

Citation for published version:
Shams, Z, Vos, MD & Satoh, K 2014, ArgPROLEG: A normative framework for the JUF theory. in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). vol. 8417, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 8417, Springer, pp. 183-198. https://doi.org/10.1007/978-
3-319-10061-6_13
DOI:
10.1007/978-3-319-10061-6_13

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Bath Research Portal

https://core.ac.uk/display/161914082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-10061-6_13
https://researchportal.bath.ac.uk/en/publications/argproleg(58bca87d-abdd-4dc4-9812-d80bce97a0d3).html

ArgPROLEG: A Normative Framework for The
JUF Theory

Zohreh Shams 1, Marina De Vos 1, Ken Satoh 2

1 University of Bath, Dept. of Computer Science, UK
{z.shams, cssmdv}@bath.ac.uk

2 National Institute of Informatics, Principles of Informatics Res. Devision, Japan
ksatoh@nii.ac.jp

Abstract. In this paper we propose ArgPROLEG, a normative frame-
work for legal reasoning based on PROLEG, an implementation of the
the Japanese “theory of presupposed ultimate facts” (JUF). This the-
ory was mainly developed with the purpose of modelling the process of
decision making by judges in the court. Not having complete and ac-
curate information about each case, makes uncertainty an unavoidable
part of decision making for judges. In the JUF theory each party that
puts forward a claim, due to associated burden of proof to each claim,
it needs to prove it as well. Not being able to provide such a proof for
a claim, enables the judges to discard that claim although they might
not be certain about the truth. The framework that we offer benefits
from the use of argumentation theory as well as normative framework
in multi-agent systems, to bring the reasoning closer to the user. The
nature of argumentation in dealing with incomplete information on the
one hand and being presentable in the form of dialogues on the other
hand, has furthered the emergence and popularity of argumentation in
modelling legal disputes. In addition, the use of multiple agents allows
more flexibility for the behaviour of the parties involved.

Keywords: Legal Reasoning, Normative Framework, Argumentation,
Agents

1 Introduction

Legal reasoning is a rich application domain for argumentation in which ex-
changing dialogues and inferencing are combined [17]. On the other hand, legal
reasoning is a rich domain for agent modelling in which agent can model indi-
vidual parties [14]. In the past two decades, the combination of argumentation
and agents technology has provided a great modelling tool for legal disputes, in
which multiple parties are involved in a dispute and they each try to prove their
claims [3, 16].

In this work, we offer a normative framework for the JUF theory by means
of argumentation and multi-agent systems. This allows an easier presentation of
this theory, compared to the previous implementation in logic called PROLEG

[22]. The JUF theory is a decision making tool that has already been successfully
used in modelling civil litigation [20]. However, having the users - lawyers and
judges - of the system in mind, some of the semantics of logic programming
does not seem to be fully accessible to the users. We, therefore, have changed
the architecture and algorithm of PROLEG in a way that brings the reasoning
process closer to the users. For this purpose, we have used the dialectical proof
procedure as a reasoning mechanism for parties involved in an argumentation-
based dialogue [25]. The advantage of this mechanism is being close to the human
reasoning process as well as being representable in form of dispute trees.

This paper is organised as follows. In Section 2 we give an overview of the
JUF theory and PROLEG, followed by a brief introduction to argumentation
theory and norms. Section 3 provides the main contribution of this paper, which
is a normative architecture, called ArgPROLEG. ArgPROLEG is designed for
reasoning about JUF theory and in essence, it is an argumentation based im-
plementation of PROLEG. The architecture and algorithm of ArgPROLEG are
both included in this section. This section also includes an example of a legal
dispute modelled by ArgPROLEG. We then provide a survey of related work in
Section 4. Finally we conclude and point out some directions for future work in
Section 5.

2 Background

In this section, we provide a brief introduction to JUF, PROLEG and other key
concepts used throughout the paper.

2.1 PROLEG: An Implementation of The Ultimate Fact Theory of
Japanese Civil Code

PROLEG [20] is a legal reasoning system based on the Japanese theory of pre-
supposed ultimate facts (JUF). This theory is used for interpreting the Japanese
civil code. It was mainly developed to assist judges to make decisions under the
incomplete and uncertain information they face in the court. This uncertainty
is mainly the result of one party asserting a claim, which is unable to prove due
to the lack of evidence. In such a situation, the judge cannot deductively decide
whether the claim is true or false since the “deductive” civil code is based on
the complete information [22].

The JUF theory helps the judge to handle these cases by attaching a burden of
proof [17] to each claim. The burden of proof is assigned to the party that makes
the claim and the judge is not responsible for that. Thus, if a party makes a
claim that is unable to prove, the judge can discard the claim without trying to
assign a certain true or false value to it. This way the judge can evaluate the
correctness of a legal claim under a set of incomplete information.

