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MULTILUMP SYMMETRIC AND NONSYMMETRIC
GRAVITY-CAPILLARY SOLITARY WAVES IN DEEP WATER∗

ZHAN WANG† AND JEAN-MARC VANDEN-BROECK‡

Abstract. Multilump gravity-capillary solitary waves propagating in a fluid of infinite depth are
computed numerically. The study is based on a weakly nonlinear and dispersive partial differential
equation (PDE) with weak variations in the spanwise direction, a model derived by Akers and
Milewski [Stud. Appl. Math., 122 (2009), pp. 249–274]. For a two-dimensional fluid, this model
agrees qualitatively well with the full Euler equations for the bifurcation curves, wave profiles, and
dynamics of solitary waves. Fully localized solitary waves are then computed for three-dimensional
fluids. New symmetric lump solutions are computed by using a continuation method to follow the
branch of elevation waves. It is then found that the branch of elevation waves has multiple turning
points from which new solutions, consisting of multiple lumps separated by smaller oscillations,
bifurcate. Nonsymmetric solitary waves, which also feature a multilump structure, are computed
and found to appear via spontaneous symmetry-breaking bifurcations. It is shown that all these
new steady solutions are unstable to either longitudinal or transverse perturbations and that the
moderate-amplitude depression solitary waves and the linear dispersive waves serve as attractors in
the long-time evolution of the instability.

Key words. water wave, gravity-capillary free-surface flows, multilump solitary waves,
nonsymmetric solitary waves
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1. Introduction. Gravity-capillary waves, which are commonly referred to as
wind ripples, are ubiquitous on the wind-swept surface of fluids. These waves have
attracted growing interest since they enjoy wide usage in microwave radar remote
sensing (because the typical wavelength of gravity-capillary waves and that of the
microwave radiation emitted from the scatterometer radar are similar [24, 26]). They
are also used to test the prediction of weak turbulence [9]. Furthermore these waves
can overturn and trap air bubbles due to the geometric nature of the surface tension
effect [11, 21]; hence they may contribute to the underwater acoustic background
[16]. Due to those physical significances, in-depth knowledge of the characteristics of
gravity-capillary waves is therefore essential.

We shall consider gravity-capillary waves in deep water with the effects of viscosity
neglected. In particular we shall concentrate on a recently discovered type of solitary
waves which bifurcate from infinitesimal periodic waves at the minimum of the linear
phase speed where the group velocity is equal to the phase velocity, and which are
characterized by oscillatory decaying tails. In the small-amplitude limit, the envelopes
of these solitary waves are well described by the soliton solution of the focusing cubic
nonlinear Schrödinger equation (NLS) and are thereby called wavepacket solitary
waves [7].
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MULTILUMP SOLITARY WAVES 979

The computations of these gravity-capillary solitary waves in a two-dimensional
(2D) fluid of infinite depth (corresponding to a one-dimensional (1D) free surface) were
pioneered by Longuet-Higgins [12]. He computed a branch of waves called depression
solitary waves (the midpoints of these waves lie below the mean water level) from the
full Euler equations. They are characterized by a monotonic speed-amplitude relation.
Later, Vanden-Broeck and Dias [20] found another branch of solitary waves with a pos-
itive free-surface elevation at the center, which were thereafter called elevation solitary
waves. In contrast to the branch of depression waves, there are turning points on the
branch of the elevation waves [8] at which multimodal solutions, consisting of several
humps separated by smaller oscillations, bifurcate (see [8] or Figure 1(a)). These two
basic branches both correspond to symmetric solitary waves. However, recent com-
putation [23] with the full Euler equations shows that nonsymmetric gravity-capillary
solitary waves also exist in deep water. These asymmetric waves have a multimodal
structure and appear via spontaneous symmetry-breaking bifurcations. These results
are consistent with earlier computations by Zufiria [27] and with the asymptotic anal-
ysis of Yang and Akylas [25] based on the fifth-order Korteweg–de Vries equation, a
model for gravity-capillary waves propagating in 2D fluids of finite depth when the
Bond number B = σ/ρgh2 (σ is the surface tension coefficient, ρ is the fluid density,
g is the gravitational acceleration and h is mean depth of the fluid) is close to 1/3.

In contrast to the pure gravity solitary waves which exist only in 2D fluids (see
the rigorous proof in Craig [6]) and in the shallow water regime, the gravity-capillary
solitary waves can exist for both two- and three-dimensional fluids of arbitrary depth.
For a three-dimensional fluid domain (with a 2D free surface), the first computation of
“lump” solutions, which were locally confined in all spatial directions, was by Părău,
Vanden-Broeck, and Cooker [15], with related work by Kim and Akylas [13] and
Milewski [17] on reduced models. Both elevation and depression lumps were found.
They are traveling wavepackets whose envelopes are governed by the ground state
of 2+1 focusing cubic NLS in the small-amplitude limit. The new findings in 2D
fluids, such as the snakelike bifurcation of the elevation branch and the existence of
nonsymmetric solitary waves (see previous paragraph), naturally bring up the question
of the possible existence of similar phenomena in the three-dimensional case. This is
the main problem that we address in the present paper.

Akers and Milewski [1] proposed a Kadomtsev–Petviashvili type model for gravity-
capillary waves in deep water. With this model, these authors reproduced basic eleva-
tion and depression lumps and investigated their dynamics, including the transverse
instability of plane solitary waves, the stability characteristics of lumps, and different
kinds of collisions. Later, Cho et al. [5] generalized this model to involve forcing and
dissipation to study the generation of lumps by moving an air source with the speed
slightly below the phase speed minimum. The comparison between their numerical
results and experimental observations shows good qualitative agreement [3, 4].

