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Connectivity of soft random geometric
graphs

Mathew D. Penrose1

University of Bath

March 23, 2015

Abstract

Consider a graph on n uniform random points in the unit square, each
pair being connected by an edge with probability p if the inter-point distance
is at most r. We show that as n → ∞ the probability of full connectivity is
governed by that of having no isolated vertices, itself governed by a Poisson
approximation for the number of isolated vertices, uniformly over all choices of
p, r. We determine the asymptotic probability of connectivity for all (pn, rn)
subject to rn = O(n−ε), some ε > 0. We generalize the first result to higher
dimensions, and to a larger class of connection probability functions.

1 Introduction

For certain random graph models, it is known that the main obstacle to connectivity
is the existence of isolated vertices. In particular, for the Erdős-Rényi random graph
G(n, pn) the probability that the graph is disconnected but free of isolated vertices
tends to zero as n → ∞, for any choice of (pn)n≥1 (see [6] or [2, Theorem7.3]).
Likewise for the geometric graph (Gilbert graph) G(Xn, rn) with vertex set Xn given
by a set of n independently uniformly distributed points in [0, 1]d with d ≥ 2, and
with an edge included between each pair of vertices at distance at most rn, the
probability that the graph is disconnected but free of isolated vertices tends to zero
as n→∞, for any choice of (rn)n∈N (this follows from results in e.g. [14, 15]).
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Moreover, for both of these types of random graph (denoted G), the number of
isolated vertices (denoted N0(G)) enjoys a Poisson approximation for large n, so
that with K denoting the class of connected graphs, for large n we have

P [G ∈ K] ≈ P [N0(G) = 0] ≈ exp(−EN0). (1.1)

These results have very different proofs for geometric graphs than they do for
Erdős-Rényi graphs. In the present paper we prove results of this kind for a class of
random graph models which generalises both G(n, p) and G(Xn, r); we connect each
pair of points of Xn with a probability which is a function φ of the distance (or more
generally, the displacement) between them. The function φ is called the connection
function, and we refer to the resulting graph as a ‘soft’ random geometric graph.

For d = 2 we show that the second approximation in (1.1) holds for soft random
geometric graphs for large n, uniformly over connection functions which decay ex-
ponentially in some fixed positive power of distance, while the first approximation
in (1.1) holds uniformly over connection functions which are zero beyond a given
distance, with distance measured on the characteristic length scale of the connection
function. For general d ≥ 2 we show that (1.1) holds for a more restricted class of
connection functions which amount to retaining each edge of G(Xn, r) with prob-
ability p, uniformly over n and p. For this class of connection functions in d = 2,
we determine the limiting behaviour of P [G ∈ K] for any sequence (rn, pn)n≥1 such
that there exists ε > 0 with rn = O(n−ε).

We also show for general d that for any (pn)n≥1 with pn � (log n)/n, if we place
the vertices of G(n, pn) at the points of Xn, and add the edges in order of increasing
Euclidean length, with high probability the threshold for connectivity equals the
threshold for having no isolated vertices. This was previously known for pn ≡ 1 [15].

There is substantial interest in these types of result in the engineering and com-
puter science communities. Connectivity of random geometric graphs is of interest
because of applications in wireless communications, for example in obtaining bounds
for the capacity of wireless networks [7, 8]. The ‘hard’ version of the geometric graph
model (with φ the indicator of a ball centred at the origin) is not always realistic;
communication between two nodes may not be guaranteed even when they are close
to each other [5, 7, 10, 18]. Also, in some cases randomness may be deliberately in-
troduced into the connections between nearby nodes as a means to make the network
secure [9, 17, 18]. Among other things, our results address a version of a conjecture
of Gupta and Kumar [7], as discussed at the end of Section 2.

2 Main results

Throughout this paper we assume d ∈ N with d ≥ 2. Given a measurable function
φ : Rd → [0, 1] that is symmetric (i.e., satisfies φ(x) = φ(−x) for all x ∈ Rd), and
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given a locally finite set X ⊂ Rd, let Gφ(X ) be the random graph with vertex set
X , obtained when each potential edge {x, y} (with x, y ∈ X and x 6= y) is present
in the graph with probability φ(x− y), independently of all other possible edges.

Let Γ := [0, 1]d. For λ > 0 let Hλ denote a homogeneous Poisson point process
in Rd of intensity λ, viewed as a random subset of Rd, and let Pλ := Hλ ∩ Γ. Given
φ as above, let Gφ(Xn) and Gφ(Pλ) be the resulting graphs as just described. We
refer to φ as the connection function.

Soft random geometric graphs of this type are a finite-space version of the so-
called random connection model of continuum percolation; see [11, 13], which de-
scribe further motivation, and see [11, Section 1.5] for a formal construction.

We consider various classes of connection functions φ. Let | · | denote the Eu-
clidean norm on Rd. Let Ψd be the class of connection functions φ on Rd which
satisfy

φ(x) ≥ φ(y) whenever |x| ≤ |y|. (2.1)

In particular, every φ ∈ Ψd is radially symmetric, i.e. satisfies φ(x) = φ(y) whenever
|x| = |y|. The condition (2.1) is physically reasonable, and is imposed on the
connection functions considered in [11], for example.

Given a connection function φ on Rd, define the maximum value of φ by

µ(φ) := sup{φ(x) : x ∈ Rd}.

Given also η > 0, let

ρη(φ) := inf{|x| : x ∈ Rd, φ(x) < ηµ(φ)} (2.2)

and also
ρ0(φ) := sup{|x| : x ∈ Rd, φ(x) > 0},

which may be infinite.
Let Φd,η denote the set of connection functions φ on Rd such that firstly ρη(φ) ∈

(0,∞), and secondly

φ(x) ≤ 3η−1µ(φ) exp(−η(|x|/ρη(φ))η), x ∈ Rd, (2.3)

and thirdly, also φ ∈ Ψd if d ≥ 3. Thus Φd,η ⊂ Ψd for d ≥ 3 but not for d = 2. Let
Φ0
d,η be the class of connection functions φ ∈ Φd,η which also satisfy

ρ0(φ) ≤ η−1ρη(φ). (2.4)

For η > η′ > 0 we have Φd,η ⊂ Φd,η′ and Φ0
d,η ⊂ Φ0

d,η′ . The condition (2.3) says
that if we view ρη(φ) as the characteristic length scale of φ, then the function φ(x)
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decays exponentially in the ηth power of the length of x, with length measured in
terms of the characteristic length scale of φ.

Given d, define Ψstep ⊂ Φ0
d,1 ∩Ψd by

Ψstep := {φr,p : r > 0, p ∈ (0, 1]},

where for r > 0 and 0 < p ≤ 1, we set φr,p(x) := p1[0,r](|x|). The graph Gφr,p(Xn)
may be viewed as the intersection of the (Gilbert) random geometric graph G(Xn, r)
and the Erdős-Rényi random graph G(n, p).

Another class of connection functions is Rayleigh fading where φ(x) = exp(−β(|x|/ρ)γ)
for some fixed positive β, γ, ρ > 0 (typically γ = 2), which is important in appli-
cations; see [4, 16]. Such connection functions lie in Φd,η for suitable η > 0 which
depends on β and γ but not on the length-scale ρ.

For any graph G let N0(G) denote the number of isolated vertices in G. Also let
K denote the class of connected graphs. Our first two main results are as follows.

Theorem 2.1 Let η ∈ (0, 1], k ∈ N0 := {0, 1, . . .}. Then

lim
n→∞

sup
φ∈Φd,η

|P [N0(Gφ(Xn)) = k]− e−In(φ)In(φ)k/k!| = 0

where we put In(φ) := n
∫

Γ
exp(−n

∫
Γ
φ(y − x)dy)dx.

Theorem 2.2 Let η ∈ (0, 1]. Then

lim
n→∞

sup
φ∈Φ0

d,η

P [{N0(Gφ(Xn)) = 0} \ {Gφ(Xn) ∈ K}] = 0. (2.5)

It is an immediate corollary of these two theorems that for any η ∈ (0, 1],

lim
n→∞

sup
φ∈Φ0

d,η

|P [Gφ(Xn) ∈ K]− exp(−In(φ))| = 0 (2.6)

An essentially equivalent way to state the preceding results is the following.

Theorem 2.3 Let α ∈ [0,∞] and η ∈ (0, 1], and suppose (φn)n∈N is a sequence of
connection functions in Φd,η, satisfying

n

∫
Γ

exp

(
−n
∫

Γ

φn(y − x)dy

)
dx→ α (2.7)

as n → ∞ (possibly just along some subsequence). If α ∈ (0,∞) then as n → ∞
(along the same subsequence if applicable), we have for k ∈ N0 := {0, 1, . . .} that

P [N0(Gφn(Xn)) = k]→ e−ααk/k!. (2.8)
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If α = 0 then P [N0(Gφn(Xn)) = 0]→ 1 and if α =∞ then P [N0(Gφn(Xn)) = k]→ 0
for all k ∈ N0. Finally, if φn ∈ Φ0

d,η for all n, then

P [Gφn(Xn) ∈ K]→ e−α as n→∞ along the subsequence, (2.9)

with e−α interpreted as 0 for α =∞.

For an example of functions that are not covered by our results, consider taking
φn(x) = min(1, εn/|x|) with εn some sequence tending to zero. Then there is no
η ∈ (0, 1] such that φn ∈ Φd,η for all n. Another example would be if φ was the
indicator of an annulus centred at the origin; this would have ρη(φ) = 0, so not be
in Φd,η for any η > 0.

Our definition of Φd,η means we restrict attention to connection functions φ ∈ Ψd

when d ≥ 3. This is because to deal with all kinds of boundary regions of Γ in d ≥ 3
we use the radial symmetry of φ (see Lemma 3.1 (b) below, and the result from [15]
or [12] used in its proof). When d = 2 the only kinds of boundary regions are either
near the corners of Γ (a ‘small’ region) or near the 1-dimensional edges (which can
be dealt with using the condition φ(x) = φ(−x); see Lemma 3.1 (a) below) so we
do not require φ ∈ Ψ2 for the results above.

Given r ≥ 0 and p ∈ (0, 1], and finite X ⊂ Γ, write Gr,p(X ) for Gφr,p(X ). Given
p, a natural coupling of all the graphs Gr,p(Xn), r ≥ 0, goes as follows; let Gr,p(Xn)
be the subgraph of G√d,p(Xn), with vertex set Xn, and edge set consisting of all
edges of Euclidean length at most r. With this coupling, Gr,p(Xn) is a subgraph

of Gs,p(Xn) whenever r ≤ s ≤
√
d. Given p, define the thresholds τn(p) := inf{r :

Gr,p(Xn) ∈ K}, and σn(p) := inf{r : N0(Gr,p(Xn)) = 0}, with the infimum of the
empty set interpreted as +∞. Clearly σn(p) ≤ τn(p) almost surely. Our next result
gives an asymptotic equivalence of these two thresholds.

Theorem 2.4 Given any [0, 1]-valued sequence (pn)n∈N with npn/ log n → ∞ as
n→∞, it is the case that

lim
n→∞

P [τn(pn) = σn(pn)] = 1.

In the case where d = 2 and φn ∈ Ψ2 ∩ Φ2,η for some η ∈ (0, 1], we shall make
Theorem 2.3 more explicit, by characterising those sequences φn which satisfy (2.7).
Setting pn := µ(φn), we find that the main contribution to the integral in (2.7)
comes from x in the interior of Γ when pn � (1/ log n), while the main contribution
comes from x near the boundary but not the corners of Γ when n−1/3(log n)−1 �
pn � 1/ log n, and the main contribution comes from x near the corners of Γ when
pn � n−1/3(log n)−1.

We state this more precisely in Theorem 2.5 below, which requires further no-
tation. Given real-valued functions f, g, recall that f(n) = ω(g(n)) means g(n) =
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o(f(n)) (as n → ∞), and f(n) = Ω(g(n)) means g(n) = O(f(n)), and f(n) =
Θ(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)). Finally f(n) ∼ g(n) means
f(n) = (1 + o(1))g(n). For any connection function φ we set

I(φ) :=

∫
Rd
φ(x)dx. (2.10)

If η ∈ (0, 1] and φ ∈ Φ2,η, then set

J1(φ) := J1(φ, η) := µ(φ)−1

∫ ∞
0

φ((ρη(φ)t, 0))dt; (2.11)

J2(φ) := J2(φ, η) := µ(φ)−1

∫ ∞
0

φ((ρη(φ)t, 0))2πtdt. (2.12)

For η ∈ (0, 1] and φ ∈ Ψ2 ∩Φ2,η, we have I(φ) = µ(φ)ρη(φ)2J2(φ), and for φ ∈ Ψstep

we have J1(φ) = 1 and J2(φ) = π.
The integrals J1(φ) and J2(φ) may be viewed as measure of the ‘shape’ of φ,

separate from µ(φ) and ρη(φ) which measure the vertical and horizontal ‘scale’ of
φ, respectively. Note that for η ∈ (0, 1] and i = 1, 2 we have

0 < inf
φ∈Ψ2∩Φ2,η

Ji(φ, η) ≤ sup
φ∈Ψ2∩Φ2,η

Ji(φ, η) <∞. (2.13)

Theorem 2.5 . Let η ∈ (0, 1], α ∈ (0,∞). Suppose d = 2 and φn ∈ Φ2,η ∩ Ψ2

for n ∈ N. Set rn := rη(φn) and pn := µ(φn). Then (2.7) holds under any of the
following conditions as n→∞:

1. pn = ω(1/ log n) and nI(φn)− log n→ − logα;

2. pn = o(1/ log n) and pn = ω(n−1/3(log n)−1) and

nI(φn) = log

(
4J2(φn)

α2J1(φn)2

)
+ log

(
n

pn

)
− log log

(
n

pn

)
+ o(1); (2.14)

3. pn = o(n−1/3(log n)−1) and rn = n−Ω(1) and

nI(φn) = 4(log(1/pn)− log log(1/pn) + log(J2(φn)/(αJ1(φn)2))) + o(1).

