

Citation for published version: Twum, EA, Nathubhai, A, Wood, PJ, Lloyd, MD, Thompson, AS & Threadgill, MD 2015, 'Initial development of a cytotoxic amino-seco-CBI warhead for delivery by prodrug systems', Bioorganic and Medicinal Chemistry, vol. 23, no. 13, pp. 3481-3489. https://doi.org/10.1016/j.bmc.2015.04.034

DOI: 10.1016/j.bmc.2015.04.034

Publication date: 2015

Link to publication

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

SUPPLEMENTARY INFORMATION

Initial development of a cytotoxic amino-seco-CBI warhead for delivery by prodrug systems

Elvis A. Twum, Amit Nathubhai, Pauline J. Wood, Matthew D. Lloyd, Andrew S. Thompson and Michael D. Threadgill*

Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK

Synthetic methods for 31-33,37

Naphthalene-1,4-dione (14). KNO₃ (35.5 mg, 0.35 mmol) was added to **13** (67.6 mg, 0.35 mmol) in CF₃CO₂H (10 mL) at -20°C. The mixture was stirred at -20°C for 35 min and poured onto ice. Extraction (EtOAc), drying and chromatography (CH₂Cl₂ / EtOAc 3:2) gave **14** (41.4 mg, 75%) as a pale buff solid: mp 124-126°C (lit.¹ 125-127°C); ¹H NMR ((CD₃)₂SO) (COSY) δ 7.14 (2 H, s, 2,3-H₂), 7.93 (2 H, m, 6,7-H₂), 8.04 (2 H, m, 5,8-H₂); ¹³C NMR ((CD₃)₂SO) δ 125.83 (5,8-C₂), 131.53 (4a,8a-C₂), 134.18 (6,7-C₂), 138.70 (2,3-C₂), 184.80 (1,4-C₂); MS *m/z* 159.0446 (M + H)⁺ (C₁₀H₇O₂ requires 159.0446).

4-Amino-2-nitronaphthalen-1-ol (16). SnCl₂.2H₂O (15.0 g, 67 mmol) in EtOH (20 mL) was added to **15** (5.04 g, 22 mmol) in aq. HCl (9 M, 20 mL) and EtOH (10 mL) during 1 h at < 35°C. The mixture was stirred for 17 h at 20°C. The suspension was filtered and the solid was washed with EtOH / aq. HCl (9 M) (3:2). The yellow solid was partitioned between EtOAc and water. The aqueous layer was extracted (EtOAc, 3×). The combined extracts were washed (brine) and dried. Evaporation and chromatography (CH₂Cl₂) gave **16** (3.11 g, 71%) as a pale pink solid: mp 160-161°C (lit.² mp 160°C); IR v_{max} 3418, 3337 cm⁻¹; ¹H NMR δ 3.98 (2 H, s, NH₂), 7.26 (1 H, s, 3-H), 7.64 (1 H, dd, *J* = 8.1, 7.0 Hz, 7-H), 7.74 (1 H, dd, *J* = 8.3, 6.9 Hz, 6-H), 7.83 (1 H, d, *J* = 8.4 Hz, 5-H), 8.53 (1 H, dd, *J* = 8.3, 0.6 Hz, 8-H), 11.92 (1 H, s, OH); ¹³C NMR δ 100.54 (3-C), 121.42 (5-C), 125.65 (8a-C), 125.92 (8-C), 127.15 (7-C), 127.90 (2-C), 129.56 (4a-C), 130.87 (6-C), 135.18 (4-C), 150.11 (1-C); MS *m/z* 203.0466 (M - H)⁻ (C₁₀H₇N₂O₃ requires 203.0457).

