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Two-Level Joint Local Laplacian Texture Filtering

Abstract Extracting the structure component from an
image with textures is a challenging problem in im-
age processing. This paper presents a novel structure-
preserving texture filtering approach based on the two-
level local Laplacian filter. The new method is devel-
oped by introducing local Laplacian filters into the joint
filtering. Our study shows that local Laplacian filters
can also be used for texture smoothing by defining a
special remapping function, which is closely related to
the joint bilateral filtering. This finding leads to a vari-
ant of the joint bilateral filter, we call it unnormal-
ized joint bilateral filter, which produces smooth edges
while preserving color variations. Our filter shares sim-
ilar advantages with the joint bilateral filter, such as
simple to implement and easy to understand. Experi-
ments demonstrate that the new filter can produce sat-
isfactory filtering results with the properties of texture
smoothing, smooth edges, and edge shape-preserving.
We compare our method with the state-of-the-art meth-
ods to demonstrate its improvements, and apply this
filter to a variety of image editing applications.

Keywords Texture filtering · structure extraction ·
local Laplacian filters · guidance image · unnormalized
joint bilateral filter

1 Introduction

Edge-preserving image smoothing is very important and
useful in many image applications, e.g., detail manipu-
lation, abstraction, tone mapping, image composition,
etc. It seeks to decompose an image into structure and
detail components. Most existing works, such as the bi-
lateral filter [22], weighted least squares filtering [7], L0

smoothing [25] and local Laplacian filters [16], focused
on separating structures from details with the capa-
bility of edge-preserving. These algorithms usually de-
pend on gradient magnitude, pixel intensity and Lapla-
cian pyramid coefficients to obtain satisfactory edge-
preserving filtering results. While humans easily rec-
ognize the structures of an image which contains rich
textures, it is difficult for a computer to automatically
extract its structures by texture smoothing. Most edge-
preserving filtering methods do not explicitly address
the structure-preserving texture smoothing problem. Tex-
tures may be considered as strong edges if we apply
these approaches straightforwardly to texture smooth-
ing. As a result, textures are preserved instead of being
smoothed and unsatisfactory results may arise.

To solve this challenging problem, previous works [3,
5,11,20,21,26,28] have made much effort to generate
structure-preserving texture smoothing results. They
suppress textures to obtain the global structures of an
image using different strategies, such as the weighted
least squares optimization or the joint bilateral filtering
schemes. These solutions can achieve good separation
results. However, rich color variations of the input may
be flattened somewhat or structure edges of the input
may be damaged by these filters. For example, after the
bilateral texture filtering [5], smooth edges in the origi-
nal image may show jagged transitions in the resulting
structure component, as shown in Fig. 1(e). When ap-
plying such structure images to image applications (e.g.
detail enhancement), undesirable results may arise at
structure edges. Thus, in order to achieve satisfactory
results, smooth edges in the extracted structure compo-
nent should be preserved, and the edge shapes should
be as similar to those of the input as possible.

In this paper, we present a new structure-preserving
texture filtering method which can preserve edge shapes
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(a) (b) (c) (d) (e) (f)

Fig. 1 Two-level joint local Laplacian texture filtering. From left to right: (a) Input image; (b) Xu et al. [26]; (c) Karacan
et al. [11]; (d) Zhang et al. [28]; (e) Cho et al. [5]; (f) our method. In terms of color variations, our method performs better
than Xu et al. [26]. Our method can preserve partial structures of the fish teeth, which are removed in both results of Zhang
et al. [28] and Cho et al. [5]. Zhang et al. [28] produces halo artifacts near strong structure edges which are reduced in our
result. Compared to Cho et al. [5], our method produces smoother structure edges.

and color variations of the input image simultaneously.
Our algorithm builds upon local Laplacian filters. While
local Laplacian filters can yield high-quality edge-aware
filtering results using a Laplacian pyramid, it is still un-
clear whether they are appropriate for strong texture
smoothing. Inspired by Aubry et al. [1], we redefine the
remapping function of local Laplacian filters by intro-
ducing a guiding image. With this in hand, we find that
the two-level joint local Laplacian filter is related to the
joint bilateral filter and shares similar advantages of the
joint bilateral filter. Moreover, we design an unnormal-
ized joint bilateral filter, which essentially is a spatial
interpolation-based method between the input image
and the result of the joint bilateral filter. The spatial
interpolation blending of this filter guarantees that the
filtering results own the aforementioned properties, as
shown in Fig. 1. Previous works [5,20,28] have verified
that the joint bilateral filtering schemes can effectively
suppress textures. Therefore, our approach can also be
employed for structure-preserving texture filtering.

