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Abstract 16 

1.  In the analysis of animal social networks, a common challenge has been distinguishing affiliations—17 

active preferences of pairs of individuals to interact or associate with one another—from other, 18 

structural, causes of association or interaction. Such structural factors can include patterns of use of the 19 

habitat in time and space, gregariousness, and differential association rates among age/sex classes. 20 

2.  In an approach with similarities to the multiple regression quadratic assignment procedures test, we 21 

suggest calculating generalized affiliation indices as the residuals from a regression of the measures of 22 

association or interaction on structural predictor variables, such as gregariousness and spatiotemporal 23 

overlap.  If the original data are association indices or counts of interactions, then generalized linear 24 

models with binomial or Poisson error structures, respectively, can be used in place of linear regression.  25 

Anscombe or deviance residuals can be used to assess the significance of particular affiliation indices.   26 

3. Generalized affiliation indices can be used as the weights of links in a social network representation.  27 

They can then be portrayed in network diagrams or cluster diagrams, and used to calculate network 28 

statistics, to delineate communities by maximizing modularity, and to test for overall affiliation using 29 

data-stream permutation tests. 30 

4.  We evaluate the effectiveness of such generalized affiliation indices using simulated and real 31 

association data, finding that the method removes much of the effect of structural variables on 32 

association patterns, revealing real affiliations.  While the approach is very promising, it is limited by the 33 

extent to which the input predictor variables represent important structural factors. 34 

 35 

 36 
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Introduction 39 

Among the potential goals of social network analysis, perhaps most fundamental is the description and 40 

investigation of preferred and avoided dyadic relationships, what we will call affiliations. A frequent 41 

objective of social network analysis has been testing the null hypothesis that there are no such 42 

affiliations in the study population, and, if this is rejected, identifying dyads with preferred or avoided 43 

relationships (Bejder, Fletcher & Bräger 1998; Croft et al. 2011). 44 

Many, perhaps most, studies of the social networks of non-humans are built upon matrices of 45 

association indices, estimates of the proportion of time that pairs of individuals are associated 46 

(Whitehead 2008).  In this approach, association should be defined such that is meaningful to the 47 

animals—how they interact and/or communicate—, but operationally association is usually based upon 48 

spatial, temporal, and/or behavioural metrics (Whitehead 2008). Using this approach, pairs of 49 

individuals may be delineated as associated if they are 1) communicating/interacting and making active 50 

decisions to associate with one another, 2) if they happen to be in the same place at the same time and 51 

so communicate/interact, or 3) if they happen to be in the same place at the same time and are not 52 

communicating or interacting.  If interest is in disease transmission over the social network then all 53 

three of these forms of association are important.  Forms 1) and 2), but not 3), allow for the 54 

transmission of cultural information transmitted through interactions or communication.  However if we 55 

are interested in actively-maintained dyadic relationships, affiliation, only form 1) is relevant.  In 56 

addition to true affiliation, factors that might affect association include spatial overlap (animals using 57 

the same parts of the population range associate more (e.g. Shizuka et al. 2014)), temporal overlap 58 

(animals using the study area at the same time are more likely to associate (e.g. Cantor et al. 2012)), 59 

gregariousness (animals that preferentially are found in large groups are more likely to associate with 60 

one another (Godde et al. 2013)), and gender (there may be preferential associations with the same or 61 



5 
 

the opposite sex).  We shall refer collectively to such sources of association, which potentially mask the 62 

existence and strength of true affiliations, as structural variables. 63 

Sometimes it is not clear whether a factor should be considered a structural factor predicting association 64 

or an element of affiliation.  For instance, kinship could be deemed a structural factor if there is a 65 

preference to associate with kin, but kinship recognition is not linked to individual identification.  If, on 66 

the other hand, kinship is perceived by the animals at an individual level (“One of the reasons I like X is 67 

because she is kin”), so affecting affiliation rather than association directly, then it might not be 68 

considered structural. 69 

Disentangling true affiliations from other causes of association has led to the construction of structured 70 

permutation tests (Bejder, Fletcher & Bräger 1998; Croft et al. 2011; Whitehead 1999; Whitehead, 71 

Bejder & Ottensmeyer 2005).  However such tests have limitations and challenges. They only give a 72 

perspective on the null hypothesis that there are no affiliations, or, in the case of a dyadic test (Bejder, 73 

