

Citation for published version:
Erdogan, G, Laporte, G & Rodriguez Chia, AM 2016, 'Exact and heuristic algorithms for the Hamiltonian p-
median problem', European Journal of Operational Research, vol. 253, no. 2, pp. 280-289.
https://doi.org/10.1016/j.ejor.2016.02.012

DOI:
10.1016/j.ejor.2016.02.012

Publication date:
2016

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND
Published version is available via: http://dx.doi.org/10.1016/j.ejor.2016.02.012

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161914147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ejor.2016.02.012
https://researchportal.bath.ac.uk/en/publications/exact-and-heuristic-algorithms-for-the-hamiltonian-pmedian-problem(f5b84e42-a953-4f6a-857a-f86cc530ec23).html

Exact and Heuristic Algorithms for the
Hamiltonian p-Median Problem

Güneş Erdoğan1, Gilbert Laporte2, and Antonio M. Rodŕıguez Ch́ıa3

January 30, 2016

Abstract

This paper presents an exact algorithm, a constructive heuristic algorithm, and a meta-

heuristic for the Hamiltonian p-Median Problem (HpMP). The exact algorithm is a

branch-and-cut algorithm based on an enhanced p-median based formulation, which is

proved to dominate an existing p-median based formulation. The constructive heuris-

tic is a giant tour heuristic, based on a dynamic programming formulation to optimally

split a given sequence of vertices into cycles. The metaheuristic is an iterated local

search algorithm using 2-exchange and 1-opt operators. Computational results show

that the branch-and-cut algorithm outperforms the existing exact solution methods.

Keywords: Hamiltonian, p-Median, branch-and-cut, metaheuristic.

1 Introduction

This paper studies the Hamiltonian p-Median Problem (HpMP), defined on a complete

undirected graph G = (V,E), where V is the vertex set, and E = {(i, j) : i, j ∈ V, i < j} is

the edge set. There is a cost cij associated with every edge (i, j). The aim is to partition

the graph into p subsets of vertices, each connected by a single cycle. The objective is

to minimize the total cost of edges belonging to the cycles. Following the convention

of Gollowitzer et al. (2014), we only consider subsets (cycles) of cardinality 3 or more.

The Traveling Salesman Problem (TSP) is a special case of the HpMP with p = 1, and

consequently the HpMP is NP-hard. It is worth mentioning that the 2-matching problem,

1School of Management, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom,
G.Erdogan@bath.ac.uk

2Canada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la Côte-Sainte-
Catherine, Montreal, Canada H3T 2A7, gilbert.laporte@cirrelt.ca

3Departamento Estadstica e Investigación Operativa, Pol. Rı́o San Pedro, 11510 Puerto Real, Cádiz,
Spain, antonio.rodriguezchia@uca.es

1

which returns an arbitrary number of cycles is solvable in polynomial time (see, for example

Miller and Pekny 1995).

Laporte et al. (1983) introduced a series of location-routing problems and provided

computational results for exact algorithms using cutting planes. One of these problems

was to locate no more than p non-intersecting cycles in a graph with minimum cost, which

was the precursor of the HpMP. The HpMP was introduced by Branco and Coelho (1990).

It has received relatively little attention from researchers, and the existing studies have

mostly focused on exact algorithms. Motivated by an application in laser multi-scanners,

Glaab and Pott (2000) have studied the HpMP and presented a three-index formulation,

together with results on the dimension of the associated polytope. Zohrehbandian (2007)

has proposed a formulation for the HpMP based on a three-index Vehicle Routing Problem

formulation, but did not provide any computational results. Gollowitzer et al. (2011) have

provided three formulations for the HpMP together with valid inequalities and branch-

and-cut algorithms. In a later study, Gollowitzer et al. (2014) have introduced seven

different formulations for the HpMP which they have compared in terms of dominance

relationships. They have also presented computational results for up to |V | = 100. Hupp

and Liers (2013) have conducted a polyhedral analysis of an HpMP formulation using only

edge variables and proved that a subset of the well-known 2-matching inequalities from

the TSP define facets of the HpMP polytope.

There exist very few studies on heuristics for the HpMP and its variants. Glaab (2002)

provided fast heuristics and improved lower bounds for a variant of the HpMP that arises

in cutting problems. Uster and Kumar (2010) have studied the Balanced Ring Problem,

which is another variant of the HpMP requiring the number of vertices on each cycle to

be almost equal. They have provided a GRASP-based constructive algorithm as well as

a local search heuristic. To the best of our knowledge, no metaheuristics have yet been

proposed for the HpMP.

The remainder of this paper is organized as follows. In Section 2, we recall a integer

linear programming formulation for the HpMP proposed by Gollowitzer et al. (2014); we

also introduce an alternative formulation with several reinforcements and we develop a

branch-and-cut algorithm based on this formulation. In Section 3.1, we provide a giant

tour heuristic based on a Dynamic Programming formulation. In Section 3.2, we provide

an Iterated Local Search (ILS) algorithm for the HpMP. In Section 4, we present the

2

computational results for our algorithms on benchmark instances. Conclusions follow in

Section 5.

2 Enhanced p-median based formulation

Gollowitzer et al. (2014) have proposed a p-median based formulation, which they call

Model 3. It uses variables for assigning vertices to other vertices. For the sake of com-

pleteness, we present their formulation below, which we call HpMP1. The authors denote

the ordered vertex pairs of every edge (i, j) ∈ E as γ(i, j) = {(i, j), (j, i)}, and the edges

between a subset of vertices W ⊂ V and the remaining vertices as δ(W). Let xij be equal

to 1 if edge (i, j) belongs to the solution, and 0 otherwise. Let yi be equal to 1 if it is

selected as a depot, and 0 otherwise. Finally, let vij be equal to 1 if vertex i is assigned

to depot j, and 0 otherwise. The formulation is then:

(HpMP1)

minimize
∑

(i,j)∈E cijxij (obj)

subject to
∑

i∈V yi = p (pm1)∑
j∈V \{i} vij + yi = 1 i ∈ V (pm2)

vij ≤ yj i, j ∈ V : i 6= j (pm3)∑
j∈δ(i) xij = 2 i ∈ V (deg)∑

(i,j)∈δ(W) xij ≥ 2
∑

l∈V \W vkl W ⊂ V, k ∈W (pm≤)

vka + xij ≤ 1 + vla (i, j) ∈ E, (k, l) ∈ γ(i, j), a ∈ V \ {k, l}

(pm≥)

yk + xij ≤ 1 + vlk (i, j) ∈ E, (k, l) ∈ γ(i, j) (pm≥′)

vij = 0 i, j ∈ V : i > j (sb)

xij ∈ {0, 1} (i, j) ∈ E (bin)

vij ∈ {0, 1} i, j ∈ V : i 6= j (pm4)

yi ∈ {0, 1} i ∈ V. (pm5)