The contributions of our paper include:

– A joint filtering method based on the two-level local
Laplacian filter: We introduce a guidance image into
the definition of the remapping function of the two-
level local Laplacian filter. This allows us to use this
filter to achieve joint filtering.

– An unnormalized joint bilateral texture filter: We
analyze the similarities between the two-level joint
local Laplacian filter and the original joint bilateral
filter. Based on this analysis, we develop a new tex-
ture smoothing filter.

– An interpolation-based scheme of texture filtering:
We further find that the unnormalized joint bilat-
eral texture filter is equivalent to a spatially varying

blending between the input image and the output of
the joint bilateral filter. The interpolation behavior
ensures that our filter can produce smooth edges
and preserve the original edge shapes.

2 Related Work

Edge-aware filtering The average-based method is
a main kind of edge-aware filters. From a computa-
tional point of view, these methods use weighted aver-
age schemes to eliminate image details, including anisotropic
diffusion [17], bilateral filter [22], joint bilateral filter [13,
18], guided filter [10], and geodesic filter [6]. The bilat-
eral filter [22] is one of the most widely employed edge-
aware filters since it preserves important image struc-
tures while removing fine-scale details. The output of
the bilateral filter is a nonlinear weighted average of
the input in the spatial neighborhood considering the
spatial distance and the difference of the range value
simultaneously. The joint/cross filter [13,18] smoothes
an image by using a guidance image to compute the
difference of the range value. However, the bilateral fil-
ter tends to blur over more edges as the scale of the
extracted details increases.

To overcome the limitation, Farbman et al. [7] intro-
duced weighted least squares to achieve edge-preserving
multi-scale image decomposition. Further, a few edge-
aware filters, including edge-avoiding wavelets [8], lo-
cal histogram filters [12], local Laplacian filters [16],
domain transform [9], L0 gradient minimization [25],
and fast local Laplacian filters [1], were proposed to
smooth fine-scale details while preserving image struc-
tures. Paris et al. [16] proposed a set of image filters
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called local Laplacian filters to achieve artifact-free edge-
preserving results based on the Laplacian pyramid. Aubry
et al. [1] further considered a wider class of remapping
functions for local Laplacian filters, and speeded up lo-
cal Laplacian filters. Our work is closely related to these
two works. The main difference between our work and
theirs is that we aim at structure-preserving texture
smoothing which is not addressed in these two works.

In addition to the above-mentioned methods, me-
dian filters that compute median [24] or weighted me-
dian [15,29] in local patches and the local mode fil-
ter [23], can also remove high-contrast details of an im-
age.
Structure-preserving texture smoothing Rudin et
al. [19] adopted total variation (TV) to successfully
eliminate arbitrary textures of irregular shapes. Fur-
ther, some improved TV models [2,4,26,27] with dif-
ferent norms were proposed to make image decompo-
sitions better. Buades et al. [4] computed a local total
variation and used a simple nonlinear filter pair to de-
compose an image into structure and texture compo-
nents. Xu et al. [26] used relative total variation mea-
sures to achieve better separations between structure
edges and textures. Subr et al. [21] defined details as
oscillations between local extrema and smoothed out
fine-scale oscillations. Karacan et al. [11] presented a
patch-based algorithm that uses region covariances for
structure-preserving image smoothing. However, it is
time-consuming and may result in overblurred edges.
Su et al. [20] applied an iterative asymmetric sampling
degenerative scheme to suppress textures, then used an
edge correction operator and a joint bilateral filter to
obtain edge-preserving texture suppression results.