We also deal with the boundary cases pn = Θ(1/ log n) and pn = Θ(n−1/3(log n)−1).
See Theorems 8.1 and 8.2.

We now discuss other related work and open problems. Note that (2.8) (but not
(2.9)) of Theorem 2.3 was already proved by Yi et al. [18] in the special case with
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d = 2 and φn ∈ Ψstep under the condition pn = ω(1/ log n). Here we are considering
a much more general class of sequences of connection functions φn.

For a discussion of these problems from a statistical physics viewpoint via formal
series expansions, and further discussion of motivation, see Coon et al. [4]. The
methods of Krishnan et al. [9] (see Remark 3 of that paper) could be used to
give some limiting inequalities for the probability of connectivity in the special case
of connection functions in Ψstep (whereas our (2.6) provides a limiting equality for
a more general class of connection functions). The main concern in [9] is with a
certain non-independent randomisation (random key graphs) to determine which
of the edges (below the threshold radius) are present, which is of interest from an
engineering perspective (see also [17]). It would be interesting to try to extend our
results to these random key graphs.

A related random graph model is the bluetooth graph; this is a subgraph of
the ‘hard’ random geometric graph with edges selected at random according to a
restriction on vertex degrees. See [3] for results on connectivity of bluetooth graphs.

Another related problem is that of Hamiltonicity. Analogously to (2.5), one
might speculate that for large n, the probability that Gφ(Xn) is non-Hamiltonian
while having minimum degree at least 2 might vanish uniformly over connection
functions in Ψstep (or indeed, connection functions in Φ0

d,η). For the more restricted
class of connection functions of ‘hard’ random geometric graphs, this was proved in
[1]. Some of the ideas of proof in the present paper are related to methods used in
[3] and in [1].

Given k ∈ N, and given a graph G, let N<k(G) be the number of vertices of G of
degree less than k, and let Kk be the class of k-connected graphs. In view of results
in [15], one might expect (2.5) to hold with N0 replaced by N<k and K replaced by
Kk, for any fixed k ∈ N.

In a much-cited paper, Gupta and Kumar [7] conjectured that if d = 2 and
Xn consists of n points uniformly distributed in a disk of unit area (rather than
the unit square considered here) and φn = φrn,pn , then P[Gφn(Xn) ∈ K] → 1 if
and only if nπr2

npn − log n → ∞. Our results (Theorems 2.3 and 2.5, and 8.1)
address the corresponding conjecture for points in the unit square, showing that
under the additional assumption that pn = Ω(1/ log n), the conjecture is true and
also P[Gφn(Xn) ∈ K] → 0 if nπr2

npn − log n → −∞. Our results also show that if
pn = ω(1/ log n), and if nπr2

npn−log n→ β ∈ R then P[Gφn(Xn) ∈ K]→ exp(−e−β).
However, if one assumes instead that pn = o(1/ log n) and pn = ω(n−1/3(log n)−1)

and (2.14) holds, then it is easily verified that nπr2
npn − log n→∞, but our results

show that P[Gφn(Xn) ∈ K] tends to a limit strictly between 0 and 1, so the conjecture
fails. Essentially, this is because in this case the mean number of isolated vertices
in the interior of Γ tends to zero but the mean number of isolated vertices near the
boundary does not. In this regime the corner effects are not the most important,
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and we would expect something similar to hold in the unit disk as considered in
[7]. More generally, it would be of interest to extend our results to the case of other
shaped regions such as smoothly bounded regions, but this could be a non- trivial
task because the boundary effects can be quite strong (essentially because of the
exponential factor in the expression on the left of (2.7).

The remaining sections of the paper are organised as follows. In Section 3 we
prove Theorem 3.1, which is a Poissonized version of Theorem 2.1 (i.e., one with the
point process Xn replaced by Pn), of interest in its own right. In Sections 4 and 5,
we prove Theorem 5.1, which is (loosely speaking) a Poissonized version of Theorem
2.2, also of interest in its own right.

In Section 6, we shall de-Poissonize, thereby completing the proof of Theorems
2.1, 2.2 and Theorem 2.3. In Section 7 we prove Theorem 2.4. In Section 8, we
prove Theorems 2.5, 8.1 and 8.2.

We conclude this section with some remarks on the proofs. As we have men-
tioned, many of the results presented here might naturally be conjectured in view of
known results for random ‘hard’ geometric graphs [14, 15], and for Erdős-Rényi ran-
dom graphs [6, 2], and a (slightly weaker) explicit conjecture along these lines given
in [7]. These references date back to the last century, but the conjectures have
not been proved before now, despite the considerable influence of [7] in the applied
literature (see for example the discussion in [17]).

We believe that there are two reasons for this. One is that different arguments
are used to prove these results depending on whether or not µ(φn) tends to zero
faster than a certain rate. The division between Sections 4 and 5 reflects this, and
Section 3 is also divided along these lines. The balance between geometrical and
combinatorial arguments is different in these different settings.

The other reason is that the proof is not just a matter of reassembling known
arguments. For example, a part of the argument is concerned with ruling out the pos-
sibility that there are two large disjoint components. For “hard” geometric graphs
[14, 15], any two such components are separated by a connected region of empty
space and one can use discretisation, spatial independence and path-counting ar-
guments directly. In the present “soft” case, however, the physical separation of
components is not at all obvious. Instead, we proceed more indirectly via a notion
of local good behaviour of our point process (the ‘blue cubes’ of Section 5.2) with
finite-range dependence, after which we can use path-counting arguments to estab-
lish that there is a single giant region of ‘blue cubes’ corresponding to a single large
component of our graph.
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3 Poisson approximation

In this section we prove the following Poissonized version of Theorem 2.1 (we shall
de-Poissonize in Section 6).

Theorem 3.1 Let α > 0 and η ∈ (0, 1]. Suppose (λ(n))n∈N is an increasing (0,∞)-
valued sequence that tends to∞ as n→∞, and (φλ)λ>0 is a collection of connection
functions in Φd,η. Suppose that as λ→∞ along the sequence (λ(n)) we have

λ

∫
Γ

exp

(
−λ
∫

Γ

φλ(y − x)dy

)
dx→ α. (3.1)

Then for k ∈ N0 we have as λ→∞ along the same sequence, that

P [N0(Gφλ(Pλ)) = k]→ e−ααk/k!. (3.2)

Our strategy of proof is as follows. When pλ := µ(φλ) is ‘small’, we use the method
of moments and the Mecke formula (3.5) and Bonferroni bounds. When pλ is ‘big’ we
shall proceed by the Chen-Stein method for Poisson approximation of N0(Gφλ(Pλ))
which may be approximated (via discretisation of space) by a sum of ‘mostly inde-
pendent’ indicator functions.

In proving (3.2), we shall use the following notation. We write ‘with high proba-
bility’ or ‘w.h.p.’ to mean ‘with probability tending to 1 as λ→∞’. All asymptotic
statements are taken to be as λ→∞ along the sequence λ(n) mentioned in Theo-
rem 3.1. Also, for A,B ⊂ Rd we write A⊕B for {x+ y : x ∈ A, y ∈ B} (Minkowski
addition of sets).

For any finite (deterministic) A ⊂ Rd, and any φ ∈ Φd,η, set

hφ(A) := P [Gφ(A) ∈ K] (3.3)

and for any y ∈ Rd with y /∈ A, set

gφ(y,A) := 1−
∏
x∈A

(1− φ(y − x)) = P [y is non-isolated in Gφ(A ∪ {y})]. (3.4)

The left hand side of (3.1) equals EN0(Gφλ). This is a consequence of the follow-
ing formula, which we shall use repeatedly. Suppose k ∈ N and f is a measurable
nonnegative function defined on (Rd)k × Gk where Gk is the space of all graphs on
vertex set {1, . . . , k}. Then given a connection function φ, for λ > 0 we have

E
6=∑

X1,...,Xk∈Pλ

f(X1, . . . , Xk, Gφ(Pλ)|X1,...,Xk)1Dφ(X1,...,Xk;Pλ) = λk
∫

Γ

dx1 · · ·
∫

Γ

dxk

×E [f(x1, . . . , xk, Gφ({x1, . . . , xk}))] exp

(
−λ
∫

Γ

gφ(y; {x1, . . . , xk})dy
)
, (3.5)
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where the sum is over all ordered k-tuples of distinct points of Pλ, andGφ(Pλ)|X1,...,Xk

is the subgraph of Gφ(Pλ) induced by vertex set {X1, . . . , Xk} with the vertex Xi

given the label i for each i, and Dφ(X1, . . . , Xk;Pλ) is the event that there is no edge
of Gφ(Pλ) between any vertex in {X1, . . . , Xk} and any vertex in Pλ \{X1, . . . , Xk}.

The formula (3.5) is related to the Slivnyak-Mecke formula in the theory of
Poisson processes; here we just call it the Mecke formula. It can be proved by
conditioning on the number of points of Pλ; see the proofs of [12, Theorem 1.6], and
[13, Proposition 1].

We shall use the following inequality more than once. Given connection function
φ and given x, x1, . . . , xk ∈ Γ, by the Bonferroni bound

gφ(x; {x1, . . . , xk}) ≥

(
k∑
i=1

φ(x− xi)dx

)
−

∑
1≤i<j≤k

φ(x− xi)φ(x− xj),

so integrating over x ∈ Γ, we obtain∫
Γ

gφ(x; {x1, . . . , xk})dx ≥

(
k∑
i=1

∫
Γ

φ(x− xi)dx

)
− k2µ(φ)I(φ). (3.6)

Let H denote the half-space [0,∞)×Rd−1, and let Q denote the orthant [0,∞)d.
For x ∈ Q let Qx := {y ∈ Q : ‖x‖1 ≤ ‖y‖1}, where ‖ · ‖1 is the `1 norm.

Lemma 3.1 Let η ∈ (0, 1] and φ ∈ Φd,η. Then (a) if d = 2, for any x = (x1, x2) ∈
H and y = (y1, y2) ∈ H with x1 ≤ y1, and r ∈ [ρη(φ),∞], setting φ(r)(x) :=
φ(x)1[0,r](|x|) we have∫

H

(gφ(r)(z, {x, y})− φ(r)(z − x))dz ≥ (η/4)µ(φ)ρη(φ) min(|y − x|, ρη(φ));

(b) if d ≥ 3, and x ∈ Q, y ∈ Qx, then∫
Q

(gφ(z, {x, y})− φ(z − x))dz ≥ η1µ(φ)ρη(φ)d−1 min(|y − x|, ρη(φ)), (3.7)

where η1 > 0 is a constant depending only on d and η.

Proof. (a) Let us assume x2 ≤ y2 (the other case may be treated similarly). For
any z ∈ R2, since gφ(r)(z, {x, y})− φ(r)(z − x) = (1− φ(r)(z − x))φ(r)(z − y) we have

gφ(r)(z, {x, y}) − φ(r)(z − x) ≥ (φ(r)(z − y) − φ(r)(z − x))+. Therefore it suffices to
prove∫

H

(φ(r)(z − y)− φ(r)(z − x))+dz ≥ (η/4)µ(φ)ρη(φ) min(|y − x|, ρη(φ)). (3.8)
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Now∫
H

(φ(r)(z − y)− φ(r)(z − x))+dz ≥
∫
{y}⊕Q

(φ(r)(z − y)− φ(r)(z − x))dz

=

∫
Q

φ(r)(w)dw −
∫
{y−x}⊕Q

φ(r)(w)dw

=

∫
Q\({y−x}⊕Q)

φ(r)(w)dw.

If |y − x| ≤ ρη(φ), then the region Q \ ({y − x} ⊕ Q) contains either the rect-
angle [0, |y − x|/2] × [0, ρη(φ)/2] or the rectangle [0, ρη(φ)/2] × [0, |y − x|/2] (or
both), and the function φ(r) exceeds ηµ(φ) on either of these rectangles, so that∫
Q\({y−x}⊕Q)

φ(r)(w)dw ≥ η|y − x|ρη(φ)µ(φ)/4.

If |y − x| ≥ ρη(φ), then the region Q \ ({y − x} ⊕ Q) contains the square
[0, ρη(φ)/2]2, so that

∫
Q\({y−x}⊕Q)

φ(r)(w)dw ≥ ηρη(φ)2µ(φ)/4. This gives us (3.8).

(b) Now suppose d ≥ 3 (so φ ∈ Ψd by definition of Φd,η). For x, y ∈ Q, we have
by Fubini’s theorem and (2.2) that∫

Q

(gφ(z, {x, y})− φ(z − x))dz =

∫ 1

0

∫
Q

(1{gφ(z,{x,y})≥t} − 1{φ(z−x)≥t})dzdt

≥
∫ ηµ(φ)

0

∫
Q

(1{φ(z−y)≥t} − 1{φ(z−x)≥t})+dzdt

=

∫ η

0

|Q ∩B(y; ρu(φ)) \B(x; ρu(φ))|µ(φ)du, (3.9)

where | · | denotes Lebesgue measure or the Euclidean norm according to context.
For u ≤ η, we have ρu(φ) ≥ ρη(φ). Also, there is a constant η2 > 0 (dependent

on η and d) such that |Q ∩ B(y; 1) \ B(x; 1)| ≥ η2 min(|y − x|, 1) for any x, y ∈ Q
with ‖x‖1 ≤ ‖y‖1; see [12, Proposition 5.16] or [15, Proposition 2.2]. Hence for
x ∈ Q, y ∈ Qx and u ∈ (0, η], by scaling

|Q ∩B(y; ρu(φ)) \B(x; ρu(φ))| ≥ (ρu(φ))dη2 min

(
|y − x|
ρu(φ)

, 1

)
≥ η2ρη(φ)d−1 min(|y − x|, ρη(φ)).