4-Amino-2-nitronaphthalen-1-yl 1,1-dimethylethyl carbonate (17). Compound **16** (54 mg, 0.26 mmol) was stirred with Boc₂O (60 mg, 0.28 mmol) and 4-dimethylaminopyridine (25 mg, 0.20 mmol) in CH₂Cl₂ (17 mL) for 30 min under N₂. The mixture was washed (water, brine) and dried. Evaporation and chromatography (CH₂Cl₂) gave **17** (14 mg, 17%) as a yellow solid, which decomposed on heating: ¹H NMR δ 1.60 (9 H, s, Bu^t), 4.34 (2 H, s, NH₂), 7.29 (1 H, s, 3-H), 7.62-7.66 (2 H, m, 6,7-H₂), 7.81 (1 H, m, 5-H), 8.15 (1 H, m, 8-H); ¹³C NMR δ 27.60 (*CMe₃*), 84.87 (*CMe₃*), 102.48 (3-C), 121.22 (5-C), 124.15 (8-C), 126.12 (4a-C), 128.14 (6-C), 128.20 (8a-C), 128.67 (7-C), 133.79 (4-C), 137.91 (2-C), 141.07 (1-C), 150.94 (C=O).

1,1-Dimethylethyl (4-hydroxy-3-nitronaphthalen-1-yl)carbamate (18). Compound **16** (560 mg, 2.7 mmol) was stirred with Boc₂O (3.04 g, 14 mmol) in dry THF (25 mL) under N₂ under reflux for 20 h. The mixture was cooled. The evaporation residue, in CH₂Cl₂, was washed (water, brine). Drying, evaporation and chromatography (petroleum ether / EtOAc 9:1) gave **18** (740 mg, 89%) as an orange solid: mp 175-177°C; IR v_{max} 3338, 3259, 1687, 1525 cm⁻¹; ¹H NMR (NOESY) δ 1.55 (9 H, s, Bu^t), 6.59 (1 H, br s, NH), 7.65 (1 H, ddd, *J* = 8.2, 7.0, 1.1 Hz,

6-H), 7.77 (1 H, ddd, J = 8.2, 6.9, 1.2 Hz, 7-H), 7.87 (1 H, d, J = 8.4 Hz, 8-H), 8.33 (1 H, s, 2-H), 8.56 (1 H, dd, J = 8.4, 0.5 Hz, 5-H), 12.11 (1 H, s, OH); ¹³C NMR & 28.31 (*CMe₃*), 81.31 (*CMe₃*), 112.82 (2-C), 121.46 (8-C), 125.45 (8a-C), 125.83 (4-C), 125.91 (4a-C), 127.25 (6-C), 127.55 (3-C), 131.56 (7-C), 152.98 (4-C), 153.50 (C=O); MS *m/z* 327.0966 (M + Na)⁺ (C₁₅H₁₆N₂NaO₅ requires 327.0957).

4-(1,1-Dimethylethoxycarbonylamino)-2-nitronaphthalen-1-yl

trifluoromethanesulfonate (19). (F₃CSO₂)₂O (1.20 g, 4.2 mmol) was added dropwise during 45 min to 18 (808 mg, 2.7 mmol) in dry pyridine (20 mL) under N₂ at 0°C and the mixture was stirred for 30 min at 0°C. The mixture was then warmed to 20°C during 10 min. Water was added and the mixture was extracted (EtOAc). Drying, evaporation and chromatography (CH₂Cl₂ → CH₂Cl₂ / EtOAc 1:1 → EtOAc) gave 19 (942 mg, 81%) as a yellow solid: mp 110-111°C; IR v_{max} 3435, 1737 cm⁻¹; ¹H NMR (NOESY) δ 1.59 (9 H, s, Bu^t), 7.19 (1 H, s, NH), 7.78-7.82 (2 H, m, 6,7-H₂), 7.96 (1 H, d, *J* = 8.0 Hz, 5-H), 8.29 (1 H, d, *J* = 8.2 8-H), 8.73 (1 H, s, 3-H); ¹³C NMR δ 28.20 (CMe₃), 82.54 (CMe₃), 110.52 (3-C), 118.42 (q, *J* = 321.2 Hz, CF₃), 121.34 (5-C), 125.19 (8-C), 127.13 (8a-C), 127.51 (4a-C), 129.35 (6-C or 7-C), 130.12 (7-C or 6-C), 132.72 (2-C), 134.61 (4-C), 143.02 (1-C), 152.20 (C=O). ¹⁹F NMR (CDCl₃) δ -72.55 (s, CF₃); MS *m/z* 459.0484 (M + Na)⁺ (C₁₆H₁₅F₃N₂NaO₇S requires 459.0450).