3

The objective function (obj) minimizes the total cost of cycles. Constraint set (pm1)

sets the number of cycles to p. Constraint sets (pm2) and (sb) require every vertex to

be assigned to itself or to a vertex having a higher index. Constraint set (pm3) forces a

vertex to be chosen as a depot if another vertex is assigned to it. Constraint set (deg)

states that every vertex must have a degree of 2 which, in conjunction with (bin), enforces

the minimum cycle size to be 3. Constraints (pm≤) connect the vertices assigned to the

same cycle by forcing two edges between the two complementary subsets if a vertex in one

subset is assigned to a vertex in the other subset. Constraints (pm≥) and (pm≥′) eliminate

connections between vertices that have been assigned to different depots. Constraints (sb)

cut off symmetrical solutions by forcing all vertices in a cycle to be assigned to the vertex

with the highest index. Finally, (bin), (pm4), and (pm5) are the integrality constraints

on the variables.

2.1 Valid inequalities

To facilitate our analysis, we propose an alternative formulation, called HpMP2, for the

HpMP. It is obtained by unifying the variables vij and yj into the variable wij , i.e. wij is

a binary variable equal to 1 if and only if vertex i is assigned to vertex j, with wii = 1

meaning that vertex i has been chosen as a depot. This transformation results in a simpler

presentation of (pm≥) and (pm≥′), and the new sets of inequalities we subsequently

propose. For the sake of clarity, we present the resulting formulation in its entirety,

including constraints that are not affected by the change of variables:

(HpMP2)

minimize
∑

(i,j)∈E cijxij (1)

subject to
∑

i∈V wii = p (2)∑
j∈V wij = 1 i ∈ V (3)

wij ≤ wjj i, j ∈ V (4)∑
j∈δ(i) xij = 2 i ∈ V (5)∑

(i,j)∈δ(W) xij ≥ 2
∑

l∈V \W wkl W ⊂ V, k ∈W (6)

4

wka + xij ≤ 1 + wla (i, j) ∈ E, (k, l) ∈ γ(i, j) a ∈ V (7)

wij = 0 i, j ∈ V : i > j (8)

xij ∈ {0, 1} (i, j) ∈ E (9)

wij ∈ {0, 1} i, j ∈ V. (10)

Note that the transformation unifies constraints (pm≥) and (pm≥′) into (7). We now

state our first result.

Proposition 1 The following inequalities are valid for HpMP2, and dominate (7):

∑
k∈S

wik + xij ≤ 1 +
∑
k∈S

wjk (i, j) ∈ E,S ⊂ V. (11)

Proof. Since
∑

k∈S wik ≤ 1 and xij ≤ 1, this inequality is valid whenever
∑

k∈S wik = 0 or

xij = 0. Thus, we only have to analyze the case where
∑

k∈S wik = 1 and xij = 1. In this

case, xij = 1 implies that i and j are assigned to the same depot and hence
∑

k∈S wjk = 1.

Therefore, the inequality (11) is valid. Note that (7) is a special case of (11) if |S| = 1 or

|S| = |V | − 1, and is therefore dominated by (11). �

Although the number of constraints (11) is exponential, these can be separated in

polynomial time. For any given edge (i, j) ∈ E, start with S = ∅ and include a vertex

k ∈ V into S if and only if wik > wjk. This results in an overall complexity of O(|V |3).

We now focus on (6). Define F(W) as the set of all sets of pairs (i, j) : i ∈W, j ∈ V \W
or i ∈ V \ W, j ∈ W such that for every element of F(W) there is at most one pair

containing any vertex k ∈ V as its second component. We now state our second result.

Proposition 2 The following inequalities are valid for HpMP2, and dominate (6):

∑
(i,j)∈δ(W)

xij ≥ 2
∑

(k,l)∈F

wkl W ⊂ V, F ∈ F(W). (12)

Proof. Consider a partition of {W,V \ W} of V , as depicted in Figure 1, where the

positive x variables are denoted with thin lines, the positive w variables are denoted with

5

arrows, and the partition is denoted by a dashed line. In order to check that constraints

(12) are valid, we will prove that a feasible solution of HpMP2, (x̄, w̄), satisfies them. Let

F ∈ F(W). If for a pair (k, l) ∈ F we have that w̄kl = 1, then either vertex k ∈ W

is assigned to depot l ∈ V \ W or vertex k ∈ V \ W is assigned to depot l ∈ W . In

both cases the cycle represented by vertex l ∈ V has vertices in W and in V \W . Thus,

there are at least two edges of that cycle with end vertices in W and V \W , i.e. there

exist vertices i1, i2 ∈ W and j1, j2 ∈ V \W , such that, x̄i1,j1 = x̄i2,j2 = 1 and w̄i1,l =

w̄i2,l = w̄j1,l = w̄j2,l = 1. Note that it is possible to have i1 = i2 or j1 = j2, but not

both. Moreover, by construction of F , no two pairs (k, l) and (k′, l) belong to F , i.e.,

each variable w equal to 1 in the right-hand side of constraints (12) represents a different

cycle. Hence, for a given F ∈ F(W), the summation in the right-hand side of (12) gives

a number of different cycles crossing δ(W). Since the left-hand side counts the number of

edges crossing δ(W), the left-hand side is at least twice the right-hand side (the number

of different cycles crossing W represented by a vertex that is the second component of a

pair of F). Hence, constraints (12) are valid. Finally, (6) is a special case of (12) when F

is restricted to those subsets of F(W) where the pairs have an identical component of W

and the second component belongs to V \W .

�

Despite our best efforts, we were neither able to find a polynomial time algorithm for

the exact separation of this set of valid inequalities for the fractional solutions, nor to

prove the NP-hardness of the separation problem. The closest problem in the literature

is the separation of the cutset inequalities for the network loading problem (Barahona

1996), which is NP-hard. However, the constraint imposing a maximum of one inflow arc

per vertex and the unit capacities change the problem structure. We conjecture that the

separation problem for fractional solutions is NP-hard. We have implemented a heuristic

separation algorithm for the fractional solutions and applied it only at the root node of

the branch-and-cut tree, due to the its high computational cost. The separation algorithm

starts with a random W ⊂ V and greedily adds and removes vertices to maximize the

violation, until no further improvement is found. To find a maximally violated inequality,

it is sufficient to search over the space of the vertex subset W , since a matching F can be

constructed optimally by a greedy algorithm that selects one wkl variable for each l. Let

6

Figure 1: Visualization of the assignment sets for constraint sets (6) and (12)

us denote the violation of an inequality defined by the set W as f(W). We now present

the pseudocode for the separation algorithm, which we call Algorithm 1.