Putting this into (3.9) gives us the result (3.7) with η1 = η2η.

Given η ∈ (0, 1] and given (φλ)λ>0 with each φλ ∈ Φd,η, for λ > 0 we set

pλ := µ(φλ); rλ := ρη(φλ). (3.10)
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Recall from (2.10) that I(φ) :=
∫
Rd φ(x)dx for any connection function φ. Without

loss of generality for the purpose of proving Theorem 3.1, we can and do assume for
all λ that ρ0(φλ) ≤

√
d, so that also rλ ≤

√
d. Note that if (3.1) holds, then

λI(φλ) = Θ (log λ) , (3.11)

and therefore by (3.10),

λpλr
d
λ = Θ(log λ). (3.12)

Theorem 3.1 follows from the next two lemmas, dealing separately with the case
with pλ = o(1/ log λ) and the case with pλ = ω(1/(log λ)2). In the first case, we use
the method of moments. For m, r ∈ N we write (m)r for the descending factorial
m(m− 1) · · · (m− r + 1).

Lemma 3.2 Let α ∈ (0,∞), η ∈ (0, 1]. Suppose φλ ∈ Φd,η for all λ and (φλ)λ>0

satisfy (3.1), and that pλ = o(1/ log λ). Then (3.2) holds.

Proof. Set N0 := N0(Gφλ(Pλ)). Let k ∈ N. For finite A ⊂ Rd, let uλ(A) denote the
probability that Gφλ(A) has no edges. By the Mecke formula ((3.5)),

E [(N0)k] = λk
∫
· · ·
∫
uλ({x1, . . . , xk}) exp

(
−λ
∫
gφλ(x, {x1, . . . , xk})dx

)
dx1 · · · dxk,

where all integrals are over Γ, unless specified otherwise. By the union bound,
uλ({x1, . . . , xk}) ≥ 1−

(
k
2

)
pλ, and also gφλ(x, {x1, . . . , xk}) ≤

∑k
i=1 φλ(x−xi). Hence

E [(N0)k] ≥ (1− k2pλ)λ
k

∫
· · ·
∫

exp

(
−λ
∫ k∑

i=1

φλ(x− xi)dx

)
dx1 · · · dxk

= (1 + o(1))(EN0)k. (3.13)

Also, by (3.6), we have

E [(N0)k] ≤ λk
∫
. . .

∫
exp

(
λk2pλI(φλ)− λ

∫ k∑
i=1

φλ(x− xi)dx

)
dx1 . . . dxk

= (1 + o(1))(EN0)k, (3.14)

where the last line is because λpλI(φλ) = O(pλ log λ) → 0, by (3.11) and our as-
sumption on pλ.
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By (3.13), (3.14) and the assumption (3.1), we have that E [(N0)k] → αk, and
therefore by the method of moments (see e.g. Theorem 1.22 of [2]), we have the
Poisson convergence (3.2).

For the second case with pλ = ω((log λ)−2), we use the Poisson approximation
method from [14]. This method has the potential to provide error bounds, but
this is not our main focus here. For x ∈ Rd and r > 0 set B(x; r) to be the ball
{y ∈ Rd : |x− y| ≤ r}. Given η ∈ (0, 1], set

K(η) :=

∫
Rd

3η−1 exp(−η|x|η)dx.

Note that K(1) ≤ K(η) <∞, and K(1) = 6π if d = 2, and that by (2.3) and (2.10),

I(φ) ≤ µ(φ)(ρη(φ))dK(η), φ ∈ Φd,η. (3.15)

Lemma 3.3 Suppose for some η ∈ (0, 1] and α ∈ (0,∞) that φλ ∈ Φd,η for all
λ > 0 and φλ satisfy (3.1). Suppose pλ = ω(1/(log λ)2). Then (3.2) holds.

Proof. Assume rλ ≤
√
d. It follows from (3.1) that (3.11) and (3.12) hold. Hence

by our condition on pλ we have

rdλ = Θ((log λ)/(λpλ)) = o((log λ)3λ−1). (3.16)

By (3.12), we can (and do) choose δ > 0 with λpλr
d
λ > δ log λ for all λ. Let ε > 0

be fixed with ε < η/(4K(η)) if d = 2, and with ε < min(2−dπdη/K(η), η1δ) if d ≥ 3,
where η1 is as in Lemma 3.1 (b). Truncate φλ by setting φ̃λ(x) := φλ(x)1[0,r1−ελ ](|x|)
for x ∈ Rd. Couple Gφλ(Pλ) and Gφ̃λ

(Pλ) in the following natural way; starting with

Gφλ(Pλ), remove all edges of Euclidean length greater than r1−ε
λ to obtain Gφ̃λ

(Pλ).
We claim next that (3.1) holds with φλ replaced by φ̃λ, i.e.

λ

∫
Γ

exp

(
−λ
∫

Γ

φ̃λ(y − x)dy

)
dx→ α. (3.17)

Indeed, by the Mecke formula (3.5) the absolute value of the difference between the
left side of (3.17) and that of (3.1) is bounded by the mean number of vertices having
at least one incident edge in Gφλ(Pλ) of length at least r1−ε

λ , and hence by twice
the expected number of such edges. However, by (2.3) the expected number of such
edges is O(λ2 exp(−ηr−εηλ )), which is O(λ2 exp(−ηλεη/(2d))) by (3.16), and therefore
tends to zero.

Let Γ′λ be the set of x ∈ Γ distant more than 4r1−ε
λ in the `∞ norm from the

corners of Γ. Let Ñ0(λ) be the number of isolated vertices of Gφ̃λ
(Pλ) that are

located in Γ′λ. Then we claim that

E [|N0(Gφλ(Pλ))− Ñ0(λ)|]→ 0 as λ→∞. (3.18)
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To see this, observe first that E [|N0(Gφλ(Pλ))−N0(Gφ̃λ
(Pλ))|] is bounded by twice

the expected number of edges in Gφλ(Pλ) of Euclidean length greater than r1−ε
λ ,

which tends to zero as discussed above. Second, observe that for all x ∈ Γ, by (3.15)
we have ∫

Γ

φ̃λ(y − x)dy ≥ 2−dπdr
d
ληpλ ≥ I(φλ)2

−dπdη/K(η),

and e−λI(φλ) = O(1/λ) by (3.1), so that exp(−λ
∫

Γ
φ̃λ(y− x)dy) = O(λ−2−dπdη/K(η)),

uniformly over x ∈ Γ. Hence the expected number of isolated vertices of Gφ̃λ
(Pλ)

lying in Γ \ Γ′λ is O(r
d(1−ε)
λ λ1−2−dπdη/K(η)) which tends to zero by (3.16). Thus

E [|N0(Gφ̃λ
(Pλ)) − Ñ0|] → 0, and (3.18) follows. Note that by (3.18) and Markov’s

inequality, P [Ñ0(λ) 6= N0(Gφλ(Pλ))]→ 0, so it suffices to prove (3.2) for Ñ0(λ).
Discretising space into hypercubes of side 1/m, applying the Chen-Stein method

of Poisson approximation, and taking the large-m limit as in (32) and (33) of [14]
(see also [12, Theorem 6.7]), we have that

∞∑
i=0

∣∣∣∣∣P [Ñ0(λ) = i]− e−E Ñ0(λ)(E Ñ0(λ))i

i!

∣∣∣∣∣ ≤ 6(b1 + b2), (3.19)

with

b1 := λ2

∫
Γ′λ

∫
B(x;3r1−ελ )∩Γ′λ

exp

(
−λ
∫

Γ

(φ̃λ(z − x) + φ̃λ(z − y))dz

)
dydx

and

b2 := λ2

∫
Γ′λ

∫
B(x;3r1−ελ )∩Γ′λ

exp

(
−λ
∫

Γ

gφ̃λ(z, {x, y})dz
)
dydx

= 2λ2

∫
Γ′λ

∫
B(x;3r1−ελ )∩Γ′λ,x

exp

(
−λ
∫

Γ

gφ̃λ(z, {x, y})dz
)
dydx

where for x ∈ Γ, if d = 2 we let Γ′λ,x denote the set of y ∈ Γ′λ lying further from the
boundary of Γ than x does, while if d ≥ 3, we let Γ′λ,x denote the set of y ∈ Γ′λ lying
closer to the centre of Γ in the `1 norm than x does.

By the union bound, gφ̃λ(z, {x, y}) ≤ φ̃λ(z−x)+ φ̃λ(z−y), and therefore b1 ≤ b2.
Hence by (3.19) and (3.18), to prove (3.2) it suffices to prove that b2 → 0.

We write b2 = b
(1)
2 +b

(2)
2 , where b

(1)
2 denotes the contribution to b2 from integrating

over (x, y) with y ∈ B(x; rλ), and b
(2)
2 denotes the contribution to b2 from integrating

over (x, y) with y ∈ B(x; 3r1−ε
λ ) \B(x; rλ).

First suppose d = 2. Using Lemma 3.1, we have that

b
(2)
2 ≤ 9πλ2r

2(1−ε)
λ

∫
Γ′λ

exp

((
−λ
∫

Γ

φ̃λ(z − x)dz

)
− λ(η/4)pλr

2
λ

)
dx.
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By (3.17), we have

exp(−λI(φλ)) ≤ exp(−λI(φ̃λ)) = O(λ−1). (3.20)

By (3.15), we have exp(−λpλr2
λ) ≤ exp(−λI(φλ)/K(η)) which is O(λ−1/K(η)) by

(3.20). Therefore, using also (3.17) and (3.12), followed by (3.16), yields

b
(2)
2 = O

(
λ1−η/(4K(η))r

2(1−ε)
λ

)
= O

(
λε−η/(4K(η))(log λ)3(1−ε))→ 0.

Now consider b
(1)
2 . Recall from (3.12) that λpλr

2
λ = Θ(log λ). By Lemma 3.1,

and then (3.17), then (3.12),

b
(1)
2 ≤ 2λ2

∫
Γ′λ

∫ rλ

0

exp

((
−λ
∫

Γ

φ̃λ(z − x)dz

)
− λpλ(η/4)rλt

)
2πtdtdx

= O

(
λ2

(
1

λ

)∫ ∞
0

exp(−(η/4)u)(λpλrλ)
−2udu

)
= O

(
1

pλ log λ

)
.

Therefore, if pλ > 1/2 then b
(1)
2 → 0. Conversely, if pλ ≤ 1/2, then since gφ̃λ(z, {x, y}) ≥

φ̃λ(z − x) + (1− pλ)φ̃λ(z − y), and φλ ∈ Φd,η, we have

b
(1)
2 ≤ 2λ2

∫
Γ′λ

(πr2
λ) exp

((
−λ
∫

Γ

φ̃λ(z − x)dz

)
− λ(1− pλ)ηpλ(πr2

λ/2)

)
dx

= O
(
λr2

λ exp(−π(η/4)λpλr
2
λ)
)

so that by (3.16), (3.15) and (3.20) we have b
(1)
2 = O

(
(log λ)3 λ−πη/(4K(η))

)
= o(1).

Hence b
(1)
2 → 0, so that b2 → 0 as required when d = 2.

Now suppose d ≥ 3. Let Γ̃ := {x ∈ Γ : ‖x‖∞ ≤ 1/2}. Then by Lemma 3.1 (b),

b
(1)
2 ≤ 2d+1λ2

∫
Γ̃

∫
B(x;rλ)∩Γ′λ,x

exp

(
−λ
[∫

Γ

φ̃λ(z − x)dz + η1pλr
d−1
λ |y − x|

])
dydx

≤ 2d+1λ2

∫
Γ̃

exp

(
−λ
∫

Γ

φ̃λ(z − x)dz

)∫
Rd

exp(−η1λpλr
d
λ|w|)rdλdwdx,

and hence using (3.17) followed by (3.12), we obtain that

b
(1)
2 = O(λrdλ(λpλr

d
λ)
−d) = O(p−1

λ (log λ)1−d),

which tends to zero by our assumption on pλ. By Lemma 3.1 (b) again,

b
(2)
2 ≤ 2d+1λ2πdr

d(1−ε)
λ

∫
Γ̃

exp

(
−λ
∫

Γ

φ̃λ(z − x)dz

)
× exp(−η1λpλr

d
λ)dx,

and hence using (3.17), (3.16), and (3.12), with δ as given at the start of this proof

we obtain that b
(2)
2 = O

(
λε(log λ)3(1−ε) exp(−η1δ log λ)

)
. By our choice of ε, this

shows that b
(2)
2 tends to zero, completing the proof.
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4 Connectivity: the case of small pλ

For any graph G, let L2(G) denote the order of its second-largest component, i.e.
the second largest of the orders of its components; if G is connected, set L2(G) = 0.
Given connection functions (φλ)λ>0, let pλ and rλ be given by (3.10). In this section
we prove the following result:

Proposition 4.1 Suppose (λ(n))n∈N is an increasing (0,∞)-valued sequence that
tends to ∞ as n → ∞, and for some η ∈ (0, 1] and α ∈ (0,∞), (φλ)λ>0 is a
collection of connection functions in Φd,η such that as λ → ∞ along the sequence
(λ(n)) we have (3.1). Assume for some ε > 0 that pλ = O(λ−ε). Then as λ → ∞
along the same sequence,

P [L2(Gφλ(Pλ)) > 1]→ 0.