1,1-Dimethylethyl N-(3-amino-4-oxonaphthalen-1-ylidene)carbamate (21). Compound **18** (66 mg, 0.22 mmol) was stirred vigorously with Pd/C (36.5 mg) in MeOH (20 mL) under H₂ for 1.5 h. Filtration (Celite[®]) and evaporation gave **21** (51 mg, 84%) as a dark buff solid: mp 155-156°C; IR v_{max} 3331, 1704 cm⁻¹; ¹H NMR δ 1.61 (9 H, s, Bu^{*l*}), 5.06 (2 H, s, NH₂), 6.10 (1 H, s, 2-H), 7.58 (1 H, t, *J* = 7.2 Hz, 6-H), 7.65 (1 H, t, *J* = 6.9 Hz, 7-H), 8.09 (1 H, d, *J* = 7.6 Hz, 5-H), 8.29 (1 H, d, *J* = 7.7 Hz, 8-H); ¹³C NMR δ 28.23 (CMe₃), 82.26 (CMe₃), 99.01 (2-C), 125.78 (8-C), 126.33 (5-C), 130.41 (4a-C), 131.27 (6-C), 133.62 (7-C), 134.84 (8a-C), 144.84 (3-C), 157.13 (1-C), 162.94 (Boc C=O), 180.70 (4-C); MS *m/z* 567.2262 (2 M + Na)⁺ (C₃₀H₃₂N₄NaO₆ requires 567.2220), 295.1052 (M + Na)⁺ (C₁₅H₁₆N₂NaO₃ requires 295.1059).

1,1-Dimethylethyl N-(4-oxo-3-(2,2,2-trifluoroacetamido)naphthalen-1-ylidene)carbamate (22). K₂CO₃ (178 mg, 1.3 mmol) and Na₂S₂O₄ (198 mg, 1.1 mmol) in water (4.0 mL) were added dropwise to **18** (75 mg, 0.25 mmol) in CH₂Cl₂ (8.0 mL) and water (1.0 mL) under N₂. Stirring was continued for 16 h at 35°C. The organic phase was separated, dried and filtered. The filtrate was cooled to 0°C. Pr_2^i NEt (580 mg, 4.5 mmol) was added, followed by dropwise addition of (F₃CCO)₂O (315 mg, 1.5 mmol). The mixture was stirred at 0°C for 15 min then at 20°C for 2 h, before being washed with (water, brine) and dried. Evaporation and chromatography (petroleum ether / EtOAc 9:1) gave **22** (39 mg, 42%) as a yellow solid: mp 122-123°C; IR v_{max} 3290, 3097, 1744 cm⁻¹; ¹H NMR δ 1.66 (9 H, s, Bu^t), 7.71 (1 H, ddd, *J* = 9.0, 7.7, 1.9 Hz, 6-H), 7.78 (1 H, ddd, *J* = 8.9, 7.4, 1.5 Hz, 7-H), 8.13 (1 H, s, 2-H), 8.19 (1 H, dd, *J* = 7.7, 1.1, Hz, 5-H), 8.36 (1 H, dd, *J* = 7.8, 0.9 Hz, 8-H), 9.17 (1 H, s, NH); ¹³C NMR δ 28.13 (*CMe*₃), 84.22 (*CMe*₃), 114.57 (2-C), 114.72 (q, *J* = 288.4 Hz, CF₃), 126.11 (8-C), 127.12 (5-C), 129.40 (4a-C), 132.45 (6-C), 133.67 (3-C), 134.80 (7-C), 135.00 (8a-C), 155.28 (Boc C=O), 155.57 (q, *J* = 39.2 Hz, CF₃C=O), 161.36 (1-C), 178.63 (4-C); ¹⁹F NMR (CDCl₃) δ -75.76 (s, CF₃); MS *m/z* 367.0941 (M - H)⁻ (C₁₇H₁₄F₃N₂O₄ requires 367.0906).