Fletcher & Bräger 1998) that two animals are not affiliates.  Furthermore as more structural factors that 74 

might cause association are accounted for, the tests become increasingly unwieldy. Additionally, 75 

network diagrams and network statistics include the non-affiliative causes of association, and so will be 76 

misleading if the primary goal is to study patterns of affiliation. 77 

An alternative perspective pioneered by Godde et al. (2013) in the case of gregariousness is to correct 78 

the association index for the structural factor, and then carry out additional analyses—tests, diagrams 79 

and network statistics—on this new index.  Here we extend this approach to include multiple structural 80 

factors, using a method closely allied with MRQAP (multiple regression quadratic assignment 81 

procedures).  82 

MRQAP is itself an extension of the Mantel (1967) test in which the non-diagonal elements of two 83 

square matrices both indexed by the same objects (usually individuals in social network analysis) for 84 
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both rows and columns are tested for a linear relationship.  So we might test whether there is an overall 85 

correlation between association indices of dyads and their genetic relatedness.  Because of non-86 

independence caused by the structure of the data, standard tests of correlation coefficients are invalid, 87 

but permutations of the object labels on one of the matrices allows a null hypothesis of no relationship 88 

to be tested.  MRQAP extends this approach to situations in which the relationship between one 89 

dependent variable—typically an association index in social network analyses of animals—and an 90 

independent variable—such as kinship—is examined while controlling for other independent variables—91 

such as range overlap or gender similarity.  Because of potential collinearity among the independent 92 

variables, this is not as straightforward as in the case of the bivariate Mantel test.  However, there are 93 

effective permutation methods for MRQAP tests (Dekker, Krackhardt & Snijders 2007).  94 

Here we propose that the residuals following a multiple regression of the association index on various 95 

structural variables using generalized linear models, be used as generalized indices of affiliation among 96 

pairs of individuals. We consider possible structural variables that might be included as predictors of 97 

association, how to measure the significance of structural variables, and, having removed the structural 98 

factors, how to test for the presence of affiliation both at the dyadic level and globally.  We illustrate the 99 

method using simulated and real data. 100 

Methods 101 

Calculating generalized affiliation indices 102 

We start with a square matrix representing associations or interactions between individuals.  This will 103 

often be a matrix of association indices, such as the simple ratio index (Ginsberg & Young 1992), which 104 

estimates the proportion of time members of a dyads are associated: 105 

௜௝(݋݅ݐܽݎ	݈݁݌݉݅ݏ)ݕ = No.	sampling	periods	೔	and	ೕ	associated
No.	sampling	periods	೔	or	ೕ	or	both	observed	 (1) 106 
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where yij is the simple ratio association index between individuals i and j, given definitions of 107 

“association” (e.g. seen within 3 body lengths of one another) and “sampling period” (e.g. hour ). Also 108 

frequently used is the half weight index in which the denominator of the simple ratio index is replaced 109 

by half the sum of the sampling periods in which each individual was observed.  However the matrix 110 

could list counts of, say, touches between individuals, and it could be asymmetric. 111 

If the non-diagonal elements of the association matrix are listed in an n-element vector Y (if asymmetric 112 

all non-diagonal values are entered and n is twice the number of dyads; if symmetric only the upper or 113 

lower triangle is needed and n is the number of dyads), and the corresponding elements of v structural 114 

predictor variables for each dyad are given in the n-by-v matrix X, the generalized linear model is: 115 

f(Y) = αX + E  (2) 116 

where f is a link function, α is a vector of the regression coefficients, and E an n-element vector of 117 

residuals.  Following the regression, E is then recast as a square matrix in which the ij element gives the 118 

generalized affiliation index, eij, between individuals i and j. A high positive value of eij suggests 119 

affiliation—i.e. that the dyad are more associated than expected given the structural predictor 120 

variables—and a negative value indicates avoidance. 121 

If the elements of Y are simple counts of interactions—as may be appropriate with small populations 122 

when all interactions can be observed—then a Poisson generalized linear model, with a log link function 123 

can be used. If an association index (e.g. equation 1), the numerator and denominator of the index can, 124 

with the assumption of independence, be considered to be from the binomial distribution.  Hence we 125 

can use a binomial version of the generalized linear model and a logit link function, with the vector Y in 126 

equation 2 becoming a n-by-2 matrix giving the numerator and denominator of each association index.  127 

This formulation is useful in that it corrects for variable amounts of effort directed towards different 128 

dyads. 129 
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If using a linear model then the residuals from the regression model can be used straight as affiliation 130 

indices.  When using a binomial model, they should be divided by the denominator of the original 131 

association index (as in the denominator of equation 1).  With a Poisson model the straight residuals 132 

seem to work reasonably (see Results). 133 

We can transform the residuals, for instance into Anscombe residuals or deviance residuals (Pierce & 134 

Schafer 1986), which should be distributed as the standard normal distribution.  These indicate the 135 

statistical significance of particularly large positive or negative affiliations.  In our evaluations of real and 136 

simulated data (see below), we found that Anscombe and deviance residuals were very similar to one 137 

another. 138 

Structural variables and their significance 139 

Structural variables may be continuous, ordinal, categorical, or binary.  Here are some that might be 140 

employed: 141 

Range overlap: Concurrent use of space is necessary for association or interaction.  Thus range overlap 142 

