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Abstract
We present an interactive system for composing realistic images of an object under arbitrary pose and appearance specified by
sketching. Our system draws inspiration from a traditional illustration workflow: The user first sketches rough ‘masses’ of the
object, as ellipses, to define an initial abstract pose that can then be refined with more detailed contours as desired. The system
is made robust to partial or inaccurate sketches using a reduced-dimensionality model of pose space learnt from a labelled
collection of photos. Throughout the composition process, interactive visual feedback is provided to guide the user. Finally, the
user’s partial or complete sketch, complemented with appearance requirements, is used to constrain the automatic synthesis of
a novel, high-quality, realistic image.
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1. Introduction

Suppose you would like to create a realistic image of an animal – a
horse, for example. You can imagine the horse’s pose and appearance
in your mind’s eye, but how can you translate that vision to an image?
Painting realistic images with correct proportion, pose and colour
requires training and talent that most of us lack. Thanks to Google
and other search providers, it has become easier for novices to search
the internet for images of a given object category using keyword
search. But finding examples in a particular pose or relationship to
the camera requires searching through pages and pages of search
results. Furthermore, it is possible that no one image matches what
you originally imagined: perhaps one image almost has the correct
pose, another has details you like and a third has the colour you
had in mind. Combining and modifying these images to produce
one matching your goal is very involved, even with state-of-the-art
image editing software.

In this paper, we present an end-to-end system that enables users
to interactively sketch and synthesize novel images, given a database
of labelled images. When designing a system for controlling image
synthesis, a critical challenge is defining user interactions that are
meaningful to a human but also express appropriate constraints on

the synthesis. To address this challenge, we draw inspiration from
the strategies employed by figure drawing artists: it is common for
such artists to begin by sketching the rough body proportions using
overlapping ellipses or other simple abstract shapes, often called
masses. Once the masses are sketched as desired, the artist can go
on to add contours, shading and finer details of the figure. While
this serves as a useful starting point, it is not sufficient to serve
non-expert artists: We cannot expect a casual user to produce a
sketch that resembles a realistic image as input to a synthesis engine
without assistance. Therefore the system must guide the user in an
exploration of the synthesis space, rather than simply optimizing a
set of pre-defined constraints.

More concretely, we propose that a sketch-driven image
synthesis system must meet four intertwined design principles:
First, it must be responsive, providing results rapidly enough for
a user to iteratively refine her mental concept. Second, it must be
exploratory, guiding the user through the space of possible synthe-
ses with meaningful feedback. Third, it must be robust to missing
data, providing meaningful feedback in the face of incompletely
specified constraints. And fourth, the interactions should be as
fluid as possible – preferring sketch gestures over menu or label
selections.
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These principles have driven all of the design choices for our
system: In the initial ‘mass’ phase we support freehand sketching of
new masses. Our system supports traditional ‘overdraw’ to adjust
these masses after their initial placement, but we also provide direct
manipulation of mass ellipses. A preview is shown at all phases,
which increases in specificity and concreteness as the constraints
are refined. The preview is updated after each sketch gesture, rather
than waiting until the sketch is complete. In early stages, this takes
the form of blended images from the database, giving a visual rep-
resentation of the local space that meets the constraints specified
thus far.

We also provide feedback in the form of shadowed lines under-
neath the user’s sketch. These shadows suggest, first, suitable ellipse
locations and, second, valid object contours. The recommendations
are derived from a probabilistic model of the labelled body-parts in
an image database and help an untrained user to draw masses and
contours in appropriate layouts for each object. We adapt existing
techniques to synthesize a final image that is consistent with the
user’s sketch.

The masses in our system are used for two purposes: they serve
as a proxy for specifying pose and they are used to guide the final
synthesis stage.

Artists use a variety of geometric primitives as masses: The hu-
man pelvis is often represented using a cuboid, and arms with cylin-
ders. Human faces can be represented using ellipsoids sectioned
at various ratios along their axes (similarly to reference lines in
[DPH10]). Although our system could be augmented to support nu-
merous primitives, we focused our initial efforts on a single one – the
ellipsoid. Although it is not commonly used in sketching humans,
this primitive is flexible enough to sketch a variety of walking and
flying animals, and thus our datasets span such animals.

To our knowledge, ours is the first image synthesis system that
interleaves sketched constraints and preview synthesis. We argue
that this interaction modality facilitates joint human-computer ex-
ploration of a space of synthesized images, and is thus the foremost
contribution of our work.

In addition, we apply machine learning techniques to learn a low-
dimensional manifold from the data that models the joint configu-
ration of masses and the contour shape of objects, a highly complex
relationship that could not be specified using a heuristic approach.
We bring together appropriate representations for the masses (Stokes
parameters) and the contours (elliptical Fourier coefficients) to en-
sure that the manifold interpolations are plausible even when using
relatively few input samples, unlike ShadowDraw which requires
a dense sampling of each sketch configuration space. For the final
synthesis stage we adapt the Image Melding algorithm [DSB*12]
by using additional guiding layers corresponding to each distinct
body part and the silhouette.

2. Related Work

Some existing systems, such as Sketch2Photo [CCT*09] and
Johnson et al. [JBS*06], have merged retrieval and synthesis into
unified systems. Both allow a user to sketch a query combining
text, images, and/or outlines; retrieve matches from the internet or

a local database; and compose a new image using the retrieved
elements. Goldberg et al. [GCZ*12] use the Sketch2Photo frame-
work to allow object-level manipulation in images using online
images queried by the user’s keywords and segmentations. They
propose novel deformation and alignment techniques to achieve
high-quality results. However, neither method is targeted for inter-
active use: Johnson et al. report 15 to 45 seconds per composition,
Tao et al. report 15 minutes for each object retrieval and another
5 minutes for composition; and Goldberg et al. report 10 minutes for
object retrieval. We posit that a more interactive system is critically
important for creative processes, allowing users to quickly explore
the space of possible outcomes.