In this paper the Akers–Milewski model is used to compute new elevation lumps
and nonsymmetric lumps in deep water, both of which feature a superposition of
multiple lumps (these waves are henceforth called multilump gravity-capillary waves,
a name inherited from the NLS).

The rest of the paper is structured as follows. For completeness we briefly describe
the derivation of the Akers–Milewski equation in section 2. The multilump elevation
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980 ZHAN WANG AND JEAN-MARC VANDEN-BROECK

solitary waves and the nonsymmetric solutions are presented in section 3, as well as
their bifurcation mechanism, which is elucidated from two different points of view. Fi-
nally the stability characteristics of these new waves are carried out via the numerical
time integration of the model equation.

2. Formulation.

2.1. Mathematical description. We consider a three-dimensional, incompress-
ible, and inviscid fluid flowing irrotationally. Let (x, y) denote the horizontal coordi-
nates, z the vertical direction with z = 0 at the undisturbed interface between fluid
and vacuum, and t the time. The fluid is supposed to be infinitely deep with a free
surface z = η(x, y, t) on the top. For irrotational flow there exists a potential function
φ such that the velocity field of the fluid can be expressed as (φx, φy, φz). There-
fore the study of an irrotational flow reduces to the problem of determining φ, which
satisfies Laplace equation in the fluid domain

φxx + φyy + φzz = 0 for z < η(x, y, t).(2.1)

On the free surface z = η(x, y, t), the kinematic and dynamic boundary conditions
need to be satisfied:

ηt = φz −∇η · ∇φ ,(2.2)

φt = −1

2

(|∇φ|2 + φ2z
)− gη +

σ

ρ
∇ ·
[

∇η√
1 + |∇η|2

]
,(2.3)

where ∇ and ∇· are the gradient and the divergent operators acting in the horizontal
variables, g is the acceleration of gravity, σ represents the surface tension coefficient,
and ρ is the density of the fluid. Since gravity and surface tension are equally impor-
tant for our problem, we can nondimensionalize the system by choosing[

σ

ρg

]1/2
,

[
σ

ρg3

]1/4
,

[
σg

ρ

]1/4
(2.4)

as length, time, and potential scales, respectively. Therefore, the dynamic boundary
condition (2.3) can be reduced to

φt = −1

2

(|∇φ|2 + φ2z
)− η +∇ ·

[
∇η√

1 + |∇η|2

]
.(2.5)

Finally, the boundary condition at infinity

φz → 0 as z → −∞(2.6)

completes the whole system.

2.2. Akers–Milewski model. In order to simplify the numerical computations
of the full Euler system (2.1)–(2.6) while capturing the essential dynamic properties,
Akers and Milewski [1] proposed a simple one-way model for gravity-capillary waves
in deep water. The Akers–Milewski model was generalized by Cho et al. [5] by adding
forcing and dissipation to investigate the wave pattern generated by a pressure source
moving over the free surface at speeds slightly below the resonant speed. They showed
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MULTILUMP SOLITARY WAVES 981

that results from both laboratory experiments (Diorio et al. [3, 4]) and numerical
simulations (Cho et al. [5]) were in good agreement.

For completeness, in what follows we give a brief description of the derivation of
the Akers–Milewski model. The dispersion relation or, equivalently, the phase speed
cp is given by the solutions to the linearization of (2.1), (2.2), (2.5), and (2.6) about
a quiescent state and is

ω2 =
√
k2 + l2

(
1 + k2 + l2

)
, |cp|2 =

1√
k2 + l2

(
1 + k2 + l2

)
,(2.7)

where ω is the frequency of linear waves, k and l represent the wavenumber in the
x- and y-directions, respectively, and cp denotes the phase velocity. We assume that
waves propagate in the x-direction only, and as a consequence, y is the spanwise
direction (the direction transverse to the wave propagation). It follows that the phase
speed |cp| attains its minimum

√
2 at k = ±1 and l = 0. For the right-going waves,

ω = sgn(k)
√
(k2 + l2)1/2 + (k2 + l2)3/2.(2.8)

Following Akers and Milewski [1], the model is supposed to be valid in the vicinity
of unidirectional traveling waves with the wavenumber (±1, 0). Therefore ω can be
approximated by the second-order truncation of its Taylor series about the point
(|k∗|, l∗) = (1, 0) and it takes the form

ω ≈
√
2

4
sgn(k)

(
1 + 2|k|+ k2 + 2l2

)
� ω̃.(2.9)

By substituting i∂t for ω, −i∂x for k, −i∂y for l, and iH for sgn(k) in the approxima-
tion (2.9), one obtains the linear dispersive equation

ηt +

√
2

2
ηx −

√
2

4
H
[
η − ηxx − 2ηyy

]
= 0.(2.10)

Here H is the Hilbert transform with respect to x, whose Fourier symbol is −i sgn(k).
To complete the equation, the Burgers’ type nonlinearity is added to (2.10). Finally
we arrive at

ηt +

√
2

2
ηx −

√
2

4
H
[
η − ηxx − 2ηyy

]
+ α

(
η2
)
x
= 0 .(2.11)