It is immediate from Theorem 3.1 and Proposition 4.1 that under the hypotheses of
Proposition 4.1, we have a Poissonized version of (2.9), namely P [Gφλ(Pλ) ∈ K]→
e−α. Our strategy of proof of Proposition 4.1 is as follows. First we shall rule out
‘small components’ of order between 2 and nε/2 using the Mecke formula. Then we
shall rule out the possibility of more than one ‘large component’ by a ‘sprinkling’
argument. That is, we add the edges in two stages, and even though we make the
number of edges added in the second stage rather small, with high probability there
are enough of them to connect together any two distinct large components arising
from the first stage.

Given n ∈ N and p ∈ [0, 1], let G(n, p) denote the Erdős-Rényi random graph on
n vertices, i.e., the random subgraph of the complete graph on n vertices, obtained
by including each possible edge independently with probability p. Our proof of
Proposition 4.1 uses a lemma on large deviations for the giant component of G(n, p).

Lemma 4.1 Suppose p = p(n) is such that np→∞ as n→∞. Let En be the event
that G(n, p) has no component of order greater than 3n/4. Then lim supn→∞ n

−1 logP [En] <
0.

Proof. Suppose En occurs. Then by starting with the empty set and adding com-
ponents of G(n, p) in arbitrary order until we have at least n/8 vertices, we can find
a set of between n/8 and 7n/8 vertices that is disconnected from the rest of the
vertices of G(n, p). Hence by the union bound and the fact that ek ≥ kk/k! for any
k,

P [En] ≤
∑

n/8≤k≤7n/8

(
n

k

)
(1− p)k(n−k) ≤

∑
n/8≤k≤7n/8

nkek

kk
exp(−p(7/64)n2)

≤ n(8e)n exp(−n2p/10)
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and the result follows.

For any graph G any k ∈ N, let Tk(G) denote the number of components of G
of order k.

Lemma 4.2 Under the hypotheses of Proposition 4.1,

P
[
∪2≤k≤λε/3{Tk(Gφλ(Pλ)) > 0}

]
→ 0. (4.1)

Proof. We may assume rλ ≤
√
d. By the Mecke formula (3.5) and Cayley’s formula

(which says there are kk−2 trees on k vertices), and the union bound, ETk(Gφλ(Pλ))
is bounded by

λk

k!
kk−2pk−1

λ

∫
· · ·
∫

exp

(
−λ
∫
gφλ(x; {x1, . . . , xk})dx

)
dx1 · · · dxk,

where all integrals are over Γ in this proof. By (3.6), this is bounded by

(eλpλ)
k

k2pλ

∫
· · ·
∫
dx1 · · · dxk exp

(
−λ
∫ k∑

i=1

φλ(x− xi)dx

)
exp(λk2pλI(φλ)). (4.2)

By (3.11) the exponent in the last factor of (4.2) is O(k2pλ log λ). If k ≤ λε/3, this
exponent is O(1) so the last factor in (4.2) is O(1), uniformly over such k. Thus

E
∑

2≤k≤λε/3
Tk(Gφλ(Pλ)) = O

(
p−1
λ

∞∑
k=2

(epλEN0(Gφλ(Pλ)))k
)

which tends to zero. Then (4.1) follows by Markov’s inequality.

Proof of Proposition 4.1. Assume that rλ ≤
√
d. Set φ′λ(x) = φλ(x)(1 − λ−ε/6)

for x ∈ Rd. Note that (3.1) still holds using φ′λ instead of φλ, since changing φλ to
φ′λ gives an extra term in the exponent of O(λ1−ε/6I(φλ)), which tends to zero by
(3.11). Also φ′λ ∈ Φd,η.

Consider generating Gφλ(Pλ) in two stages. In the first stage, generate Gφ′λ
(Pλ).

In the second stage, for each pair of vertices X, Y not already connected by an edge
in the first stage, add an edge between them with probability (φλ(Y −X)−φ′λ(Y −
X))/(1− φ′λ(Y −X)).

By (3.12), λrdλ = Ω(λε) and rλ = Ω(λ(ε−1)/d). We now show that after the first
stage, there is a giant component with high probability. Partition Γ into cubes of
side 1/b8d/rλc. The number of cubes in the partition is O(r−dλ ) = O(λ).
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By a Chernoff bound (e.g. Lemma 1.2 of [12]), with high probability each cube
in the partition contains at least (9d)−dλrdλ vertices of Pλ. Since we assume rλ ≤

√
d,

it is easily verified that 1/b8d/rλc ≤ rλ/7d. By (3.12), for each cube in the partition
the restriction of Gφλ(Pλ) to the vertices within that cube dominates the Erdős-
Rényi random graphG(n, p) with np = Ω(λrdλ(log λ)/(λrdλ)) = Ω(log λ) so by Lemma
4.1, there is a giant component containing a proportion at least (3/4) of the vertices
in that cube, except on an event of probability exp(−Ω(λrdλ)) = exp(−Ω(λε)). Hence
by the union bound, with high probability the restricted graph within each of these
cubes contains a giant component.

Also by the same argument, with high probability, it is the case that for each
pair of neighbouring cubes in the partition, the restriction of Gφλ(Pλ) to vertices
in that pair of cubes has a giant component with a proportion at least 3/4 of the
vertices in that pair of cubes, and therefore the two giant components within these
neighbouring cubes are connected together. Note that for any δ > 0, with high
probability, by the Chernoff bound, for each pair of cubes the ratio of the number
of vertices in one cube and the number of vertices in the other lies between 1 − δ
and 1 + δ.

Hence, after the first stage there is w.h.p. a giant component containing a
proportion at least 3/4 of all the vertices in each of the cubes in the partition. By
Lemma 4.2, also w.h.p. there is no component of order greater than 1 but less than
λε/3. There may also be some isolated vertices, and some medium-size components
of order between λε/3 and λ/2. Now we rule out existence of components of order
greater than λε/3 besides the giant component, after the second stage.

After the first stage, w.h.p. the giant component contains more than d(9d)−dλrdλ/2e
vertices in each of the cubes in the partition. Therefore each vertex not in the gi-
ant component has at least (9d)−dλrdλ/2 vertices from the giant component within
distance rλ of it (namely, those which are in the same cube of the partition as itself).

Now for each medium-sized component from the first stage, the probability that
it fails to get attached to the giant component in the second stage is bounded by

(1− λ−ε/6ηpλ/2)λ
ε/3×(9d)−dλrdλ/2 ≤ exp(−(9d)−dηλε/6λrdλpλ/4)

≤ exp(−λε/6),

where the last inequality holds for all large enough λ, by (3.12). The number of
medium-sized components from the first stage is bounded by 2λ w.h.p., so by the
union bound, the probability that one or more of them fails to get attached to the
giant component tends to zero.

Also the number of isolated vertices from the first stage is asymptotically Poisson
by Lemma 3.2, and the probability that any two of these get connected together in
the second stage is O(λ−ε/6pλ) so tends to zero. Hence w.h.p., after the second stage
there is no component of order greater than 1, besides the giant component.
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5 Connectivity: the case of large pλ

In this section we prove the following result, which extends Proposition 4.1 by re-
laxing the restriction on pλ that was imposed there, subject to φλ ∈ Φ0

d,η.

Theorem 5.1 Let α ∈ (0,∞). Suppose that for some increasing sequence (λ(n))n∈N
that tends to ∞ as n → ∞, (φλ)λ>0 satisfies (3.1) as λ → ∞ along the sequence
(λ(n))n∈N, and that there exists η ∈ (0, 1] such that φλ ∈ Φ0

d,η for all λ. Then as
λ→∞ along the sequence (λ(n))n∈N,

P [L2(Gφλ(Pλ)) > 1]→ 0. (5.1)

Throughout this section, we fix arbitrary η ∈ (0, 1] and assume φλ ∈ Φ0
d,η for

all λ > 0, and (φλ)λ>0 satisfy (3.1) for some α ∈ (0,∞) (all asymptotics being as
λ → ∞ along the sequence (λ(n))n∈N). Define pλ := µ(φλ) and rλ := ρη(φλ) as in
(3.10), and assume rλ = O(1).

In view of Proposition 4.1, it suffices to prove the result in the case where pλ =
Ω(λ−ε) for some suitably chosen ε > 0. Since the argument is long, we split the
section further by first showing there are no ‘small’ components (other than isolated
vertices) and then showing there is not more than one ‘large’ component.

5.1 Small components

This subsection contains several lemmas, because we sometimes need to distinguish
the case with d = 2 (where we do not assume φλ ∈ Ψ2) and we also sometimes dis-
tinguish the case with p = O(1) from p = o(1). Moreover, we distinguish ‘very small’
components of (spatial) diameter at most δrλ and ‘moderately small’ components
of diameter between δrλ and (1/δ)rλ, where δ is a small (but fixed) constant.

To deal with ‘very small’ components (in Lemmas 5.1, 5.2, 5.3 and 5.6) we use the
Mecke formula directly and sum over all possible cardinalities of the component. To
deal with ‘moderately small components’ (in Lemmas 5.4, 5.5 and 5.7), we discretize
space into cubes (or strips) of side εrλ for suitably small fixed ε. For x ∈ Γ and for
each possible ‘moderately small’ discretized region (i.e., union of some of these cubes)
containing x, we estimate the probability that the component of Gφλ(Pλ ∪ {x})
containing x is moderately small and corresponds to that particular region. To
do this we show that there is enough ‘unexplored space’ outside the region but
inside Γ, for the probability of there being no Poisson points in the unexplored
space connected to the cluster within the explored region, is small compared to the
probability of x being isolated.

We need some preliminaries. First we give a similar lemma to Lemma 6 of [14].
As before, let H denote the half-space [0,∞)× Rd−1 and let Q denote the orthant
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[0,∞)d. For λ > 0 let HH
λ := Hλ ∩H and let HQ

λ := Hλ ∩Q. Define

ψλ(x) := φλ(rλx), x ∈ Rd.

For any locally finite set X in Rd, and any x ∈ Rd, and connection function φ,
let Cφ(x,X ) be the vertex set of the component of Gφ(X ∪ {x}) containing x. Let
Dφ(x,X ) := diam(Cφ(x,X )) := supy,z∈Cφ(x,X ) |y − z|. For A a countable set in R2

and x ∈ A, let Lφ(x,A) denote the event that x is the left-most vertex of Cφ(x,A)
(i.e., the first vertex in the lexicographic ordering). Also, let L′φ(x,A) denote the
event that x is the vertex of Cφ(x,A) lying closest to the boundary of the quadrant
Q.

Lemma 5.1 Suppose d = 2 and pλ ≥ 1/2 for all λ. Then for 0 < δ ≤ η/(8π) we
have

lim
λ→∞

sup
x∈H

P [0 < Dψλ(x,HH
λr2λ

) < δ;Lψλ(x,HH
λr2λ

)]

P [Dψλ(x,HH
λr2λ

) = 0]
= 0.

Proof. Given x ∈ H and δ > 0, let Aδ denote the right half of the disk of radius
δ centred at x. Let qδk(x, λ) be the probability that Cψλ(x,HH

λr2λ
) has precisely k

elements and is contained in Aδ. Clearly

P [0 < Dψλ(x,HH
λr2λ

) < δ;Lψλ(x,HH
λr2λ

)] ≤
∞∑
k=2

qδk(x, λ).

By the Mecke formula, similarly to [13, Proposition 1], with hφ and gφ defined at
(3.3) and (3.4), we have

qδk(x, λ) =
(λr2

λ)
k−1

(k − 1)!

∫
Aδ

· · ·
∫
Aδ

hψλ({x, x1, . . . , xk−1})

× exp

(
−λr2

λ

∫
H

gψλ(y, {x, x1, . . . , xk−1})dy
)
dx1 · · · dxk−1. (5.2)

Similarly qδ1(x, λ) = exp(−λr2
λ

∫
H
ψλ(y−x)dy). Since hψλ(A) ≤ 1 for any A we have

qδk(x, λ)

qδ1(x, λ)
≤ (λr2

λ)
k−1

(k − 1)!

∫
Aδ

· · ·
∫
Aδ

× exp

(
−λr2

λ

∫
H

[gψλ(y, {x, x1, . . . , xk−1})− ψλ(y − x)]dy

)
dx1 · · · dxk−1. (5.3)
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If we restrict the integral in (5.3) to those (x1, . . . , xk−1) with |xi− x| ≤ |x1− x| for
2 ≤ i ≤ k − 1, we reduce it by a factor of k − 1. Therefore

qδk(x, λ)

qδ1(x, λ)
≤ λr2

λ(λr
2
λπ/2)k−2

(k − 2)!

∫
Aδ

|x1 − x|2(k−2)

× exp

(
−λr2

λ

∫
H

[gψλ(y, {x, x1})− ψλ(y − x)]dy

)
dx1.

By Lemma 3.1 and the fact that ρη(ψλ) = 1, for x1 ∈ A1 we have∫
H

[gψλ(y, {x, x1})− ψλ(y − x)]dy ≥ |x1 − x|ηpλ/4,

so that for δ ≤ 1 we have

qδk(x, λ)

qδ1(x, λ)
≤ λr2

λ(λr
2
λπ/2)k−2

(k − 2)!

∫
Aδ

|x1 − x|2(k−2) exp
(
−λr2

λ(η/4)pλ|x1 − x|
)
dx1.

Summing over k ≥ 2 and using the assumptions pλ ≥ 1/2 and δ ≤ η/(8π), yields

∞∑
k=2

qδk(x, λ)

qδ1(x, λ)
≤ λr2

λ

∫
Aδ

exp(λr2
λ[(π/2)|x1 − x|2 − (η/4)pλ|x1 − x|])dx1

≤ λr2
λ

∫
Aδ

exp(−λr2
λ|x1 − x|η/16)dx1 = O((λr2

λ)
−1)

which tends to zero by (3.12).