Photo clip-art [LHE*07] and Photosketcher [ERH*11] are two
other systems that are designed for interactivity. Photosketcher,
in particular, uses sketches as input. Similarly to Photosketcher,
Sketch2Scene [XCF*13] uses user sketches to retrieve and place
3D models to assist the user in the 3D scene modelling from a
dataset of 3D models. However, like the other methods, these sys-
tems compose the final output using only one image or 3D model per
object, rather than synthesizing new objects using combinations of
retrieved images. Furthermore, none of these previous approaches
provide a mechanism for detailed pose specification.

Recently the PoseShop [CTM*13] system proposed using on-
line image search to construct a segmented human image database
with pose and semantic action descriptions. PoseShop queries the
database with a sketch or skeleton, allowing a composition of per-
sonalized images and multi-frame comic strips by swapping the
head and clothes to the user’s specifications. This system does com-
pose novel images, but doesn’t provide interpolation between poses
and uses only one database image for each output.

Other recent works blend elements from a collection of related
images. For example, Mohammed et al. [MPK09] learn a global
parametrized model of frontal face images, and constrain a patch-
based texture synthesis algorithm using a sample from this model.
Risser et al. [RHDG10] demonstrated a hierarchical pixel-based
texture synthesis algorithm that generates novel image hybrids by
jittering exemplar coordinates instead of spatial coordinates, in order
to preserve structures. However, neither of these systems supports
pose variation or provides direct user control of the synthesized
result. The PatchNet system combines multiple input images for
each output, taking into consideration contextual relations between
parts [HZW*13]. However, it was only demonstrated for scene com-
position rather than object posing, as it does not incorporate an ex-
plicit model of pose. Recently Darabi et al. [DSB*12] demonstrated
a patch-based system called ‘image melding’ to smoothly interpo-
late textures and colours across images. Our synthesis engine builds
on the image melding framework with additional control channels,
as in image analogies [HJO*01]. In the domain of drawing assis-
tance, Lee et al. recently proposed a system that allows freeform
drawing of objects [LZC11]. As the user adds strokes, the system
interactively provides shadow-like hints of where the next stroke
should be. The system doesn’t have any prior knowledge about the
object that the user is drawing, so the shadows are constructed by
blending relevant edge-maps from a large database queried using
local edge patch descriptors. Sketch-Sketch Revolution [FGF11] al-
lows novice users to learn to replicate strokes of an expert artist by
following guidance and feedback of the system in a step-by-step

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



132 D. Turmukhambetov et al. / Interactive Sketch-Driven Image Synthesis

Figure 1: Our interactive system guides a user to specify pose and appearance using sketching, in order to synthesize novel images from
a labelled collection of training images. The user first sketches elliptical ‘masses’ (left), then contours (centre), mimicking a traditional
sketching workflow. Once the pose is specified, the artist can constrain the appearance and render a novel image (right). Top row: user sketch
input and feedback guidelines; bottom row: rendered previews.

tutorial, which was previously created by an expert artist. The iCan-
Draw? [DPH10] system assists users by generating corrective feed-
back extracted from a reference image. Similarly, The Drawing As-
sistant [IBT13] automatically extracts block in visual guides from a
single reference image and provides corrective feedback to the user.
Sketches produced with the help of these systems have more real-
istic proportions than unassisted drawings, but the outputs are only
contour sketches, not realistic images. Inspired by these systems,
we strive to utilize sketch inputs to produce plausible realistic image
outputs, restricting our attention to the case in which the class of
object is known in advance.

3. Sketch Interaction

One traditional sketching method is to first draw the outline of
the subject using primitive shapes likes ellipses, circles, squares,
etc. [Bla94, ES07, Ful11, Dra]. At this stage only the gross relation-
ships of body parts are specified, and the simplicity of the shapes
makes it possible to adjust and iterate quickly. It is important that
these shapes are very basic, allowing the artist to define the correct
proportions between parts of the object without focusing attention
on small scale details. Once the rough outline of the object is set,
the artist can add finer details. Beyond this point, the masses act
as an anchor for the drawing, so that the artist can focus on local
details without breaking proportion or symmetry. An example of
this approach is given in Figure 2, showing an artist using masses
to sketch a horse and a pigeon. Our goal is to mimic this approach
by providing visual feedback that can guide the user in adjusting
masses and defining strokes.

We argue that the use of elliptical masses is a more effective tool
for specifying gross shape than either contours or ‘skeletons’. Con-
tours contain both small and large scale detail, and it is typically
difficult for a novice user to focus on both scales at the same time as
they trace an outline. Skeletons or ‘bones’ are an appealing alterna-
tive due to their ubiquitous use in 3D computer graphics. However,
whereas a line can express only (2D) length and angle of a body
part, an ellipse can also express its apparent thickness.

Perhaps more importantly, novice users are not necessarily good
at evaluating the proper location of ‘bones’ within a figure. For ex-
ample, in Figure 3, where would you draw a straight line specifying

Figure 2: Sketching a pigeon and a horse by hand using masses.
The artist starts by drawing in the masses for the body parts in the
correct proportions before continuing to fill in the contours and then
any final details, such as shading.

the location of the neck (cervical vertebrae)? Most people without
veterinary training will be surprised to see that when a horse’s head
is raised, the neck vertebrae of a horse are closer to the front of the
neck at its base, but closer to the back of the neck at its apex. In con-
trast, elliptical masses require no knowledge of internal anatomy,
and they form a visual guide for the subsequent stage of contour
sketching, since the contours often follow close to the mass edges.