(within the study area) will often be a structural variable of concern.  Utilization distributions describe 143 

how animals use habitat, the probability that they are in a particular place, and can be estimated from 144 

real locational data in a variety of ways. Getz et al. (2007) recommend the local convex hull 145 

nonparametric kernel method, and its variants, as being superior to other current techniques. We are 146 

interested in the extent to which the utilization distributions of different individuals overlap, for which 147 

there are several potential statistics, including the utilization distribution overlap index and 148 

Bhattacharyya’s affinity (Fieberg & Kochanny 2005).  These could be appropriate measures of range 149 

overlap.  150 

Temporal overlap: Animals may move into and out of the study area where association is observed, and 151 

can only be observed associating when they are both inside it. Short time scale temporal overlap, i.e. at 152 



9 
 

a scale similar to the sampling period being used, might be considered an element of affiliation—153 

animals choosing, or not, to be together.  Longer time scale emigration/immigration, or birth/death, is 154 

perhaps more of a structural factor affecting association. A suitable measure might be an association 155 

index, as in equation 1, but using a long sampling period, say a month or year, and defining association 156 

broadly as both individuals identified, not necessarily associated, in that sampling period. This gives an 157 

estimate of the proportion of time that two individuals were both in the study area during the research.  158 

In some cases, such as when data are collected non-continuously in several study locations that are 159 

small relative to the ranging patterns of the animals, spatial and temporal overlap might be covered by 160 

one predictor variable, similar to the temporal predictor just proposed.  161 

Gregariousness: Godde et al. (2013) correct standard association indices for gregariousness using the 162 

expected values of the association index for a pair, given the estimated gregariousness of each.  We 163 

could use this as a measure of mutual gregariousness, and a structural variable in the estimation of 164 

affiliation: 165 

௜௝(ݏݏ݁݊ݏݑ݋݅ݎܽ݃݁ݎ݃)ݔ =
∑ ௬೔ೖೖ ∙∑ ௬ೕೖೖ

∑ ∑ ௬ೖ೗೗ೖ
 (3) 166 

where yij is the association index between individuals i and j, and ykk is set to zero for all k. As we are 167 

supposing that the association indices may depend on structural factors, including gregariousness itself, 168 

this formulation is somewhat circular: a high value of an association index between two individuals 169 

increases their joint gregariousness.  To remove this effect, we propose removing each dyadic 170 

association index when calculating the joint gregariousness of that particular dyad: 171 

௜௝(ݏݏ݁݊ݏݑ݋݅ݎܽ݃݁ݎ݃)ݔ = ∑൫݃݋ܮ ௜௞ݕ ∙௞ஷ௜,௝ ∑ ௝௞௞ஷ௜,௝ݕ ൯ (4) 172 

Gender/ class similarity: The simplest version of a gender similarity structural variable is: x(gender)ij=1 if i 173 

and j are the same gender; x(gender)ij=0 if of different gender. This implies that in gender relationships 174 
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same and different are the primary factors. Alternatively a categorical variable, with three values, 175 

(x(gender)ij=MM, MF, or FF) can be defined giving different possible association rates for males with 176 

males and females with females, as well as between the sexes.  If the population is delineated into other 177 

classes that might affect association, for instance age classes, reproductive status or classes based upon 178 

mitochondrial haplotypes or characteristic behaviour, then structural variables can be defined in a 179 

similar manner. 180 

Social unit membership: If animals are allocated to social units we can use these units as classes to 181 

define a structural variable. One possibility is a simple binary same/different unit categorization. A more 182 

nuanced categorization, using up more degrees of freedom, would give distinctive values for 183 

associations within each unit, and between members of each pair of units.  184 

Kinship: As noted in the Introduction, it may sometimes be appropriate to consider the kinship between 185 

two animals as a structural variable influencing, likely positively, their probability of association.  Kinship, 186 

as measured by relatedness, can be calculated if the genealogy of the population is known, but will 187 

more often be estimated using molecular genetic markers such as microsatellites  (van de Casteele, 188 

Galbusera & Mattysen 2001). However, often kinship may most appropriately be considered as a factor 189 

influencing affiliation itself and therefore one would not want to factor it out before calculating 190 

affiliation, rather seeing how kinship relates to the output affiliations.  191 

The relative significance of the different structural variables can be assessed in several ways. For 192 

instance, we can present standardized partial correlation coefficients of each predictor variable with the 193 

association index, controlling for the other predictor variables. Being dimensionless, these give easily-194 

interpretable measures of the relative significance of the predictors.  We can also carry out MRQAP tests 195 

for each predictor, controlling for the others.  These can be the basis of stepwise procedures aimed at 196 

delineating an efficient subset of structural factors that affect association. 197 
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Using affiliation indices 198 