Following Akers and Milewski [1], the constant α can be obtained by matching with
the nonlinear coefficient of the underlying cubic NLS of the full Euler equations.
The NLS is a conventional tool for studying the dynamics of the small-amplitude
modulated wavepackets of (2.11). Briefly we introduce the amplitude parameter ε
and the slow-varying variables (X,Y, T, τ) = (εx, εy, εt, ε2t), then expand the free
surface as

η = εA(X − cgT, Y, τ)e
iθ + ε2A2(X − cgT, Y, τ)e

2iθ + c.c. + · · · ,(2.12)

where c.c. represents the complex conjugate, θ = kx+ ly− ω̃t with k = ±1 and l = 0,

and cg = ∂kω̃ =
√
2
2 (1 + |k|). We substitute the ansatz (2.12) into (2.11) and equate

like powers of ε. It turns out that the envelope A is governed by the NLS

iAτ +

√
2

4
AXX +

√
2

2
AY Y + 8

√
2α2|A|2A = 0.(2.13)
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982 ZHAN WANG AND JEAN-MARC VANDEN-BROECK

Since the coefficient of the cubic nonlinearity is 11
√
2/8 for the full Euler equations

(see [1, 5, 22], for example), it follows that

8
√
2α2 =

11

8

√
2 =⇒ α =

√
11

8
.(2.14)

It is easy to prove that (2.11) conserves∫ ∫
R2

η dxdy,

∫ ∫
R2

η2 dxdy(2.15)

corresponding to the conservation of mass and the conservation of energy, respectively.
Furthermore, this equation has a Hamiltonian structure, as it can be written as ηt =
∂x (δJ /δη) with the Hamiltonian functional

J [η] =

∫ ∫
R2

[
−
√
2

4
η2 +

√
2

8
ηH∂−1

x

[
η − ηxx − 2ηyy

]
−

√
11

24
η3

]
dxdy.(2.16)

For traveling waves, we assume η(x, y, t) = η(x− ct, y), where the constant c is called
the translating speed. Hence the governing equation takes the form(√

2

2
− c

)
ηx −

√
2

4
H
[
η − ηxx − 2ηyy

]
+

√
11

8

(
η2
)
x
= 0 .(2.17)

In the next section fully localized traveling-wave solutions are obtained from the
model (2.17) for both 1D and 2D problems. We should clarify that “1D wave” or
“1D problem” or “plane wave” refers to the case when (2.11) is independent of the
variable y, and as a consequence, “2D wave” or “2D problem” means η depends on
both x and y in space.

3. Results.

3.1. Model validation. The speed-amplitude (where “amplitude” is defined as
the elevation of the center of the free surface) bifurcation diagram for 1D gravity-
capillary solitary waves of the full Euler equations in deep water was obtained by
Vanden-Broeck and Dias [20] and then extended by Dias, Menasce, and Vanden-
Broeck [8]. These authors found that the branch of elevation waves has multiple
turning points. In Figure 1(a), we compare the speed-amplitude bifurcation curves
of the reduced model (2.17) (solid line), the full Euler equations (dashed line), and
the leading order of the NLS prediction (dash-dotted line) for the branch of elevation.
The first turning point A occurs at c ≈ 1.22 for the reduced model, which is slightly
different from that of the full Euler equations. The second turning point B (c ≈ 1.407)
appears close to the bifurcation point (i.e., the phase speed minimum). The wave
profiles resemble two depression waves placed side-by-side after the first turning point
A (a typical profile is shown in Figure 2(a)) and feature two single-hump elevation
waves separated by small oscillations when the second turning point B is passed (see
Figure 2(b)). We stop the computation after passing through the second turning
point. It is not clear whether the model equation (2.17) has the third turning point
since at the stopping point the computation time becomes prohibitive in order to
achieved the desired accuracy, while the full Euler equations do have more turning
points [8, 23]. The comparison of typical wave profiles between the model (2.17) (solid
lines) and the full Euler equations (dashed lines) is made in Figure 2. It is clear that
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Speed

Fig. 1. (a) 1D elevation branch computed using the model equation (solid line) and the
full Euler equations (dashed line), together with the small amplitude asymptotic prediction
(dash-dotted curve, calculated using the 1D NLS). The branch, which is parameterized by
the value of η at the middle point of solitary waves, features multiple turning points (labeled
A and B). The wave profiles for the points 1©– 4© are shown in Figure 2. (b) Speed-energy
bifurcation curves for the model equation using rescaled L2-norm (solid line) and the full
Euler equations (dashed line).

−40 −30 −20 −10 0 10 20 30 40
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
(a)

η

−40 −30 −20 −10 0 10 20 30 40
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

η

(b)

Fig. 2. Typical profiles of elevation solitary waves at c = 1.35, computed by the model
equation (solid lines) and the Euler equations (dashed lines). (a) Profiles correspond to 1©
and 3© in Figure 1(a). (b) Profiles correspond to 2© and 4© in Figure 1(a).

the solutions of the model equation overpredict the peak amplitudes of the full Euler
solutions, but the model is remarkably accurate in a qualitative sense. It is noted that
(2.17) was solved via the classic pseudospectral method in the Fourier space (see [1]
for the details). The numerical method for the full steady Euler equations is provided
in detail in the appendix (readers are also referred to [18, 23] for more information).