Recently, Cho et al. [5] presented a bilateral texture
filter based on the idea of patch shift that captures
the texture information from the most representative
texture patch clear of prominent structure edges. They
constructed the guidance image via patch shift on each
pixel and employed the joint bilateral filter to obtain
the smoothed output. Zhang et al. [28] used a simple it-
erative joint bilateral filter model to smooth the image.
Bao et al. [3] proposed a weighted-average filter called
tree filter to achieve strong image smoothing with a
minimum spanning tree. Since our method is a variant
of the joint bilateral filter, our algorithm can also be
classified as the joint bilateral filter.

3 Our Algorithm

We start from simply summarizing the basic principle of
local Laplacian filters and then introduce our algorithm
in detail. Given a 2D input image I, local Laplacian
filters first use a pixel-wise filter with the remapping

function rp(i) to generate a transformed image, then
compute the Laplacian pyramid L of this image and
use the coefficient in the pyramid L as the value of the
output pyramid coefficient. Finally, the output pyramid
is collapsed to obtain the result.

3.1 Two-level joint local Laplacian filter

Aubry et al. [1] defined the space of remapping func-
tions for local Laplacian filters as the form:

r(i) = i − (i − g)f(i − g), (1)

where f is a continuous function, i represents the pixel
of the input I and g denotes the coefficient of the Gaus-
sian pyramid. Remapping functions are the same as
those of Paris et al. [16] when f(i−g) = (i−rp(i))/(i−g)
where rp denotes the remapping functions defined by
Paris et al. [16].

We modify the space of remapping functions r by
introducing a guidance image M :

r(i) = i − (i − g)f(im − gm), (2)

where gm = Gl[M ](x, y) denotes the coefficient of the
Gaussian pyramid at level l and position (x, y) of the
guidance image M . We will discuss the definition of the
guidance image M in Section 3.3.

For the two-level filter, we need to compute the two
levels L0[J ] and L1[J ] of the Laplacian pyramid of the
output image J . We assume the residual L1[J ] of the
output remains unprocessed resembling Aubry et al. [1],
that is, L1[J ] = L1[I]. The 0th level of the Laplacian
pyramid of the output image J is computed as the dif-
ference between the transformed image r(I) and the
corresponding low pass filtered image. That is,

L0[J ](p) = r(Ip) − [Gσp ∗ r(I)](p), (3)

where p denotes a pixel at the position (x, y), Gσp
is

the normalized Gaussian kernel of variance σ2
p used to

build the pyramids, and ∗ indicates the convolution
operator. For the finest level of the pyramid, we have
L0[I] = I −Gσp ∗ I, g = Ip and gm = Mp. Substituting
our new definition of the remapping function into the
above expression, we reach the following equation after
rearranging:

L0[J ](p) = L0[I](p)+[Gσp ∗(I−Ip)f(M −Mp)](p). (4)

We obtain the two-level joint local filter by upsam-
pling the residual, adding it to both sides of the above
formula, and expanding the convolution:

Jp = Ip +
∑

q

Gσp(q − p)f(Mq − Mp)(Iq − Ip), (5)
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where q ∈ Ω denotes the pixels in the local window Ω

centered in the pixel p. The above formula shows that
we can achieve joint filtering since the second term of
the output J is a weighted average of the pixels in the
spatial neighborhood using Gσp and the function f of
the guidance image M , which has the similar spirit as
the joint bilateral filter.

3.2 Unnormalized joint bilateral filter

In this section we discuss the relationship between the
two-level joint local Laplacian filter and the original
joint bilateral filter. The definition of the original joint
bilateral filter (JBF) is expressed as:

JBFp =
1

Wp

∑
q

Gσs(q − p)Gσr (Mq − Mp)Iq,

Wp =
∑

q

Gσs(q − p)Gσr (Mq − Mp),
(6)

where Wp is the normalization term and M is the guid-
ance image, Gσs and Gσr denote the spatial and the
range kernels, and they are typically Gaussian functions
Gσ(p) = exp(−p2/2σ2), respectively.

Considering the symmetry of the Gaussian kernel
and the fact that the weights sum up to 1, the above
formula can be rewritten as:

JBFp = Ip +
1

Wp

∑
q

Gσs
(q−p)Gσr

(Mq −Mp)(Iq −Ip).

