

Citation for published version:

Rossberg, AG, Rogers, T & McKane, AJ 2014, 'Current noise-removal methods can create false signals in ecogenomic data', Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1783, 20140191, pp. 1 - 3. https://doi.org/10.1098/rspb.2014.0191

DOI: [10.1098/rspb.2014.0191](https://doi.org/10.1098/rspb.2014.0191)

Publication date: 2014

Document Version Peer reviewed version

[Link to publication](https://researchportal.bath.ac.uk/en/publications/current-noiseremoval-methods-can-create-false-signals-in-ecogenomic-data(a60aa21b-f711-4b01-ac67-fa3c8cb5723d).html)

This is the Author's Accepted Manuscript of a paper published in Rossberg, AG, Rogers, T & McKane, AJ 2014, 'Current noise-removal methods can create false signals in ecogenomic data' Proceedings of the Royal Society B: Biological Sciences, vol 281, no. 1783, 20140191, pp. 1 - 3., and available online via: http://dx.doi.org/10.1098/rspb.2014.0191

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Current noise removal methods can create ² false signals in ecogenomic data

AXEL G. ROSSBERG¹, TIM ROGERS² & ALAN J. MCKANE³

- ¹ Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
- ² Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
- ³ Theoretical Physics Division, School of Physics & Astronomy, The University of Manchester, M13 9PL, UK
- ¹⁰ In a recent article [1], we examined a simple and rather generic individualbased model consisting of a large number of organisms which undergo re-
- ¹² production with mutation and death through competitive interaction. Our analysis revealed that the formation and coherence of species depends cru-
- ¹⁴ cially on population size. Specifically, species are unlikely to form under high values of μK , the product of mutation rate (μ) with carrying capac-
- 16 ity (K) . The model contains only the two basic processes of competition and mutation. This simplicity allowed us to uncover the root cause of a
- ¹⁸ phenomenon which, we believe, could be quite general.

To what extent do our theoretical findings manifest themselves in real ecolog-

²⁰ ical systems? We investigated this question in [1] by comparing the outputs of our model with phylogenetic data derived from ecogenomic surveys in

- ²² the literature [2, 3]. We found that the reconstructed phylogenetic trees of organisms with body size around the millimetre scale or below have similar
- ²⁴ characteristics to those occurring in our model for parameters where species do not form. This finding led us to ask the question: "Are there species
- ²⁶ smaller than 1mm?".

In their comment [4], Morgan *et al.* propose that our theoretical findings, ²⁸ though correct, are not applicable to real ecological communities. They argue that the work reported in references [2, 3] was flawed, specifically sug-

- ³⁰ gesting that the counts of operational taxonomic units (OTUs, interpretable as lineages) reported in those articles are highly inflated due to errors in se-
- ³² quencing. If this were true, then the patterns observed in our Figure 1 [1] would be artefacts, and their similarity to the results of our model mere
- 34 coincidence. We believe that Morgan *et al.* are unjustified in dismissing this data and the conclusions we drew from it, as we now explain.
- ³⁶ For the datasets in question, the number of OTUs found declines steadily with the maximal permitted genetic distance within OTUs. In light of our
- ³⁸ theoretical findings, this fact suggests the absence of genetic species. Morgan et al. would like to demonstrate that species have in fact formed. To do this
- they propose to "clean" the underlying sequence data by removing large numbers of sequences, so as to reveal a pattern which they believe has been
- ⁴² obscured by noise. The dramatic effect of this removal process can be seen in Figure 2 of their comment [4], in which a plateau in the number of OTUs
- ⁴⁴ is recovered from data where OTUs previously declined smoothly. Morgan et al. claim that this plateau, which was absent from the untreated data, is
- ⁴⁶ the one predicted by our theory in the case when species have formed.