3.1. User interaction

Our system’s window shows two panels at all times: On the left,
the sketch panel shows the user’s sketched strokes, as well as semi-
transparent guidelines suggesting possible stroke locations. On the
right, the preview panel visualizes the space of possible output im-
ages, given the sketch progress thus far. Since the outcomes are

c© 2015 The Authors
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Figure 3: A cross-section of a horse showing that the location
of bones is unintuitive: Many people are surprised that the neck
vertebrae are closer to the front of the neck when a horse’s head is
raised. (By courtesy of Encyclopaedia Britannica, Inc., copyright
1998; used with permission.)

increasingly constrained throughout the sketching process, the con-
tents of both panes are constructed differently at various stages. The
entire workflow is given in detail below, with descriptions of the
panel contents seen at each stage:

Initial State: The user is first shown an abstract overview of the
range of pose and appearance of the target object. The sketch panel
shows guidelines for the elliptical masses, indicating this is the first
step in the sketching process. Since the range of masses can overlap
a lot, the guidelines for each part are shown using a different colour
to improve visibility and comprehension. They are slightly blurry, to
emphasize that they are only loose constraints: The user can sketch
anywhere, but results are best when the sketches are close to the
range of real object variation. The preview panel is empty, since the
output is totally unconstrained at this stage.

Drawing Ellipses: The user paints strokes in the sketch panel (in
grey). After each stroke, the sketch panel shows ellipses (with the
colour of the estimated part) fitted to the strokes. The guidelines are
updated to show plausible mass configurations similar to the user’s
sketched masses. The preview panel shows corresponding nearest-
neighbour images, blended together using simple averaging, giving a
ghosted view of possible outcomes (we call this ‘Fast NN Preview’).

Mass Adjustment: The user can adjust existing masses in two
ways: Those familiar with traditional sketching may prefer ‘overs-
ketching’, simply drawing over the previous strokes to replace them.
However, novice artists may prefer to adjust the mass ellipses us-
ing an object-oriented approach. For these users we provide an
adjustment mode in which the ellipses can be directly manipulated:
Coloured handles appear on the major and minor axes of each el-
lipse in the sketch view. Dragging the centre handle translates the
corresponding ellipse, and dragging the axis handles rotates and/or
scales it about the centre. The preview panel is constructed in the
same way as the previous paragraph.

Drawing Contours: In this mode, the sketch panel shows faded
contours of real images similar to the user’s sketch, much like Shad-
owDraw [LZC11], but interpolated using our manifold model.

Figure 4: Our system’s interface. The left panel is the user’s draw-
ing canvas, where the shadow feedback is shown. The right panel
shows the fast nearest-neighbour preview.

Editing Appearance: The previews described in previous para-
graph blend together multiple input exemplars, and can thus obscure
specific appearance details such as colour and lighting. To address
this, we also provide an appearance selection mode in which the
preview window switches to a grid of colour palettes computed
from database exemplar that are near-matches to the current sketch.
The user may click on one of these palettes to constrain the out-
put appearance, and then return to sketching. The preview panel
now shows a fast low-fidelity synthesis result aligning the images
to match the sketched contour.

Final Synthesis: When the artist is satisfied with the constraints
and preview render, she can request a final rendering, which may
take 3–4 minutes depending on the resolution of the images in the
dataset. We use the user specified contour and the ellipses to guide
the synthesis process, as this additional information helps the system
deform the images of the dataset before blending them together.

Although we present the steps above in their logical sequence,
the system does not require a strict linear progression through
these stages: The modes can be revisited in any desired order.
The artist may choose to constrain colour before pose, or return
to mass adjustment after drawing part or all of the object contour.
Furthermore, the user can select appropriate visual feedback for
each of the interactions.

Reflecting back on the four design principles proposed in
Section 1: Our system is responsive, as both panels are updated
after every user stroke. It is exploratory, because it attempts to illus-
trate at each stage the span of plausible outcomes given the current
sketch. It is robust, by virtue of providing this feedback after a sin-
gle user stroke, or hundreds. And it is fluid, utilizing hand-drawn
strokes wherever possible; discrete menu or tool selections are re-
quired at only a few moments in a typical interaction. Figure 1
illustrates some stages from our workflow, and Figure 4 shows our
system GUI running on the pigeon dataset. Please see Supporting
Information for further examples.

4. Implementation

In this section, we provide details of the technical approach taken to
provide the interactive workflow of the previous section. The most
significant challenge is to provide a joint model of object pose,

c© 2015 The Authors
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contour and appearance space that a user can explore continuously
and freely, within the constraints of plausible image synthesis. In
addition, the system design is made more challenging by the re-
quirement that everything must run at interactive rates, with the
exception of the final image synthesis.

We propose an image melding [DSB*12] approach to synthesize
novel images of a particular object: Our system combines multiple
images of similar objects under similar poses to produce a final
image in a specific pose. To allow for a wide range of poses and
appearances of a particular object, we require a database of im-
ages containing differing poses and appearances. The prevalence
of online image search and image libraries renders such an image
database straightforward to obtain.

Once we have a collection of images to use for synthesis, we
must consider how to address the fundamental requirements of our
interactive workflow:

1. How do we identify reasonable configurations of masses to guide
the user when specifying pose?

2. How do we identify feasible object contours given the pose of
the object that will allow for accurate synthesis?

3. How can we inform the user of the possible variation in appear-
ances of the object?

4. How do we select appropriate images to use to synthesize this
specific pose and appearance?

We adopt a single methodology to deal with all of these questions;
we make use of machine learning approaches to model the joint
relationships of mass pose, object contour and the training images
(which encode object appearance) in a unified probabilistic frame-
work. More specifically, we optimize, within the high dimensional
joint space of mass poses and contours, a low dimensional manifold
that contains all of the database images.