Ethyl 5-hydroxyindole-2-carboxylate (31). 5-Hydroxyindole-2-carboxylic acid **30** (1.53 g, 8.6 mmol) was boiled under reflux in EtOH (100 mL) saturated with HCl under N₂ for 4 h. The evaporation residue, EtOAc, was washed (water, brine). Drying, evaporation and chromatography (CH₂Cl₂ \rightarrow CH₂Cl₂ / EtOAc 4:1) gave **31** (1.64 g, 92%) as a white solid: mp

152-154°C (lit.³ 146-148°C); IR v_{max} 3316, 3209, 1696 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 1.38 (3 H, t, *J* = 7.1 Hz, Me), 4.37 (2 H, q, *J* = 7.1 Hz, CH₂), 6.86 (1 H, dd, *J* = 8.8, 2.4 Hz, 6-H), 6.97 (1 H, d, *J* = 2.3 Hz, 4-H), 7.00 (1 H, dd, *J* = 2.1, 0.8 Hz, 3-H), 7.32 (1 H, d, *J* = 8.8 Hz, 7-H), 8.93 (1 H, s, OH), 11.60 (1 H, s, NH). ¹³C NMR ((CD₃)₂SO) δ 14.29 (Me), 60.17 (CH₂), 104.43 (4-C), 106.66 (3-C), 113.07 (7-C), 116.15 (6-C), 127.36 (2-C or 3a-C), 127.44 (3a-C or 2-C), 132.21 (7a-C), 151.34 (5-C), 161.30 (C=O).

Ethyl 5-(2-Dimethylaminoethoxy)indole-2-carboxylate (32). Me₂N(CH₂)₂Cl.HCl (1.77 g, 12 mmol), K₂CO₃ (3.40 g, 25 mmol) and water (8 mL) were added to **31** (1.68 g, 8.2 mmol) in CHCl₃ (40 mL). The stirred solution was placed in an oil bath at 65°C. The temperature was slowly raised to 80°C during 65 min and the mixture was stirred for 16 h at 80°C. The organic phase was separated and the solvent was evaporated to 25% of its original volume. This solution was combined with the aqueous phase and diluted with water and toluene. The organic layer was separated, washed with water and extracted with aq. HCl (1.0 M). The acidic phase was washed (toluene), cooled to 0°C, basified (~pH 12) by addition of aq. NaOH (4.0 M) and extracted (toluene). The extract was washed (water, brine) and dried. Evaporation gave **32** (1.81 g, 80%) as a white solid: mp 108-109 (lit.³ mp 110°C); IR v_{max} 3315, 1687; ¹H NMR δ 1.39 (3 H, t, J = 7.1 Hz, OCH₂CH₃), 2.35 (6 H, s, NMe₂), 2.76 (2 H, t, J = 5.8 Hz, Me₂NCH₂CH₂), 4.10 (2 H, t, J = 5.8 Hz, Me₂NCH₂CH₂), 4.39 (2 H, q, J = 7.1 Hz, OCH₂CH₃), 6.99 (1 H, dd, *J* = 8.9, 2.4 Hz, 6-H), 7.07 (1 H, d, *J* = 2.4 Hz, 4-H), 7.12 (1 H, dd, J = 2.1, 0.8 Hz, 3-H), 7.28 (1 H, d, J = 8.9 Hz, 7-H), 9.30 (1 H, s, NH); ¹³C NMR δ 14.32 (NMe₂), 58.38 (Me₂NCH₂CH₂), 60.82 (OCH₂CH₃), 66.57 (OCH_2CH_3) . 45.83 (Me₂NCH₂CH₂), 103.67 (4-C), 108.13 (3-C), 112.69 (7-C), 117.37 (6-C), 127.74 (2-C), 127.89 (3a-C), 132.42 (7a-C), 153.83 (5-C), 162.01 (C=O).

