was partially damaged by tape stripping (Campbell, et al. 2012). No316

influence of the vehicle was apparent.317

For the NP applied as a suspension and in the Noveon® AA-1 hydrogel, the release of the NR and318

its subsequent penetration into the deeper skin layers was apparent (illustrated with the white circle319

in Figure 5). This observation is consistent with the rhEGF skin uptake results discussed above and320

with data from earlier work, which used NR as a model active to probe drug delivery from topically321

applied nanoparticles (Alvarez-Román, et al. 2004a; Alvarez-Román, et al. 2004b). In contrast, NR322

penetration into the skin from either the Pluronic F-127 hydrogel or the fibrin scaffold was not323

detectable (Figure 5). For the Pluronic, this result confirms the earlier deduction that this hydrogel324

provides an additional barrier to limit release of the ‘active’ (Amsden 1998; Hamidi, et al. 2008). In325

the case of the nanoparticle-loaded fibrin scaffolds, the extent of NR release was difficult to326

visualize because the reflectance images of the fibrin layer and of the skin were very similar. As a327

result, and exacerbated by the strong interaction/adhesion between the fibrin scaffold and the skin,328

it was impossible to define with any accuracy the location of the interface between the two.329

Nonetheless, it may reasonably be anticipated that, in the environment of a typical open wound, the330

fibrin scaffold would be slowly and progressively hydrolyzed and able to liberate the drug-loaded331

NP in situ.332

4. CONCLUSIONS333

Lipidic nanoparticles, loaded with rhEGF and gelled in appropriate vehicles are potentially useful334

formulations for the local treatment of chronic wounds. Independent of the vehicle chosen, the NP335

are constrained to the surface while acting, over at least a 48 hour period as reservoirs to sustain336

release of the protein. A combination of in vitro release, dermatopharmacokinetic and partially337

damaged skin uptake experiments revealed no significant difference between the drug delivery338

performance of SLN and NLC.  In terms of the formulation, fibrin-based scaffolds were perceived339

to have advantageous (relative to commercially available gels) both in terms of their improved shelf-340

life and their biocompatible, haemostatic properties. Further in vivo work, as well as longer-term341

stability measurements, are required to confirm this potential.342
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Nanoparticle formulation
Mean size

(nm)
PDI. ζ- potential (mv) EE (%)

rhEGF-SLN 330.77 ± 3.59 0.22 ± 0.02 -27.20 ± 0.44 74.22 ± 1.39

rhEGF-NLC 343.07 ± 5.90 0.21 ± 0.04 -20.30 ± 0.36 95.06 ± 3.59

NileRed-SLN 323.97 ± 2.86 0.40 ± 0.02 -29.30 ± 0.22 -

NileRed-NLC 345.60 ± 13.28 0.41 ± 0.01 -28.97 ± 2.90 -

16-NBC-palmitic acid-SLN 327.30 ± 3.64 0.36 ± 0.03 -28.03 ± 0.12 -

16-NBC-palmitic acid-NLC 333.70 ± 7.35 0.42 ± 0.05 -30.60 ± 1.59 -



Formulation pH
Viscosity at 1 rpm

(Pa·s)

Occlusion

factor (f)

rhEGF-SLN suspension 5.88 ± 0.03 0.03 ± 0.00 24.26 ± 1.19

rhEGF-NLC suspension 5.83 ± 0.01 0.03 ± 0.01 15.91 ± 0.18

rhEGF-SLN Noveon® AA-1 5.07 ± 0.04 18.86 ± 0.19 36.05 ± 7.04

rhEGF-NLC Noveon® AA-1 5.04 ± 0.04 16.51 ± 2.81 22.64 ± 2.81

rhEGF-SLN Pluronic F-127 6.18 ± 0.04 24.70 ± 6.57 33.10 ± 3.20

rhEGF-NLC Pluronic F-127 6.26 ± 0.02 22.27 ± 6.10 21.46 ± 2.44

rhEGF-SLN fibrin based scaffold - - 48.33 ± 9.22

rhEGF-NLC fibrin based scaffold - - 41.05 ± 4.43



% of administrated dose

FORMULATION SC - Intact skin Skin - Barrier impaired

Free rhEGF 1.45 ± 0.08 0.60 ± 0.04

rhEGF-SLN suspension 9.78 ± 0.59 a 14.66 ± 1.62 c

rhEGF-SLN Noveon® AA-1 7.31 ± 0.45 9.34 ± 1.40 d

rhEGF-SLN Pluronic F-123 4.87 ± 0.06 4.77 ± 0.28 b

rhEGF-SLN fibrin based scaffold 14.55 ± 1.74 a 10.26 ± 1.91 d

rhEGF-NLC suspension 10.49 ± 1.64 a 15.63 ± 2.73 c

rhEGF-NLC Noveon® AA-1 5.38 ± 0.52 8.68 ± 2.03 b

rhEGF-NLC Pluronic F-123 4.27 ± 0.57 5.94 ± 0.76 b

rhEGF-NLC fibrin based scaffold 11.04 ± 1.76 a 9.37 ± 1.58 b



Figure captions

Table 1: Physicochemical characterization of the formulations: nanoparticle diameter,

polydispersity index (PDI), zeta potential and encapsulation efficiency (EE). Data

shown are mean ± S.D. (n = 3).

Table 2: pH, viscosity and occlusion factor of the formulations tested. Data shown are

mean ± S.D. (n = 3).

Table 3: rhEGF recovery from the SC (12 tapes) following intact skin permeation

experiments and from the skin following barrier-impaired skin permeation

experiments. Data shown as mean ± S.D.). Intact skin: a significantly greater than free

rhEGF (p<0.05, one-way ANOVA). Barrier impaired skin: b. significantly greater than

Free rhEGF. c significantly greater than Free rhEGF, Noveon® AA-1 hydrogels,

Pluronic F-123 hydrogels and Fibrin-based scaffolds. d significantly greater than Free

rhEGF and Pluronic F-127 hydrogels (p<0.05, one-way ANOVA).

Figure 1: rhEGF-SLN and rhEGF-NLC integrated wound dressing – delivery

systems: Noveon® AA-1 hydrogel, Pluronic F-127 hydrogel, fibrin-based scaffold, and

reconstituted NP suspension.

Figure 2: In vitro release profiles of rhEGF from (A) SLN, and (B) NLC formulations.

Data shown are mean ± S.D. (n = 3).

Figure 3: rhEGF uptake into intact stratum corneum treated with a control solution of

the protein, reconstituted NP suspensions, and integrated wound dressing-drug

delivery systems. Amounts of rhEGF recovered in the first tape-strip (Panel A) and on

tape-strips 2-12 (Panel B).  Data are mean ± S.D. (n = 3).

Figure 4: x-z planar LSCM images taken at 48 h after the administration of 16-NBD

(green) labeled SLN and NLC aqueous suspensions, Noveon® AA-1 hydrogels,

Pluronic-F127 hydrogels and fibrin-based scaffolds.

Figure 5: x-z planar LSCM images taken at 48 h after the administration of NR (red)

labeled SLN and NLC aqueous suspensions aqueous suspensions, Noveon® AA-1

hydrogels, Pluronic-F127 hydrogels and fibrin-based scaffolds.  The white circle

illustrates the dye penetration into the skin.
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