Using appropriate parametrizations, we can move continuously
within the manifold, and smoothly interpolate the masses and con-
tours between training images in order to generate valid novel poses.
A location on the manifold identifies a specific pose, and the nearest
neighbouring database images in the manifold are good candidates
for image synthesis. In addition to answering the above questions,
the probabilistic nature of the model also allows us to handle image
synthesis in the presence of incomplete information, i.e. missing
masses or contours, affording our system a degree of robustness.

In order to train the model, we have to provide labelled data to
associate the poses of each mass and the contours with each image
in our database. This consists of segmenting each image into a set
of body parts. From this segmentation, we may fit a set of ellipses
(as the object masses) and find the contour of the object.

Given this framework for feedback and synthesis, we must also
consider the user input. User scribbles are interpreted as editable
masses, allocated to specific body-parts, and the contour and ap-
pearance constraints must be specified. We now visit each specific
component in further detail.

4.1. Training data

We require a collection of images (dataset), containing a single
class of objects, where the object of interest is segmented from the

background. For each object, we define a model describing how the
object is divided into masses. For example, a horse can consist of
head, neck, torso, tail, left and right forelegs and hind legs.

We labelled each image by assigning each pixel to the relevant
part of the object model. We then extract masses by fitting ellipses
to the boundaries of each of the labelled parts. We chose ellipses
to represent masses because they are popular among artists [Dra,
Bla94], it is possible to fit them to curves efficiently [FPF99], and
their shape is general enough to approximate many body parts. We
note that any other shape with low-dimensional parametrization may
be readily substituted in our system.

4.2. Joint manifold

To produce good synthesis results, we must ensure that the training
images and the user-specified ellipses and contours are compatible.
For example, the head of a horse cannot be placed on the far end of
its tail.

To achieve this, we provide feedback to users during sketching.
This requires a statistical model of the joint space of ellipses and
contours covered by our training data. Such a model can estimate
the likelihood of a particular arrangement of masses and contours;
this is then used as a measure of how readily such a configuration
may be reproduced from the training data.

We require that the model be sufficiently powerful to represent the
complex interactions between the ellipses and the contour, a multi-
modal distribution, and also allow for fast inference queries to be
performed at interactive rates. We achieve both of these goals by
representing the contours with elliptical Fourier coefficients [KG82]
and modelling the joint manifold of the ellipses and contours using
a Gaussian Process Latent Variable Model (GP-LVM) [Law05]. We
now discuss each of these components in further detail.

Representation: In order to interpolate smoothly between con-
tours in different training images, our system needs a continuous
representation of the contour. However, the silhouette contours ob-
tained from the segmented training images are not registered to one
another with a dense correspondence. In any case, silhouettes from
different viewpoints cannot be placed in meaningful correspon-
dence; for example, the front legs of a horse may appear separately
or on top of one-another. Inspired by the work of Prisacariu and
Reid [PR11], we represent closed contours using elliptical Fourier
coefficients [KG82], which can smoothly interpolate between the
silhouettes of objects such as people, cars and animals. Whereas
Prisacariu and Reid used these silhouettes as a shape prior for seg-
mentation and tracking, we will use it as a shape prior for image
synthesis.

Fourier contour representations must be phase-aligned (i.e a com-
mon starting point and parametrization) to achieve good interpola-
tion [PR11]. We achieved high-quality interpolation by aligning a
series of key points distributed over the length of the contour. This
corresponds to resampling the contour such that there are a fixed
number of samples between each key point. We compute a sparse
set of key points on the contour using the labelled parts in an auto-
matic fashion; for example, a point that lies on the leg and is farthest
from the torso, and a point on the torso that is closest to the tail.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



D. Turmukhambetov et al. / Interactive Sketch-Driven Image Synthesis 135

Figure 5: Example of training image segmentation. (a) The input
image is segmented from the background then (b) split into its con-
stituent parts to allow (c) ellipse fitting to represent the masses.
(d) The contour of the complete silhouette and the alignment key
points are then automatically extracted.

These key points were chosen to be empirically consistent between
different poses and mass configurations. For the horse dataset, we
use five key points as shown in Figure 5(d).

The general parametric form of an ellipse is expressed by 5 values
[xc, yc, a, b, φ]: the x-axis and y-axis coordinates of the centre of
the ellipse, the length of the major and minor axii and the angle
between the x-axis and the major axis, respectively. Here, φ is in
the range [0, 2π ]. However, we require a smooth representation for
the set of ellipses for each training image. We achieve this using
Stokes parameters [McM54] that are defined as:

[
xc, yc, a

2 + b2, (a2 − b2)cos(2φ), (a2 − b2)sin(2φ)
]
.

Manifold: Given the continuous representation, it is possible to
interpolate between similar training images to generate new pose
configurations of ellipses and contours. However, we cannot, in
general, interpolate linearly in the space of Stokes and Fourier co-
efficients. Instead we find a low dimensional manifold in the joint
space of ellipses and contours that contains the training image con-
figurations, using a Gaussian process latent variable model [Law05].
In cases where body parts are occluded we will be missing some
ellipses; we employ the method of Navaratnam et al. [NFC07] to
train a GP-LVM joint manifold model with missing data.

The probabilistic nature of the GP-LVM model allows us to in-
terpret the variance of the embedding in the low dimensional latent
space as the likelihood of a pose given the training data. Figure 6
shows an example of the manifold learnt for a set of images of
elephants. The colouring of the manifold shows the variance of the
ellipses and contours that would be estimated at that point. Thus
areas with a low variance (shown as blue in Figure 6) are more
likely to produce good results under image melding from the local
neighbouring training images (shown as grey dots on the manifold).