In Figure 1(b) we compare the speed-energy bifurcation curves of the reduced
model (solid line) and the full Euler equations (dashed line) for the branch of elevationD
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−0.2
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η
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x

Fig. 3. Evolution of 1D stable elevation solitary waves for the model equation. The
undisturbed wave is shown as a solid line in Figure 2(a). Four free-surface profiles are
shown in the dynamics of a perturbed (5% negative energy perturbation) elevation wave:
t = 0, 2000, 3500, 5000 from top to bottom. The profiles are shown in a frame of reference
moving to the right with the speed c = 1.35.

solitary waves. The total energy of the full Euler equations can be expressed as

E =
1

2

∫
R

∫ η

−∞

(
φ2x + φ2z

)
dzdx+

1

2

∫
R

η2 dx+

∫
R

(√
1 + η2x − 1

)
dx .(3.1)

For the reduced model, (3.1) can be approximated by

E ≈ 2

∫
R

η2 dx,(3.2)

recalling that the model is valid in the vicinity of unidirectional waves near wavenum-
ber (±1, 0). Even though these two curves are quantitatively different, the qualitative
property is the same: the segments between two successive turning points are mono-
tonically decreasing. This fact is closely related to the transverse instability of plane
solitary waves, and we will elaborate on this in the next section.

The longitudinal stability of 1D gravity-capillary solitary waves for the full Euler
equations was investigated by Calvo and Akylas [2] based on a numerical eigenvalue
analysis. They concluded that the depression solitary waves are stable both in the
small-amplitude limit and at finite steepness. On the other hand, the elevation waves
are unstable at small amplitudes but regain spectral stability as the first turning point
is passed. These results were confirmed recently by Milewski, Vanden-Broeck, and
Wang [18] via direct numerical simulations of the full Euler equations.

We now show that the same results can be obtained for the model equation (2.11).
The stability of depression waves and the instability of small-amplitude elevation
waves were shown in [1]. Between the turning points A and B in Figure 1(a), a
variety of perturbations with 5% of the energy of the initial waves did not show
instability. This agrees well with the solutions of the Euler equations. In Figure 3,
a sample time-dependent computation is shown. Note that the 5% negative energy
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(b)

Fig. 4. Evolution of 1D unstable elevation solitary waves. The initial wave profile re-
sembles two elevation waves placed side-by-side (see the top figure in the right panel), and
it finally evolves into three separated depression waves. The solution in the t − x plane is
shown in (a), while the typical profiles are shown in (b) for t = 0, 780, 900, 2000 from top to
bottom. All the figures are shown in a frame of reference moving to the right with the speed
c = 1.35.

perturbation generates a wave of slightly higher speed than the unperturbed one.
Since Calvo and Akylas [2] did not consider the stability characteristics after the
second turning point, we performed numerical computations in this regime with the
model equation. This shows that the elevation solitary waves are again unstable. In
this case all perturbations triggered rapid instabilities, and one example is presented
in Figure 4. In contrast to the single-hump elevation wave (solutions before the first
turning point) which finally evolves into one big trough with a lot of radiations, the
traveling-wave solution featuring two humps connected by a small dimple is disturbed
by numerical noise, and the structure eventually breaks up into several depression
waves of different amplitudes as time evolves.

The comparison with the full Euler equations for 2D small- and moderate-amplitude
depression lumps was already done in [5], while it is still not available for the branch
of elevation lumps since its full bifurcation diagram for the full Euler equations is
unclear.

Finally we can draw the conclusion from the bifurcation diagrams (Figure 1), the
typical profiles (Figure 2), and the stability characteristics (Figures 3 and 4) that
(2.11) is a qualitatively accurate model for gravity-capillary waves in deep water. In
the rest of the paper, we focus on the wave patterns and their dynamics in two spatial
dimensions based on the model equation (2.11).

3.2. Transverse instability. The transverse instability of plane gravity-capillary
solitary waves (1D solitary waves trivially extended in the spanwise direction) is
related to the eventual existence of lumps. Relevant researchers include Kim and
Akylas [14], who applied variational arguments to the full Euler equations; Akers and
Milewski [1], who used an analysis based on NLS and direct numerical simulations for
the model (2.11); and Wang and Milewski [22], who performed numerical experiments
for a quantitatively accurate model. All these studies are for 1D depression waves. As
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986 ZHAN WANG AND JEAN-MARC VANDEN-BROECK

shown in section 3.1 the elevation waves between the first and second turning points
are also stable subject to longitudinal perturbations, so it is natural to inquire about
their stability with respect to transverse perturbations.

We suppose U(θ; c) is a plane solitary-wave solution to (2.17) characterized by
the translating speed c, where θ = x− ct; it then follows that(√

2

2
− c

)
Uθ −

√
2

4
H
[
U − Uθθ

]
+

√
11

8

(
U2
)
θ
= 0 .(3.3)

Taking the derivative with respect to c yields(√
2

2
− c

)
(Uc)θ −

√
2

4
H
[
Uc − (Uc)θθ

]
+

√
11

4

(
UUc

)
θ
= Uθ .(3.4)

We perturb the solution in the transverse direction using a long cosine wave, namely,
η = U(θ; c)+η̃(θ; c) eiβy+λt with the small wavenumber β in the direction transverse to
the wave propagation. By substituting the expression for η into (2.11) and collecting
the coefficient of the term eiβy+λt, we obtain(√

2

2
− c

)
η̃θ −

√
2

4
H
[
η̃ − η̃θθ + 2β2η̃

]
+

√
11

4

(
Uη̃
)
θ
= −λη̃ .(3.5)

Furthermore, we assume

η̃ = η(0) + βη(1) + β2η(2) + · · · , λ = βλ(1) + β2λ(2) + · · · .(3.6)