Algorithm 1

W = ∅
for i = 1 to |V |

Generate a uniform random number u = U [0, 1].

If u ≤ 0.5 then

W = W ∪ {i}
end if

end for

do

W ∗ = W .

for i = 1 to |V |
if i ∈W then

7

if f(W \ {i}) > f(W ∗) then

W ∗ = W \ {i}
end If

else

if f(W ∪ {i}) > f(W ∗) then

W ∗ = W ∪ {i}
end if

end if

end for

for i = 1 to |V |
for j = i+ 1 to |V |

if i ∈W and j /∈W then

if f((W \ {i}) ∪ j) > f(W ∗) then

W ∗ = (W \ {i}) ∪ j
end if

end if

if i /∈W and j ∈W then

if f((W ∪ {i}) \ j) > f(W ∗) then

W ∗ = (W ∪ {i}) \ j
end if

end if

end for

end for

while W ∗ 6= W

if f(W ∗) > 0 then

F ∗ = ∅
for i = 1 to |V |

if i ∈W ∗ then
j = argmaxk∈V \W ∗ w

∗
ki

else

8

j = argmaxk∈W ∗ w
∗
ki

end if

F ∗ = F ∗ ∪ {(j, i)}
end for

Add the member of (12) with W ∗ and F ∗

end if

return

For the solutions that satisfy integrality constraints, we have executed a depth-first

search from each vertex to the depot it is assigned, and added members of (12) to ensure

connectivity between the two vertices when necessary. This procedure separates all vio-

lated members of (12) and has a complexity of O(|V |3). We now provide the pseudocode

of the separation algorithm, which we call Algorithm 2.

Algorithm 2

Construct a directed graph G′ = (V,A)

where (i, j) ∈ A ⇐⇒ ((i, j) ∈ E) or (j, i) ∈ E)) and x∗ij = 1

for i = 1 to |V |
j = argmaxk∈V w

∗
ik

if i 6= j then

Execute a depth-first search on G′ starting from i

if j is not reachable then

Construct W ∗ as the set of vertices reachable from i

F ∗ = ∅
for i = 1 to |V |

if i ∈W ∗ then
j = argmaxk∈V \W ∗ w

∗
ki

else

j = argmaxk∈W ∗ w
∗
ki

end if

F ∗ = F ∗ ∪ {(j, i)}
end for

9

Add the member of (12) with W ∗ and F ∗

end if

end if

end for

return (W ∗, f(W ∗))

The final set of valid inequalities we present is based on the observation that the fact

that every cycle is composed of at least three vertices. We state the result without proof.

Proposition 3 The following inequalities are valid for HpMP2:

∑
j∈V :j 6=i

wji ≥ 2wii i ∈ V. (13)

2.2 Branch-and-cut algorithm

We now present our branch-and-cut algorithm for HpMP2. Denote the ith subproblem

as si, the solution of the subproblem as (xi, wi), and the best known solution as (x∗, w∗).

Furthermore, denote the objective function value of a solution as z(x,w).

Algorithm 3

Construct the root node subproblem s0 by adding all members of the (13) to HpMP2.

Do

Solve the LP relaxation of s0.

Separate and add all violated members of the valid inequality set (11) to s0.

Heuristically separate and add violated members of the valid inequality set (12) to s0.

While At least one valid inequality is added to s0

Initialize the branch-and-cut node set S = {s0}.
While S 6= ∅

Pick si ∈ S and set S := S \ si.
Do

10

Solve si.

Separate and add all violated members of the valid inequality set (11) to si.

If (xi, wi) ∈ {0, 1}|E|+|V |
2
then

Separate and add violated members of the valid inequality set (12) to si.

End If

While At least one valid inequality is added to si and z(xi, wi) < z(x∗, w∗)

If z(xi, wi) > z(x∗, w∗) then

Discard si.

Else If (xi, wi) ∈ {0, 1}|E|+|V |
2
then

(x∗, w∗) = (xi, wi).

Else

Create si+1 and si+2 by branching on a binary variable with a fractional value

and set S := S ∪ {si+1} ∪ {si+2}.
End If

End While

return (x∗, w∗)

3 Heuristic algorithms

In this section, we provide a giant tour heuristic and an ILS algorithm for the HpMP.

3.1 Giant tour heuristic

Beasley (1983) proposed a giant tour heuristic that optimally splits a TSP tour to construct

a solution for the Capacitated Vehicle Routing Problem. The splitting algorithm was later

used as a local search operator within a genetic algorithm by Prins (2004), and more

recently within an ILS algorithm by Afsar et al. (2014). Notably, Love (1976) studied

the problem of locating a number of facilities in the continuous search space on a line

and proposed a dynamic programming formulation, which bears some resemblance to our

dynamic programming formulation in terms of stage and state definitions. However, the

11

cost of a solution for this problem is computed based on the distances of the existing

facilities and the new facilities rather on than the sequential order of locations. We now

present our splitting algorithm for the HpMP.

Consider a sequence of the vertex indices σ = (σ1, ..., σn), which corresponds to a TSP

solution on the vertices. We propose a dynamic programming algorithm to optimally

partition this sequence into p cycles of the form (σi, σi+1, ..., σj , σi), of cost ĉij . Define

gk(i) as the sum of the optimal cost of the kth, ..., pth cycles if the kth cycle starts at the

ith element of the sequence of TSP solution. The dynamic programming formulation is

then:

gk(i) =

min{ĉij + gk+1(j + 1) : j ∈ {i+ 2, ..., n− 3(p− k)}} if k < p, 3k − 2 ≤ i ≤ n− 3(p− k)− 2

ĉin if k = p, 3k − 2 ≤ i ≤ n− 2

∞ otherwise.

(14)

An optimal partitioning can be determined by computing g1(1). We now provide an

algorithm (Algorithm 4) that computes ĉij as well as gk(i). Denote by uk(i) the optimal

endpoint of partition k starting at the ith element of the TSP sequence.