PROLEG was introduced in an attempt to replace an existing translation of
the JUF theory into logic programming [22]. The reason of this shift was the un-
familiarity of the users, namely judges and lawyers, with logic programming and

negation as failure [5] in particular. According to negation as failure, if a claim
is unknown or not known to be true, it is considered to be false. By definition,
negation as failure makes a perfect choice for a mathematical formalisation of the
JUF theory in which failing to provide a proof for a claim results in discarding
the claim. However, the fact of not being conceptually accessible for the users,
led to a new implementation of JUF called PROLEG.

Instead of negation as failure, PROLEG uses the Professor Ito’s explanation
of JUF which is based on the openness of the ultimate facts [20]. In openness
theory, facts are divided into two categories; those that result in a conclusion
and those that represent an exceptional situation. The latter category are open
to challenge meaning they do not have a certain truth value and are therefore
undecided form the judge point of view. The burden of proof of these facts is on
the party claiming them. Judges are therefore able to make decisions based on
known facts and exceptions that are explicitly proven by one of the parties.

PROLEG consists of a rulebase and a factbase. The former stores the rules
and the exceptions while the later stores the performed actions of both parties
as well as the judge’s judgement about their truth value. Equations (1), (2) and
(3) are examples of a rule, an exception and a fact in PROLEG, respectively.

deliver good(X,Y,Good) <= purchase contract(X,Y,Good, Price) (1)

exception(deliver things(X,Y,Good, Price),

claim of simultaneous performance(Y,X, Price)) (2)

allege(claim of simultaneous performance, plaintiff) (3)

Rule (1) states that party X can expect party Y to deliver a Good if there
is a purchasing contract between them including the agreed Price and Good.
However there could be an exception to this expectation, which is defined in rule
(2). The exception is as follows: if there is a contract between two parties, one
may refuse to perform her/his obligation until the other party performs her/his
obligation. Moreover, equation (3) shows a performed action by the plaintiff
party, which is claiming an exception to deliver things(X,Y,Good, Price) by,
claim of simultaneous performance.

According to the claims and proofs that two parties - Plaintiff and Defendant
- assert, PROLEG produces a trace of derivation in the form of an dialogue
between them. The plaintiff tries to prove a claim while the defendant tries
to find an exception for that claim. If the exception is proven successfully, the
plaintiff has to find another exception for the former exception and so on.

2.2 Argumentation

Argumentation theory was initially studied in philosophy and law, and during
the past two decades it has been extensively researched in distributed systems.
Argumentation Frameworks (AF) have particularly gained a popularity in multi-
agent systems as an aid for the agents’ reasoning and decision making process.

a b

c

d

Fig. 1. A Graphical Representation of AF

The first AF was introduced by Dung [7] and it is known as Dung’s Argumen-
tation Framework (DAF)1. According to DAF, an AF is a pair AF = 〈Ar,R〉
where R ⊆ Ar × Ar. Ar is a set of arguments and R is a set of attack relations
between arguments. We assume a attacks b if (a, b) ∈ R. Figure 1 displays an AF
with four arguments and three attack relations between them. Nodes represent
the arguments, while edges represent the attack relations among them.

AF = 〈{a, b, c, d} , {(b, a), (c, b), (d, b)}〉

The evaluation of arguments in an AF depends on the argumentation seman-
tic of choice. The purpose of argumentation semantics is to determine a set of
justified and coherent arguments based on the arguments’ interactions. If two
arguments attack each other then an entity - which could be an agent for ex-
ample - cannot believe in both of them at the same time. Therefore, the role of
argumentation semantics is to examine the acceptability of a set of arguments.

The most basic argumentation semantic is the conflict-free semantics [7] in
which none of the arguments attack each other. This is the minimum criteria
for a set of arguments to be considered as coherent. The rest of argumentation
semantics (e.g. complete extension, preferred extension, stable extension and
etc.) are a version of conflict-free semantic that satisfy some form of optimality
[6]. As an example, the conflict-free extensions of Figure 1 are provided below:

C F : {{} {a} {b} {c} {d} {a, c} {a, d} {c, d} {a, c, d}}

One of the reasons of developing argumentation theory in multi-agent society
is being able to present interactions in the form of dialogues, specially among
participants with potentially conflicting viewpoints. Dung [8] states argumenta-
tion as a form of reasoning for dispute resolution in which two parties, proponent
and opponent, engage in a discussion as a form of proof for their claims. In fact,
dialectical proof procedure can be viewed as a reasoning mechanism for parties
involved in an argumentation-based dialogue [25]. In such a dialogue, the pro-
ponent puts forward an argument with the purpose of proving it. However, the
opponent tries to attack this claim. The dispute goes on by the proponent and

1 DAF can also be referred to as an Abstract AF because it abstracts away the internal
structure of arguments and instead, it merely focuses on attack relations among
arguments.