By substituting the expansion (3.6) into (3.5) and equating like powers of β, we obtain
at O(1) (√

2

2
− c

)
η
(0)
θ −

√
2

4
H
[
η(0) − η

(0)
θθ

]
+

√
11

4

(
Uη(0)

)
θ
= 0 .(3.7)

It is obvious that η(0) = Uθ is a solution to the homogeneous equation (3.7). To O(β),
η(1) satisfies the forced problem(√

2

2
− c

)
η
(1)
θ −

√
2

4
H
[
η(1) − η

(1)
θθ

]
+

√
11

4

(
Uη(1)

)
θ
= −λ(1)Uθ .(3.8)

Recalling (3.4), the solution to (3.8) is η(1) = −λ(1)Uc. It is a well-behaved solution.
At the next order the equation for η(2) is(√

2

2
− c

)
η
(2)
θ −

√
2

4
H
[
η(2) − η

(2)
θθ

]
+

√
11

4

(
Uη(2)

)
θ

= −
(
λ(1)η(1) + λ(2)η(0)

)
+

√
2

2
H
[
η(0)

]
.(3.9)

The adjoint of the operator on the left-hand side of (3.9) is

L† =

(
c−

√
2

2

)
∂θ +

√
2

4
H
[
1− ∂θθ

]
−

√
11

4
U∂θ(3.10)
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and it is obvious that L†U = 0. It follows that the solvability condition for the
inhomogeneous equation (3.9) is∫ ∞

−∞

[
−
(
λ(1)η(1) + λ(2)η(0)

)
+

√
2

2
H
[
η(0)

]]
U dθ = 0

=⇒
∫ ∞

−∞

[(
λ(1)

)2
UcU − λ(2)UθU +

√
2

2
H [Uθ]U

]
dθ = 0

=⇒
(
λ(1)

)2 d

dc

∫ ∞

−∞
U2dθ = −

√
2

∫ ∞

−∞
H [Uθ]Udθ = −

√
2

∫ ∞

−∞
|k|∣∣Û ∣∣2dk,(3.11)

where the hat symbol represents the Fourier transform. It is noted that the last
equality comes from the Parseval’s theorem or the convolution theorem and indicates
that the right-hand side of (3.11) is negative. We infer from (3.11) that the plane
solitary-wave solution U is transversely unstable if it satisfies

d

dc

∫ ∞

−∞
U2 dθ < 0 .(3.12)

For elevation solitary waves, Figure 1(b) shows that (3.12) is satisfied, and hence the
instability persists.

The transverse instability is investigated through direct numerical computations
of the Akers–Milewski model. Snapshots of the evolution of a 1D longitudinally stable
elevation wave subject to a transverse perturbation are shown in Figure 5. We take
the initial condition as

η(x, y, 0) =
[
1 + 0.01 cos

(πy
40

)]
U(x),(3.13)

where the line solitary wave U is the solution shown as a solid line in Figure 2(a).
The evolution of the instability initially shows a focusing behavior and ultimately
results in multiple depression lumps and a radiated wave field. We should emphasize
that the transverse instability strongly suggests that fully localized depression lumps
are (neutrally) stable and appear to be attractors in the long time evolution of the
problem.

3.3. Bifurcation of multilump solitary waves. We now turn our attention
to 2D gravity-capillary lumps. The basic elevation and depression lumps, which are
symmetric in both the x and y directions, were computed in deep water with the
full Euler equations by Părău, Vanden-Broeck, and Cooker [15]. These two branches
bifurcate from infinitesimal periodic waves at the minimum of the linear dispersion
relation where the phase velocity is aligned with the group velocity. However, the
snakelike bifurcation diagram for the 1D elevation branch stimulates further investi-
gation of the 2D elevation lumps.

The branch of elevation lumps is followed to the regime far away from the bi-
furcation point at infinitesimal amplitude. The bifurcation diagrams are shown in
Figure 6(a) and (b) using the energy and the value of the central point of the pro-
file as parameters. Both plots exhibit multiple turning points, which have already
been observed in the 1D case. The 2D lumps were computed using at least 400× 100
grid points along the propagating and spanwise directions, respectively. The solutions
close to the bifurcation point are often difficult to compute accurately since the spatial
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988 ZHAN WANG AND JEAN-MARC VANDEN-BROECK

Fig. 5. Transverse instability of the plane solitary wave. The transverse perturbation
is obtained by taking the initial data as η(x, y, 0) = [1 + ε cos(βy)]U(x), where ε = 0.01,
β = π/40, and U is the 1D traveling wave shown as a solid line in Figure 2(a). Evolution of
the transverse instability to multiple lumps is shown for (a) t = 0, (b) t = 120, (c) t = 160,
and (d) t = 240.

decay of those solutions is much slower. Thus, the computational domain is gradually
enlarged as the translating speed c increases. At the turning points the parameter
along the curve had to be changed, and we alternated between using η(0, 0) and c in
order to follow the curve. The speed-energy curve starts from the bifurcation point
c =

√
2, then follows the path C→D→ 5©→ 6©→ 7©→E→ 8©→F→ 9©. Typical profiles

corresponding to the points labeled 6© and 9© are shown in Figure 7, and both fea-
ture a multilump structure. Like in the 1D case, Figure 7(a) (corresponding to 6©)
resembles two depression lumps, while Figure 7(b) (corresponding to 9©) is composed
by two elevation lumps (four troughs). The profile 9© has approximately twice the
energy of 6©, since it has twice the number of troughs of similar amplitude.
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Fig. 6. (a) Speed-energy bifurcation curve for 2D elevation solitary waves with the turning
points D and F and the local minima C and E. The curve starts from the bifurcation point
c =

√
2, then follows the path C→D→ 5©→ 6©→ 7©→E→ 8©→F→ 9©. The portion close to the

bifurcation point is shown in detail. (b) Values of η(0, 0) versus speed for the branch of 2D
elevation solitary waves.