Algorithm 4 (sequence σ)

// compute ĉij

for i = 1 to n

for j = i+ 1 to n

if j = i+ 1 then

ĉij = cσ(i)σ(j) // cost of an edge

else

ĉij = ĉi,j−1 + cσ(j−1)σ(j) // cumulative cost

end if

end for

for j = i+ 1 to n

ĉij = ĉij + cσ(j)σ(i) // cost of completing the cycle

12

end for

end for

// dynamic programming algorithm

for k = p down to 1 // backward recursion

for i = 1 to n

uk(i) = 0 // initializing the control

if (i < 3k − 2) or (i > n− 3(p− k)− 2) then // a cycle cannot fit here

gk(i) =∞
else if k = p then

gk(i) = ĉin

uk(i) = n // the cycle finishes at the end of the sequence

else

gk(i) =∞
for j = i+2 to n−3(n−k) // searching for the best element to finish the cycle

if gk(i) > ĉij + gk+1(j + 1) then

gk(i) = ĉij + gk+1(j + 1)

uk(i) = j

end for

end if

end for

end for

// determine the value of x

Initialize x = 0

for k = 1 to p

for j = i to uk(i)− 1

if σj < σj+1 then xσj ,σj+1 = 1 // ensuring that we select the correct edge index

else xσj+1,σj = 1

end for

13

if σuk(i) < σi then xσuk(i),σi = 1 // ensuring that we select the correct edge index for

return

else xσi,σuk(i)
= 1

i = uk(i) + 1

end for

return x

The first part of Algorithm 4 computes ĉij in O(|V |2) time. The space complexity of

the dynamic programming algorithm is O(|V |2) and its time complexity is O(|V |3). We

first compute a TSP solution on G, from which we extract the sequence of the vertices.

Note that the dynamic programming formulation does not allow for cycles of the type

(σi, σi+1, ..., σn, σ1, ..., σi−1). To make up for this shortcoming, the giant tour heuristic

executes the dynamic programming algorithm n times, changing the sequence by relocating

the last element to the first position and shifting the remaining elements to the next

position. We now present the detailed pseudocode of the heuristic, called Algorithm 5,

where zTSP (σ) denotes the cost of the TSP tour defined by the sequence σ.

Algorithm 5

for i = 1 to n

σ∗i = i

end for

do

σ = σ∗.

for i = 1 to |V | // 2-exchange

for j = 1 to |V |
Construct σ

′
by relocating the ith element of σ to the jth position

if zTSP (σ
′
) < zTSP (σ∗) then

14

σ∗ = σ
′

end if

end for

end for

for i = 1 to |V | // 1-opt

for j = i+ 1 to |V |
Construct σ

′
by swapping the ith and jth elements of σ

if zTSP (σ
′
) < zTSP (σ∗) then

σ∗ = σ
′

end if

end for

end for

while σ 6= σ∗

Determine x∗ using σ as an input to Algorithm 4

for i = 1 to n− 1

k = σn

for j = 2 to n

σj = σj−1

end for

σ1 = k

Determine x using σ as an input to Algorithm 4

if z(x) < z(x∗) then x∗ = x

end for

return x∗

An example run of Algorithm 5 is depicted in Figure 2, for an instance of the HpMP

with n = 9 and p = 2, where the vertices are reindexed in the order in which they appear

in the first sequence for the sake of simplicity. The best partitioning of each sequence

into two cycles is denoted by the rectangles enclosing parts of the sequence. The best

15

solution among all these partitions (highlighted) is chosen as the result of Algorithm 5.

Although this brings the overall complexity up to O(|V |4), the CPU time requirement is

still negligible since it is executed only once.

Figure 2: Visualization of a run of Algorithm 5

3.2 Iterated Local Search algorithm

We now present the details of our ILS algorithm, which is based on perturbing the best

known solution through random swaps and relocations of vertices among the cycles, and

reoptimizing through local search. The random feature of the ILS algorithm acts as

a diversification mechanism, which reduces the likelihood that the search process will

become trapped into a local minimum. Let us denote the solution as p sequences of

vertices, each sequence corresponding to the vertices within the corresponding cycle, with

x[i][j] ∈ {1, ..., |V |} denoting the jth element of the ith sequence. Let us also denote the

number of vertices in cycle i as y[i]. Finally, we write U [a, ..., b] to denote a discrete uniform

random variable that returns values in the range {a, ..., b}.

Algorithm 6

16

// constructive phase

Determine x∗ using Algorithm 5

// improvement phase

for k = 1 to kmax

x = x∗

for i = 1 to α // perturbation by random 2-exchange

Randomly select the first cycle q = U [1, ..., p]

Randomly select a vertex in cycle q as r = U [1, ..., y[q]]

Randomly select the second cycle s = U [1, ..., p]

Randomly select a vertex in cycle s as t = U [1, ..., y[s]]

Swap the values of x[q][r] and x[s][t]

end for

for i = 1 to β // perturbation by random relocation

Randomly select a cycle q = U [1, ..., p]

Randomly select a position in cycle q as r = U [1, ..., y[q]]

Store the value j = x[q][r] of and update x by removing x[q][r] from cycle q

Randomly select a cycle q = U [1, ..., p]

Randomly select a position in cycle q as r = U [1, ..., y[q]]

Update x by inserting j in position r of cycle q

end for

do

x′′ = x

for q = 1 to p // 2-exchange

for r = 1 to y[q]then

for s = q + 1 to p

for t = 1 to y[s]

x′ = x

Swap the values of x′[q][r] and x′[s][t]
if z(x′) < z(x′′) then

x′′ = x′

end if

17

end for

end for

end for

end for

for q = 1 to p // 1-opt

for r = 1 to y[q]then

x′ = x

Store the value j = x′[q][r] of and update x′ by removing x′[q][r] from cycle q

for s = 1 to p

for t = 1 to y[s]

Update x′ by inserting j in position t of cycle s

if z(x′) < z(x′′) then

x′′ = x′

end if

end for

end for

end for

end for

while x′′ 6= x

end for

return x∗

The CPU time requirement is determined by the choice of the parameter kmax, the

total number of iterations. At each iteration, a copy of the best known solution is created,

and perturbed through randomly swapping α pairs of vertices from two cycles as well

as relocating β vertices from their cycle to a position in another randomly chosen cycle.

The choices of α and β are important for the performance of the algorithm, since very low

values do not provide enough diversification, and very large values destroy the structure of

the best known solution and inhibit intensification. After the perturbation, the resulting

solution is reoptimized using the well-known local search operators 1-opt and 2-exchange,

18

by selecting the best move among the operators at every step. If the objective function

value of the local search is better than that of the best known solution, the best known

solution is replaced by the current solution.