Ethyl 5-(2-Dimethylaminoethoxy)indole-2-carboxylate (33). Ester **32** (609 mg, 2.2 mmol) was heated with Cs₂CO₃ (2.50 g, 7.7 mmol) in MeOH (12 mL) and water (6 mL) at reflux for 2 h. The evaporation residue, in water, was adjusted to pH 6.5 with aq. HCl (1.0 M). The mixture was cooled to 4°C for 18 h. The crystals were collected by filtration, washed (ice-cold water, acetone) to give **33** (419 mg, 77%) as white crystals. A sample of the product was treated with HCl in 1,4-dioxane (4.0 M) and EtOAc. Filtration gave **33**.HCl as a white solid: mp 238-239°C (lit.⁴ mp 237-239°C); IR v_{max} 3380, 3240, 1593 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 2.37 (6 H, s, NMe₂), 2.81 (2 H, t, *J* = 5.7 Hz, NCH₂), 4.12 (2 H, t, *J* = 5.8 Hz, OCH₂), 6.91 (1 H, dd, *J* = 8.9, 2.4 Hz, 6-H), 6.95 (1 H, d, *J* = 1.5 Hz, 3-H), 7.14 (1 H, d, *J* = 2.3 Hz, 4-H), 7.35 (1 H, d, *J* = 8.9 Hz, 7-H), 11.50 (1 H, s, NH); ¹³C NMR ((CD₃)₂SO) δ 45.04 (NMe₂), 57.39 NCH₂), 65.66 OCH₂), 103.18 (4-C), 106.06 (3-C), 113.21 (7-C), 115.50 (6-C), 127.27 (3a-C), 130.33 (2-C), 132.39 (7a-C), 152.69 (5-C), 163.30 (C=O).

S-Oxiran-2-ylmethyl 4-nitrobenzenesulfonate (37). 4-Nitrobenzenesulfonyl chloride (3.16 g, 14 mmol) was added portionwise to Et₃N (2.3 mL, 1.67 g, 16 mmol) and *R*-oxiranylmethanol **36** (1.00 g, 14 mmol) in toluene at 0°C. The mixture was stirred at 20°C for 30 min. The suspension was filtered (Celite[®]). The evaporation residue, in CH₂Cl₂, was washed (aq. H₂SO₄ (2%), sat. aq. NaHCO₃, brine). Drying, evaporation and recrystallisation (toluene / hexane) gave **37** (1.69 g, 40%) as a white solid: mp 82-83°C (lit.⁵ mp 84-86°C); $[\alpha]^{18}{}_{\rm D}$ (c = 6.5, CHCl₃) + 33.3° (lit.⁶ $[\alpha]^{25}{}_{\rm D}$ + 26.5° (c 2.45, CHCl₃, 82% e.e.)); ¹H NMR δ 2.60 (1 H, dd, J = 4.7, 2.5 Hz, 3-H), 2.83 (1 H, t, J = 4.4 Hz, 3-H), 3.20 (1 H, m, 2-H), 4.02 (1 H, dd, J = 11.6, 6.4 Hz, SOCH), 4.46 (1 H, dd, J = 11.6, 2.9 Hz, SOCH), 8.12 (2 H, m, Ph 2,6-H₂), 8.40 (2 H, m, Ph 3,5-H₂); ¹³C NMR (CDCl₃) δ 44.42 (3-C), 48.61 (2-C), 71.62 (SOCH₂), 124.43 (Ph 3,5-C₂), 129.24 (Ph 2,6-C₂), 141.59 (Ph 1-C), 150.84 (Ph 4-C).