(7)

Comparing Eq. 5 and Eq. 7, we see that the two-
level joint local Laplacian filter shares similarities with
the original JBF. If we define Gσp as the spatial weight
and f as Gσr , the only difference between the filters is
that the weights are not normalized by 1

Wp
in the two-

level joint local Laplacian filter. This relationship leads
to a new filter called the unnormalized joint bilateral
filter by using σp = σs.

Jp = Ip +
∑

q

Gσs(q − p)Gσr (Mq − Mp)(Iq − Ip). (8)

Figure 2 shows the difference between the unnormal-
ized joint bilateral filter and the original joint bilateral
filter. The filters have almost the same results within
pure texture regions. The main difference between the
two filters appears at strong edges. The original joint
bilateral filter smooths some strong edges more aggres-
sively than the unnormalized version. When a pixel p is
significantly different from its neighbors, i.e., at strong
edges, the normalization factor

∑
q Gσs(q−p)Gσr (Mq−

Mp) is small and the output of the unnormalized joint

Fig. 2 Comparison of the unnormalized joint bilateral filter
and the original joint bilateral filter with the same guidance
image. From left to right of the top row: Input image, the
result of the original joint bilateral filter, the result of the un-
normalized version. The middle row shows the input 1D sig-
nal at the 94th line, the bottom row shows the corresponding
filtering results. The blue signal denotes the result of the orig-
inal joint bilateral filter, and the red signal is the result of the
unnormalizedd version. Compared to the original joint bilat-
eral filter, the unnormalized version may preserve structure
edges better.

bilateral filter is closer to the original input. That is,
the unnormalized version performs better in terms of
preserving structure edges of an image.

3.3 Guidance image

We now go back to the goal of texture smoothing. Akin
to Subr et al. [21], we define textures as fine-scale spa-
tial oscillations of signals. Cho et al. [5] showed that
the joint bilateral filter can be effectively applied on
structure-preserving texture smoothing by substituting
a special texture description image, namely the guid-
ance image, in the range kernel. To guide texture smooth-
ing, the guidance image M should have similar values in
a homogeneous texture region and distinguishable val-
ues across salient edges. That is, M should represent
the approximate structures of the input image.

The Gaussian scale space theory has been developed
by computer vision community to deal with structure
identification in images with no prior information. We
compute the guidance image M by two steps. Specifi-
cally, we first apply the Gaussian filter with the stan-
dard deviation σs to the input image I, i.e.,

D = I ∗ Gσs . (9)

After this step, details are eliminated. As a byprod-
uct, however, the Gaussian filtering often blurs the large-
scale structures of the image while eliminating the small-
scale structures, and leads to blurring structure edges.
Blurred results will be produced if we use D as the
guidance image M directly, as shown in Fig. 4. In or-
der to represent the clear structures of the image, we
then employ the original joint bilateral filter with D
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(a) (b) (c) (d) (e)

Fig. 3 Overview and intermediate images of our approach. From left to right: (a) Input image, (b) the initial blurred image
D, (c) the final guidance image M , (d) the interpolation coefficient map µ, and (e) our filtering result J .

(a) Input image (b) Gaussian result

(c) Our result (d) Close ups

Fig. 4 The effect of the guidance image. (b) and (c) are the
filtering results using guidance images D and M , respectively.

as the guidance image, to recover edges of the large-
scale structures. We finally define our guidance image
M as the output of the joint bilateral filter. That is, the
guidance image M is defined as follows:

M = JBF (I, D), (10)

where D is the result of the Gaussian filtering. Fig-
ure 3(c) shows the guidance image M via the joint bilat-
eral filtering, which effectively restores structure edges
from the initial blurred image D (Fig. 3(b)).

3.4 Texture smoothing via interpolation

By now, we have obtained our texture smoothing filter,
i.e., the unnormalized joint bilateral filter, via the two-
level joint local Laplacian filter. We will further prove

that this new filter is equivalent to a spatially varying
interpolation between the input image and the result of
the joint bilateral filter. We find that this interpolation-
based texture smoothing scheme is simple and intuitive.