With a few exceptions, generalized affiliation indices can be analyzed much as association indices.  We 199 

can display them as a printed matrix, as a network diagram, or using multidimensional scaling or 200 

hierarchical cluster analysis (Whitehead 2008).  We can examine the distribution of the generalized 201 

affiliation indices or network statistics derived from them, such as strength (gregariousness), 202 

connectedness and affinity (Croft, James & Krause 2008; Wey et al. 2008).  We can see how these 203 

measures differ between classes of animal, such as the sexes, and how they may correlate with one 204 

another.  We can look for fairly closed communities of affiliated individuals by techniques such as 205 

maximizing modularity (Newman 2006).  We can use data-stream permutation tests to test null 206 

hypotheses that there is no real affiliation in the population (Bejder, Fletcher & Bräger 1998).  For these 207 

tests, first the gregariousness values (if being used as a predictor), then the generalized affiliation 208 

indices, and finally the test statistic (e.g. the standard deviation of the indices) are recalculated after 209 

each permutation of the data.  The value of the test statistic on the real data is compared with that for 210 

the permutations, giving a P-value. 211 

Unlike association indices or counts of interaction, generalized affiliation indices can be negative.  Thus, 212 

they cannot be used as input for principal coordinates analysis; further, some standard test statistics of 213 

permutation tests, such as the coefficient of variation of the indices, are inappropriate.  (The standard 214 

deviation of the indices is an appropriate test statistic for both association and affiliation indices.)  215 

Negative generalized affiliation indices are also an issue when using network diagrams to illustrate the 216 

generalized affiliation indices.  They can be omitted, or perhaps illustrated in a different way (different 217 

colour or line style) from the positive indices.  218 
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Evaluating generalized affiliation indices 219 

Simulated data 220 

We used simulated data to investigate to what extent the generalized affiliation indices produced by the 221 

method described above mirror input affiliations, and to examine whether the significance of the 222 

predictor variables suggested by the proposed method matched their input significance. 223 

We constructed simulated data sets with the following characteristics: m individuals, each with a 50% 224 

probability of being male or female, si=0 or 1 respectively, a gregariousness, gi, drawn from the uniform 225 

random distribution on [1 G]. There are n=m(m-1) dyads. Each dyad has a probability ρ of being 226 

designated a pair of “affiliates”: fij=1 if i and j affiliates, fij=0 otherwise. Each pair of individuals may, or 227 

may not, associate during any of T sampling periods. 228 

At the beginning of the simulation (sampling period 0), individuals have a 50% probability of being inside 229 

the study area. At the start of each sampling period individuals outside the study area have probability q 230 

of entering it, and those inside the study area probability of q of leaving, giving sequences: bit=1 if 231 

individual i was in the study area in sampling period t, bit=0 if not. 232 

Then, for individuals i and j in sampling period t we define a propensity for association: 233 

uijt = gi ∙ gj ∙ bit ∙ bjt ∙ (1+σ∙(si==sj)) ∙ (1+ φ ∙fij) (5) 234 

This is dependent on the gregariousness of each individual (gi, gj), requires both to be in the study area 235 

during the sampling period (bit=bjt=1), and is increased if both are of the same sex (by a factor of 1+σ), or 236 

both are affiliates (by a factor of 1+φ). The probability that individuals i and j are associated in sampling 237 

period t is proportional to the propensity for association, uijt, with the constant of proportionality 238 

adjusted so that the maximum probability of association is amax. This procedure then gives a record of 239 
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associated/not associated for each pair of individuals in each sampling period, from which we calculated 240 

association indices as in equation 1.  241 

Assuming that we knew the sexes of each individual, but not their actual gregariousness, actual 242 

presence in the study area, or who were affiliates with whom, we estimated affiliation indices as 243 

described above using the following predictors: sex similarity, estimated dyadic gregariousness 244 

(equation 4), an estimate of temporal overlap (a simple ratio index using sets of five consecutive 245 

sampling periods as the new long sampling period, and defining association as both animals identified in 246 

a long sampling period), and a nuisance variable with uniform random numbers from the [0 1] interval 247 

chosen for each dyad with no relationship to association. We used the linear model on the association 248 

indices, the binomial model on the numerator and denominator of the association indices, and the 249 

Poisson model just on the numerator of the association indices. 250 

At the end of each run we retrieved the information on which pairs were affiliates, and compared the 251 

association indices and affiliation indices of affiliated pairs and non-affiliated pairs.  The success of an 252 

index in identifying affiliates was indicated by Cohen’s d, the difference between the mean of the index 253 

for affiliated pairs and that for non-affiliated pairs divided by the pooled standard deviation. 254 