1,1-Dimethylethyl N-(*R*-1-iodo-2-(N-(oxiranylmethyl)-2,2,2-trifluoroacetamido)naphthalen-4-yl)carbamate (diastereomeric atropisomers 38A & 38B). Compound 29 (21 mg, 43 µmol) was stirred with 37 (17 mg, 66 µmol) and K₂CO₃ (26 mg, 0.19 mmol) in acetone (20 mL) at 50°C under N₂ for 3 d. Sat. aq. NaHCO₃ was added to the mixture, which was extracted with EtOAc. The extract was washed (brine) and dried. Evaporation and chromatography (petroleum ether / EtOAc 19:1 \rightarrow 9:1) gave **38A** (7.8 mg, 34%) as a vellow oil: ¹H NMR (NOESY) δ 1.56 (5.4 H, s, Bu^t rotamer **a**), 1.56 (3.6 H, s, Bu^t rotamer **b**), 2.45 (0.4 H. dd, J = 4.6, 2.4 Hz, oxirane 3-C rotamer b), 2.56 (0.6 H, dd, J = 4.8, 2.5 Hz, oxirane 3-H rotamer **a**), 2.84 (1 H, m, oxirane 3-H rotamers **a,b**), 3.17 (0.6 H, dd, J = 14.3, 7.1 Hz, CHNCOCF₃ rotamer **a**), 3.34 (0.4 H, m, oxirane 2-H rotamer **b**), 3.38 (0.4 H, dd, J = 13.6, 5.8Hz, CHNCOCF₃ rotamer **b**), 3.44 (0.6 H, m, oxirane 2-H rotamer **a**), 4.55 (0.4 H, dd, J =13.8, 4.6 Hz, CHNCOCF₃ rotamer **b**), 4.63 (0.6 H, dd, J = 14.3, 3.9 Hz, CHNCOCF₃ rotamer **a**), 6.99 (1 H, s, NH rotamers **a,b**), 7.63-7.67 (2 H, m, 6,7-H₂ rotamers **a,b**), 7.86 (1 H, m, 5-H rotamers **a,b**), 8.06 (0.4 H, s, 3-H rotamer **b**), 8.18 (0.6 H, s, 3-H rotamer **a**), 8.31 (1 H, m, 8-H rotamers \mathbf{a},\mathbf{b}); ¹³C NMR δ 28.30 (*CMe*₃ rotamer \mathbf{b}), 28.33 (*CMe*₃ rotamer \mathbf{a}), 45.67 (oxirane 3-C rotamer **a**), 46.70 (oxirane 3-C rotamer **b**), 48.02 (oxirane 2-C rotamer **b**), 49.31 (oxirane 2-C rotamer **a**), 53.29 (CH₂NCOCF₃ rotamer **b**), 54.66 (CH₂NCOCF₃ rotamer **a**), 81.64 (CMe₃ rotamer **a**), 81.68 (CMe₃ rotamer **b**), 99.03 (1-C rotamer **a**), 99.45 (1-C rotamer **b**), 115.88 (q, J = 288.4 Hz, CF₃ rotamers **a,b**), 118.47 (3-C rotamers **a,b**), 120.55 (5-C rotamer b), 120.59 (5-C rotamer a), 125.80 (4a-C rotamers a,b), 128.05 (6-C rotamer a), 128.13 (6-C rotamer **b**), 128.78 (7-C rotamer **a**), 128.86 (7-C rotamer **b**), 134.42 (8-C rotamer **a**), 134.55 (8-C rotamer b), 135.06 (8a-C rotamer a), 135.09 (4-C rotamers a,b), 135.11 (8a-C rotamer **b**), 140.32 (2-C rotamer **b**), 140.80 (2-C rotamer **a**), 152.43 (Boc C=O rotamers **a,b**), 157.09 (q, J = 36.5 Hz, F₃CC=O rotamer **a**), 157.20 (q, J = 38.1 Hz, F₃CC=O rotamer **b**); ¹⁹F NMR δ -68.40 (0.4 F, s, CF₃ rotamer **b**), -68.52 (0.6 F, s, CF₃ rotamer **a**); MS m/z 537.0504 (M + H)⁺ (C₂₀H₂₁F₃IN₂O₄ requires 537.0498). Further elution gave **38B** (9.1 mg, 39%) as a pale yellow oil:¹H NMR (NOESY) δ 1.55 (9 H, s, Bu^t), 2.78 (1 H, dd, J = 4.7, 2.6 Hz, oxirane 3-H), 2.95 (1 H, t, J = 4.5 Hz, oxirane 3-H), 3.49 (1 H, m, oxirane 2-H), 4.30 (1 H, dd, J = 12.2, 6.2 Hz)CHNCOCF₃), 4.71 (1 H, dd, *J* = 12.2, 2.8 Hz, CHNCOCF₃), 6.70 (1 H, s, NH), 7.47 (1 H, t, *J* = 7.7 Hz, 6-H), 7.57 (1 H, m, 7-H), 7.63 (1 H, s, 3-H), 7.76 (1 H, d, J = 8.4 Hz, 5-H), 8.19 (1 H. d. J = 8.5 Hz, 8-H); ¹³C NMR δ 28.29 (CMe₃), 44.85 (oxirane 3-C), 48.89 (oxirane 2-C), 69.29 (CH₂NCOCF₃), 81.25 (CMe₃), 85.75 (1-C), 110.89 (3-C), 115.72 (q, J = 284.6 Hz, CF₃), 120.33 (5-C), 123.42 (4a-C), 125.48 (6-C), 128.25 (7-C), 132.53 (8-C), 134.43 (4-C), 134.95 (8a-C), 145.08 (2-C), 152.71 (C=O Boc); ¹⁹F NMR δ -75.62 (s, CF₃); MS m/z $537.0504 (M + H)^{+} (C_{20}H_{21}F_{3}IN_{2}O_{4} requires 537.0498).$