Sara (a): The weather is sunny so we should go running today
John (b): But the weather is too hot so we should not go running
Sara (c): The weather is not hot in the evening, so we should go running
John (d): ?!

a

Proponent

b

Opponent

c

Proponent

Fig. 2. Dialectical Proof Procedure

opponent alternating in attacking each other’s previous arguments until one of
them runs out of arguments. The winner of the dispute is the party who speaks
last. Therefore, the original claim by proponent is proved if the dialectical proof
procedure ends with an argument by proponent. Figure 2 shows an example of
this nature, in which the proponent claim is accepted.

2.3 Norms

Norms are defined as social rules which control the agent society by regulating
agents’ behaviour and following them benefits multi-agent systems as a whole
[26]. They help multi-agent systems to cope with the heterogeneity, the auton-
omy and the diversity of interests among agents [27]. Therefore, a normative
framework for multi-agent systems, comprises a set of normative agents whose
behaviour is governed by norms [27]. If these norms are legal norms, then we
have a legal normative framework which is the focus of this work. Free Online
Encyclopaedia defines legal norms as “mandatory rule of social behaviour es-
tablished by the state”. As this definition suggests, legal norms are normally
imposed to the society through an external entity such as the state. We have
thus, adopted the same concept and modelled the legal norms external to the
agents.

We define each norm as a rule of form (4) consisting of literals Li.

L0 ← L1 ∧ · · · ∧ Lm m ≥ 0 (4)

The left hand side of the arrow L0 is called head or conclusion of the rule and
the right hand side L1 ∧ · · · ∧Lm is called body or premises of the rule. L0 holds
if L1, L2, · · ·, and Lm are all true. Take for example the norm:

payfine(AgX, Y)← delay(AgX, Y) ∧ reserved(Y) (5)

This norm can be read as: Agent AgX has to pay fine if it delays returning book
Y to the library and the book is reserved by someone else.

Since we aim to use norms in a legal reasoning context, as it has been used
in the JUF approach presented by PROLOG, we require a second type of norm
called an exception norm.

Exception(Q,P) (6)

Equation 6 states, that there is an exception, namely P for Q which is the head
of another norm.

Exception norms substitute the facts representing exceptional situations in
PROLEG (see Section 2.1).

Exception(payfine(AgX, Y), available(Y, Y
′
)) (7)

For example, assuming Y
′

is a second version of book Y , the above norm reads
as: AgX does not have to pay fine if another version of book Y , Y

′
is available.

3 ArgPROLEG: A Normative Framework for Legal
Reasoning

The JUF theory was first implemented in logic programming followed by an
implementation in prolog called PROLEG. The main advantage of PROLEG
over the original system is its accessibility to lawyer and judges. In this section
we propose a normative framework to model the JUF theory which is even
closer to the natural human reasoning process, since it benefits from multi-agent
systems and argumentation theory to represent a legal dispute between two
parties, namely plaintiff and defendant.

Arguing is one of the human skills that we learn from early ages. Naturally,
the argumentation process between two humans starts with one of them raising
an issue which is subject to disagreement of the opposite party. The rest of
process is followed by exchanging further arguments with the purpose of reaching
an agreement. The agreement could be mutual or could be the result of one party
not being able to reject the other party’s argument. Similarly, we have tried to
reflect the human reasoning process in ArgProleg in a way that even a non expert
user can instinctively relate to it. In what follows, We first introduce the overall
architecture of ArgPROLEG followed by its algorithm.

3.1 The Framework Architecture

We suggest an architecture (see Figure 3) in which the two parties in a legal dis-
pute, plaintiff and defendant, are presented by two agents A and B, respectively.
The arbitrator plays the role of the judge in the court and the set of norms
models the law book. The arbitrator receives the claims and evidences of each
parties and judges them by referring to the set of norms.

Please note that the connection between two agents happens through the
arbitrator (See Figure 3) and there is no direct connection between agents. A
legal case in the court normally commences with an agent, namely plaintiff
raising an issue against another agent, namely defendant. It is then the judge’s

Norms	

Agent	 A	 Agent	 B	

Arbitrator	

Fig. 3. The Framework Architecture

responsibility to investigate the raised case and ask for defendant’s testimony.
According to both the original claim by plaintiff and the provided response by
defendant, the judge decides whether the dispute is over in favour of one of the
parties. If the status of the dispute is still unclear to the judge, it will be more
argumentation back and forth between two parties through the arbitrator. Below
is a narrative on how the communication works between the various parties:

– The session starts by agent A submitting a claim to the arbitrator.
– The arbitrator checks the set of norms to find out how agent A should

support this claim. In other words, what are the requirements of this claim
from the legal viewpoint.