Fig. 7. Typical profiles of elevation lumps for (a) c = 1.35, η(0, 0) = 0.0251, ||η||2L2 =

9.6288 (point labeled 6© in Figure 6(a)); (b) c = 1.35, η(0, 0) = 0.0328, ||η||2L2 = 20.2528
(point labeled 9© in Figure 6(a)).

The analytical (Groves, Haragus, and Sun [10]) and the numerical (Milewski and
Wang [19]) works, motivated by the transverse instability of plane solitary waves,
offer another bifurcation mechanism for lump solutions. The authors in [10] and [19]
pointed out that there is a family of traveling waves which are fully localized in the
direction of propagation and nontrivially periodic in the spanwise direction which can
bridge plane solitary waves and lumps. This family of solutions degenerates to a plane
solitary wave as the period in the spanwise direction decreases to a nonzero critical
value and becomes a lump as the period tends to be infinity. We show that this
assertion is also true for the multilump elevation waves. Figure 8 shows the evolution
from a plane solitary wave to a fully localized multilump solution as the period in the
spanwise direction increases and the speed is fixed (c = 1.38).
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990 ZHAN WANG AND JEAN-MARC VANDEN-BROECK

Fig. 8. The formation of a symmetric multilump solitary wave via a secondary bifurca-
tion of a plane solitary wave. A new family of traveling waves, which are fully localized in
the propagation direction and nontrivially periodic in the transverse direction, branches off
from the plane solitary wave (a) when the wavenumber in the transverse direction βc ≈ 0.38.
Typical profiles of the transversally periodic solitary waves are shown in (b) and (c) corre-
sponding to β = 0.3590 and β = 0.2285, respectively. Finally, as β ↓ 0, a fully localized
multilump solution (d), which corresponds to the point 7© in Figure 6, forms.

We now take a plane solitary wave solution U(θ) and perturb it with a cosi-
nus wave. Substituting the ansatz η = U(θ) + εη̃(θ) cos(βy) into system (2.17) and
linearizing it with respect to the perturbation parameter ε, we obtain[(√

2

2
− c

)
∂θ +

√
2

4
H∂θθ +

√
11

4
Uθ +

√
11

4
U∂θ

]
η̃ =

√
2

4

(
1 + 2β2

)H[η̃](3.14)

with the boundary condition η̃ → 0 as θ → ±∞. The threshold wavenumber for the
new branch leading to the lump solution is obtained by picking the maximal positive
β. The critical value of β for the example (Figure 8) is 0.379. This was obtained by
solving numerically the eigenvalue problem (3.14). This theoretical prediction is in
agreement with the numerical result (≈ 0.38) as shown in Figure 8(a).

The finding of the 1D nonsymmetric gravity-capillary solitary waves inspires us to
generalize the result to the 2D case. For simplicity, we assume that the solutions are
symmetric in the spanwise direction (i.e., η(x,−y) = η(x, y)), but nonsymmetric in
the wave propagation direction (namely, η(x0 − x, y) 	≡ η(x+ x0, y) for arbitrary x0).
The loss of the symmetry in one direction requires doubling the number of unknowns in

D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

38
.3

8.
54

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTILUMP SOLITARY WAVES 991

the numerics, but we still use at least 400×100 grid points along the wave propagation
and spanwise directions, respectively. In order to find a nonsymmetric lump, it is
essential to choose a good initial guess for the Newton’s method. We prepare the
initial data by gluing successively a depression lump and an elevation lump along the
x-axis, both of which travel with the same speed. The Newton’s method can then
produce a new solitary-wave solution without symmetry in the x-direction. Once this
solution is obtained, a global investigation of the nonsymmetric solutions along this
branch can be carried out through numerical continuation methods.

The speed-energy bifurcation diagram of a branch of nonsymmetric lumps is
shown in Figure 9. The 2D nonsymmetric solitary waves (solid line), which decay
in both the x- and y-directions, appear via a spontaneous symmetry-breaking bifur-
cation. The bifurcation curve then experiences a turning point at c ≈ 1.3388, where
the wave speed attains its minimum, and finally terminates on another symmetry-
breaking bifurcation. It is worth mentioning that the symmetric branches (dashed
lines in Figure 9), from which the nonsymmetric solutions bifurcate, also show turn-
ing points on the speed-energy curves, and the nonsymmetric branch intersects the
symmetric branches near these turning points.

Typical profiles of nonsymmetric lumps corresponding to the points 12© and 10©
in Figure 9 are shown in Figure 10(a) and Figure 11(d) with their centerline profiles
(Figure 10(b)). The profiles show a multilump structure. Figure 10(b) shows the
comparison of the centerline profiles of two solutions propagating with the same speed
c = 1.4. The two profiles are almost the same from the vertical dashed line to the
right end but differ abruptly on the left parts.