We first define µp as
∑

q Gσs(q − p)Gσr (Mq − Mp).
Since Gσs = 1√

2πσs
2 Gσs is a normalized Gaussian kernel

and
∑

q Gσs(q−p)Gσr (Mq−Mp)(Iq−Ip) = Wp(JBFp−
Ip) according to the expression of the original JBF, we
can rewrite the formula of the unnormalized joint bilat-
eral filter and substitute µp into the expression. Finally,
we obtain the following formula:

Jp = Ip +
∑

q

Gσs(q − p)Gσr (Mq − Mp)(Iq − Ip)

= Ip +
1√

2πσs
2

∑
q

Gσs(q − p)Gσr (Mq − Mp)(Iq − Ip)

= Ip +
1√

2πσs
2
Wp(JBFp − Ip)

= Ip + µp(JBFp − Ip)

= (1 − µp)Ip + µpJBFp,

(11)

where µp is the interpolation coefficient. In uniform re-
gions of the guidance image M , the coefficient µp is
large because Mq − Mp is close to zero. On the con-
trary, in discontinuity regions of the guidance image,
the coefficient µp is small around edges and this leads
the unnormalized joint bilateral filter having a weaker
filtering effect. This also explains why the unnormalized
joint bilateral filter can effectively preserve the original
edge shapes of the input.

In experiments, we find that a single iteration of
the unnormalized joint bilateral filter may not be suffi-
cient for obtaining a desired texture smoothing result.
Therefore, we apply our unnormalized joint bilateral
filter in an iterative manner resembling the method of
Cho et al. [5]. Algorithm 1 depicts our final algorithm
and Fig. 3 visualizes the flow of our approach with in-
termediate images.
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(a) Input image (b) σs = 3 (c) σs = 4 (d) σs = 5 (e) σs = 6

Fig. 5 Different filtering results by progressively increasing the scale σs. In this example, we set σr = 0.04 and Niter = 5.

Algorithm 1 Joint Local Laplacian Texture Filtering
Input: Image I, Niter, σs and σr

Output: Filtered image J
1: for k = 1→ Niter do
2: D ← I ∗Gσs

◃ Gaussian blurring of I
3: M ← JointBilateralF iltering(I, D)
4: µ←

∑
q Gσs

(q − p)Gσr
(Mq −Mp)

5: JBF ← JointBilateralF iltering(I, M, σs, σr)
6: J ← (1− µ)I + µJBF
7: I ← J
8: end for

4 Analysis

Parameters In our implementation, all pixel values
are firstly normalized to the range [0, 1] and the spa-
tial kernel half-size of the joint bilateral filter is set
to σs. Our algorithm can remove textures of differ-
ent scales by varying the value of σs since the spatial
standard deviation σs indicates the scale of textures
to be suppressed (Fig. 5). Because there are no ex-
plicit measures to clearly distinguish scales of the main
structures and textures of an image, the user specifies
the value of σs directly to generate the final result.
We find that satisfactory results can be achieved when
σs ∈ {3, 4, 5, 6, 7}, σr ∈ {0.04, 0.05, 0.055} and Niter ∈
{5, 6, 7, 8, 9, 10}. Alternatively, we may also tweak the
range standard deviation σk

r for the kth iteration by
setting σk

r = σr/min(k, λ), where σr denotes the initial
range standard deviation and λ is set to 3 or 4 in our
experiments. This enables our algorithm to restore the
original color variations of the object surface, as shown
in Fig. 1.
Color image For a color image, we first convert it to
grayscale and compute the guidance image M from this
grayscale image. Then, our unnormalized joint bilateral
filter is applied on each color channel using M to obtain
the filtering result. We employ the contrast preserving
decolorization algorithm [14], which aims to preserve
the original color contrast as much as possible, to ob-
tain grayscale images for most examples in this paper.
Compared to simply computing a grayscale one via a
linear combination of R, G, and B channels with fixed
weight (e.g., the rgb2gray() function in Matlab), us-

(a) (b) (c)

(d) (e) (f)

Fig. 6 Color image filtering. (a) Input image. (b) The result
using the rgb2gray() function of MATLAB. (c) The result
using contrast preserving decolorization [14]. (d) Input image.
(e) The result using grayscale guidance image. (f) The result
using color guidance image. Color guidance image preserves
structures of an image better.

ing contrast preserving decolorization usually produces
better filtering results although it adds some computa-
tion cost, as shown in the first row of Fig. 6.