– The arbitrator passes the requirements to agent A.
– If agent A fails in providing the requirements, the claim is rejected.
– If it succeeds then, the arbitrator contacts the set of norms to see if there

are any exceptions for this claim. If not, the claim is accepted.
– Otherwise the arbitrator passes the exceptions to agent B to see if it can

provide any of them 2.
– If agent B has any of those exceptions, it will then pass it to the arbitrator.
– Subsequently, the arbitrator tries to find out how this exception can be

supported from the law viewpoint by referring to the set of norms.
– The arbitrator informs agent B about the required support.
– If agent B cannot provide the necessary support for any of the exceptions,

agent A’s claim is accepted.

2 We assume that a party can use all the exceptions available exhaustively, one-by-one,
to make a successful counter attack. Thus, if the party cannot provide the required
support for the first exception, it has the opportunity to try the second exception
and so on.

– But if agent B can prove at least one of the exceptions, the arbitrator tries
to find out what are the exceptions for that by checking the set of norms.

– If there is any they will be passed to agent A and the same procedure will
be repeated.

– This procedure is repeated until either an exception to the original claim
cannot be ignored (the plaintiff cannot counteract) or all exceptions to the
original claim turn out to be unsupported by the defendant.

3.2 The ArgPROLEG Algorithm

The ArgPROLEG algorithm (Figure 4) consists of six functions: Main(C),
prove(S,P), provide-evidence(M), claim(A,B), reverse(X) and
except(F,Q). The task(s) that each function fulfils is explained below.

The Main(C) function returns the output of prove(S,P) function for the
plaintiff’s original claim, C. The prove(S,P) function is used to prove a claim
or the support of an exception by either parties. If a party P puts a claim or
an exception forward, the arbitrator will check the the set of norms to see how
the claim or exception can be proven. The arbitrator then asks the agent to
provide the proof of the claim by showing evidence. If the agent can provide the
necessary evidence by means of provide-evidence(M) function, the evidence
is passed to the claim(A,B) function to see if there is any indirect attack to
the original claim C. By indirect attack, we mean an exception to any part
of the evidence of C. Therefore, the proof is successful if evidence is provided
and all claims against it are rejected. The provide-evidence(M) function is a
function that is used by each single agent collecting all the rules that have M as
their head. It then recursively, traces back each rule to find all its atoms. The
output of this function is a set of sets. Each set provides a possible way to proof
the claim. For example in the case provided below, the agent has to provide
{p1, p2, p3, p4, p5, p6,M} or {q1,M}.

R1 : M ⇐ p1, p2 R4 : p2⇐ p4, p5 R7 : p3⇐
R2 : M ⇐ q1 R5 : p4⇐ p6 R8 : p5⇐
R3 : p1⇐ p3 R6 : q1⇐ R9 : p6⇐

Function claim(A,B) takes the responsibility of the rest of the dispute after
the first claim by plaintiff is proven to be true. This function then gives chances to
the defendant and the plaintiff to attack each other’s last announcement. If any
of the exceptions against an argument remains unattacked by the other party,
that means the dispute is over and the winner is the claimer of this argument.
The output of this function is true if A who made the first claim/argument is the
last who speaks. Otherwise the output is false. The reverse(X) function takes
one of the parties, either the plaintiff or the defendant as input and returns the
opposite party as output. This function will be called in claim(A,B) function,
when the parties have to take turn in attacking each other.

Plaintiff-Arbitrator: Main(C)
begin

return(prove(C,P laintiff))
end

prove(S,P)
begin

Arbitrator-P: Provide evidence for S
V = provide− evidence(s)
if V = Ø then return(false);
for every v ∈ V

begin
proven = true
for every vi ∈ v

begin
if claim(vi, P)
proven = false
break

end
if proven = true
return(true)

end
return(false)

end

provide-evidence(M)
begin

Result = {}
Ru = {M ⇐ D ∈ R}
if Ru = Ø then return(Ø)
for every Ri ∈ Ru

begin
if D = Ø then add {} to all sets in Result
else if for all Di ∈ D

begin
add provide− evidence(Di) to all sets in Result

end
add {D} to all sets in Result

end
return(Result)

end

claim(A,B)
begin

e = except(A, reverse(B))
if e = Ø then return(true)
else for all ei ∈ e

begin
result = claim(ei, reverse(B))
if result = true then return(false)

end
return(true)