4 Computational Results

We have conducted our computational experiments on a Lenovo T440p laptop with an i7

2.50 Ghz CPU and 8 GB RAM. A CPU time limit of 1 hour was imposed on the branch-

and-cut algorithm. ILS were also coded in C++ and executed on the same computer.

We have used the instances of Gollowitzer et al. (2014), in order to have a benchmark to

compare the computational performance of our model. We have also preformed computa-

tional experiments on three TSPLIB (Reinelt 1991) instances: dantzig42, gr96, and u159.

In what follows, we compute the optimality gap as the ratio of the difference between the

best solution value and the best lower bound found by the branch-and-cut algorithm to

the best lower bound found by the branch-and-cut algorithm.

Based on a number of initial experiments, we have chosen the values of α = b|V |/5c
and β = b|V |/5c. We have observed that the best solution found by the ILS algorithm did

not change much after a few thousand iterations, hence we have used kmax = 10, 000. The

aggregate results for the heuristic algorithms are presented in Table 1. For each instance,

we have solved a 2-matching problem to determine the optimal number of cycles, and we

report the average value of this result in the column labeled “Average p∗” as a measure

of how hard the instances are. We have omitted the details of the CPU time requirement

of Algorithm 5, since Algorithm 5 did not require more than 0.01 CPU seconds for any of

the instances. Algorithm 6 has an average optimality gap of 0.69%, and requires no more

than a minute of CPU time. Based on these results and its simplicity, we conclude that

Algorithm 6 has a satisfactory performance.

The aggregate results for HpMP2 are presented in Tables 2 and 3. The best found

solution from Algorithm 6 was fed in as an initial incumbent to the branch-and-cut algo-

rithm. The improved valid inequalities and the tight upper bound have contributed to the

performance of our algorithm, resulting in finding the optimal solution of 122 out of the

125 benchmark instances. The CPU time requirement of the branch-and-cut algorithm is

also provided in Table 2. Note that all the CPU times we report for the branch-and-cut

19

algorithm include the CPU time for the ILS algorithm that was used for generating the

initial solution. The columns Model 1 and Model 3 correspond to the performance of the

best two models of Gollowitzer et al. (2014) as reported by the authors, the former being

the formulation in the space of natural variables, and the latter being the p-median based

formulation our formulation is based upon. Model 1 has successfully solved 86 instances

out of 125, whereas Model 3 could only solve 59. We thereby conclude that HpMP2

performs better than both of these models.

The details of the initial optimality gaps computed at the root node of the branch-

and-cut tree are presented in Table 3. We have analyzed the effect of separating only

(11) and separating both (11) and (12). The results show that the difference between the

initial gaps is 0.04% on the average, with a maximum of 0.4% and a minimum of -0.13%.

We conclude that separating (12) is marginally useful for the smaller instances, but its

importance grows as |V | increases. The initial optimality gap for the HpMP2 is quite

small, 1.76% on average with a maximum of 13.87%. An analysis of the table shows that

the initial gap for HpMP2 dominates Model 1 in 20 out of 25 parametric settings, and

Model 3 in 17 out of 25 parametric settings. We emphasize that the initial gap depends

on the strength of the lower bound, on the quality of the initial feasible solution, and on

the performance separation heuristics for the valid inequalities for which we do not have

a polynomial time exact separation algorithm. The quality of the lower bound is reflected

into the computational performance, where our branch-and-cut algorithm for the HpMP2

successfully solves all instances for |V | = 60 and p = 20 and Models 1 and 3 cannot solve

any.

The most striking difference between the initial optimality gaps occurs for the largest

values of p, which force at most one cycle to include more than three vertices. This is due

to the valid inequality set (13), which provides a lower bound on the number of vertices

assigned to a vertex selected as a depot. Unlike (11) and (12) that replace (6) and (7)

and are necessary for the validity of HpMP2, (13) is optional. During our computational

experiments, we have observed that adding all members of (13) to the formulation slows

down the branch-and-cut algorithm. However, we have also observed that it is not possible

to solve large instances without these inequalities. In our final implementation, we have

chosen to add these inequalities when the maximum possible cycle size |V | − 3(p − 1) is

less than or equal to 5 for the best performance.

20

The results of our experiments on the TSPLIB instances are presented in Table 4.

HpMP2 outperforms both Model 1 and Model 3 in terms of the CPU time for the instances

that could be solved within the time limit. For the instances that could not be solved, the

best lower bounds are also provided by HpMP2. To increase the size of the test bed for

HpMP, we have solved 22 instances from the TSPLIB with sizes ranging from 21 to 100.

For instances with vertex coordinates, we have computed and used the Euclidean distances

between the vertices. For the rest of the instances, we have used the edge weights provided.

We have used p ∈ {b|V |/10c, b|V |/7c, b|V |/5c, b|V |/4c, b|V |/3c} for our experiments. The

computational results of the new TSPLIB instances are reported in Tables 5 and 6. The

performance of HpMP2 on these instances is similar to its performance on the instance

set of Gollowitzer et al. (2014). We have successfully solved 100 instance out of 110, with

the unsolved instances limited to |V | ≥ 76. Notably, p = b|V |/3c for 6 out of the 10

unsolved instances. The hardest instance was observed to be rat99, which is a “rattled

grid” consisting of grid coordinates with minor perturbations. We attribute this to the

high degree of symmetry inherent to this instance.

5 Conclusions

We have studied the HpMP, provided an exact algorithm, a giant tour heuristic, and an

ILS algorithm. Our exact algorithm is a branch-and-cut algorithm based on an enhanced

p-median formulation. We have provided two sets of valid inequalities which we prove

to dominate the ones in the literature, and a third set of inequalities that have not been

proposed before. The giant tour heuristic is based on a dynamic programming formula-

tion that optimally splits a TSP tour into p cycles. We have performed computational

experiments on HpMP instances from the literature and new instances from the TSPLIB,

and showed that the performance and the computational reach of our branch-and-cut al-

gorithm is better than that in the literature. We have observed the ILS algorithm to be

capable of returning high quality solutions within a minute, with an average optimality

gap of 0.64%.

Acknowledgements: We thank Stefan Gollowitzer for providing the benchmark problem

instances, and the two anonymous reviewers whose suggestions have improved the paper.

21

Table 1: Computational results for the giant tour heuristic and the ILS metaheuristic
|V | p* p Giant tour ILS ILS CPU

optimality gap (%) optimality gap (%) time (sec.)