4.3. Ellipse and silhouette queries

We now provide details of how to provide the shadowed ellipses and
contours used during the interactive sketching process. We first con-
sider how to identify plausible locations for the remaining ellipses
given that the user has already drawn one or more of the masses.
We then consider how to identify reasonable object contours given
a set of masses and partially sketched contour fragments. Whilst
both these approaches are used to provide visual guidance to the
user sketching process, they can also be used to fill in incomplete

Figure 6: A 2D joint manifold of ellipses and contours learnt for
the elephant images. Each point represents a configuration in pose
space, and the colour indicates the variance of the embedding in
the latent space. Regions with a low variance are higher probability
in the pose space. The location of the original training images are
shown as grey dots.

data for the final synthesis (e.g. if the user has missed some of the
masses or drawn an incomplete contour).

Ellipse Manifold Queries: We define a cost function based on
the difference between the query ellipses – which may be partially
specified – and a sampled set of ellipses from the latent space; we
use the L-1 norm in the Stokes parameter space.

Since we cannot evaluate analytic gradients we must perform
this optimization using point estimates from the latent space (in a
similar fashion to Navaratnam et al. [NFC07]). Because the function
is multi-modal we start from a set of initialization points that span
the latent space. This optimization can be performed rapidly since
the dimensionality of the latent space is so low and the ellipse cost
function is very cheap to compute.

Figure 7 shows an example set of query ellipses and the six
most probable modes, both on the manifold and as the ellipses
and contours. We also demonstrate that the training images with
locations in the manifold closest to the mode have similar ellipse
and contour layouts and are thus suitable to be used as source images
in the synthesis stage.

Contour Manifold Queries: Figure 7 demonstrates the multi-
modal nature of the distribution of the contours with respect to the
ellipses. In order to specify a particular silhouette, we allow the
user to sketch parts of the contour. Just as we did above for an
ellipse query, we define a distance function between the contour
of a point on the manifold and user sketches: we use the chamfer
distance [BTBW77] between the user sketch and the contour un-
der a truncated-quadratic cost function. Since the cost function is

c© 2015 The Authors
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Figure 7: Upper left: a set of user-specified ellipses (shown in blue)
is used for a search over pose space (heat map, upper middle).
Upper right: the modes of the distribution are shown in red over
the original user specification in blue. Bottom: we show the three
training images that are closest in the latent manifold space to the
mode marked as a purple dot.

truncated, the query results should be robust against incomplete and
outlier sketches that the user may draw.

This defines the similarity between the user sketches and a point
on the manifold. We then perform a set of optimizations (as de-
scribed above for ellipses) to find the modes in the manifold. Since
the contour function is more expensive to compute, we accelerate the
search by using the modes of the ellipse query as the initializations.
These queries typically take around half a second.

4.4. Sketching masses and contours

In the first stage of sketch interaction, we ask the user to scribble
some or all of the masses. The ellipses that represent masses can
be manipulated by dragging control points, but in order to make
the user interface more intuitive, we also allow freeform drawing of
masses, and fit the freeform strokes to a set of parametrized ellipses.

The user can sketch ellipses using one or many strokes, specifying
ellipses either partially or completely. To solve this problem the
system assigns each stroke to one ellipse, and each ellipse is fitted
to all of its assigned strokes. As a user inputs a new stroke, the
system computes the cost for each of the ellipses of the current set
of ellipses:

cost(i) = 1

||{S� ∪ Sεi
}||

∑

Sk∈{S�∪Sεi
}

∑

p∈Sk

dist(p, ε�
i ), (1)

where S� is the new stroke, Sk is the kth stroke of the user, Sεi
is the

set of strokes assigned to ellipse i, p is a point of the stroke Sk , ε�
i is

the ellipse that was fitted to {S� ∪ Sεi
} and dist(p, ε�

i ) is the distance
from point p to the ellipse ε�

i .

This cost computes the average of the distances between the
strokes that were assigned to the ellipse and the corresponding
fitted ellipse. If the new ellipse stroke doesn’t fit any of the previous
fitted ellipses (the average distance is more than 40 pixels for each

of the ellipses of the current set of fitted ellipses), the system creates
a new ellipse. Otherwise, the new stroke is assigned to the best
matching ellipse from the current set of fitted ellipses. This approach
also allows the user to erase incorrect strokes and change ellipses by
drawing over the top of existing ellipses. As long as the ‘overdrawn’
strokes are nearby, the ellipse will fit all of the assigned strokes.

Having obtained a set of ellipses, we need to identify the corre-
sponding body part label for each ellipse. This is performed automat-
ically in two steps. First, we find the set of ellipses from the images
of the dataset that are closest to the user’s ellipses, by minimizing

i∗ = arg min
i

∑

k

min
j∈P

∑

p∈εk

dist(p, εi,j ), (2)

where εi,j is the ellipse fitted into the body part j of the labelled
image i, and P is the set of body-parts, p is a point of ellipse εk , εk

is the kth ellipse fitted to the user’s scribbles and dist(p, εi,j ) is the
distance from point p to the ellipse εi,j .

We then obtain the part label for each of the user’s ellipses:

j ∗ = arg min
j

∑

p∈εk

dist(p, εi∗,j ). (3)

Once we assign a label j ∗ to ellipse εk , we remove j ∗ from the
set of possible labels to ensure a unique assignment. We allow
the user to override the assigned labels if desired. The operations
above can be computed efficiently by precomputing chamfer dis-
tances [BTBW77] for the training images in the dataset and reducing
the resolution of the query ellipses.

The proposed ellipse and label assignment proved to be robust
and efficient, allowing us to fit ellipses to the user strokes and to
infer their labels as the user adds new strokes to further define the
pose of the object.