In the case with pλ ≤ 1/2, we give a similar result to the last one, but for general
d ≥ 2. Let πd denote the volume of the unit ball in d dimensions. Let Q̃ denote the
orthant Q if d ≥ 3, but denote the half-space H if d = 2.

Lemma 5.2 Suppose φλ and ψλ are as before (now for general d, d ≥ 2). Let
0 < δ < η/8. If pλ ≤ 1/2 for all λ but pλ = Ω(λ−1/2d+3

), then

lim
λ→∞

sup
x∈Q̃

P [0 < Dψλ(x,HQ̃

λrdλ
) < δ]

P [Dψλ(x,HQ̃

λrdλ
) = 0]

 = 0.

Proof. For δ > 0, x ∈ Q̃ and k ∈ N, define

wλ(k, δ) :=
P [0 < Dψλ(x,HQ̃

λrdλ
) < δ; card(Cψλ(x,HQ̃

λrdλ
)) = k + 1]

P [Dψλ(x,HQ̃

λrdλ
) = 0]

,
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where card(·) denotes the number of elements in a set. For k ∈ N we have, similarly
to (5.2), that

wλ(k, δ) ≤
(λrdλ)

k

k!

∫
B(x;δ)∩Q̃

· · ·
∫
B(x;δ)∩Q̃

× exp

(
−
∫
Q̃

λrdλ[gψλ(y, {x, x1, . . . , xk})− ψλ(y − x)]dy

)
dx1 · · · dxk. (5.4)

Now,

gψλ(y, {x, x1, x2, . . . , xk})− ψλ(y − x) ≥ (1− pλ)

(
1−

k∏
i=1

(1− ψλ(y − xi))

)

≥ (1− pλ)

(
1− exp

(
−

k∑
i=1

ψλ(y − xi)

))
. (5.5)

First consider k ≤ 1/pλ. Since 1 − e−x ≥ x/2 for 0 ≤ x ≤ 1, and we assume
pλ ≤ 1/2, for such k we have

gψλ(y, {x, x1, x2, . . . , xk})− ψλ(y − x) ≥ (1/4)
k∑
i=1

ψλ(y − xi).

Now
∫
Q̃
ψλ(y − xi)dy ≥ I(ψλ)/2

d for each λ and each xi, because for d ≥ 3 we

assume φλ ∈ Ψd, and for d = 2 we assume Q̃ = H and φλ satisfies φλ(x) = φλ(−x)
for all x. Therefore by (5.4), for k ≤ 1/pλ we have

wλ(k, δ) ≤
(λrdλ)

k

k!

∫
(B(x;δ)∩Q̃)d

exp

(
−1

4

∫
Q̃

λrdλ

k∑
i=1

ψλ(y − xi)dy

)
d(x1, . . . , xk)

≤ (δdπdλr
d
λ)
k

k!
exp(−λkI(φλ)/2

d+2).

Hence,

b1/pλc∑
k=1

wλ(k, δ) ≤ exp[δdπdλr
d
λe
−λI(φλ)/2d+2

]− 1. (5.6)

Since we assume (3.1) we have e−λI(φλ) = O(λ−1), and using (3.12) we have that

λrdλe
−λI(φλ)/2d+2

= O

(
log λ

pλλ1/2d+2

)
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which tends to zero, by our condition on pλ. Therefore the expression in (5.6) tends
to zero.

Now consider k > 1/pλ. For x1, . . . , xk ∈ B(x; δ) and y ∈ B(x; 1/2) we have
|y − xi| < 1 and hence ψλ(y − xi) ≥ ηpλ for 1 ≤ i ≤ k, so by (5.5) we have that

gψλ(y, {x, x1, x2, . . . , xk})− ψλ(y − x) ≥ (1− pλ)(1− exp(−ηkpλ)) ≥ (1− e−η)/2.

Therefore using (5.4) and the fact that 1− e−η ≥ η/2, we have∑
k>1/pλ

wλ(k, δ) ≤ exp(δdπdλr
d
λ) exp(−πdλrdλη/2d+2),

and by the choice of δ, this tends to zero. Combining these estimates gives the
result.

Combining Lemma 5.1 and the case d = 2 of Lemma 5.2 immediately gives us
the following.

Lemma 5.3 Suppose d = 2 and η, φλ and ψλ are as before. Suppose also that
pλ = Ω(λ−1/32). Let 0 < δ < η/(8π). Then

lim
λ→∞

sup
x∈H

(
P [0 < Dψλ(x,HH

λr2λ
) < δ;Lψλ(x;HH

λr2λ
)]

P [Dψλ(x,HH
λr2λ

) = 0]

)
= 0.

Lemma 5.4 Given 0 < δ < ρ <∞, it is the case (for general d ≥ 2) that

lim
λ→∞

sup
x∈H

P [δ < Dψλ(x,HH
λr2λ

) < ρ;Lψλ(x,HH
λr2λ

)]

P [Dψλ(x,HH
λr2λ

) = 0]
= 0.

Proof. This can be proved along the lines of [13, Lemma 3]; the argument still works
in the case with pλ → 0, provided λr2

λpλ → ∞, which is always the case for us by
(3.12).

Similarly to [14, Lemma 7] (which is missing a factor of π in the exponent) we
have the following:

Lemma 5.5 Suppose d = 2. For any ρ > 0, as λ→∞ we have

sup
x∈Q

P [Dψλ(x;HQ

λr2λ
) < ρ] = o (exp{−ληI(φλ)/(3K(η))}) . (5.7)

23



Proof. Fix ρ > 0. Divide Q into vertical strips of width 1/9, denoted Si, i ∈ N,
where Si := [(i− 1)/9, i/9)× [0,∞). Let x ∈ Q, and let i0 = i0(x) be the choice of
i such that x ∈ Si. Also let i1 = i0 + 9dρe.

Given λ, for i ∈ N ∩ [i0, i1] let E ′i be the event that the right-most point of
Cψλ(x,HQ

λr2λ
) lies in Si. If Dψλ(x;HQ

λr2λ
) < ρ then one of the events Ei0 , . . . , Ei1

occurs.
Now fix i ∈ N∩ [i0, i1]. Set Ai := ∪j≤iSj, and Aci := ∪j>iSj. Consider generating

Gψλ({x} ∪ HQ

λr2λ
) in two stages. In the first stage, generate the Poisson process

Hλr2λ
∩ Ai, and add edges between points of {x} ∪ (Hλr2λ

∩ Ai) with probabilities
determined by the connection function ψλ. Then in the second stage, add the points
of Hλr2λ

∩ Aci and add edges between these added points, and between the added
points and the points from the first stage, again using the connection function ψλ.

The first stage generates a realization of the graph Gψλ({x} ∪ (Hλr2λ
∩ Ai)); let

Ei,1 be the event that the resulting realization of Cψλ(x,Hλr2λ
∩Ai) includes at least

one vertex in Si. Let Ei,2 be the event that the second stage does not generate any
new Poisson points that are connected to vertices of Cψλ(x,Hλr2λ

∩Ai) arising from
the first stage. Then E ′i = Ei,1 ∩ Ei,2.

Suppose Ei,1 occurs. Let z be the right-most vertex of Cψλ(x,Hλr2λ
∩ Ai); then

z ∈ Si by definition. Then in stage 2, a necessary condition for Ei,2 to occur is that
there is no point of Hλr2λ

∩ Aci connected by an edge z. Since B(z; 1) ∩ Aci has area
at least (π/4)− 1/9,

P [E ′i|Ei,1] ≤ exp(−λr2
ληpλ((π/4)− 1/9)) ≤ exp(−ηλI(φλ)/(2K(η))),

where the last inequality comes from (3.15). This gives us (5.7).

For x ∈ Γ, let Γx be the set of y ∈ Γ such that y is closer to the centre of Γ in
the `1 norm than x is. For ρ > 0 and x ∈ Γ, let Eλ,ρ,x be the event that there is a
non-empty set U of points of Pλ contained in B(x; ρ)∩Γx, such that no other point
of Pλ \ U is connected to any point of {x} ∪ U in Gφλ({x} ∪ Pλ).

Lemma 5.6 Suppose d ≥ 3 and pλ = Ω(1). Then there exists δ > 0 such that

lim
λ→∞

sup
x∈Γ

P [Eλ,δrλ,x]/ exp

(
−λ
∫

Γ

φλ(y − x)dy

)
= 0.

Proof. The proof resembles that of [15, Lemma 5.2] or [12, Lemma 13.15]. For
j ∈ N let µx(j, λ) be the number of subsets U of Pλ with j elements, such that
U ⊂ Γx∩B(x; δrλ) and no element of U ∪{x} is connected to any element of Pλ \U
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in Gφλ({x} ∪ Pλ). Then by the Mecke formula (3.5),

Eµj(x, λ) =
λj

(j − 1)!

∫
Γx∩B(x;δrλ)

∫
(Γx∩B(x;|y−x|))j−1

× exp

(
−λ
∫
gφλ(z, {x, y, x1, . . . , xj−1})dz

)
d(x1, . . . , xj−1)dy

≤ λ(λπd)
j−1

(j − 1)!

∫
Γx∩B(x;δrλ)

|y − x|d(j−1) exp

(
−λ
∫
gφλ(z, {x, y})dz

)
dy.

Assume δ ≤ 1. By lemma 3.1 (b), the integrand in the last exponent is bounded
below by φλ(z − x) + η1pλρ

d−1
λ |y − x|, and therefore

Eµj(x, λ)

exp(−λ
∫
φλ(z − x)dz)

≤ λ(λπd)
j−1

(j − 1)!

∫
B(x;δrλ)

|y − x|d(j−1) exp(−η1λpλr
d−1
λ |y − x|)dy.

Summing over j and changing variable to w = (y − x)/rλ, we obtain

P [Eλ,δrλ,x]

exp
(
−λ
∫

Γ
φλ(z − x)dz

) ≤ λ

∫
B(x;δrλ)

exp(λπd|y − x|d − η1λpλr
d−1
λ |y − x|)dy

= λ

∫
B(0;δ)

exp(λπdr
d
λ|w|d − η1λpλr

d
λ|w|)rdλdw

Using our assumption on pλ, we may choose δ small enough so that πdδ
d ≤ (η1/2)pλδ

for all λ, and then there is a constant δ′ so the last bound is at most
λrdλ

∫
exp(−δ′λrdλ|w|)dw which isO((λrdλ)

1−d) and therefore tends to zero by (3.12).

In the next lemma we do not need to assume pλ = Ω(1).

Lemma 5.7 Suppose d ≥ 3. Then for 0 < δ < ρ <∞ we have

lim
λ→∞

sup
x∈Γ

P [Eλ,ρrλ,x \ Eλ,δrλ,x]/ exp

(
−λ
∫

Γ

φλ(y − x)dy

)
= 0.

Proof. Fix δ and ρ, and assume δ ≤ 1. Let ε > 0 be a small constant to be chosen
later. Given λ, divide Rd into boxes (i.e., hypercubes of the form

∏d
i=1[ai, ai + h))

of side h = εrλ. Let Λ′λ be the set of centres of these boxes. For z ∈ Λ′λ let B′z be
the box centred at z. Let x ∈ Γ and let zx be the z ∈ Λ′λ such that x lies in B′z.
Also, for all z ∈ Λ′λ let Bz := B′z ∩ Γx.

For σ ⊂ Λ′λ, let Bσ := ∪z∈σBz. Let C(λ, x) be the set of σ ⊂ Λ′λ such that (i)
zx ∈ σ, and (ii) σ ⊂ B(x; (ρ + dε)rλ), and (iii) σ \ B(x; (δ − dε)rλ) 6= ∅, and (iv)
|Bz| > 0 for each z ∈ σ (where | · | denotes Lebesgue measure). In the sequel, we
assume ε < δ/(2d) so that δ − dε > δ/2.
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For σ ∈ C(λ, x), let E ′λ(σ) be the event that (i) σ = {z ∈ Λ′λ : Cφλ(x,Pλ)∩Bz 6=
∅} and (ii) Cφλ(x,Pλ) ⊂ Γx. Then Eλ,ρrλ,x \ Eλ,δrλ,x ⊂ ∪σ∈C(λ,x)E

′
λ(σ).

Let σ ∈ C(λ, x). Consider generating Cφλ(x,Pλ) in two stages, similarly to the
proof of Lemma 5.5. In Stage 1, add all points of Pλ in Bσ, and all edges involving
these points and x (using the connection function φλ). In Stage 2, add the points
of Pλ in Γ \Bσ, and add connections between these new points and each other, and
between the new points and the points from the Stage 1, again using connection
function φλ.

In Stage 1, we generate a realization of Gφλ({x} ∪ (Pλ ∩ Bσ)), and hence a
realization of Cφλ(x,Pλ ∩ Bσ). Let E ′λ,1(σ) be the event that this realization of
Cφλ(x,Pλ∩Bσ) is contained in Γx and includes at least one point from each Bz, z ∈ σ.
Let E ′λ,2 be the event that none of the new points created in Stage 2 are joined
to any points of the realization of Cφλ(x,Pλ ∩ Bσ) generated in Stage 1. Then
E ′λ(σ) = E ′λ,1(σ)∩E ′λ,2(σ). Since the cardinality of C(λ, x) is bounded independently
of x and λ, it suffices to show that

lim sup
λ→∞

sup
x∈Γ,σ∈C(λ,x)

P [E ′λ,2(σ)|E ′λ,1(σ)]

exp(−λ
∫
φλ(y − x)dy)

= 0. (5.8)

Now,

P [E ′λ,2(σ)|E ′λ,1(σ)] ≤ exp

(
−λ inf

X⊂Bσ∩Γx:X∩Qz 6=∅∀z∈σ

∫
Γ\Bσ

gφλ(y;X )dy

)
and for each X ⊂ Bσ ∩ Γx with X ∩Qz 6= ∅ for all z ∈ σ we have∫

Γ\Bσ
gφλ(y;X )dy = pλ

∫ p−1
λ

0

∫
Γ\Bσ

1{gφλ (y;X )≥pλu}dydu

≥ pλ

∫ 1

0

|Γ ∩ (σ ⊕B(0; ρu(φλ)− dεrλ)) \Bσ|du,

where the last line arises because if y ∈ σ ⊕ B(0; ρu(φλ) − dεrλ) then there exists
v ∈ X with |y − v| ≤ ρu(φλ) and therefore gφλ(y;X ) ≥ φλ(y − v) ≥ upλ by (2.2).