end

reverse(X)
begin

if X = Plaintiff then return(Defendant);
else return(Plaintiff);

end

except(F,Q)
begin

Arbitrator-Norms: collect all the exceptions for F: exception(F,Ei) in E
if E = Ø then return(Ø)
provenE = Ø
else for every Ei ∈ E

begin
Arbitrator-Q: evidence(Ei)
if Q can provide the evidence

then Arbitrator-Q: prove(Ei, Q)
if prove(Q,Ei) = true

then provenE = provenE ∪ Ei

else return(Ø)
end

return(provenE)
end

Fig. 4. The ArgPROLEG Algorithm

The except(F,Q) function tries to find the exceptions for a certain claim
or exception, F. If F is provided by one party, the opposite party Q needs to
show evidence and consequently prove the exceptions for F. Thus, the arbitrator
checks the set of norms to see whether there is any exceptions for F. In case of
existence, the exceptions will be passed to Q. This party has to firstly show
an evidence of such an exception and secondly prove it by calling prove(S,P)
function. If it fails either of them, then the exception is rejected. The output of
this function is either Ø, which means there is no exception or not any proven
one for F; or it is set provenE which is a set of proven exceptions for F.

3.3 Contract Scenario

In this scenario, we aim to model a legal dispute between two parties by means
of the architecture and the algorithm we introduced in Sections 3.1 and 3.2.
Imagine a situation in which a lessor wants to cancel his property contract with
the lessee. She claims that the lessee has subleased the property to somebody
else and therefore, she wants to end the contract. Both the lessor and the lessee
agree that there was a contract between them in first place and subsequently
the property was handover to the lessee. The lessee also admits her contract of
sublease with a third person which was followed by handing over some parts
of the property to the sublessee. The lesser believes that the sublease has used
the property to make profit, thus she makes the announcement of cancelling
the contract. However, the lessee believes that she already informed the lessor
and she has approved of the sublease before she made the announcement of
cancelling the contract. Moreover, the period of subleasing was so short that
does not count as abuse of confidence of the owner. However, the owner considers
the case as abuse of confidence since she has received some complaints from the
neighbours regarding the noise during the subleasing period. Figure 5 displays
the formalisation of this case based on the ArgPROLEG architecture.

Figure 6 illustrates the graphical representation of Contract Scenario based
on the ArgProleg algorithm. The plaintiff claims that she wants to cancel the
contract. The arbitrator then checks the set of norms to find out the support
for this claim. N1 provides this information which will be passed to the plaintiff.
Plaintiff is able to provide the required support. Thus the first argument (a)
appears. The arbitrator checks the set of norms to see if there is any exceptions
for this claim. Exceptions 1 and 2 provide two options for the defendant to make
an attack against the plaintiff’s claim. The options obtained from the exceptions
are b : get approval of sublease and c : nonabuse of confidence. N2 and N3
contains the necessary supports for each of the exceptions, respectively. The
attack (b) and (c) to (a) remains as a potential attack unless the defendant
can provide the requested support for them. Defendant can only provide this
support in case of argument (c). Therefore, the defendant attacks argument
(a) by argument (c). Now, based on the algorithm, the arbitrator checks the
set of norms to find an exception to this exception. This is going to make a
potential case for the plaintiff to perform an attack to the defendant. There is
one exception available, namely Exception 3, abuse of confidence. N4 states

	
	

	
	

Norms	
	

Norm	 1:	 cancella(on_due_to_sublease	 <=	 agreement_of_lease_contract,	 handover_to_lessee,	 	
	 	 	 	 	 	 agreement_of_sublease_contract,	 handover_to_sublessee,	 using_leased_thing,	
	 	 	 	 	 	 manifesta(on_cancella(on	

Norm	 2:	 get_approval_of_sublease	 <=	 approval_of_sublease,	 approval_before_cancella(on	
Norm	 3:	 nonabuse_of_confidence	 <=	 fact_of_nonabuse_of_confidence	
Norm	 4:	 abuse_of_confidence	 <=	 fact_of_abuse_of_confidence	
	 	
Excep0on	 1:	 excep(on(cancella(on_due_to_sublease,	 get_approval_of_sublease)	
Excep0on	 2:	 excep(on(cancella(on_due_to_sublease,	 nonabuse_of_confidence)	
Excep0on	 3:	 excep(on(nonabuse_of_confidence,	 abuse_of_confidence)	

	 	
	
	
	
	

Plain0ff	
b1:	 agreement_of_lease_contract	
b2:	 handover_to_lessee	
b3:	 agreement_of_sublease_contract	
b4:	 handover_to_sublessee	
b5:	 using_leased_thing	
b6:	 manifesta(on_cancella(on	
b7:	 abuse_of_confidence	
b8:	 fact_of_abuse_of_confidence	

	

	
	
	

Defendant	
	

d1:	 get_approval_of_sublease	
	
d2:	 nonabuse_of_confidence	
	
d3:	 fact_of_nonabuse_of_confidence	
	 	
	 	
	 	

	

	

Arbitrator	

Fig. 5. Contract Scenario

the requirement for this argument, which is fact of abuse of confidence. The
plaintiff successfully supports this argument which results in an attack from
argument (d) to argument (c). The arbitrator looks for another exception to
this later exception. Since such an exception is not available the dispute is over.