When the user is satisfied with the gross arrangement of masses,
she can switch to contour mode. In this mode, successive pen strokes
specify the boundary of the final synthesized object. Similarly to
drawing the ellipses, multiple partial strokes are supported and pre-
vious strokes may be erased.

4.5. Appearance constraints and synthesis

Using the user’s fully or partially specified pose, we can retrieve
multiple training images that have similar poses. We do this by
finding modes on the manifold that match the ellipses and contours
with a low cost and low variance and taking the nearest neighbour-
ing training images, see Figure 7. Within this set of neighbouring
images, we can identify the range of possible appearances available
in our dataset, for this specific pose, to use for image synthesis. We
present colour palettes computed from exemplars of the possible ap-
pearances to the user and allow them to select the most appropriate
(see right side of Figure 1).

The data-driven nature of our algorithm means that we rely on
the appearance variation in the training images to produce the ap-
propriate variation during image synthesis.

Features: The specified masses, contour strokes and appearance
constraints, together with the inferred masses and contours, can be
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Figure 8: Example synthesis result. (a) The ellipse configuration is
used to produce a set of features (one channel per ellipse) that are
combined with (b) the feature channel from the contour and (c) the
CIE Lab channels of the nearest neighbour source images as an
input to synthesis. (d) The blending weights for each image are
computed from blurred distances between the source image feature
channels and the target feature channels. (e) The synthesized result.

converted into features that guide the synthesis process. In addition
to CIE Lab colour channels, we have a feature channel per ellipse
and another computed from the contour. The additional channels
allow semantically meaningful synthesis.

Each ellipse feature channel is a truncated signed distance to
the nearest point of the boundary of the ellipse, and the contour
feature channel is a truncated signed distance to the nearest point
of the contour. If the contour provided by the user is not closed, we
estimate the most likely contour using the GP-LVM manifold.

The feature channels are also computed for the nearest neighbour
source images of the dataset and for the target image under the
appearance constraints. Figure 8(a-b) provides examples of these
feature channels.

Synthesis: Synthesis of the target image is done using the image
melding framework [DSB*12], using the feature channels as guiding
layers, as in Image Analogies [HJO*01]. For efficiency, we use, but
are not limited to, the two nearest neighbour images that are closest
to the user’s specifications on the GP-LVM manifold. To ensure
high contrast along the contour, we double the weight of the contour
feature with respect to the other features.

At the coarsest scale of the image pyramid, we initialize the target
image by computing the nearest neighbour patch correspondences
using only the feature channels. Subsequent iterations use both fea-
ture channels and colour channels.

At each successive scale, we compute a correspondence map from
each of the source images to the target image. The target image is
reconstructed using the patches of the source images according to
this map, using the reconstruction costs for each source to compute
blend weights; see Figure 8(d).

Figure 8(e) shows an example synthesis result from two source
images. Given the large number of feature channels, the synthesis
step takes around 4 minutes to perform at all scales. Thus, dur-
ing the user interaction, we don’t perform the synthesis up to full
resolution. Instead, we produce an approximate synthesis at low
resolution, and upsample the resulting nearest neighbour field to
full resolution. This enables our system to efficiently synthesize
a full resolution ‘preview’ image using high-resolution patches at
interactive rates (about 3 seconds for an image). Although this pro-
duces some artefacts due to upsampling, the resulting preview is a
reasonable proxy for the appearance of the final synthesis.

5. Synthesis Results

We have compiled 4 datasets: horses, pigeons, elephants and cats.
The horse dataset was compiled using 295 images and segmenta-
tions of the Weizmann horse dataset [BSU04]. We also collected
images of pigeons (270 images) and elephants (275 images) from
the internet and manually segmented the images. We have acquired
a single photocollage of 390 cats on white background captured by
professional photographer. All the datasets were hand-labelled into
corresponding parts. Since the labelling doesn’t have to be perfect,
each image can be labelled in about 4 minutes. Each of the im-
ages in the dataset was rescaled, cropped and segmented from the
background. The scaling was chosen such that the area of the torso
matches in each image.

Figure 9 shows some results created with our system, along
with the user-drawn masses and contours that produced them. Each
sketch took only about 2 minutes to draw (see the Supporting Infor-
mation video). The synthesized images appear realistic and follow
the user’s constraints closely. Notice that the system allows results
to be produced over a wide range of poses. Please see the Supporting
Information for an expanded version of Figure 9 containing details
of the nearest neighbour images used for the image synthesis.

Our system is not computationally expensive. The preprocess of
fitting ellipses and fitting contours to the horses in the database
takes 20 s and 30 s, respectively. Training the GP-LVM takes about
2 minutes on the same dataset. Querying the closest ellipses at
run-time is interactive at 0.4 s. Querying partial silhouettes takes
about 0.5 s. Synthesizing a preview result takes 3–4 seconds. The
final, high-quality synthesis is more expensive, and usually takes
around 3 minutes to compute depending on the resolution of the
images.