We would like to urge caution. Selectively removing parts of a dataset can ⁴⁸ profoundly alter it, and often imposes a new structure not present in the original data. Any noise removal requires some preconceptions about structure

- ⁵⁰ in the underlying data; one must have an extremely good understanding of both the system and the noise in order to attempt this. For ecogenomic py-
- ⁵² rosequencing data, this understanding might still be insufficient at present. One can test for bias in a denoising algorithm such as the one employed by
- ⁵⁴ Morgan *et al.* by inputting data which is known to have no structure, and seeing if the algorithm creates a structure where none previously existed (a ⁵⁶ false positive).
- We have undertaken such a test. We applied the procedure used by Morgan ⁵⁸ et al. to two synthetic datasets, each consisting of 5000 sequences of 200 base pair length. The first set was designed to mimic the low-diversity mock
- 60 community used by Morgan *et al.*; it was obtained by repeatedly sampling from a set of 10 initial sequences. The second was a high-diversity dataset
- ⁶² generated by repeatedly replacing one randomly chosen sequence by a copy of another randomly chosen sequence, modified by random substitutions at
- ⁶⁴ a rate 0.01. This process simulates neutral evolution; after many iterations it produces sequence data with no discernible species structure. Applying
- ⁶⁶ the fast clustering algorithm of OCTUPUS [3] to these datasets for a range of levels of genetic similarity leads to the expected [1, 4] structures in Figs. 1
- ⁶⁸ and 2 (red triangles). We observe a plateau at low genetic distances for the low-diversity dataset, and a steady decline in the number of OTUs for the
- ⁷⁰ high-diversity set.

To model sequencing errors (the noise), sequences in both datasets were ⁷² then subjected to random substitutions with a probability of 0.01 per base pair, simulating raw sequencer reads. In the output of the clustering algo-

⁷⁴ rithm (Figs. 1,2, green diamonds), the addition of noise is observed to shift the original curves to the right. The low-diversity dataset exhibits highly

- ⁷⁶ inflated numbers of OTUs at small genetic distance, in line with concerns raised by Morgan et al. [4]. For the high-diversity dataset, however, the
- ⁷⁸ effect is weaker, suggesting that raw or slightly processed [3] high-diversity data can meaningfully be analysed in this format.
- ⁸⁰ We then applied the APDP-SS algorithm [4, 5] to delete some of the raw reads. The steps of the algorithm involving primer occurrences and com-
- ⁸² parison with GeneBank were omitted as they are not relevant to synthetic data. For the low-diversity dataset, clustering after application of APDP
- ⁸⁴ (Fig 1, black squares) reveals a structure very similar to the original data, with a pronounced plateau a low genetic distances.
- ⁸⁶ When applied to the high-diversity dataset, however, APDP again generates a plateau (Fig 2, black squares). This plateau is an artefact which
- ⁸⁸ would wrongly suggest the presence of only about 33 unique sequences in the original data, in fact there were 4383. This result is important in light
- 90 of the similarity between our Figure 2, and Figure 2 of Morgan *et al.* [4]. In our case, the APDP algorithm has created a plateau from underlying data
- 92 where this did not exist. In the other case, Morgan *et al.* conclude that the algorithm has uncovered a true signal which was obscured by noise.
- ⁹⁴ We have not analysed in detail exactly how APDP imposes the structure found in Figs. 1 and 2, although it appears to be mainly due to the blanket
- ⁹⁶ removal of all singleton sequences. This step was recognised as potentially problematic in [5] but retained as "a conservative approach", supported
- ⁹⁸ by its apparent successful inclusion in other recent algorithms [6]. Further analysis of this algorithm is clearly necessary. We have included as supple-
- ¹⁰⁰ mentary material the R script used for the processing chain reported above, so that others may reproduce our test.
- ¹⁰² In our original article [1], we began a theoretical investigation of the basic

mechanisms leading to genetic clustering. As well as challenging the result

¹⁰⁴ of Refs. [2, 3], Morgan et al. have speculated about some aspects of our model which they believe are too simple, for example, asexual reproduction.

- ¹⁰⁶ Our experience suggests that the mechanism of cluster formation is generic and will hold in more realistic models. Crucially, we have already demon-
- ¹⁰⁸ strated that the same phenomenon occurs in both the phenotypic [7] and genotypic [8] versions of the model, which appear very different a priori. ¹¹⁰ We are currently studying other variants of the model, incorporating sex-
- ual reproduction, and hope that other researchers will also investigate this ¹¹² question.