The last graph in Figure 6 shows the final argumentation framework for this
dispute. Going back to Section 2.2, in a dialectical proof procedure, the party
who makes the last utterance is the winner, which similarly makes the plaintiff
the winner of this case.

4 Related Work

The closest work to ours is PROLEG [20] which is an implementation of JUF
theory by means of the burden of proof. ArgPROLEG has fulfilled two future
plans of PROLEG discussed and listed in [20]. These two features are, bringing
the knowledge representation closer to the natural human reasoning (see sec-
tion 3) and also including a diagrammatic representation of reasoning in the

Plain&ff()a:)cancella&on_due_to_sublease)
)
)
)
N1)
)
)
)
Plain&ff:)Argument)a)supported)by)b1,)b2,)b3,)b4,)b5,)b6))
)
)
Defendant:))))))b:)Excep&on)1))
)

))))))c:)Excep&on)2)
)
)

Defendant:)Argument)c)claimed)by)d2)and)supported)by)d3)
)
)
Plain&ff()d:)Excep&on)3)
)
Plain&ff:)Argument)d)claimed)by)b7)and)supported)by)b8)

agreement_of_lease_contract,)
handover_to_lessee,)
agreement_of_sublease_contract,)
handover_to_sublessee,)
using_leased_thing,)
manifesta&on_cancella&on)

Required)
Support))

get_approval_of_sublease)

Required)
Support)

N2)
approval_of_sublease,)
approval_before_cancella&on)

nonabuse_of_confidence)) N3)

Required)
Support) fact_of_nonabuse_of_confidence)

)abuse_of_confidence)

Required)
Support)

N4) fact_of_abuse_of_confidence)

a

a

b

c

a c

a c d

a c d

Fig. 6. Contract Scenario Argumentation Framework

JUF theory. Using argumentation in designing ArgPROLEG has served both
these purposes.

Apart from PROLEG and ArgPROLEG, another translation of the JUF
theory is also available in logic programming [22]. In contrast to PROLEG and

ArgPROLEG, this version uses negation as failure instead of the burden of proof.
Negation as failure is a non-monotonic form of negation that enables logic pro-
gramming to formulate problems of non-monotonic reasoning. Kakas [15] has
already used negation as failure for default reasoning. The idea of using negative
literals as abductive hypotheses has also been pointed out by Eshghi and Kowal-
ski [9]. However, among burden of proof and negation as failure, the concept of
the former seems to be easier to grasp for lawyers and judges.

In terms of formalisation of the burden of proof, other works exist [13, 18, 23,
28]. Gordon et al. offer an argumentation-based system, called Carneades [13],
which implements the burden of proof as well the burden of persuasion. The main
difference of this approach to ours is, that the burden of proof for a premise can
be assigned to a different party rather than the one who has uttered the claim.
The plaintiff has the burden of production for the facts of its claim, whereas the
defendant has the burden of production for exceptions. The same applies to the
burden of persuasion.

Another example of logic programming being used for expressing and apply-
ing legislation is [24]. This work however, focusses on specific legal cases related
to British Nationality Act. They describe how complicated regulations such as
British Nationality Act can be translated into simple form of logic so that the
consequences of each act can easily be determined.

5 Conclusion and Future Work

In this paper we introduced ArgPROLEG, a normative framework for legal rea-
soning, that uses dialectical proof procedure to support legal parties in resolving
their conflicts. ArgPROLEG offers an alternative approach to PROLEG [20].
We believe that ArgPROLEG is closer to human reasoning compared with PRO-
LEG. Additionally, it is able to offer a diagrammatic representation of the plain-
tiff’s and the defendant’s reasoning, which enhances the ability of non-expert
users to follow the procedure as it unfolds.