For 0 < u ≤ 1, since φλ ∈ Φ0
d,η we have rλ ≤ ρu(φλ) ≤ η−1rλ. Hence ρu(φλ) −

dεrλ ≥ rλ/2. Using [15, Proposition 2.1] or [12, Proposition 5.15], writing Vr(x) for
|B(x; r) ∩ Γ| we can find a constant η3 > 0, depending only on d and η, such that∫

Γ\Bσ
gφλ(y;X )dy ≥ pλ

(∫ 1

0

Vρu(φλ)−dεrλ(x)du+

∫ 1

0

η3r
d
λdu

)
.

To estimate the first term in the expression above, note that since ρu(φλ) ≤ η−1rλ
there is a constantK1 (depending on d and η) such that Vρu(φλ)(x)du−Vρu(φλ)−dεrλ(x) ≤
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K1r
d
λε. Therefore∫

Γ\Bσ
gφλ(y;X )dy ≥ pλ

(∫ 1

0

Vρu(φλ)(x)du−K1r
d
λε+ η3r

d
λ

)
=

∫
Γ

φλ(y − x)dy −K1pλr
d
λε+ η3pλr

d
λ,

and by choosing ε < η3/(2K1) we have that the ratio in the left hand side of (5.8)
is bounded below by exp(−η3λpλr

d
λ/2), uniformly over x and σ. Since λrdλpλ → ∞

by (3.12), this gives us (5.8) as required.

Given λ > 0, ρ > 0, define the event

Eρ
λ = {∃ x ∈ Pλ : 0 < Dφλ(x,Pλ) ≤ ρ}.

Proposition 5.1 Let η ∈ (0, 1], α ∈ (0,∞), and 0 < ε ≤ min(η/(7K(η)), 2−(d+3)).
Suppose φλ ∈ Φ0

d,η for all λ, and (3.1) holds, and pλ = Ω(λ−ε). Then for any ρ > 0,
we have limλ→∞ P [Eρrλ

λ ] = 0.

Proof. First consider the case with d ≥ 3. Assume first that pλ = Ω(1). Then by
the Mecke formula and the preceding two lemmas,

P [Eρrλ
λ ] ≤

∫
Γ

P [Eλ,ρrλ,x]λdx = o(1)×
∫

Γ

exp

(
−λ
∫

Γ

φλ(y − x)dy

)
λdx

which is o(1) by (3.1).
Now suppose instead that pλ → 0 but pλ = Ω(λ−ε). Then rλ = o(1) by (3.12).

Let Γ̃ denote the set of points in Γ lying closer to the origin (in the Euclidean norm)
than to any other corner of Γ. Choosing δ ∈ (0, η/8) we have by the Mecke formula
and Lemma 5.2 that

P [Eδrλ
λ ] ≤ 2dλ

∫
Γ̃

P [0 < Dφλ(x,Pλ) < δrλ]dx

= 2dλ

∫
Γ̃

P [0 < Dψλ(r−1
λ x,HQ

λrdλ
) < δ]dx

= o(1)× λ
∫

Γ̃

P [Dψλ(r−1
λ x,HQ

λrdλ
) = 0]dx,

which tends to zero by (3.1). Also for any finite ρ > δ, by the Mecke formula

P [Eρrλ
λ \ Eδrλ

λ ] ≤ λ

∫
Γ

P [Eλ,ρrλ,x \ Eλ,δrλ,x]dx,
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which tends to zero by Lemma 5.7 and (3.1). This gives us the result for the case
with d ≥ 3.

Now consider the case with d = 2. Then r2
λ = O(λ2ε−1) by (3.12). Let T1

(respectively T2, T3, T4) be the set of points of [0, 1]2 that lie closer to the left
(respectively top, right, bottom) edge of Γ than to any of the other edges of Γ (so
T1 is the triangle with corners at (0, 0), (0, 1) and (1/2, 1/2)).

For x ∈ Γ, let L̃φλ(x,Pλ) be the event that x is the point of Cφλ(x,Pλ) lying
closest to the boundary of [0, 1]2. Let Mλ be the number of x ∈ Pλ such that
Dφλ(x,Pλ) < ρrλ and x is the point of Cφλ(x,Pλ) nearest to the boundary of Γ.
Then by the Mecke equation,

P [Eρrλ
λ ] ≤ EMλ =

4∑
i=1

ai

where we set

ai := λ

∫
Ti

P [0 < Dφλ(x,Pλ) < ρrλ; L̃φλ(x,Pλ)]dx.

We consider just a1 (the other terms are treated similarly). Let T1,1 be the part of
T1 away from the corner of Γ, defined by

T1,1 := T1 \ ([0, 2(ρ+ η−1)rλ]× ([0, 2(ρ+ η−1)rλ] ∪ [1− 2(ρ+ η−1)rλ, 1])).

Let a1,1 be the contribution to a1 from x ∈ T1,1. Using our assumption that φλ ∈ Φ0
d,η,

we have

a1,1 ≤ λ

∫
T1,1

P [0 < Dφλ(x,Pλ) < ρrλ;Lφλ(x,Pλ)]dx

= λ

∫
T1,1

P [0 < Dψλ(r−1
λ x,HH

λr2λ
) < ρ;Lψλ(r−1

λ x,HH
λr2λ

)]dx.

Now using Lemmas 5.3 and 5.4 we obtain that

a1,1 = o(1)×
∫
T1,1

λP [Dψλ(r−1
λ x,HH

λr2λ
) = 0]dx = o(1)× λ

∫
T1,1

P [Dφλ(x,Pλ) = 0]dx

which tends to zero by (3.1).
Let a1,2 be the contribution to a1 from x ∈ T1 ∩ [0, 2(ρ + η−1)rλ]

2. By Lemma
5.5,

a1,2 ≤ λ(2η−1rλ)
2 exp(−ληI(φλ)/(3K(η))) = O(λ2ε−η/(3K(η))),

where for the last estimate we used (3.12) and (3.1). Thus P [Eρrλ
λ ]→ 0.
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5.2 Large components

In this section we implement the strategy mentioned in the final paragraph of Section
2. In the sequel, given λ > 0 we couple the graphs Gφλ(Pλ ∩ A), A ⊂ Rd, in the
following natural way. For A ⊂ Rd we define Gφλ(Pλ ∩ A) to be the subgraph of
Gφλ(Pλ) induced by the vertex set Pλ ∩ A.

Given λ, let mλ := d2d/rλe. Set Λλ := {0, 1, . . . ,mλ − 1}d. For z ∈ Λλ let
Qz denote the cube {m−1

λ z} ⊕ [0, 1/mλ)
d, and let Qz denote the closure of Qz. The

cubes Qz, z ∈ Λλ, form a partition of [0, 1)d, and have side 1/mλ ∼ rλ/(2d), assuming
rλ → 0, which holds by (3.12) if pλ = Ω(λ−ε) for some ε ∈ (0, 1).

Given λ, for z ∈ Λλ let us say the cube Qz is blue if (i) Pλ ∩Qz 6= ∅ and (ii) all
vertices of Pλ ∩ B(m−1

λ z; rλ/η) lie in the same connected component of Gφλ(Pλ ∩
B(m−1

λ z; 2rλ/η)). If a cube is not blue, let us say it is green. IfQz is blue (respectively
green) we shall also say Qz, and also z itself, are blue (respectively green). More
prosaically we shall put Yλ,z = 1 if z is blue and Yλ,z = 0 if z is green.

Lemma 5.8 Suppose pλ = Ω(λ−ε) with 0 < ε < (9d)−dη/K(η). Then

sup
z∈Λλ

P [Yλ,z = 0] = O(λ−ε).

Proof. First note that card(Pλ ∩ Qz) is Poisson with mean λ/md
λ ∼ (2d)−dλrdλ ≥

(2d)−dλI(φλ)/K(η), where the inequality comes from (3.15). Hence by (3.1) the
probability that condition (i) (in the definition of blue) fails is O(λ−(3d)−d/K(η)),
uniformly over z ∈ Λλ. We need a similar bound for the probability that condition
(ii) fails.

Let ξλ be Poisson with parameter 2λ/md
λ. We claim that the Erdős-Rényi graph

G(ξλ, ηpλ) satisfies

P [G(ξλ, ηpλ) /∈ K] = O(λ−ε). (5.9)

Indeed, by the Mecke formula followed by (3.12), (3.15), and (3.1), the expected
number of isolated vertices in G(ξλ, ηpλ) is given by

O
(
λrdλ exp(−(3d)−dλrdληpλ)

)
= O(λ2ε exp(−(3d)−dηλI(φλ)/K(η)))

= O(λ2ε−(3d)−dη/K(η))

which is O(λ−ε) by the condition on ε. Thus the probability that G(ξλ, pλ) has an
isolated vertex is O(λ−ε), and by the proof of [2, Theorem 7.2] we have (5.9). Hence,
for each pair of neighbouring sites z′, z′′ ∈ Λλ, the graph Gφλ(Pλ ∩ (Qz′ ∪ Qz′′)) is
connected with probability 1−O(λ−ε). Condition (ii) holds if Gφλ(Pλ∩ (Qz′ ∪Qz′′))
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is connected for each pair of neighbouring sites z′, z′′ lying in B(z, 2mλrλ/η) ∩ Λλ,
and the number of such pairs is bounded independently of z and λ. Therefore by
the union bound, condition (ii) holds with probability 1−O(λ−ε), as claimed.

We say a set S ⊂ Λλ is ∗-connected if for any x, y ∈ S, there is a path
(x0, x1, . . . , xk) with x0 = x, xk = y and xi ∈ S and ‖xi − xi−1‖∞ = 1 for 1 ≤ i ≤ k
(so diagonal steps in the path are allowed). For bounded nonempty U ⊂ Rd, we
define the `∞-diameter of U to be supx,y∈U ‖y − x‖∞. Given λ, ρ > 0, let Hρ

λ be the
event that there is a ∗-connected set of green sites in Λλ of `∞-diameter at least ρ.

Lemma 5.9 Suppose for some ε ∈ (0, (9d)dη/K(η)) that pλ = Ω(λ−ε). Then there
exists ρ > 0 such that P [Hρ

λ]→ 0 as λ→∞.

Proof. For λ > 0, n ∈ N, let Tλ,n denote the set of ∗-connected sets γ ⊂ Λλ with
n elements. Then there exists a constant A such that for all λ and n, we have
card(Tλ,n) ≤ md

λA
n; see, e.g., [12, Lemma 9.3]. Also r−dλ = Θ(λpλ/ log λ) by (3.12),

and hence there exists λ0 ∈ (0,∞) such that for λ ≥ λ0 we have that md
λ ≤ λ so

that card(Tλ,n) ≤ λAn for all n ∈ N.
The random field (Yλ,z, z ∈ Λλ) has finite range dependency; there exists λ1 ∈

[λ0,∞) such that the range may be taken to be 11d/η, for all λ ≥ λ1. For example,
if |z−z′| ≥ 11d/η then |m−1

λ z−m−1
λ z′| ≥ 5rλ/η, and therefore Yλ,z is independent of

Yλ,z′ . Therefore there is a constant M := M(d, η) such that for any λ ≥ λ1 and any
S ⊂ Λλ, we can find S ′ ⊂ S with card(S ′) = dcard(S)/Me, such that the variables
(Yλ,z)z∈S′ are mutually independent. Hence by Lemma 5.8 there is a further constant
C such that for all such S we have

P [∩z∈S{Yλ,z = 0}] ≤ (Cλ−ε)(cardS)/M .

Let ρ ∈ N. If Hρ
λ occurs then there exists S ∈ Tλ,ρ such that Yλ,z = 0 for all

z ∈ S. Hence for ρ ∈ N and λ ≥ max(λ1, (CA
M)2/ε) we have

P [Hρ
λ] ≤ P [∪S∈Tλ,ρ ∩z∈S {Yλ,z = 0}] ≤ λAρ(Cλ−ε)ρ/M ≤ λ1−ερ/(2M).

Taking ρ > 2M/ε, we have the result.

Given disjoint nonempty connected subsets U and V of Γ, we define the exterior
boundary of U relative to V as follows. Let V ′ be the connected component of Γ \U
that contains V , and let U ′ := Γ \ V ′. Loosely speaking, U ′ is obtained from U
by filling in all the holes in U , except the one containing V . Define the exterior
boundary of U relative to V to be the intersection of the closure of U ′ with that of
V ′.
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The exterior boundary of U relative to V is a subset of the boundary of U .
Moreover it is a connected set, by a unicoherence argument (see [12]), because the
closures of U ′ and V ′ are connected sets whose union is Γ.

We claim that for 0 < a < 1, if both U and V have `∞-diameter greater than
a, then so does the exterior boundary of U relative to V . Indeed, if not, then there
exists a rectilinear cube C of side a that contains the exterior boundary of U relative
to V , but then we could pick u ∈ U \C and v ∈ V \C, and a continuous path from
u to v in Γ avoiding C. Somewhere on this path would lie a point in the exterior
boundary of U relative to V , a contradiction.