Although the simulated organisms in our models do not form species when μK is large, it is important to note that the populations do still exhibit a certain structure. In particular, while not forming species, individuals are ¹¹⁶ phenotypically (or genetically) differentiated and adapted to their niches. We expect that future theoretical work will establish that many population-¹¹⁸ level features (including biogeographic structure, ecological differentiation,

¹²⁰ even reproductive isolation of two sub-populations [9] does not conclusively demonstrate the separation of species; the same would be observed if speci-

etc. [4]) are not dependent on the existence of coherent species. Indeed,

¹²² mens were taken from opposite ends of a ring species.

Further work is needed to accurately assess the extent of species forma-¹²⁴ tion in the meiofaunal biosphere. As we have seen, the handling of errors produced in current high-throughput sequencing technologies poses a major ¹²⁶ challenge. Possible areas for improvement include: more extensive genetic and phylogenetic analyses of selected meiofaunal taxa, potential for syn-

¹²⁸ thesising population-level surveys with selective whole-genome sequencing and the development of more sophisticated mathematical models incorpo-

- ¹³⁰ rating the effects of sequencing errors. The question of species formation is closely related to the problem of identifying so-called barcoding gaps [10, 11],
- ¹³² however, in the present literature the existence of species is often assumed a priori. Re-analysis of existing data without this assumption could well
- ¹³⁴ provide new insights. As the quantity and quality of ecogemonic data improves, we may find that the concept of 'species' is no longer central to our

¹³⁶ understanding of many aspects of ecology and biodiversity.

References

- ¹³⁸ [1] Rossberg, A. G., Rogers, T. & McKane, A. J., 2013 Are there species smaller than 1mm? Proc. R. Soc. B 280, 1767.
- ¹⁴⁰ [2] Creer, S., Fonseca, V. G., Porazinska, D. L., Giblin-Davis, R. M., Sung, W., Power, D. M., Packer, M., Carvalho, G. R., Blaxter, M. L.,

¹⁴² Lambshead, P. J. D. et al., 2010 Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol. Ecol. 19, 4–20. (doi: $144 \hspace{1.5cm} 10.1111/j.1365-294X.2009.04473. \text{ x}.$

[3] Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, ¹⁴⁶ D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D. & Thomas, W. K., 2010 Second-generation environmental sequencing ¹⁴⁸ unmasks marine metazoan biodiversity. Nature communications 1, 98.

[4] Morgan, M. J., Bass, D., Bik, H., Birky, C. W., Blaxter, M., Crisp, ¹⁵⁰ M. D., Derycke, S., Fitch, D., Fontaneto, D., Hardy, C. M. et al., 2014 A critique of Rossberg et al.: noise obscures the genetic signal ¹⁵² of meiobiotal ecospecies in ecogenomic datasets. Proc. R. Soc. B (to appear) .

¹⁵⁴ [5] Morgan, M. J., Chariton, A. A., Hartley, D. M. & Hardy, C. M., 2013

Improved inference of taxonomic richness from environmental DNA. ¹⁵⁶ PloS one 8, e71974.

- [6] Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P. & Tyson, G. W., ¹⁵⁸ 2012 Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nature Methods 9, 425–426.
- ¹⁶⁰ [7] Rogers, T., McKane, A. J. & Rossberg, A. G., 2012 Demographic noise can lead to the spontaneous formation of species. Europhys. Lett. 97, 162 40008. (doi:10.1143/JPSJ.77.044002).
- [8] Rogers, T., McKane, A. J. & Rossberg, A. G., 2012 Spontaneous genetic ¹⁶⁴ clustering in populations of competing organisms. Phys. Biol. 9, 066002. (doi:10.1088/1478-3975/9/6/066002).
- ¹⁶⁶ [9] Fonseca, G., Derycke, S. & Moens, T., 2008 Integrative taxonomy in two free-living nematode species complexes. *Biol. J. Linn. Soc.* 94, ¹⁶⁸ 737–753.
- [10] Wiemers, M. & Fiedler, K., 2007 Does the DNA barcoding gap exist?–a ¹⁷⁰ case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 1–16.
- ¹⁷² [11] Meier, R., Zhang, G. & Ali, F., 2008 The use of mean instead of smallest interspecific distances exaggerates the size of the barcoding gap and ¹⁷⁴ leads to misidentification. Systematic Biology 57, 809–813.

Figure 1: Relationship between genetic distance and observed number of OTUs in a sequence dataset derived from 10 unique and distinct sequences.

Figure 2: Relationship between genetic distance and observed number of OTUs in sequence data without species structure.