For the future, we would like to extend our framework to be able to cope
with more than two parties. In real cases, a dispute can involve multiple parties,
which all need to be able to bring forward their arguments. If there are more
than two agents involved, but we are still able to divide them into two main
opposing parties, the argumentation graph keeps its linear shape. However, in
each step, there is more than one agent that can put forward an argument. For
instance, if it is the defendant party’s turn to put forward an argument and
the defendant party includes more than one agent, any of them can make the
argument. Although from the argumentation graph viewpoint, the dialectical
structure does not change, there are some other issues that need to be taken
into consideration. The most important issue is the consistency of knowledge
bases of different agents belonging to the same party. At the moment we assume
each agent’s knowledge base is self-consistent, which results in consistency of
claims put forward by the agent. However, if a party consists of more than
one agent, defending the same viewpoint, their claims have to be consistent

too. One possible way of achieving consistency is to merge agents’ knowledge
bases and resolve possible conflicts to prevent any inconsistent arguments. One
example of such an approach is discussed in [10]. Another issue is the method of
constructing an argument. Arguments can be put forward by various individual
agents belonging to the same party, as well as by a combination of agents. The
process of construction of an argument in such cases, results from the reasoning
of multiple agents. On the other hand, if there are more than two agents and we
cannot simply divide them into two main opposing parties, the argumentation
graph would not be linear any more. As a result the argumentation graph can
take any shape and the winner of the dispute is not necessarily the party who
speaks last. In addition, applying different argumentation semantics, as discussed
in section 2.2, would have a different outcome, whereas in linear graphs all the
argumentation semantics coincide.

For the implementation, we consider an architecture similar to the Governor
approach presented in [1]. Balke et al. use an institution to collect the norms and
the normative results of an agent’s actions. To make this information accessible
via queries, the authors introduce the Governor, an agent that acts as a relay
between the norms and their (possible) consequences and the agent’s query. In
our case, the arbitrator would take the role of the Governor. Apart from simply
relaying queries to the institution/norms, the arbitrator will actively retrieve
information to pass on to the agents, e.g. the exception to the claim. [1] uses
the Jason BDI architecture [4] for setting up the multi-agent system and InstAL
based on answer set programming [2, 12] for the institution/norms. The use of
a BDI architecture [19] has the added advantage of being able to model agent
reasoning in more detail. Currently, our agents’ mental model contains only
beliefs or a knowledge base. In a BDI architecture, we could express the goals
and intentions of the agents more effectively and take them into account when
they put forward their claims. In addition, with an institution rather than a set
of norms, we would be able to keep track of normative states and allow agents to
reason about conflicts that appear after a period of time. Having more expressive
agents, gives us the chance to investigate different strategies for agents to deal
with norm compliance as well. Agents can check the reward and punishment
associated with adhering to a norm, or violating a norm, and decide whether the
gain from breaking a norm is worth the sanction. In such cases, the agent has to
decide between the importance of individual goals hindered by normative goals
compared to individual goals hindered by punishment [27].

For the dialectical proof procedure, we also consider an implementation using
answer set programming (ASP). Dung’s argumentation framework and semantics
have already been implemented in answer set programming [11], giving us a good
indication that this approach is worth considering.

Finally, this paper only investigates the use of argumentation for conflict
resolution in a legal domain. In particular, it is aimed at mimicking court pro-
cedure. However, it has been proven [21], that the PROLEG inference structure
can be used for general rule - exception patterns (see section 2.3). This argument
applies to ArgPROLEG as well since it borrows PROLEG inference structure.

References

1. Tina Balke, Marina De Vos, Julian Padget, and Dimitris Traskas. On-line reasoning
for institutionally-situated bdi agents. In Yolum, Tumer, Stone, and Sonenberg,
editors, 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), pages 1109–1110. IFAAMAS, May 2011.

2. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem
Solving. Cambridge University Press, New York, NY, USA, 2003.

3. Trevor Bench-Capon, Henry Prakken, and Giovanni Sartor. Argumentation in
Artificial Intelligence, chapter Argumentation in Legal Reasoning, pages 363–382.
Springer, 2009.

4. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technol-
ogy). John Wiley & Sons, 2007.

5. Keith L. Clark. Negation as failure. In Jack Minker, editor, Logic and Data Bases,
volume 1, pages 293–322. Plenum Press, New York, London, 1978.

6. Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent semantics
for argumentation frameworks. In 17th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), pages 568–572. IEEE Computer Society, 2005.

7. Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–358, 1995.

8. Phan Minh Dung and Phan Minh Thang. A unified framework for representa-
tion and development of dialectical proof procedures in argumentation. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence(IJCAI), pages 746–751, 2009.

9. Kave Eshghi and Robert A. Kowalski. Abduction compared with negation by
failure. In ICLP, pages 234–254, 1989.

10. Xiuyi Fan, Francesca Toni, and Adil Hussain. Two-agent conflict resolution with
assumption-based argumentation. In Computational Models of ArgumentCompu-
tational Models of Argument (COMMA), pages 231–242, 2010.