Lemma 5.10 Let λ > 0, ρ ∈ N with ρ < mλ, and suppose Hρ
λ does not occur. Then

there exists a ∗-connected component of the set of blue sites in Λλ of `∞-diameter
mλ − 1. This component is unique, and there is no other ∗-connected component of
the set of blue sites in Λλ of `∞-diameter ρ or more.

Proof. Let Bλ denote the union of all the cubes Qz, z ∈ Λλ that are blue, and
let Gλ denote the union of all the cubes Qz, z ∈ Λλ that are green. Let U be the
component of Gλ ∪ ({0} × [0, 1]d−1) that contains {0} × [0, 1]d−1, and let V be the
component of Bλ ∪ ({1}× [0, 1]d−1) that contains {1}× [0, 1]d−1. Then U and V are
disjoint connected subsets of Γ. Assuming Hρ

λ does not occur, U does not extend
to {1} × [0, 1]d−1. Hence the union of blue cubes Qz having non-empty intersection
with the exterior boundary of U relative to V is connected and has `∞-diameter 1,
and the first assertion (existence) in the statement of the lemma follows.

Suppose there were two ∗-connected components of the set of blue sites of `∞-
diameter at least ρ, denoted U and V say. Let U∗ be the union of the cubes Qz, z ∈ U
and define V ∗ similarly. Then U∗ and V ∗ are connected disjoint regions of Γ, of `∞-
diameter at least (ρ + 1)/mλ. The union of green cubes Qy having non-empty
intersection with the exterior boundary of U∗ relative to V ∗ would be a connected
region of `∞-diameter at least (ρ + 1)/mλ, and the corresponding set of sites in
Λλ would be a ∗-connected set of green sites of diameter at least ρ, contradicting
the assumed non-occurrence of event Hρ

λ. This demonstrates the second assertion
(uniqueness) in the statement of the lemma.

We shall refer to the unique ∗-connected blue component of `∞-diameter mλ−1,
identified in lemma 5.10, as the sea. All vertices of Pλ lying in cubes Qz with z in
the sea lie in the same component of Gφλ(Pλ), which we call the sea-component.

Given λ > 0, ρ > 0, define the event

F ρ
λ = {∃ x, y ∈ Pλ : min(Dφλ(x,Pλ), Dφλ(y,Pλ)) > ρ,

Cφλ(x,Pλ) 6= Cφλ(y,Pλ)}.
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Lemma 5.11 Let 0 < ε < (9d)−dη/K(η). There exists a constant ρ ∈ N, such
that if for some α > 0 we have (3.1), and also pλ = Ω(λ−ε), then P [F ρrλ

λ ] → 0 as
λ→∞.

Proof. Let ρ ∈ N. Suppose that F ρrλ
λ occurs and Hρ

λ does not. Then there exists
U ⊂ Pλ such that U is the vertex-set of a component of Gφλ(Pλ) that is disjoint from
the sea-component, but has diameter greater than ρrλ, and hence has `∞-diameter
greater than ρrλ/

√
d.

Let Ũ denote the union of closed Euclidean balls of radius rλ/(2η) centred on
the vertices of U . This is a connected subset of Rd, because ρ0(φλ) ≤ η−1rλ by (2.4),
and therefore for each pair of vertices y, y′ connected by an edge of Gφλ(Pλ) we have

|y − y′| ≤ rλ/η. Also Ũ has `∞-diameter at least ρrλ/
√
d.

We claim there is no x ∈ U and z in the sea such that |x−m−1
λ z| ≤ η−1rλ. For

if there were such a pair, then by the definition of blue, x would lie in the same
component as the vertices of Pλ in Qz, so U would be part of the sea-component, a
contradiction.

Let S be the union of cubes Qz with z in the sea. The set S is connected,
and disjoint from Ũ by the preceding claim, since the cubes have diameter at most
rλ/(2

√
d); let ∂extŨ denote the exterior boundary of Ũ relative to S. This has

`∞-diameter at least ρrλ/
√
d.

Now let ∆extŨ be the set of sites z ∈ Λλ such that the corresponding cubes Qz

have non-empty intersection with ∂extŨ . Since ∂extŨ is connected, the set ∆extŨ is
∗-connected. Also card(∆extŨ) ≥ (ρrλ/

√
d)mλ − 1 ≥ ρ.

We claim that none of the squares Qz, z ∈ ∆extŨ , is blue. This is because by
definition, each such Qz intersects with ∂extŨ , and therefore lies distant at most
rλ/(2η) from some vertex of U (at X, say). Then by the triangle inequality |X −
m−1
λ z| ≤ rλ/(2η) + rλ/(2

√
d) ≤ rλ/η, and if Qz were blue, it would contain at least

one vertex of Pλ, and this would be in the same component of Gφλ(Pλ) as all the
vertices within distance rλ/η of m−1

λ z, including X. Hence Qz would include a vertex
of U , but then it would be contained in the interior of Ũ , and so would have empty
intersection with ∂extŨ , a contradiction.

Thus ∆extŨ is a ∗-connected set of cardinality at least ρ, all of whose elements
are green. This contradicts the assumed non-occurrence of Hρ

λ. Thus F ρrλ
λ ⊂ Hρ

λ,
and the result follows from Lemma 5.9.

Proof of Theorem 5.1. Set ε = 1
2

min((9d)−dη/K(η), 2−d−3). Given ρ > 0, if
L2(Gφλ(Pλ)) > 1, then either Eρrλ

λ or F ρrλ
λ occurs. If pλ = Ω(λ−ε), the result (5.1)

follows from Proposition 5.1 and Lemma 5.11. If pλ = O(λ−ε), (5.1) follows from
Proposition 4.1.
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6 De-Poissonization

In this section we shall complete the proof of Theorems 2.1, 2.2 and 2.3. We start
with the case α ∈ (0,∞) of Theorem 2.3. All integrals in this section are over Γ
unless specified otherwise.

Proposition 6.1 Suppose α ∈ (0,∞), and (φn) satisfy (2.7) as n→∞ along some
subsequence of N, and for some η ∈ (0, 1] we have φn ∈ Φd,η for all n. Then for
k ∈ N0, (2.8) holds as n→∞ along the same subsequence.

If also φn ∈ Φ0
d,η for all n, then along the same subsequence we have

lim
n→∞

P [L2(Gφn(Xn)) ≤ 1] = 1. (6.1)

Proof. Let λ(n) = n − n3/4 and µ(n) := n + n3/4. Let Pλ(n),Xn,Pµ(n) be coupled
as follows. Let X1, X2, · · · be a sequence of independent random vectors uniformly
distributed over Γ. Independently, let Z and Z ′ be Poisson distributed random vari-
ables with parameter λ(n) and µ(n)−λ(n), respectively independently of each other
and of (X1, X2, . . .); set Pλ(n) := {X1 . . . , XZ}, and set Pµ(n) := {X1 . . . , XZ+Z′},
and Xn := {X1 . . . , Xn}. By Chebyshev’s inequality, w.h.p. Pλ(n) ⊂ Xn ⊂ Pµ(n).

Without loss of generality, assume ρη(φn) ≤
√
d. By (3.11),

exp

(
n3/4

∫
Γ

φn(y − x)dy

)
= exp(n−1/4 ×Θ(log n)) = 1 + o(1),

uniformly over x ∈ Γ, and therefore the sequence (φn)n∈N satisfies

λ(n)

∫
Γ

exp

(
−λ(n)

∫
Γ

φn(y − x)dy

)
dx→ α. (6.2)

Let An be the union of the event that at least one of the added vertices of
Pµ(n) \ Pλ(n) is not connected to any of the vertices of Pλ(n), and the event that at
least one of the added vertices of Pµ(n) \ Pλ(n) is connected to one of the isolated
vertices of Gφn(Pλ(n)).

By the Mecke equation, the expected number of added vertices that are isolated
from all the vertices of Pλ(n) equals 2n3/4

∫
exp

(
−λ(n)

∫
φn(y − x)dy

)
dx, which

tends to zero by (6.2). Also, the expected number of isolated vertices in Gφn(Pλ(n))
which are connected to at least one of the added vertices is bounded by

(n− n3/4)

∫
Γ

exp

(
−(n− n3/4)

∫
Γ

φn(y − x)dy

)
× 2n3/4I(φn)dx,
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and by (6.2) and (3.11) this tends to zero. Hence P [An] = o(1). By Theorem 3.1
we have that

P [N0(Gφn(Pλ(n))) = k]→ e−ααk/k!, k ∈ N0.

Also P [N0(Gφn(Xn)) 6= N0(Gφn(Pλ(n)))] ≤ P [An] + P [{Z ≤ n ≤ Z + Z ′}c], which
tends to 0, and (2.8) follows.

Now suppose φn ∈ Φ0
d,η for all n. If L2(Gφn(Xn)) > 1, then either Z > n, or

Z + Z ′ < n, or L2(Gφn(Pλ(n))) > 1, or An occurs. By Theorem 5.1, all of these
events have vanishing probability, and (6.1) follows.

Next we consider the case with α ∈ {0,∞}.

Proposition 6.2 Suppose α ∈ {0,∞}, η ∈ (0, 1], and (φn) satisfy (2.7) as n→∞
along some subsequence of N, and φn ∈ Φd,η for all n. If α = 0 then P [N0(Gφn(Xn)) =
0] → 1, and if α = ∞ then for all k ∈ N0, P [N0(Gφn(Xn)) = k] → 0, as n → ∞
along the same subsequence.

Proof. (i) Let In(φn) denote the left hand side of (2.7). Then

EN0(Gφn(Xn)) = n

∫
dx

(
1−

∫
φn(y − x)dy

)n−1

≤ n

∫
dx

(
exp

(
−(n− 1)

∫
φn(y − x)dy

))
≤ eIn(φn).

Therefore, by Markov’s inequality, if α = 0 we have P [N0(Gφn(Xn)) ≥ 1]→ 0.
Now suppose α = ∞. We seek to interpolate a ‘larger’ connection function

than φn that is still in Φd,η. For s > 1 and φ ∈ Φd,η, define φ(s) as follows. Let
s0(φ) = 1/µ(φ). For 1 ≤ s ≤ s0(φ), set φ(s)(x) := sφ(x), for x ∈ Rd. Note
µ(φ(s0(φ))) = 1. For s ≥ s0(φ), define

φ(s)(x) :=

{
1 if |x| < s− s0(φ)

φs0(x) if |x| ≥ s− s0(φ).

Let s1(φ) :=
√
d + s0(φ). If φ ∈ Φd,η then for each s ∈ [1, s1(φ)] the connection

function φ(s) is also in Φd,η.
For each n ∈ N define the function

f̃n(s) := n

∫
exp

(
−n
∫
φ(s)
n (y − x)dy

)
dx

which is continuous and nonincreasing on 1 ≤ s ≤ s1(φn). By assumption f̃n(1) →
∞ as n → ∞, while f̃n(s1(φn)) = ne−n. Therefore by the intermediate value
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theorem, given any finite β > 0, for large enough n we can pick s(n) ∈ [1, s1(φn)]
with f̃n(s(n)) = β. Then by Proposition 6.1, for k ∈ N0 we have

P [N0(G
φ
(s(n))
n

(Xn)) ≤ k]→ e−β
k∑
j=0

βj/j!.

By an obvious coupling, P [N0(G
φ
(s)
n

(Xn)) ≤ k] is nondecreasing in s, and therefore

since β > 0 is arbitrary, we have P [N0(Gφn(Xn)) ≤ k]→ 0.

Proof of Theorem 2.2. Let η ∈ (0, 1]. To prove (2.5), it suffices to prove that for
any sequence (φn)n∈N of connection functions in Φ0

d,η, we have

lim
n→∞

P [{N0(Gφn(Xn)) = 0} \ {Gφn(Xn) ∈ K}] = 0. (6.3)

Define In := In(φn) := n
∫

exp
(
−
∫
φn(y − x)dy

)
dx. Consider the three cases where

(i) In tends to a finite limit as n → ∞ along some infinite subsequence of N; (ii)
In → ∞ as n → ∞ along some infinite subsequence of N; (iii) In → 0 as n → ∞
along some infinite subsequence of N. At least one of cases (i), (ii) , (iii) holds and
it suffices to show that in each case (6.3) holds along the same subsequence.

In case (i), we have (6.3) at once because of (6.1). In case (ii), with In →∞, by
Proposition 6.2 we have P [N0(Gφn(Xn)) = 0]→ 0, and hence (6.3) holds.

Consider case (iii) with In → 0 along a subsequence. For n ∈ N, define

fn(a) := n

∫
exp

(
−an

∫
φn(y − x)dy

)
dx,

which is a continuous and nonincreasing function on 0 ≤ a ≤ 1. For each a ∈ [0, 1]
the connection function aφn is in Φd,η.

By assumption fn(1) → 0 as n → ∞, while fn(0) = n. Therefore given ε > 0,
by the intermediate value theorem, for all large enough n in the subsequence we can
choose an ∈ [0, 1] such that fn(an) = ε. Then by Proposition 6.1 we have

P [N0(Ganφn(Xn)) = 0]→ e−ε; P [Ganφn(Xn) ∈ K]→ e−ε.

By an obvious coupling, P [Gaφn(Xn) ∈ K] is nondecreasing in a, and therefore since
ε is arbitrary we have P [Gφn(Xn) ∈ K]→ 1, so (6.3) holds.

Proof of Theorem 2.3. Eqn (2.8) follows from Proposition 6.1, and the next sen-
tence follows from Proposition 6.2. Then (2.9) follows from Theorem 2.2.