For each data set we also calculated the partial correlation coefficient between the association indices 255 

and each of the predictor variables, controlling for the other predictor variables.  These partial 256 

correlation coefficients were also the test statistic for MRQAP double semi-partialling (Dekker, 257 

Krackhardt & Snijders 2007) tests for each predictor (null hypothesis that the predictor was linearly 258 

unrelated to association, given the other predictors), with 1,000 replicates. 259 

For each data set we tested for preferred/avoided associations using the ‘permute associations within 260 

sampling periods’ methodology in which pairs of associates within sampling periods are flipped 261 

maintaining the number of associates of each individual as well as the total number of associations 262 
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within each sampling period (Whitehead, Bejder & Ottensmeyer 2005).  We tested both the association 263 

indices and generalized affiliation indices using this method (calculating generalized affiliation indices 264 

anew for each random data set), with 1,000 permutations and each permutation being made up of 265 

1,000 flips.  The null hypothesis of no preferred association/affiliation was rejected if the standard 266 

deviation of the real indices was greater than at least 950 of the standard deviations of the sets of 267 

random indices.  268 

Initial runs were made using a “standard” set of parameters: n=20, G=2, T=50, ρ =0.09, q=0.1, σ=0.9, 269 

φ=2.0, amax=0.6.  In subsequent sets of runs, we changed the number of individuals (n=10, 40), number 270 

of sampling periods (T=25, 100), and mean rate of association (amax=0.3, 0.85) to check the robustness of 271 

the results for smaller, larger, or differently-sampled data sets. Then we effectively removed any 272 

preference for affiliates (φ=0.0), gregariousness differences (G=1), and sex preferences (σ=0.0).  In the 273 

final set of runs we increased the rates of movement into and out of the study area (q=0.4) effectively 274 

making our measure of temporal overlap (calculated over 5 consecutive sampling periods) no longer 275 

relevant. There were 100 runs with each set of parameters. 276 

Bottlenose whale data 277 

We used a data set on the social relationships of northern bottlenose whales (Hyperoodon ampullatus) 278 

based upon photoidentifications collected in three submarine canyons on the edge of the Scotian Shelf 279 

between 1988-2003, an extended version of the data set analyzed by Gowans et al. (2001).  We used 280 

only those animals: a) with markings considered “reliable” allowing consistent matching between years; 281 

b) who could be allocated to age-sex classes as either mature males, subadult males or females based 282 

upon photographs of their foreheads; and c) who were identified on 15 or more different days (see 283 

Gowans, Whitehead & Hooker 2001).  There were 16 animals in this data set.  Sampling periods were 284 

days, and dyads were considered associated on a day if they were identified within 1 hour of each other.  285 
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We constructed half-weight indices between individuals using these data. We also calculated several 286 

predictor measures: 287 

 ‘Gregariousness’: as in equation 4. 288 

 ‘Age-Sex’:  1 if pair of same age-sex class; 0 otherwise. 289 

 ‘Temporal overlap’:  Proportion of years in which at least one of the individuals in the dyad was 290 

identified that both were identified. 291 

 ‘Spatial overlap’: Proportion of those years in which both were identified, that both were 292 

identified in the same canyon. 293 

We examined the significance of these predictor variables using MRQAP tests and partial correlation 294 

coefficients, sequentially removed predictors with non-significant (P>0.10) MRQAP tests, and then 295 

calculated generalized affiliation indices using a binomial model.  We compared association and 296 

generalized affiliation indices for these whales using network diagrams, network statistics, as well as 297 

tests for age-sex class effects (Mantel tests) and overall affiliation (data-stream permutations). 298 

Results 299 

Simulated data 300 

Results of the runs with simulated data are given in Supplemental Table 1. 301 

For the first run with the standard set of parameters, network diagrams generated using the original 302 

simple ratio association indices as well as the generalized affiliation indices (binomial method) are 303 

shown in Fig. 1. When compared with the association indices, affiliation indices show true affiliations 304 

more prominently (red links are generally wider, and so less often dashed, on the lower, affiliation, 305 

diagram), are less affected by gregariousness (number of links less related to size of node in lower 306 
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diagram), and do not segregate genders (compare lower and upper diagrams).  In Fig. 2 the distributions 307 

of association indices and affiliation indices (binomial, linear and Poisson) are compared for true 308 

affiliates and other dyads using box plots.  The distinction between affiliated and non-affiliated dyads is 309 

much stronger—the boxplots are less overlapped—for all three types of affiliation index than for 310 

association indices.  This difference was quantified using Cohen’s d, with d=1.57 for association indices 311 

and d=2.30, 2.36 and 2.68 for binomial, linear and Poisson affiliation indices, respectively. 312 