11. Sarah Alice Gaggl. Solving argumentation frameworks using answer set program-
ming. Master’s thesis, Technische Universitt Wien, 2009.

12. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. pages 1070–1080. MIT Press, 1988.

13. Thomas F. Gordon, Henry Prakken, and Douglas Walton. The carneades model
of argument and burden of proof. Artificial Intelligence, 171(10-15):875–896, July
2007.

14. Thomas F. Gordon and Douglas Walton. Legal reasoning with argumentation
schemes. In International Conference on Artificial Intelligence and Law (ICAIL),
pages 137–146. ACM, 2009.

15. Antonis C. Kakas. Default reasoning via negation as failure. In Gerhard Lake-
meyer and Bernhard Nebel, editors, ECAI Workshop on Knowledge Representation
and Reasoning, volume 810 of Lecture Notes in Computer Science, pages 160–178.
Springer, 1992.

16. Henry Prakken. Formalising ordinary legal disputes: a case study. Artificial Intel-
ligence and Law, 16(4):333–359, 2008.

17. Henry Prakken and Giovanni Sartor. Formalising arguments about the burden
of persuasion. In Proceedings of the 11th international conference on Artificial
intelligence and law, ICAIL ’07, pages 97–106, New York, NY, USA, 2007. ACM.

18. Henry Prakken and Giovanni Sartor. More on presumptions and burdens of proof.
In Enrico Francesconi, Giovanni Sartor, and Daniela Tiscornia, editors, JURIX,
volume 189 of Frontiers in Artificial Intelligence and Applications, pages 176–185.
IOS Press, 2008.

19. Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to practice. In
Proceeding of the first international conference on Multi-Agent Systems (ICMAS-
95), pages 312–319, 1995.

20. K. Satoh, K. Asai, T. Kogawa, M. Kubota, M. Nakamura, Y. Nishigai, K. Shi-
rakawa, and C. Takano. Proleg: An implementation of the presupposed ultimate
fact theory of japanese civil code by prolog technology. In Takashi Onoda, Daisuke
Bekki, and Eric McCready, editors, JSAI-isAI Workshops, volume 6797 of Lecture
Notes in Computer Science, pages 153–164. Springer, 2012.

21. K. Satoh, T. Kogawa, N. Okada, K. Omori, S. Omura, and K. Tsuchiya. On
generality of proleg knowledge representation. In Proceedings of the 6th Interna-
tional Workshop on Juris-informatics (JURISIN 2012), pages 115 – 128, Miyazaki,
Japan, 2012.

22. K. Satoh, M. Kubota, Y. Nishigai, and C. Takano. Translating the japanese pre-
supposed ultimate fact theory into logic programming. In Proceedings of the 2009
conference on Legal Knowledge and Information Systems: JURIX 2009, pages 162–
171, Amsterdam, The Netherlands, The Netherlands, 2009. IOS Press.

23. Ken Satoh. Logic programming and burden of proof in legal reasoning. New
Generation Comput., 30(4):297–326, 2012.

24. M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T.
Cory. The british nationality act as a logic program. Commun. ACM, 29(5):370–
386, May 1986.

25. Phan Minh Thang, Phan Minh Dung, and Nguyen Duy Hung. Towards a common
framework for dialectical proof procedures in abstract argumentation. Jornal of
Logic and Computation, 19(6):1071–1109, 2009.

26. Fabiola López y López and Michael Luck. A model of normative multi-agent
systems and dynamic relationships. In Gabriela Lindemann, Daniel Moldt, and
Mario Paolucci, editors, Regulated Agent-Based Social Systems (RASTA), volume
2934 of Lecture Notes in Computer Science, pages 259–280. Springer, 2002.

27. Fabiola López y López, Michael Luck, and Mark d’Inverno. A normative framework
for agent-based systems. In Normative Multi-Agent Systems (NORMAS), pages
24–35, 2005.

28. Hajime Yoshino. On the logical foundations of compound predicate formulae for
legal knowledge representation. Artificial Intelligence Law, 5(1-2):77–96, 1997.

Responses to Reviewers’ Comments

——————————————————————————————————–
REVIEW 1
OVERALL EVALUATION: 2 (accept)
——————————————————————————————————–
The revised version is eligible for LNAI publication. Some points are made clear,
and some related references are included in the new version. It is a good possi-
bility to publish this paper in LNAI for JURISIN 2013. The third paragraphs in
section 5 seems not be in a good form. Please take care of the typesetting of the
paper before publishing.
Section 5 has been proofread and some sentences have been rephrased.

——————————————————————————————————–
REVIEW 2
OVERALL EVALUATION: 2 (accept)
——————————————————————————————————–
The paper has been properly revised according to the reviewer’s comments.