Color-to-gray conversion inevitably results in infor-
mation loss. Alternatively, we may use full color infor-
mation to compute the guidance image. We first ap-
ply the Gaussian filter and the joint bilateral filter in
each channel of the color image to construct the color
guidance image M . The interpolation coefficient of each
channel is then computed via the corresponding chan-
nel of the guidance image M . Finally, we apply the joint
bilateral filter by using the color M , and blend the in-
put with the result of the joint bilateral filter using the
interpolation coefficient to obtain the final result. The
second row of Fig. 6 shows an example.

5 Results and Applications

In this section, we show the results produced by our
algorithm and compare our approach with the state-
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(a) Input images (b) Xu et al. [26] (c) Zhang et al. [28] (d) Cho et al. [5] (e) Our method

Fig. 7 Comparison with the state-of-the-art methods. The interpolation scheme ensures that our filter can effectively preserve
the original edge shapes. Our method performs better in terms of preserving small objects while eliminating textures (the
bottom row). The parameter values of the state-of-the-art methods are listed in the supplementary material.

of-the-art methods [3,5,11,26,28]. We carefully tuned
the parameters to generate results of these methods.
The experiments show that our method produces sat-
isfactory filtering results and is comparable of previous
works on structure-preserving texture smoothing.

Figure 1, Figure 7 and Figure 8 show comparisons
between our method and previous works [3,5,11,26,28].
In Fig. 1, our method can effectively remove textures
in both small and large regions. By gradually decreas-
ing the values of σr, our method performs better than
the method of Xu et al. [26] in terms of color varia-
tions. Compared to the method of Karacan et al. [11],
our method effectively preserves structure edges, which
are overblurred in their result. Our method can even
preserve partial structures of the fish teeth, which are
removed by Zhang et al. [28] and Cho et al. [5]. The
method of Cho et al. [5] damages the original smooth-
ness of structure edges and leads to jagged transitions.
In contrast, our method can yield smooth edges and
preserve the original edge shapes as much as possible.

Figure 7 shows that both our method and Xu et
al. [26]’s method can preserve the original structure
edge shapes, which are altered in the results of Zhang
et al. [28] and Cho et al. [5]. But with the method of
Xu et al. [26] it is difficult to eliminate textures located
near a structure edge, as pointed out in Cho et al. [5],
and it may mistake parts of structures as textures (see
Fig. 9). As shown in Fig. 8, Bao et al. [3]’s approach
effectively removes textures in pure texture regions, but
may remain textures located near prominent structure
edges. The approach by Karacan et al. [11] may over-
smooth structures while removing texture effectively.
Our method can separate image structures and textures
more cleanly. More results are supplied in the supple-
mentary material.

Our experimental environment involves a computer
with a CPU of Intel Core I5-4590, 4GB memory, and
Matlab version 2013b. For a 400×300 grayscale image,
it takes about 0.23 second for σs = 5 and σr = 0.05
to accomplish one single iteration process using the
grayscale guidance image. The computation time of our
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(a) Input images (b) Karacan et al. [11] (c) Bao et al. [3] (d) Our method

Fig. 8 Texture smoothed by Karacan et al. [11], Bao et al. [3] and our method. The parameter values of the state-of-the-art
methods are listed in the supplementary material.

(a) Input image (b) Xu et al. [26] (c) Our method

Fig. 9 Extracting structures whose scales and appearance
are similar to those of textures. Some structures are removed
by Xu et al. [26].

unoptimized implementation and experimental param-
eter values are shown in Table 1. Note that we construct
the color guidance images to yield corresponding filter-
ing results for the second and fourth rows of Fig. 7,
which inevitably adds to the computation time. We be-
lieve that the performance of our method can be further
improved using GPU acceleration or available acceler-
ation methods of the bilateral filter.

Applications While our focus is on structure-preserving
texture filtering in this work, we can apply our filter to a
variety of image applications, including detail enhance-
ment, edge detection, inverse halftoning, JPEG artifact
removal, image abstraction, and image composition. We

Table 1 Performance of our method (in seconds) and pa-
rameter values.