The existence of nonsymmetric multilump solutions can also be interpreted as
a secondary bifurcation, and one example is given in Figure 11. A new branch of
traveling-wave solutions which feature nontrivial periodic variations in the spanwise
direction bifurcates from a nonsymmetric plane solitary wave (Figure 11(a)). The bi-
furcation wavenumber is β ≈ 0.25, which is coincident with the prediction (≈ 0.247) of
(3.14). As the period in the spanwise direction increases, the profile becomes more and
more localized and approaches a nonsymmetric multilump solution (Figures 11(b)–
(d)). It is worth mentioning that the eigenvalue problem (3.14) is solved by using
ARPACK in MATLAB, since the matrix is non-Hermitian due to the nonsymmetric
nature of the plane wave. It is finally noted that so far we were not able to find the
solutions which are nonsymmetric along the spanwise direction.

3.4. Stability of multilump solitary waves. As for the transverse instability

of plane solitary waves, the quantity d
dc

∣∣∣∣η∣∣∣∣2
L2 plays an important role in the stability

characteristics of lumps. The argument proceeds in the same vein. ρ(θ, y; c) is sup-
posed to be a locally confined traveling-wave solution propagating in the x-direction
with the speed c and perturbed by ερ̃(θ, y; c)eλt, where ε is a small parameter. By
substituting this ansatz into (2.11) and collecting the coefficient of eλt, we obtain the
linearized equation(√

2

2
− c

)
ρ̃θ −

√
2

4
H
[
ρ̃− ρ̃θθ − 2ρ̃yy

]
+

√
11

4

(
ρρ̃
)
θ
= −λρ̃ .(3.15)

Expanding ρ̃ as Taylor series in terms of the small parameter λ

ρ̃ = ρ(0) + λρ(1) + λ2ρ(2) + · · ·(3.16)D
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Fig. 9. The speed-energy bifurcation curve of a branch of nonsymmetric multilump soli-
tary waves (solid line) with a sharp turning point H at c = 1.3388. These waves appear
via spontaneous symmetry-breaking bifurcations at the points G and I, and the associated
branches of symmetric multilump solutions are shown by dashed curves.

Fig. 10. (a) A typical profile of nonsymmetric multilump solitary waves (labeled 12© in
Figure 9). (b) The comparison of the centerline profile η(x, 0) for different nonsymmetric
lumps propagating at the same speed (c = 1.4). The upper plot corresponds to the solution
labeled 10© in Figure 9, and the bottom plot corresponds to point 12©.

and substituting into (3.15) gives ρ(0) = ρθ and ρ(1) = −ρc by using an argument
similar to that outlined in section 3.2. Subsequently collecting terms of O(λ2) gives
the equation for ρ(2),(√

2

2
− c

)
ρ(2) −

√
2

4
H
[
ρ(2) − ρ

(2)
θθ − 2ρ(2)yy

]
+

√
11

4

(
ρρ(2)

)
θ
= ρc .(3.17)

Therefore the solvability condition∫ ∫
R2

ρρc dθdy =
1

2

d

dc

∫ ∫
R2

ρ2 dθdy = 0(3.18)
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Fig. 11. The formation of a nonsymmetric multilump solitary wave via a secondary
bifurcation of a nonsymmetric plane solitary wave. (a) The bifurcation appears at βc ≈
0.25. Typical profiles of the transversally periodic solitary waves are shown in (b) and (c),
corresponding to β = 0.2185 and β = 0.1571, respectively. Finally, as β ↓ 0, it converges
to a fully localized, nonsymmetric and multilump solution (d) (corresponding to point 10© in
Figure 9).

gives us the necessary condition that the translational eigenmode becomes unstable
only if the L2-norm of the lump is at a local extremum when viewed as a function
of the translating speed. Figure 6(a) implies that the stability characteristics of the
elevation branch may change at C and E (critical points) and at D and F(turning
points). It is noted that based on the reduced model the stability of the single-hump
elevation lumps has already been studied by Akers and Milewski [1], who numerically
showed that elevation lumps are unstable before point D.

We take the point 5© in Figure 6(a) as a typical example to show that waves
between points D and E are unstable (see Figure 12). The initial profile which consists
of two depression lumps (similar to Figure 7(a)) is perturbed by numerical noise.
Unlike 1D stable elevation waves (see Figure 3), the spanwise direction adds freedom
for triggering the instability in two dimensions. The decoupling of two depression
lumps happens in the spanwise direction, which starts to be visible in (b) and is fully
completed in (d).

We then consider the stability characteristics between E and F in Figure 6(a), a
segment close to the bifurcation point. The authors in [1, 22] showed that small-
amplitude single-lump elevation waves (corresponding to the portion before C in
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Fig. 12. Four snapshots of the evolution of a symmetric multilump elevation wave with
c = 1.3 and η(0, 0) = 0.0474 (labeled 5© in Figure 6(a)). The undisturbed steady solution is
similar to Figure 7(a). The numerical noise can cause two main depression lumps to decouple
in the transverse direction. The solution is shown at t = 1230, when the initial instability
starts to be visible, and then t = 1300, when the apparent separation shows up.

Figure 6(a)) disperse out for negative energy perturbations but focus and evolve into
an oscillatory state of depression lumps for positive energy perturbations. However,
small-amplitude multilump elevation waves have different dynamical behaviors of in-
stability. An example of this is shown in Figure 13, where we track the maximum
amplitude of the free surface arising from perturbed initial data. For a positive en-
ergy perturbation, there is an initial focusing instability resulting in large growth.
What follows is a decrease of the amplitude (solid curve in Figure 13(b)), and the free
surface finally decays into dispersive waves. This is to be contrasted to the single-
hump solutions, which are stopped by the formation of a recurrent finite-amplitude
oscillatory depression state.