1,1-Dimethylethyl *S*-N-(1-iodo-2-(oxiran-2-ylmethylamino)naphthalen-4-yl)carbamate (40). MeLi in Et₂O (1.6 M, 0.24 mL, 0.39 mmol) was added dropwise (~5 min) to a stirred suspension of CuCN (17.4 mg, 0.19 mmol) in dry THF (0.6 mL) at -78°C under N₂ and the mixture was stirred for 5 min. The mixture was brought to 40°C and stirred for 30 min. After being cooled to -78°C, compound **38** (65.6 mg, 0.12 mmol) in dry THF (0.6 mL) was added dropwise and stirring was continued at -78°C. The mixture was stirred at 25°C for 3 d. Water was added. The mixture was extracted (EtOAc). The extract was washed (brine). Drying, evaporation and chromatography (petroleum ether / EtOAc 9:1) gave **40** (39 mg, 73%) as a yellow solid: mp 127-128°C; IR v_{max} 3389, 3336, 3082, 1699 cm⁻¹; ¹H NMR (NOESY) δ 1.56 (9 H, s, Bu^t conformers **A,B**), 2.77 (0.45 H, d, *J* = 2.6 Hz, oxirane 3-H conformer **B**), 2.78 (0.55 H, d, *J* = 2.7 Hz, oxirane 3-H conformer **A**), 2.84 (0.45 H, d, *J* = 2.6 Hz, oxirane 3-H conformer **B**), 2.86 (1 H, d, *J* = 4.0 Hz, oxirane 3-H conformer **A**), 3.27 (1 H, m, oxirane 2-H conformers **A,B**), 3.51 (0.55 H, dd, *J* = 6.2, 4.6 Hz, NC*H*H conformer **A**), 3.55 (0.45 H, dd, *J* = 6.2, 4.6 Hz, NC*H*H conformer **A**), 3.55 (0.45 H, dd, *J* = 6.2, 4.6 Hz, NHC*H*H conformer

B), 3.75 (0.55 H, dd, J = 5.7, 3.5 Hz, NCH*H* conformer **A**), 4.87 (1 H, t, J = 5.8 Hz, N*H*CH₂ conformers **A**,**B**), 6.93 (1 H, s, Boc NH conformers **A**,**B**), 7.26 (1 H, ddd, J = 8.1, 6.8, 1.1 Hz, 6-H conformers **A**,**B**), 7.45 (1 H, ddd, J = 8.1, 6.8, 1.2 Hz, 7-H conformers **A**,**B**), 7.62 (1 H, dd, J = 8.2 Hz, 5-H conformers **A**,**B**), 7.74 (1 H, s, 3-H conformers **A**,**B**), 7.99 (1 H, dd, J = 8.6, 0.6 Hz, 8-H conformers **A**,**B**); ¹³C NMR δ 28.32 (*CMe*₃), 45.38 (NCH₂), 45.44 (oxirane 3-C), 50.82 (oxirane 2-C), 78.88 (1-C), 80.91 (*C*Me₃), 105.08 (3-C), 120.13 (5-C), 120.74 (4a-C), 122.63 (6-C), 128.10 (7-C rotamer **a**), 131.02 (8-C), 135.03 (4-C), 135.59 (8a-C), 145.84 (2-C), 152.84 (C=O); MS *m*/z 463.0522 (M + Na)⁺ (C₁₈H₂₁IN₂NaO₃ requires 463.0495).