In all runs with simulated data, except those where affiliations were effectively disabled (φ=0), the 313 

affiliation indices better discriminated between affiliates and non-affiliates than association indices, with 314 

a mean increase in Cohen’s d of 0.70, 0.62, and 0.98 for binomial, linear and Poisson runs respectively.  315 

When affiliations were effectively disabled (φ=0.0) the distinctions were virtually erased, with near zero 316 

values of Cohen’s d for both associations and affiliations.  The affiliation indices performed better with 317 

more sampling periods, and worse with a smaller population size, fewer sampling periods, and fewer 318 

associations. 319 

The partial correlation coefficients and MRQAP tests clearly showed the irrelevance of the nuisance 320 

variable with near-zero partial correlation coefficients, and the null hypothesis of no relationship to 321 

association rejected in only about 5% of the runs, as expected. The analysis also clearly indicated the 322 

significance of the gender predictor variable, with strong partial correlation coefficients and universal 323 

rejection of the null hypothesis except when the gender similarity effect was removed (σ=0.0), when the 324 

partial correlation coefficient fell to nearly zero and the null hypothesis was rejected at the expected 325 

rate.  The results were similar with the temporal predictor, although the partial correlation coefficient 326 

and null hypothesis rejection rate were not entirely reduced to zero by decoupling the migration rate 327 

from the length of the longer sampling periods. The most obvious discrepancy was for gregariousness 328 
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which was signalled as a useful predictor of association in many runs, including some of those in which 329 

no gregariousness effect was input (G=1). 330 

The permutation tests for preferred/avoided associations almost always rejected the null hypothesis of 331 

no preferred/avoided associations for both the simple ratio indices and the generalized affiliation 332 

indices.  There were some failures to reject the null hypothesis with a population of only 10 individuals, 333 

and with fewer associations (less dense network) for the generalized affiliation indices. The primary 334 

distinction though is for the runs without built in affiliations (φ=0): the null hypothesis was generally 335 

rejected when testing the simple ratio index, but not when testing the generalized affiliation index, 336 

which had mean P-values of about 0.3.  This shows that the generalized affiliation index had effectively 337 

removed the non-affiliation sources of association, exposing cases when there was true affiliation 338 

among individuals. Thus the generalized affiliation index fulfilled its mandate. 339 

Bottlenose whale data 340 

MRQAP tests indicated that age-sex class and temporal overlap were useful in explaining patterns of 341 

association in the northern bottlenose whales (Table 1), with gregariousness and spatial overlap being 342 

removed by the stepwise procedure.  Using age-sex class and temporal overlap as predictors we 343 

calculated generalized affiliation indices.  Network diagrams of the association indices and generalized 344 

affiliation indices are compared in Fig. 3.  The primary distinction is that the network as portrayed by 345 

half-weight indices is much more prominently structured by age-sex class than is the network of 346 

generalized affiliation indices.  The mature males appear to form a clique with their associations.  The 347 

network of generalized affiliation indices does not obviously show this characteristic, as might be 348 

expected with age-sex class used as a structural factor in the calculation of the generalized affiliation 349 

indices. However some strong relationships, for instance between mature males #1 and #3 are 350 

maintained with the transformation into generalized affiliation indices. 351 
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We also compared several characteristics of the association indices to those of the generalized affiliation 352 

indices (Table 2).  In most respects the pattern of generalized affiliation indices appears less structured 353 

than that of the half-weight association indices: there was less modularity, lower correlations between 354 

strength (i.e. gregariousness for association indices) and other nodal network metrics, no support for 355 

age-sex class structuring associations (versus a strong matrix correlation and significant Mantel test for 356 

the same comparison with associations), and a permutation test did not reject the null hypothesis of no 357 

preferred or avoided affiliations (versus a significant result for associations).  However when the test just 358 

included the 7 mature males, the test was marginally significant for generalized affiliation indices and 359 

the original half-weight association indices (Table 2).  (The structure of the data was not suitable for a 360 

similar test of the 7 females.)  Large deviance residuals (greater than 2.5) indicated two strongly 361 

affiliated dyads: mature males #1 and #3 (2.81); subadult male #267 and female #102 (3.82). While the 362 

relationship between #1 with #3 is clearly strong in the original association data (Fig. 3), that between 363 