6. User Studies

6.1. First user study

Our system was designed to help users generate images. To assist
the user in accomplishing this task, the system displays previews
and shadows as a guide for the user’s input. The shadow is generated
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Figure 9: Synthesis results for the horses, elephants, cats and pigeons datasets, with sketched masses and contours. Each image is a
combination of training images, not simply the most similar image from a database. Note the quality of the results and their agreement with
the specified masses and contours, in spite of the relatively small database sizes. At top right, the user ignored the shadow suggestions and
drew a contour for the horse that is inconsistent with the masses for the front legs: This results in a synthesis failure due to incompatible
constraints. See the Supporting Information for details of these results.

both when working with ellipses and contours. Therefore, to evalu-
ate the usefulness of our system we conduct a user study in which
participants are asked to generate an image as close as possible to a
target image. We evaluate the usefulness of each of the feedback vi-
sualizations: Participants perform three assignments by using three
variations of our system that each employ a different set of visual
feedback. For a subjective assessment of the generated image, we
also assign a Manual Search assignment that asks the participant
to select an image from the dataset that is closest both in terms of
pose and colour to the target image. Our system was designed to
help users generate images. To assist the user in accomplishing this
task, the system displays previews and shadows that work as a guide
for the user’s input. The shadow is generated both when working
with ellipses and contours. Therefore, to evaluate the usefulness
of our system we conduct a user study in which participants are
asked to generate an image as close as possible to a target image.
We evaluate the usefulness of each of the feedback visualizations:
the participants perform three assignments by using three variations
of our system that each employ a different set of visual feedback.
For a subjective assessment of the generated image, we also assign
a Manual Search assignment that asks the participant to select an
image from the dataset that is closest both in terms of pose and
colour to the target image. We provide the target image to evaluate
the subjective quality of the synthesized result. After completing the
assignments, the participants are surveyed with the standard System
Usability Scale questionnaire [Bro96] to provide a subjective as-
sessment of general usability, as well as system-specific questions
to evaluate each of the visual feedbacks’ usefulness, and results of
interaction with the system. We chose the horses dataset for the first
user study.

Table 1: Visual Feedbacks corresponding to the systems.

Visual Feedback System 1 System 2 System 3

Draw Ellipses x
Silhouette Shadow x x x
Fast NN Preview x x
Coarse Preview x x

6.1.1. Assignments

The Manual Search assignment requires the participant to browse
through 295 images of horses to find the closest match to a target
horse both in terms of pose and appearance. Each of the 295 images
was rescaled, cropped and segmented from the background.

In Assignment 1, the participant uses our complete system to gen-
erate an image that is as close as possible to the target image (same
target image as in the Manual Search assignment). The ‘System 1’
used in Assignment 1 provides all visual feedbacks. Assignment 2
uses ‘System 2’, a limited version of ‘System 1’; the user is not al-
lowed to use ellipse interactions and starts with the ‘Draw Contour’
tool. Finally, Assignment 3 uses ‘System 3’, a further restricted sys-
tem. The user is not allowed to use ellipse interactions and starts
with the ‘Draw Contour’ tool. ‘System 3’ does not generate any
kind of preview. ‘System 3’ is similar to the Shadow Draw [LZC11]
system, but with the addition of interpolated contours and an im-
age synthesis post process. Our hypothesis is that additional visual
feedback aids in the interactive image synthesis task. Table 1 shows
the supported visual feedbacks for the Assignments.
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Table 2: First user study: number of votes the visual feedback related ques-
tions. The Likert response scale answers are ‘Strongly Disagree’ (SD), ‘Dis-
agree’ (D), ‘Neither Agree Nor Disagree’ (NN), ‘Agree’ (A), ‘Strongly Agree’
(SA).

Number of Votes

System related questions SD D NN A SA

Ellipse position feedback was useful? 0 5 1 11 1
Silhouette feedback was useful? 0 1 1 7 9
Fast ‘NN’ preview was useful? 0 0 3 9 6
Coarse preview of the generated image with

the colour choices was useful?
0 0 2 9 7

6.1.2. Data collection and participant selection

Eighteen participants from the student population of our depart-
ment performed the user study. Each participant was randomly as-
signed three different target images for the four assignments (Man-
ual Search and Assignment 1 share the target image) from a set of six
images. We did not filter the study population for handedness. Only
two of the participants were familiar with the concept of ‘masses’.
To minimize the influence of learning effects, the assignments are
conducted consecutively starting with ‘System 1’ featuring the full
set of visual feedbacks. The goal of the study was not mentioned to
the participants. All participants were familiar with image editing
in general and were given training using a Wacom tablet.

6.1.3. Procedure

First, we allow the user to familiarize themselves with the Wacom
tablet. We allow using the mouse for the experiment, but all of the
participants preferred the Wacom tablet. Before starting the tasks
the participants were asked to answer two questions regarding their
artistic skills and artistic training. Then, the participants were asked
to perform the Manual Search assignment using a randomly assigned
target image. Next, the participants were shown a video tutorial
(see Supporting Information) describing the system. To clarify the
part subdivision and the relationship between ellipses and parts,
an example image was given to the participants. All assignments
were performed without time limit. Synthesizing the final result
was done on a separate machine in the background. After finishing
the assignments, the participants answered the SUS questionnaire.
Before conducting the system related questionnaire we recapitulate
the differences between systems and show the final rendered results.

Finally, we ask the participants to rate the usefulness of each of
the visual feedbacks on a Likert scale (see Table 2). We provide the
questionnaire in the Supporting Information.

6.1.4. Expectations

We expect the system to score above average on the SUS scale
(corresponds to a SUS score above a 68) [LS09]. The system was
designed to assist the user through visual feedbacks, hence we expect
that the participants would evaluate all visual feedbacks as ‘useful.’
We assume that ‘System 1’ with the full set of visual feedbacks
including the ellipse interactions would be evaluated as the easiest

Table 3: First user study: number of votes for the subjective assessment of
the synthesized image of the ‘Assignment 1’.

Number of votes

Generated Manual System’s
Image comparison questions image search choice

Which one is the closest to the target
image in terms of pose?

5 10 3

Which one is the closest to the target
image in terms of colour?

5 12 1

Which one resembles the target
image the most?

7 11 0

and the most efficient in accomplishing the assignment, given that
it provides the most visual feedback.