20 3.80 2 6.56 0.00 0.17
20 3.80 3 5.45 0.00 0.14
20 3.80 4 3.10 0.00 0.16
20 3.80 5 5.06 0.00 0.13
20 3.80 6 7.76 0.00 0.10
40 7.40 2 10.78 0.00 1.52
40 7.40 5 12.65 0.86 1.21
40 7.40 8 10.86 0.57 1.20
40 7.40 11 14.24 0.00 1.03
40 7.40 13 16.76 0.00 0.58
60 10.40 2 18.15 0.66 5.63
60 10.40 7 19.07 0.99 4.38
60 10.40 12 19.24 0.46 4.28
60 10.40 17 22.24 0.04 3.49
60 10.40 20 37.77 0.00 1.74
80 12.60 2 22.75 2.33 15.10
80 12.60 8 23.77 2.92 13.46
80 12.60 14 23.40 2.02 10.84
80 12.60 20 25.06 0.07 10.20
80 12.60 26 36.55 0.01 5.28

100 12.20 2 28.07 1.12 34.92
100 12.20 10 26.79 1.84 23.26
100 12.20 18 26.39 1.52 20.81
100 12.20 26 27.53 0.73 20.48
100 12.20 33 42.32 1.02 10.43

Average 19.69 0.69

22

Table 2: Comparison of the performance of the branch-and-cut algorithm for the HpMP2
with Model 1 and Model 3

Model 1 Model 3 HpMP2

|V | p Solved Solved Solved CPU Time (sec.)

20 2 5/5 5/5 5/5 0.25
20 3 5/5 5/5 5/5 0.25
20 4 5/5 5/5 5/5 0.31
20 5 5/5 5/5 5/5 0.31
20 6 5/5 5/5 5/5 0.15
40 2 5/5 5/5 5/5 2.07
40 5 5/5 5/5 5/5 1.92
40 8 5/5 5/5 5/5 3.44
40 11 5/5 5/5 5/5 1.54
40 13 1/5 2/5 5/5 76.25
60 2 5/5 4/5 5/5 7.81
60 7 5/5 4/5 5/5 8.23
60 12 4/5 2/5 5/5 50.71
60 17 1/5 1/5 5/5 8.80
60 20 0/5 0/5 5/5 169.38
80 2 3/5 1/5 5/5 19.70
80 8 5/5 0/5 5/5 32.30
80 14 5/5 0/5 5/5 19.72
80 20 1/5 0/5 5/5 30.53
80 26 0/5 0/5 5/5 1585.62

100 2 4/5 0/5 5/5 45.10
100 10 5/5 0/5 5/5 50.07
100 18 2/5 0/5 5/5 226.63
100 26 0/5 0/5 5/5 961.86
100 33 0/5 0/5 2/5 2982.87

Total 86/125 59/125 122/125

23

Table 3: Optimality gaps
Model 1 Model 3 HpMP2

|V | p Initial Initial Initial gap (%) Initial gap (%) Final
gap (%) gap (%) with (11) with (11) and (12) gap (%)

20 2 1.85 1.03 0.33 0.18 0.00
20 3 3.00 1.89 1.24 1.09 0.00
20 4 2.72 1.67 0.73 0.76 0.00
20 5 3.14 2.51 0.47 0.44 0.00
20 6 3.24 1.60 0.00 0.00 0.00
40 2 3.07 0.98 0.46 0.44 0.00
40 5 2.73 1.93 2.05 1.99 0.00
40 8 2.90 2.36 1.53 1.48 0.00
40 11 3.01 2.00 0.08 0.12 0.00
40 13 10.68 7.32 5.06 5.20 0.00
60 2 4.12 1.33 2.30 2.30 0.00
60 7 1.53 0.91 1.73 1.73 0.00
60 12 1.94 1.46 0.89 0.95 0.00
60 17 3.84 2.25 0.59 0.59 0.00
60 20 20.27 16.67 4.60 4.20 0.00
80 2 2.79 0.77 3.20 3.20 0.00
80 8 1.48 0.88 3.55 3.55 0.00
80 14 1.08 0.67 2.26 2.26 0.00
80 20 3.36 2.37 0.50 0.46 0.00
80 26 20.40 17.47 2.72 2.49 0.00

100 2 2.68 2.04 2.00 2.00 0.00
100 10 1.44 1.35 2.30 2.30 0.00
100 18 2.77 2.12 2.03 2.13 0.00
100 26 9.89 8.27 1.50 1.45 0.00
100 33 35.61 32.20 2.91 2.74 1.02

Average 5.98 4.56 1.80 1.76 0.04

Table 4: Computational results for the TSPLIB instances
Model 1 Model 3 HpMP2

Initial Final CPU time Initial Final CPU time Initial Final CPU time
Instance p* p gap (%) gap (%) (sec.) gap (%) gap (%) (sec.) gap (%) gap (%) (sec.)

dantzig42 3 3 1.08 0.00 0.07 0.23 0 1.42 0.00 0.00 0.28
dantzig42 3 10 1.99 0.00 1.70 1.04 0.92 3600.00 0.00 0.00 0.35

gr96 9 5 1.25 0.00 58.28 N/A N/A 3600.00 1.93 0.00 12.75
gr96 9 20 6.45 5.00 3600.00 N/A N/A 3600.00 2.29 1.97 3619.94
u159 20 5 5.04 3.72 3600.00 N/A N/A 3600.00 2.32 1.64 3703.49
u159 20 30 9.55 8.16 3600.00 N/A N/A 3600.00 3.91 3.59 3706.86

24

Table 5: Computational results for the new TSPLIB instances, small size
Giant tour ILS Initial Final Best Initial Final CPU time

Instance p* p result result bound bound solution gap (%) gap (%) (sec.)
gr21 1 2 2922.00 2773.00 2747.36 2773.00 2773.00 0.93 0.00 0.49