#267 and #102 had not been previously recognized as significant. There were no deviance residuals less 364 

than -2.5 so little evidence for avoidance. 365 

 366 

Discussion 367 

Disinterring true affiliations from association or interaction data has been a major challenge in the study 368 

of animal social networks (Bejder, Fletcher & Bräger 1998; Croft et al. 2011). In this paper we build on 369 

the ideas of Godde et al. (2013) by removing structural predictors in the calculation of new indices that 370 

reflect true affiliations (Fig. 4).  The results of the evaluations of generalized affiliation indices with both 371 

simulated and real data illustrate how the method can remove structural determinants of association, 372 

leaving what appear to be fundamental affiliations that can be analyzed using a wide range of 373 

techniques. 374 
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It is impossible to cover all potential scenarios with simulations, but from the consistency of the results 375 

within the range that we covered, and the basic logic of the approach, we expect that within much or all 376 

of the range of scenarios used to study animal societies generalized affiliation indices will provide 377 

insight.  Perhaps the most significant omission in our simulations are “gambit of the group” data, when 378 

associations are defined by group membership (Whitehead 2008), and thus have extra dependencies.  379 

Evaluating these scenarios is a next step. 380 

Our methodology identifies affiliation using the residuals after removing structural predictors of 381 

association.  This definition-by-elimination is philosophically unsatisfactory, but avoiding it would need a 382 

completely different approach. Practically it leads to two issues.  The first is whether particular factors 383 

should be included as structural predictors.  Kinship could drive association directly or through 384 

affiliation.  Large-scale temporal use of the study area will usually be a structural factor, whereas small-385 

scale temporal patterns may be better considered elements of affiliation.  In cases of uncertainty, we 386 

suggest calculating the generalized affiliation indices with and without the ambiguous factor. 387 

The second issue deriving from our negative connotation of affiliation constitutes the primary limitation 388 

of the technique: it can only be only as effective at removing structural determinants of association as 389 

these determinants are represented by the predictor variables entered into the model.  Structural non-390 

affiliative factors that affect association but are not represented by the predictor variables will remain.  391 

Our simulations suggested that even imperfect predictor variables (such as the temporal overlap 392 

predictor used for our simulated data sets) can do a good job of exposing true affiliations.  Predictors 393 

can also fill in for one another, and mask each other.  For instance, the gregariousness predictor includes 394 

how available individuals are to observation. This, we think, is why gregariousness was sometimes found 395 

to be a useful predictor in our simulations even when input gregariousness was disabled (G=1).  Our 396 
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measure of gregariousness was covering some of the variation in association rates produced by different 397 

individual use of the study area. 398 

Another concern is when predictor variables are calculated from the association data.  For this reason, 399 

we used a “jackknife” definition of gregariousness (equation 4). A similar problem of circularity, and 400 

potential resultant loss of power for generalized affiliation indices as indicators of true affiliation, arises 401 

if memberships of social units are used as predictor variables (see above) when these social units are 402 

themselves delineated from the association data using cluster analysis or maximization of modularity.  403 

The model that we have postulated (equation 2) assumes additivity of predictor variables.  So, for 404 

instance, the range overlap effect is added to the gregariousness effect to produce an expected value of 405 

the association index.  In some situations multiplicative effects may be more appropriate, so that if there 406 

is little range overlap between a pair, the possible effect of their similarity in gregariousness is 407 

proportionally reduced.  This could be achieved by logging the structural variables (as in our definition of 408 

gregariousness, equation 4), and possibly changing the link function.  However using an additive model 409 

(equation 2) on our simulated data which were produced using a multiplicative model (equation 5), 410 

seemed to work effectively. 411 

In their quest to control the structural factors affecting association, current data stream permutation 412 

tests—that of Bejder et al. (1998) and its successors—are quite complex and time consuming.  As the 413 

generalized affiliation index specifically removes the effects of the structural factors, performing the 414 

data stream permutation tests on the generalized affiliation indices seems overkill—the structural 415 

factors are apparently being removed twice.  Simpler node-permutations of the data in each sampling 416 

period do not work, as predictor variables, such as spatial overlap, no longer match the data. Using our 417 

random data, we have explored the possibility of using the fit of the binomial generalized linear model 418 

(indicated by deviance) to the association data as a test for underlying affiliations.   If there are no 419 
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affiliations then the binomial model should fit.  Although, in our explorations, this method had high Type 420 

I error rates, there may be other relatively-simple ways to test for underlying affiliations in a social 421 

network using generalized affiliation indices.  It would also be very useful good to have an overall “effect 422 

size” for the degree of affiliation in the population.  The social differentiation (estimated coefficient of 423 

variation of true association indices, before sampling) attempts this for association indices (Whitehead 424 

2008), but much more useful would be a counterpart for affiliation indices. 425 

The technique that we have explored could easily be extended in a variety of ways.  It could be used on 426 

interaction counts (perhaps using the Poisson version of the generalized linear model) or rates (perhaps 427 

using time spent observing each dyad as an offset predictor variable).  It could be used on asymmetric 428 

data (e.g. grooming), and on rectangular rather than square association matrices (e.g. males versus 429 

females).  Categorical variables (a category for each dyad) could be used as predictors.  430 