Example Size of input σs σr Niter Times

Fig. 7 (row 1) 627× 441 5 0.05 6 2.864
Fig. 7 (row 2) 400× 324 4 0.04 11 5.565
Fig. 7 (row 3) 495× 536 4 0.05 7 3.509
Fig. 7 (row 4) 900× 675 5 0.05 5 8.903
Fig. 8 (row 1) 500× 356 7 0.04 8 2.427
Fig. 8 (row 2) 500× 406 5 0.055 8 2.798
Fig. 8 (row 3) 400× 284 3 0.055 6 1.673

show some of them in this section. More application re-
sults are contained in our supplementary material.

We can use our filter in layer decomposition and
achieve detail enhancement results by enhancing the
detail layer. A single iteration is sufficient for detail en-
hancement using our method. The interpolation scheme
of our method yields better results with smooth edges
than those of Cho et al. [5]. Fig. 10 shows an example.
Our method can also be used to remove severe compres-
sion artifacts of cartoon JPEG images. Our restoration
results are comparable to those of previous methods,
as shown in Fig. 11. Due to the ability of removing de-
tails and textures, our method is helpful to find main
edges of an image, as shown in Fig. 12. Directly using
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(a) Input image (b) Cho et al. [5] (c) Our method

Fig. 10 Detail enhancement by Cho et al. [5] and our
method. Parameters: Cho et al. [5] (k = 3, Niter = 5), our
method (σs = 4, σr = 0.04).

(a) (b) (c)

Fig. 11 Comparison of cartoon JPEG artifact removal. (a)
Input image. (b) The result of Cho et al. [5]. (c) The result
of our method.

(a) (b) (c) (d)

Fig. 12 Edge detection by our method. (a) Input image.
(b) Canny edge detection result of (a). (c) Our extracted
structure component. (d) Our corresponding edge map. The
threshold value for the Canny method in (b) and (d) is 0.38.

Canny edge detector on the input image cannot produce
a cleaner structure edges map. Instead, our method pro-
duces the cleaner structure result, which makes edge
detection easy to find structure edges.

6 Discussion

The proposed method can be regarded as complemen-
tary to previous texture filtering approaches. From a
formal standpoint, filtering results of our method are
affected by the interpolation coefficient and the guid-
ance image. Based on the contents of images, different
filtering results can be achieved by setting different val-
ues of the interpolation coefficient and using different
guidance images. If we set the interpolation coefficient
µp to 1 for all images pixels, our method is the same as
the original joint bilateral filter. Our method is allowed
to accept various guidance images. For instance, other

(a) (b) (c)

Fig. 13 Using patch shift [5] as the guidance image. (a) Input
image. (b) The result of Cho et al. [5]. (c) The result of our
method using the guidance image of Cho et al. [5].

(a) Input image (b) Our result

Fig. 14 Failure example. Using a single scale leads to remov-
ing small-scale structures.

guidance image construction methods, such as patch
shift [5], can also be employed here to better distinguish
textures from structures. In this case, our method that
produces smooth edges is a variant of Cho et al. [5].
Figure 13 shows such an example. The interpolation
scheme plays a key role in distinguishing our approach
from other methods. We believe that the applicability
of the proposed unnormalized joint bilateral filter could
be further explored in other extensive research on visual
media processing.
Limitation The limitation is that our method uses a
uniform scale to measure textures of an image, which
may mistake some small-scale structures as textures
and yield unsatisfactory texture filtering results. Fig-
ure 14 shows an example. A multiscale version of our
approach might help to better measure texture features
of different scales and improve filtering results.

7 Conclusion

We have presented a new filter for texture smoothing
based on the two-level local Laplacian filter. By intro-
ducing a guidance image in the remapping function, the
two-level joint local Laplacian filter owns the capabil-
ity of structure-preserving texture smoothing while pre-
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serving color variations. We further introduce the un-
normalized joint bilateral texture filter that is closely
related to the joint bilateral filter. Our method pos-
sesses better performance than the joint bilateral filter
in terms of preserving structure edges while retaining
the simplicity of the joint bilateral filter. Extensive ex-
periments have been conducted to demonstrate the ef-
fectiveness of our method.

In the future, we plan to investigate a scale-adaptive
texture smoothing method. This could improve the qual-
ity of structure-texture separation. Although using our
current guidance image produces satisfactory results in
most cases, we also try to develop more sophisticated
texture measures to create the guidance image.
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