6.1.5. Results

The average score of the system on the SUS scale was 68.75, which
corresponds to ‘above average’ [LS09]. Unexpectedly, both ‘Sys-
tem 1’ and ‘System 2’ received same amount of votes (9 votes each)
as the easiest and the most efficient. One explanation of this result
may be in the inherent preference of users to sketch without the use
of masses, as we do not teach the users to draw using masses, and
users inexperienced at drawing may not be familiar with the concept.
We only show examples in the tutorial video and before Assignment
1. Moreover, the first and only trial of drawing with the masses in
Assignment 1 may be not enough to fully grasp the concept. Some
of the participants said that they believe they would’ve performed
better in Assignment 1 if they were to reuse ‘System 1’ after com-
pleting the survey. We hypothesize that the data in Table 2 supports
this point as the utility of the ellipse position feedback appears to be
bi-modal with two thirds of the study participants finding the ellipse
position feedback useful.

We also asked the users to compare the generated image of
‘Assignment 1’ with their own choice from the dataset and the
nearest neighbour found by the system based on the user’s sketch
(this ignores the appearance choice). The results can be viewed in
Table 3. The generated image quality depends on the complexity and
uniqueness of the target pose, the quality of the sketch and specifi-
cations, the size of the dataset etc. Nonetheless, about third of the
participants found the generated image more closely resembled the
target image than the manually selected image.

6.2. Second user study

In our second user study, participants were asked to create novel
images of elephants, using our elephants database containing 275
images. Whereas the horses dataset has only profile views, the ele-
phants dataset has more diverse pose variations in 3D, including
both frontal and profile views.

In the first study, we provided participants with a target image in
order to allow post hoc comparative evaluation of the results, but in
practice, real users of our system would not have such a target image.
Thus, in second study we do not provide participants with a target
image, instead asking users to draw a sketch of an elephant pictured
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Table 4: Second user study: number of votes the visual feedback related
questions. The Likert response scale answers are ‘Strongly Disagree’ (SD),
‘Disagree’ (D), ‘Neither Agree Nor Disagree’ (NN), ‘Agree’ (A), ‘Strongly
Agree’ (SA).

Number of Votes

System related questions SD D NN A SA

Ellipse position feedback was useful? 0 0 1 3 2
Silhouette feedback was useful? 0 1 0 3 2
Fast ‘NN’ preview was useful? 1 0 2 2 1
Coarse preview of the generated image with

the colour choices was useful?
0 0 0 3 3

When specifying pose, ellipses were useful? 0 0 0 4 2

solely in their mind’s eye. As in the first user study, the users interact
with System 1 and System 2; and afterwards are surveyed with the
questionnaire. In this user study, we omitted the image comparison
questions which are not relevant without a target image, instead
focusing on the usefulness of different components of the system.
Furthermore, we omit the SUS questionnaire as the usability of the
system has already been evaluated in the first user study.

Table 4 shows the votes on the feedback-related questions. All
participants preferred System 1, and all participants found ellipses
useful for specifying pose.

7. Conclusion

We have presented an interactive system for synthesizing realistic
objects based on user input, given a database of training images.
Our system supports a traditional illustrator’s workflow, whereby
the user first sketches the important masses and then refines them
using contours. The advantages of this approach are the same as in
traditional illustration: The gross pose of the figure can be speci-
fied loosely and iteratively, without requiring precise or complete
contours. Interactive feedback is provided by indicating likely mass
locations and contours to the user, as well as quickly synthesizing
a preview of the object. This feedback aids novice users in under-
standing the pose space as they construct their sketch, and visually
indicates likely outcomes for the synthesis phase. Although in this
paper we demonstrate the drawing of only a few classes of objects,
our general approach can be extended to other classes of objects.
Positive feedback from the users indicates a promising pathway to
advance interactive tools for creative illustration workflow.

7.1. Limitations and future work

Our present system is not without its limitations. Firstly, it is tuned
for sketching animal figures. We rely on the fact that the structure
of animal figures is fixed (the head is attached to the neck, and so
forth), which is not true for general objects or scenes. We imagine
future work might address these limitations by combining manifold
methods like ours with contextual models like PatchNet [HZW*13].

We also assume that ellipses are a good representation of the
shape of the body parts. Although our system gracefully handles
cases where this assumption does not hold (see the horses’ legs), it

would be straightforward to support additional primitives to better
represent a wider range of figures.

In order to synthesize realistic figures, we require the user to pro-
vide constraints (masses and contours) that are reasonably similar to
some poses in the training images. If the user veers too far from the
database poses, synthesis results may be unsatisfactory. An example
can be seen in the top right of Figure 9, in which the pose of the
foreleg masses is inconsistent with the specified contour. However,
if the user allows themselves to be guided by the visual feedback,
the final sketch should reside in a valid location on the manifold
with sufficient training images for synthesis. In this work, we err on
the side of giving the user more creative control at the cost of poten-
tially less plausible results, but it is straightforward to automatically
override a user’s constraints towards higher-probability locations
in the manifold. This tradeoff between flexibility and plausibility
warrants further exploration.

In our current system, we have not added local texture constraints,
as the limited database sizes makes them hard to use. In the future,
we would like to explore integrating the colour and texture con-
straints more directly into the continuous exploration mode of the
pose specification.

We currently require annotated images as input, which is labour-
intensive and limits us to a sparse collection of images (on the
order of a few hundred). Databases of images with semantic part
labellings [CML*14, BM09, VMT*14] are becoming more widely
available for addressing computer vision tasks, but in the long run,
we hope to take advantage of current and future advances in com-
puter vision to automate this part of our system [GZ12, YYB*14].

The capabilities of image synthesis algorithms are presently out-
stripping the interactions used to control them. We hope our system
inspires further research in interactive control of structured image
synthesis.
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