3 2873.00 2774.00 2752.20 2774.00 2774.00 0.79 0.00 0.34
4 2814.00 2757.00 2757.00 2757.00 2757.00 0.00 0.00 0.19
5 3118.00 2832.00 2809.10 2832.00 2832.00 0.82 0.00 0.46
7 3782.00 3043.00 3043.00 3043.00 3043.00 0.00 0.00 0.45

ulysses22 6 2 73.68 68.33 68.33 68.33 68.33 0.00 0.00 0.39
3 70.04 66.43 65.99 66.43 66.43 0.67 0.00 0.38
4 66.75 64.23 64.23 64.23 64.23 0.00 0.00 0.19
5 65.55 63.08 63.08 63.08 63.08 0.00 0.00 0.16
7 74.26 65.08 65.08 65.08 65.08 0.00 0.00 0.18

gr24 3 2 1314.00 1238.00 1238.00 1238.00 1238.00 0.00 0.00 0.31
3 1322.00 1246.00 1227.00 1227.00 1227.00 1.55 0.00 0.25
4 1292.00 1227.00 1224.50 1227.00 1227.00 0.20 0.00 0.27
6 1415.00 1278.00 1247.42 1266.00 1266.00 2.45 0.00 0.51
8 1580.00 1317.00 1317.00 1317.00 1317.00 0.00 0.00 0.24

fri26 7 2 930.00 911.00 911.00 911.00 911.00 0.00 0.00 0.41
3 931.00 903.00 903.00 903.00 903.00 0.00 0.00 0.31
5 948.00 893.00 893.00 893.00 893.00 0.00 0.00 0.44
6 921.00 886.00 886.00 886.00 886.00 0.00 0.00 0.37
8 885.00 885.00 885.00 885.00 885.00 0.00 0.00 0.21

bayg29 3 2 1711.00 1562.00 1562.00 1562.00 1562.00 0.00 0.00 0.56
4 1717.00 1549.00 1549.00 1549.00 1549.00 0.00 0.00 0.50
5 1716.00 1555.00 1555.00 1555.00 1555.00 0.00 0.00 0.53
7 1741.00 1618.00 1590.85 1618.00 1618.00 1.71 0.00 2.15
9 1759.00 1676.00 1660.44 1676.00 1676.00 0.94 0.00 1.73

swiss42 7 4 1448.00 1232.00 1232.00 1232.00 1232.00 0.00 0.00 1.37
6 1454.00 1231.00 1227.50 1231.00 1231.00 0.29 0.00 1.70
8 1480.00 1231.00 1231.00 1231.00 1231.00 0.00 0.00 1.56

10 1483.00 1238.00 1236.61 1238.00 1238.00 0.11 0.00 2.02
14 1872.00 1292.00 1292.00 1292.00 1292.00 0.00 0.00 1.12

att48 14 4 38974.46 31903.30 31903.30 31903.30 31903.30 0.00 0.00 3.73
6 39288.35 31896.89 31836.12 31836.12 31836.12 0.19 0.00 3.41
9 38861.55 32215.33 32181.18 32195.53 32195.53 0.11 0.00 3.99

12 39886.51 32742.91 32687.14 32742.91 32742.91 0.17 0.00 3.99
16 50048.34 37068.82 35226.33 37068.82 37068.82 5.23 0.00 285.90

gr48 6 4 5378.00 4875.00 4815.05 4841.00 4841.00 1.25 0.00 2.82
6 5406.00 4940.00 4805.00 4805.00 4805.00 2.81 0.00 1.76
9 5294.00 4958.00 4871.67 4926.00 4926.00 1.77 0.00 13.70

12 5415.00 5011.00 4994.37 5011.00 5011.00 0.33 0.00 4.91
16 5788.00 5445.00 5320.65 5445.00 5445.00 2.34 0.00 24.25

hk48 6 4 13239.00 11283.00 11234.16 11271.00 11271.00 0.43 0.00 3.48
6 12918.00 11226.00 11197.00 11197.00 11197.00 0.26 0.00 2.88
9 12920.00 11465.00 11254.17 11292.00 11292.00 1.87 0.00 3.05

12 13598.00 11522.00 11386.43 11450.00 11450.00 1.19 0.00 3.41
16 17038.00 12215.00 11973.75 12215.00 12215.00 2.01 0.00 10.04

eil51 6 5 450.81 424.78 421.62 422.32 422.32 0.75 0.00 4.58
7 454.93 426.59 422.71 424.36 424.36 0.92 0.00 6.88

10 461.65 435.49 427.57 432.49 432.49 1.85 0.00 41.32
12 475.71 437.27 432.71 436.59 436.59 1.05 0.00 14.41
17 523.33 473.98 457.13 473.98 473.98 3.69 0.00 50.96

berlin52 8 5 8931.54 7254.04 7170.33 7182.23 7182.23 1.17 0.00 3.66
7 8706.83 7266.75 7167.20 7167.20 7167.20 1.39 0.00 2.57

10 8541.64 7206.70 7200.48 7206.70 7206.70 0.09 0.00 4.43
13 8790.80 7298.63 7287.14 7298.63 7298.63 0.16 0.00 4.68
17 10026.53 7800.77 7632.78 7800.77 7800.77 2.20 0.00 48.81

25

Table 6: Computational results for the new TSPLIB instances, medium and large size
Giant tour ILS Initial Final Best Initial Final CPU time

Instance p* p result result bound bound solution gap (%) gap (%) (sec.)
brazil58 12 5 26918.00 22578.00 21170.75 21744.00 21744.00 6.65 0.00 78.90

8 25795.00 22367.00 21081.50 21289.00 21289.00 6.10 0.00 36.95
11 25058.00 21080.00 21080.00 21080.00 21080.00 0.00 0.00 5.14
14 25496.00 21221.00 21221.00 21221.00 21221.00 0.00 0.00 4.72
19 36060.00 22635.00 22340.99 22635.00 22635.00 1.32 0.00 31.13

st70 12 7 781.60 647.95 633.29 638.22 638.22 2.31 0.00 18.11
10 761.78 642.01 630.63 632.54 632.54 1.80 0.00 12.56
14 755.61 634.48 630.90 630.90 630.90 0.57 0.00 8.66
17 758.10 636.40 635.51 636.19 636.19 0.14 0.00 11.16
23 936.65 694.49 664.05 694.49 694.49 4.58 0.00 1137.77

eil76 9 7 617.05 548.83 542.73 542.95 542.95 1.12 0.00 20.97
10 624.52 551.98 544.51 545.02 545.02 1.37 0.00 18.60
15 634.25 556.20 549.16 552.15 552.15 1.28 0.00 207.04
19 661.99 563.95 557.28 563.95 563.95 1.20 0.00 371.35
25 727.71 601.71 587.99 601.71 601.71 2.33 0.00 1025.73

pr76 15 7 115538.61 103315.32 101091.86 101401.33 101401.33 2.20 0.00 25.29
10 116374.38 104034.03 101165.57 101779.42 101779.42 2.84 0.00 224.40
15 118057.94 103867.82 102513.09 103097.47 103822.35 1.32 0.70 3608.81
19 120906.74 104481.75 104036.62 104481.75 104481.75 0.43 0.00 45.62
25 141308.46 110073.94 108095.83 110073.94 110073.94 1.83 0.00 867.49