One of us (HW) has incorporated the calculation and analysis of generalized affiliation indices, including 431 

all the features used in our examples, into the next (soon to be released) version of SOCPROG, a 432 

MATLAB-based package for the analysis of animal social structure (Whitehead 2009).  Other social 433 

analysis packages, such as the R program asnipe (Farine 2013), might be integrated with this 434 

methodology, or extended to use it directly. 435 

Conclusion 436 

Generalized affiliation indices provide a new route for uncovering affiliations in animal social networks.  437 

They can be used instead of structured data-stream permutation tests, or in conjunction with them.  438 

They are more flexible than currently available data-stream permutation tests in how they deal with 439 

structural factors affecting association, and can be used for a wide range of purposes, including the 440 

production of affiliation-based network diagrams, network statistics, division into communities, and 441 

testing for overall affiliation. 442 
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Table 1.  Efficiency of predictor variables in explaining association indices among bottlenose whales, as 509 

shown by partial correlation coefficients and results of MRQAP tests (1,000 replications). 510 

 511 

Predictor Partial 

correlation 

MRQAP 

 P-value 

Gregariousness 0.068 0.300 

Age-sex 0.292 0.001 

Temporal overlap 0.295 0.002 

Spatial overlap 0.117 0.109 

 512 

  513 
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Table 2.  Statistics and tests of half-weight association indices and generalized affiliation indices for 16 514 

northern bottlenose whales. 515 

 
Association indices 

Generalized 

affiliation indices 

Differences between age-sex classes: 
  

   Matrix correlation 0.413 0.008 

   Mantel test, P-value (1,000 permutations) 0.000 0.569 

 
  

Correlation coefficients among network statistics1: 
 

   Strength by clustering coefficient   0.653 0.077 

   Strength by affinity  0.710 0.030 

 
  

Modularity2:   

   Communities identified using modularity 2 4 

   Modularity 0.235 0.112 

 
  

Tests for preferred associations3 

   All whales (n=16)   

      sd (indices), real : random (mean) 0.094 : 0.090 0.079 : 0.079 

      P-value 0.002 0.439 

  Mature males (n=7) 
  

      sd (indices), real : random (mean) 0.132 : 0.125 0.124 : 0.117 

      P-value 0.094 0.082 

1Network statistics are: strength (sum of association indices or generalized affiliation indices linking each 516 

individual); clustering coefficient (a measure of how well the associates of an individual are themselves 517 
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associated using the matrix definition of clustering coefficient for weighted networks of Holme et al. 518 

(2007)); affinity (the strength of an individual’s associates, weighted by the association index between 519 

the individual and each of them). 520 

2Modularity indicates how well a network can be divided into communities. We use Newman`s (2006) 521 

eigenvector-based method.  Modularities above 0.3 indicate substantial support for the division 522 

(Newman 2004).  523 

3Permutation tests using flips of pairs of associations within sampling periods with 1,000 permutations, 524 

1,000 flips/permutation (Whitehead 2008, 129-130).  Test not possible just using females because of 525 

data structure.  526 
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 527 

 528 

Figure 1 529 

Network diagrams using one run of simulated data (for parameters, see main text), using association 530 

indices (above) and generalized affiliation indices (below). Arrangements are optimized using the default 531 

spring-embedding algorithm of NetDraw.  The colour of each node indicates its gender, size its 532 

gregariousness. Only links representing indices in the upper 25% percentile are shown, and link width is 533 

proportional to index weight.  Input dyadic affiliations are shown by red links.  When the standardized 534 

(mean 0; SD 1) association indices are greater than the standardized generalized affiliation indices for 535 

dyadic affiliations, the red links are dotted in the lower diagram, and when the standardized generalized 536 
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affiliation indice are larger than the standardized association indicess, the red links are dotted in the 537 

upper diagram.   538 
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 539 

 540 

Figure 2 541 

Boxplots comparing the distribution of association and (binomial, linear, Poisson) generalized affiliation 542 

indices for true affiliates and non-affiliates using the same simulated data that produced the network 543 

diagrams in Figure 1. 544 

 545 
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547 
Figure 3 548 

Network diagrams for 16 northern bottlenose whales using association indices (above) and generalized 549 

affiliation indices (below). The colour of each node indicates its age-sex class (pink females; dark blue 550 

mature males; light blue subadult males), the size of each node its gregariousness.  Other attributes as in 551 

Figure 1. 552 

 553 

  554 
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 555 

Figure 4 556 

The construction and usage of generalized affiliation indices.  557 