1,1-Dimethylethyl N-(1-iodo-2-(N-(prop-2-enyl)-2,2,2-trifluoroacetamido)naphthalene-4vl)-N-(prop-2-envl)carbamate (41). Compound 29 (99.4 mg, 0.21 mmol), K₂CO₃ (119 mg, 0.83 mmol) and 3-bromopropene (84 mg, 0.69 mmol) in acetone (15 mL) were stirred at 50°C under N₂ for 16 h. Sat. aq. NaHCO₃ was added and mixture was extracted (EtOAc). Washing (brine), drying and evaporation gave 41 (115 mg, 99%) as a yellow oil: IR v_{max} 1698 cm⁻¹; ¹H NMR (COSY) δ 1.23 (0.6 H, br, Bu^t conformers **A,B**), 3.71 (0.6 H, dd, J = 14.4, 8.3 Hz, CF₃CONCH conformer A), 3.76 (0.4 H, dd, J = 14.4, 8.0 Hz, CF₃CONCH conformer B), 3.83 (0.6 H, dd, J = 14.9, 7.4 Hz, BocNCH conformer A), 3.95 (0.4 H, dd, J = 14.7, 7.1 Hz)BocNCH conformer **B**), 4.53 (0.4 H, m, BocNCH conformer **B**), 4.64 (0.6 H, m, BocNCH conformer A), 4.98-5.21 (5 H, m, $2 \times$ propenyl 3-H, CF₃CONCH conformers A,B), 5.85-5.94 (2 H, m, 2 × propenyl 2-H conformers A,B), 7.11 (1 H, s, 3-H conformers A,B), 7.61-7.68 (2 H, m, 6,7-H₂ conformers A,B), 7.83 (1 H, m, 5-H conformers A,B), 8.31 (1 H, m, 8-H conformers A,B); ¹³C NMR δ 27.88 (CMe₃ conformer A), 28.11 (CMe₃ conformer B), 52.45 (BocNCH₂ conformers A,B), 53.69 (CF₃CONCH₂ conformer A), 80.78 (CMe₃ conformers **A,B**), 105.48 (1-C conformers **A,B**), 115.94 (q, J = 289.4 Hz, CF₃ conformers **A,B**), 118.46 (BocNCH₂CHCH₂ conformers A,B), 120.92 (CF₃CONCH₂CHCH₂ conformers A,B), 123.42 (5-C conformer B), 123.57 (5-C conformer A), 127.79 (3-C conformer B), 128.11 (3-C conformer A), 128.52 (6-C or 7-C conformers A,B), 128.91 (7-C or 6-C conformers A,B), 130.31 (CF₃CONCH₂CHCH₂ conformers **A,B**), 130.99 (4a-C conformers **A,B**), 133.37 (BocNCH₂CHCH₂ conformers A,B), 133.87 (8-C conformers A,B), 135.71 (8a-C conformers A,B), 139.39 (2-C conformers A,B), 139.86 (4-C conformers A,B), 154.53 (Boc C=O conformers **A,B**), 156.42 (q, J = 36.0 Hz, CF₃C=O conformer **B**); 156.50 (q, J = 35.0 Hz, CF₃C=O conformer **A**); ¹⁹F NMR δ -68.58 (1.2 F, s, CF₃ conformer **B**), -68.65 (1.8 F, s, CF₃ conformer A); MS m/z 583.0804 (M + Na)⁺ (C₂₃H₂₄F₃IN₂NaO₃ requires 583.0681).

References for Supplementary Information

- 1. Cui, L.-Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258.
- 2. Hodgson, H. H.; Smith, E. W. J. Chem. Soc. 1935, 671.
- 3. Frecentese, F.; Fiorino, F.; Perissutti, E.; Severino, B.; Magli, E.; Esposito, A.; De Angelis, F.; Massarelli, P.; Nencini, C.; Viti, B.; Santagada, V.; Caliendo, G. *Eur. J. Med. Chem.* **2010**, *45*, 752.
- 4. Tercel, M.; Lee, H. H.; Yang, S.; Liyanage, H. D. S.; Mehta, S. Y.; Boyd, P. D. W.; Jaiswal, J. K.; Tan, K. L.; Pruijn, F. B. *ChemMedChem* **2011**, *6*, 1860.
- 5. Klunder, J. M.; Onami, T.; Sharpless, K. B. J. Org. Chem. 1989, 54, 1295.

6. Yang, S.; Denny, W. A. J. Org. Chem. 2002, 67, 8958.