rat99 12 9 1373.55 1222.85 1208.05 1209.14 1209.14 1.23 0.00 90.16
14 1405.01 1249.35 1216.87 1217.48 1249.35 2.67 2.62 3622.70
19 1417.42 1264.52 1235.64 1236.82 1264.52 2.34 2.24 3618.81
24 1457.77 1276.13 1257.16 1261.17 1276.13 1.51 1.19 3621.86
33 1640.90 1373.37 1325.59 1334.28 1373.37 3.60 2.93 3609.14

kroA100 19 10 24687.70 20293.87 19556.81 19900.87 19900.87 3.77 0.00 2993.41
14 24571.39 20131.41 19568.28 19637.52 19637.52 2.88 0.00 40.47
20 24762.78 20142.01 19777.63 19866.93 19868.64 1.84 0.01 57.24
25 25013.19 20279.51 20226.30 20279.51 20279.51 0.26 0.00 77.87
33 30298.85 22303.23 21445.62 21761.87 22303.23 4.00 2.49 3609.77

kroB100 23 10 28199.43 21147.13 20495.53 20823.12 20823.12 3.18 0.00 1575.86
14 27887.13 20801.65 20495.10 20762.88 20762.88 1.50 0.00 1292.72
20 27796.09 21608.68 20475.75 20660.05 20660.05 5.53 0.00 114.70
25 28688.37 21086.63 20737.89 20786.92 20786.92 1.68 0.00 34.89
33 34719.88 22923.42 21992.60 22412.71 22923.42 4.23 2.28 3610.08

kroC100 23 10 27112.43 20199.75 19841.12 19923.30 19923.30 1.81 0.00 93.61
14 27258.71 19980.32 19855.85 19938.84 19938.84 0.63 0.00 77.78
20 27420.27 20186.38 20013.27 20135.00 20135.00 0.86 0.00 229.62
25 28174.46 20678.11 20305.76 20427.96 20427.96 1.83 0.00 197.60
33 33693.89 22465.73 21371.77 21559.53 22465.73 5.12 4.20 3609.81

kroD100 23 10 26908.84 20460.34 20226.34 20270.57 20270.57 1.16 0.00 50.50
14 26767.04 20790.60 20200.88 20267.23 20267.23 2.92 0.00 46.87
20 27020.74 20753.74 20352.89 20457.00 20457.00 1.97 0.00 254.33
25 27776.37 20761.87 20575.72 20671.19 20671.19 0.90 0.00 154.50
33 34414.67 22238.56 21533.97 22011.87 22238.56 3.27 1.03 3609.46

kroE100 29 10 26647.12 20977.21 20766.43 20766.43 20766.43 1.02 0.00 28.92
14 26540.41 20777.69 20760.78 20777.69 20777.69 0.08 0.00 28.45
20 26873.22 20937.39 20924.83 20937.39 20937.39 0.06 0.00 51.43
25 26990.05 21233.77 21110.75 21174.94 21174.94 0.58 0.00 62.60
33 32270.60 22782.98 22157.75 22782.98 22782.98 2.82 0.00 3054.13

rd100 19 10 9750.83 7642.76 7489.73 7524.08 7524.08 2.04 0.00 177.19
14 9387.75 7542.23 7479.44 7500.44 7500.44 0.84 0.00 42.96
20 9351.41 7582.28 7507.01 7537.98 7537.98 1.00 0.00 149.61
25 9222.18 7555.83 7550.19 7555.83 7555.83 0.07 0.00 51.30
33 12006.89 8131.25 7837.31 7996.03 8131.25 3.75 1.69 3609.83

26

This study was partially supported by Centre for Operational Research, Management

Science and Information Systems based within the University of Southampton, by the

Canadian Natural Sciences and Engineering Research Council under grant 2015-016189,

and by the Spanish Ministry of Education and Science/FEDER grants numbers MTM2013-

46962-C02-02. This support is gratefully acknowledged.

References

H.M. Afsar, C. Prins, and A.C. Santos. Exact and heuristic algorithms for solving the generalized

vehicle routing problem with flexible fleet size. International Transactions in Operational

Research, 21(1):153–175, 2014.

F. Barahona. Network design using cut inequalities. SIAM Journal on Optimization, 6(3):823–837,

1996.

J.E. Beasley. Route first - cluster second methods for vehicle routing. Omega, 11(4):403–408, 1983.

I.M. Branco and J.D. Coelho. The Hamiltonian p-median problem. European Journal of Opera-

tional Research, 47(1):86–95, 1990.

H. Glaab. A new variant of a vehicle routing problem: Lower and upper bounds. European Journal

of Operational Research, 139(3):557–577, 2002.

H. Glaab and A. Pott. The Hamiltonian p-median problem. The Electronic Journal of Combina-

torics, 7:1–25, 2000. URL http://www1.combinatorics.org.

S. Gollowitzer, D. L. Pereira, and A. Wojciechowski. New models for and numerical tests of

the Hamiltonian p-median problem. In J. Pahl, T. Reiners, and S. Voss, editors, Network

Optimization, volume 6701 of Lecture Notes in Computer Science, pages 385–394. Springer

Berlin Heidelberg, 2011.

S. Gollowitzer, L. Gouveia, G. Laporte, D.L. Pereira, and A. Wojciechowski. A comparison of

several models for the Hamiltonian p-median problem. Networks, 63:350–363, 2014.

L. Hupp and F. Liers. A polyhedral study of the Hamiltonian p-median problem. Electronic Notes

in Discrete Mathematics, 41:213–220, 2013.

G. Laporte, Y. Nobert, and P. Pelletier. Hamiltonian location problems. European Journal of

Operational Research, 12(1):82–89, 1983.

R.F. Love. Note – one-dimensional facility location-allocation using dynamic programming. Man-

agement Science, 22(5):614–617, 1976.

D.L. Miller and J.F. Pekny. A staged primal-dual algorithm for perfect b-matching with edge

capacities. ORSA Journal on Computing, 7(3):298–320, 1995.

27

C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers

& Operations Research, 31(12):1985–2002, 2004.

G. Reinelt. TSPLIB–A traveling salesman problem library. ORSA Journal on Computing, 3(4):

376–384, 1991.

H. Uster and S.K.S. Kumar. Algorithms for the design of network topologies with balanced disjoint

rings. Journal of Heuristics, 16(1):37–63, 2010.

M. Zohrehbandian. A new formulation of the Hamiltonian p-median problem. Applied Mathematical

Sciences, 1(8):355–361, 2007.

28