There are single-hump elevation components in the symmetric solutions after
point F in Figure 6(a) and in the nonsymmetric solutions presented in Figure 9.
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Fig. 13. Instability of solitary waves between E and F in Figure 6(a). A symmetric
multilump elevation wave with c = 1.41 and η(0, 0) = 0.0058 (shown in (a)) was subjected
to the 1% positive energy perturbation (solid curve) and 1% negative energy perturbation
(dashed curve). The solution finally disperses out regardless of the perturbation.

Fig. 14. Snapshots of the evolution of a nonsymmetric solitary wave with c = 1.39
(corresponding to point 11© in Figure 9) in the model equation at (a) t = 0, (b) t = 600,
(c) t = 700, (d) t = 1000. The perturbation is the numerical noise, and the unstable wave
evolves into two breathers and small-amplitude waves radiated during the instability.D
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Therefore we expect the symmetry-breaking instability for the elevation component,
which eventually leads to the formation of multiple depression lumps with different
amplitudes. An illustrative example for the evolution of a nonsymmetric multilump
solution is shown in Figure 14.

4. Conclusion. It is well known that the gravity-capillary free-surface flows
support a very rich structure of solitary-wave solutions. The recent findings of the
snakelike pattern of the symmetric elevation branch in bifurcation and the existence of
the nonsymmetric solitary waves in the 1D problem initiated our study. Here, based on
a reduced model proposed by Akers and Milewski [1], we generalized the results to the
2D case. The bifurcation curves of the 2D symmetric elevation lumps were traced via a
numerical continuation method to pass through several turning points. Lumps, which
are nonsymmetric along the wave propagation direction, were computed numerically
and found to appear via spontaneous symmetry-breaking bifurcations. Both of them
feature a multilump structure and can be viewed as bifurcating along a new family
of traveling-wave solutions which are fully localized in the propagation direction and
nontrivially periodic in the spanwise direction. The discovery of these multilump
solutions in the model equation leads us to postulate the existence of similar solutions
in the full Euler equations in deep water.

The instability and subsequent evolution of 1D multimodal plane solitary waves
and of 2D multilump solitary waves have been explored numerically by perturbing the
waves and computing the solution by integrating in time the model equation. All the
solitary waves that we computed in this paper were found to be unstable, and their
dynamical behaviors turned out to be very different from those of the single-lump
solutions.

Appendix A. Numerical method for 1D steady waves for the full
Euler equations. In this appendix, the detailed numerical formulation is presented
for computing 1D steady gravity-capillary waves propagating in deep water. The for-
mulation is based on the hodograph transformation and the Cauchy integral formula.
This numerical scheme was originated from the work of Vanden-Broeck and Dias [20]
and later used in a few papers (for example, [2, 8, 13]).

Since we seek fully localized waves traveling with the translating speed c for (2.1),
(2.2), (2.5), and (2.6), we choose a frame of reference moving with the same speed.

We define θ = x + ct and introduce a new function φ̂(θ, z) = φ + cθ. Therefore the
kinematic and dynamic boundary conditions read⎧⎪⎨⎪⎩

φ̂θ ηθ = φ̂z ,

1

2

(
φ̂2θ + φ̂2z − c2

)
+ η − ηθθ

(1 + η2θ)
3/2

= 0 .
(A.1)

We introduce the complex potential

f(w) = φ̂+ iψ,(A.2)

where ψ is the stream function and w = θ + iz. We use a hodograph transformation
to exchange the dependent and independent variables:

w(f) = θ(f) + iz(f) .(A.3)

It follows immediately that

φ̂θ − iφ̂z =
df

dw
=

1

θ
̂φ + iz

̂φ

.(A.4)
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Without loss of generality we choose θ = 0 at φ̂ = 0 and ψ = 0 for the free surface.
Applying the Cauchy integral formula to the fluid layer yields

Θ̇
(
φ̂
)
=

1

c
+

1

π

∫
R

Ż
(
φ̂′
)

φ̂− φ̂′
dφ̂′,(A.5)

where Θ(φ̂) = θ(φ̂ + i 0) and Z(φ̂) = z(φ̂+ i 0). Furthermore, the dynamic boundary
condition in the inverse plane takes the form

1

2

(
1

Θ̇2 + Ż2
− c2

)
+ Z +

Θ̈Ż − Z̈Θ̇(
Θ̇2 + Ż2

)3/2 = 0 .(A.6)

It is obvious that (A.5) is nearly singular as c approaches zero. To overcome this

difficulty, we redefine φ̂ = cξ. After some algebra, (A.5) and (A.6) can be recast as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Θ̇(ξ) = 1 +

1

π

∫
R

Ż(ξ′)
ξ − ξ′

dξ′ = 1 +H
[
Ż
]
,

c2

2

(
1

Θ̇2 + Ż2
− 1

)
+ Z +

Θ̈Ż − Z̈Θ̇(
Θ̇2 + Ż2

)3/2 = 0 .

(A.7)

And finally the energy (3.1) in the transformed plane can be written as

E =
c2

2

∫
R

ZH[Zξ] dξ +
1

2

∫
R

Z2Θ̇ dξ +

∫
R

(√
Θ̇2 + Ż2 − Θ̇

)
dξ .(A.8)

This agrees with the formula given in [18, 23].
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