Proof of Theorem 2.1. The result follows from Theorem 2.3.
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7 Equivalence of thresholds

In this section we prove Theorem 2.4, i.e. we prove that for any [0, 1]-valued sequence
(pn)n∈N with pn = ω((log n)/n), we have

lim
n→∞

P [τn(pn) = σn(pn)] = 1,

where for p ∈ [0, 1], as described in Section 2 we set

τn(p) := inf{r : Gr,p(Xn) ∈ K}; σn(p) := inf{r : N0(Gr,p(Xn)) = 0}.

Clearly σn(pn) ≤ τn(pn), so we need to show that P [σn(pn) < τn(pn)] tends
to zero. Given pn and given α > 0, define rn(α) by In(φrn(α),pn) = e−α, where
In(φ) := n

∫
Γ

exp(−n
∫

Γ
φ(y − x)dy)dx. For each α we have from (2.5) that

P [σn(pn) ≤ rn(α) < τn(pn)]→ 0. (7.1)

Note that rn(α) is nondecreasing in α. Let α < β. Suppose

rn(α) < σn(pn) < τn(pn) ≤ rn(β).

Assume the inter-point distances are all distinct. Consider adding the edges of
G√d,p(Xn) one by one (starting from the graph with no edges) in order of increasing
Euclidean length.

Then precisely one pair of points of Xn, say X and Y , satisfies |X−Y | = τn(pn),
and by definition of τn(pn), X and Y lie in different components just before adding
the edge between them, so lie in different components of Grn(α),pn(Xn). Assuming
L2(Grn(α),pn(Xn)) ≤ 1 (which has high probability by (6.1)), either X or Y (say X)
is isolated in Grn(α),pn(Xn). But X is non-isolated in Gσn(pn),pn(Xn) by definition of
σn(pn). Therefore since we are assuming τn(pn) ≤ rn(β) we have that X is connected
to at least two points of Xn at distance between rn(α) and rn(β). Thus Nα,β(n) > 0,
where Nα,β(n) denotes the number of vertices of Xn having no incident edge in
G√d,pn(Xn) of (Euclidean) length at most rn(α) but at least two incident edges of
length at most rn(β).

Let λ(n) and µ(n), and the coupling of Pλ(n),Xn, and Pµ(n) be as in the preceding
section. Let N ′α,β(n) be the number of vertices of Pµ(n) having no incident edge (in
G√d,pn(Pµ(n))) of length at most rn(α) with the other endpoint in Pλ(n) but at least
two incident edges of length at most rn(β) (with the other endpoint in Pµ(n)). If
Pλ(n) ⊂ Xn ⊂ Pµ(n) (which happens with high probability), then N ′α,β(n) ≥ Nα,β(n).
Thus

lim sup
n→∞

P [rn(α) < σn(pn) < τn(pn) ≤ rn(β)] ≤ lim sup
n→∞

P [N ′α,β(n) > 0]. (7.2)
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With | · | denoting Lebesgue measure, by the Mecke formula we have

E [N ′α,β] = (n+ n3/4)

∫
Γ

e−λ(n)pn|B(x;rn(α))∩Γ| × (1− e−wn(x)(1 + wn(x))), dx,

where wn(x) denotes the mean number of edges of length in the range (rn(α), rn(β)]
incident to a point at x. Now, ew − 1− w ≤ w2ew for any w ≥ 0. Hence

E [N ′α,β] ≤ (n+ n3/4)

∫
e−λ(n)pn|B(x;rn(α))∩Γ| × wn(x)2dx. (7.3)

By (3.12) and the condition pn = ω((log n)/n), we have rn(β) → 0. Writing Vα(x)
for |B(x; rn(α)) ∩ Γ| we have

e−α = lim
n→∞

(
n

∫
Γ

exp(−npnVβ(x) + npn(Vβ(x)− Vα(x))dx

)
≥ lim sup

n→∞

(
n

∫
Γ

exp(−npnVβ(x) + npnπd(rn(β)d − rn(α)d)/2d)dx

)
= e−β exp(lim sup

n→∞
[npnπd(rn(β)d − rn(α)d)/2d])

so that

lim sup
n→∞

npn(rn(β)d − rn(α)d) ≤ 2d(β − α)/πd.

Therefore, since
wn(x) ≤ µ(n)pnπd(rn(β)d − rn(α)d),

we have lim supn→∞ supx∈Γwn(x) ≤ 2d(β − α), so that by (7.3) and a similar argu-
ment to (6.2), lim supn→∞ E [N ′α,β] ≤ 22d(β − α)2e−α, so that by (7.2),

lim sup
λ→∞

P [rn(α) < σn(pn) < τn(pn) ≤ rn(β)] ≤ 22d(β − α)2e−α. (7.4)

Now we argue as in [15, pages 163-4] or [12, pages 304-5]. Let ε > 0. Choose
α0 < α1 < · · · < αI such that exp(−e−α0) < ε, and 1− exp(−e−αI ) < ε, and also

22d

I∑
i=1

(rn(αi)− rn(αi−1))2e−αi−1 < ε.

Then by the union bound,

P [σn < τn] ≤ P [σn ≤ rn(α0)] + P [σn > rn(αI)]

+
I∑
i=1

(P [σn ≤ rn(αi) < τn] + P [rn(αi−1) < σn < τn ≤ rn(αi)]).

Since σn ≤ r if and only if N0(G(Xn, r)) = 0, it follows from (2.8) of Theorem 2.3,
along with (7.1) and (7.4), that lim supn→∞ P [σn < τn] ≤ 3ε, and since ε > 0 is
arbitrary this completes the proof.
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8 The choice of φ

In this section, we prove Theorem 2.5 (among other things). That is, we identify
conditions for a sequence of connection functions φn to satisfy (2.7) for some α ∈
(0,∞). We consider only the case with d = 2 and φn ∈ Φ2,η ∩Ψ2 for some η ∈ (0, 1],
where Ψ2 is defined by (2.1).

Assume d = 2. Fix η > 0 and choose φn ∈ Φ2,η ∩Ψ2 for each n > 0. Set

rn := ρη(φn); pn := µ(φn); an := nr2
npn.

Since we assume d = 2, it follows from the definitions (2.10) and (2.12) that

nI(φn) = anJ2(φn), n ∈ N. (8.1)

In this section we assume rn = n−Ω(1), so in particular rn = o(1).
Set N0(n) := N0(Gφn(Pn)). By the Mecke formula, EN0(Gφn(Pn)) = In(φn),

where we set In(φ) := n
∫

Γ
exp

(
−n
∫

Γ
φ(y − x)dy

)
dx, so In(φn) is the left hand side

of (2.7).
Given ε > 0, truncate φn by setting φ̃n(x) := φn(x)1[0,r1−εn ](|x|) for x ∈ R2. Cou-

ple Gφn(Pn) and Gφ̃n
(Pn) as in the proof of Lemma 3.3. Let Ñ0(n) := N0(Gφ̃n

(Pn)).

Let N int
0 := N int

0 (n) denote the number of isolated vertices of Gφ̃n
(Pn) lying in

[r1−ε
n , 1 − r1−ε

n ]2. Let N side
0 := N side

0 (n) denote the number of isolated vertices
of Gφ̃n

(Pn) lying within Euclidean distance r1−ε
n of precisely one edge of Γ. Let

N cor
0 := N cor

0 (n) denote the number of isolated vertices of Gφ̃n
(Pn) lying within `∞

distance r1−ε
n of one of the corners of of Γ. Then Ñ0(n) = N int

0 +N side
0 +N cor

0 (with
probability 1), so

In(φ̃n) = EN int
0 + EN side

0 + EN cor
0 .

Also, if rn = n−Ω(1) then

0 ≤ E Ñ0(n)− EN0(n) ≤ n2φn(r1−ε
n ) ≤ 3n2 exp(−ηr−εηn )→ 0, (8.2)

and

n(I(φn)− I(φ̃n)) = nr2
n

∫
{x:|x|≥r−εn }

φn(rnx)dx

≤ 3nr2
n

∫
{x:|x|>r−εn }

η−1 exp(−η|x|)dx→ 0. (8.3)

As with (3.12), a necessary condition for (2.7) is that

npnr
2
n = Θ(log n). (8.4)

Recall from (2.11) that J1(φn) := J1(φn, η) := p−1
n

∫∞
0
φn((rnt, 0))dt.
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Lemma 8.1 Suppose (8.4) holds, and rn = n−Ω(1) as n→∞. Then provided ε > 0
is chosen sufficiently small (but fixed), as n→∞ we have

EN side
0 ∼ 2

J1(φn)

(
n

anpn

)1/2

e−nI(φn)/2 (8.5)

and

EN cor
0 ∼ 4e−nI(φn)/4

anpnJ1(φn)2
. (8.6)

Proof. For u > 0, let

fn(u) := p−1
n

∫
[0,∞)×[0,u]

φ̃n(rnx)dx.

Then we claim that for θn = an or θn = 2an,∫ r−εn

0

exp(−θnfn(u))du ∼ 1/(θnJ1(φn)) as n→∞. (8.7)

To see this, note first that J1(φ̃n) ∼ J1(φn) as n→∞, by (2.13). Also, since φ̃n(x)
is nonincreasing in |x| (because φn ∈ Φ2,η ∩Ψ2) we have

fn(u) ≤ uJ1(φ̃n), (8.8)

so that using (2.13) we have∫ r−εn

0

exp(−θnfn(u))du ≥
∫ r−εn

0

exp(−θnuJ1(φ̃n))du

= (θnJ1(φ̃n))−1

∫ θnJ1(φ̃n)r−εn

0

e−tdt ∼ (θnJ1(φ̃n))−1. (8.9)

Also given δ > 0, for (s, t) ∈ [0,∞)× (0, δrn) we have φn((s, t)) ≥ φn((s + δrn, 0)),
and hence∫ δ

0

exp(−θnfn(u))du ≤
∫ δ

0

exp

(
−θnup−1

n

∫ ∞
0

φ̃n((rn(s+ δ), 0))ds

)
du

≤
∫ δ

0

exp(−θnu(J1(φ̃n)− δ))du ∼ (θn(J1(φ̃n)− δ))−1, (8.10)

and provided δ ≤ 1/2 we also have for u ≥ δ that

fn(u) ≥ fn(δ) ≥ p−1
n

∫
[0,1/2]×[0,δ]

φn(rnx)dx ≥ δη/2, (8.11)
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so that ∫ 1

δ

exp(−θnfn(u))du ≤ exp(−δηθn/2) = o(θ−1
n ). (8.12)

For u ≥ 1 we have fn(u) ≥ fn(1/2) ≥ η/4, and for n large enough r−2
n ≤ n by (8.4),

so ∫ r−εn

1

e−θnfn(u)du ≤ r−εn exp(−ηθn/4) ≤ nε/2 exp(−ηθn/4).

Provided ε is small enough, using (8.4) again we have that the last expression is less
than exp(−ηθn/8) which is o(θ−1

n ). Combining this with (8.9), (8.10) and (8.12) and
using the fact that δ can be arbitrarily small, gives us (8.7).

Since φ̃n has range r1−ε
n we have

EN side
0 = (4 + o(1))n exp(−nI(φ̃n)/2)

∫ r−εn

0

exp(−2nr2
npnfn(u))rndu.

By (8.3) and (8.7) we obtain

EN side
0 ∼ 4nrne

−nI(φn)/2

2J1(φn)nr2
npn

=
2

J1(φn)

(
n

anpn

)1/2

e−nI(φn)/2.

Now consider EN cor
0 . For u, v > 0, set

gn(u, v) := p−1
n

∫
[0,u]×[0,v]

φ̃n(rn(x− (u, v)))dx

Then since φ̃n has range r1−ε
n ,

EN cor
0 = (1 + o(1))4r2

nne
−nI(φ̃n)/4Ĩn (8.13)

with

Ĩn :=

∫ r−εn

0

∫ r−εn

0

exp(−npnr2
n[fn(u) + fn(v) + gn(u, v)])dudv.

For u, v ≥ 0 we have 0 ≤ gn(u, v) ≤ uv. Hence by (8.8) we have

Ĩn ≥
∫ r−εn

0

∫ r−εn

0

exp(−an(uJ1(φ̃n) + vJ1(φ̃n) + uv))dudv

∼
∫ r−εn

0

(
e−anvJ1(φ̃n)

an(J1(φ̃n) + v)

)
dv ∼ (anJ1(φ̃n))−2.
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On the other hand, given δ ∈ (0, η), similarly to (8.10) the contribution to Ĩn from
max(u, v) ≤ δ is bounded above by∫ δ

0

∫ δ

0

exp(−an[u(J1(φn)− δ) + v(J1(φn)− δ)])dudv ∼ (an(J1(φn)− δ))−2

while by (8.11) the contribution to Ĩn from 1 ≥ max(u, v) > δ is bounded above by
exp(−anηδ/2), which is o(a−2

n ) by (8.4), and the contribution to Ĩn from max(u, v) >
1 is bounded above by exp(−anη/4)r−2ε

n , and hence (using (8.4)), by nε exp(−anη/4),
which is o(a−2

n ) provided ε is taken sufficiently small. Therefore we have Ĩn ∼
(anJ1(φn))−2. Then by (8.13) we get (8.6).

Lemma 8.2 Fix ε ∈ (0, 1). Suppose rn = n−Ω(1). Then EN int
0 ∼ ne−nI(φn) as

n→∞.

Proof. The result follows from (8.3).

Proposition 8.1 Suppose d = 2. Let α ∈ (0,∞). Suppose for some η ∈ (0, 1] that
φn ∈ Φ2,η ∩Ψ2 for all n, and pn = ω(1/ log n) as n→∞. Then (2.7) holds if

nI(φn)− log n→ − logα. (8.14)

Proof. Assume (8.14) holds, which implies a fortiori that (8.4) also holds, so in
particular r2

n = O((log n)2/n). Then by Lemma 8.2 and (8.14) we have EN int
0 → α.

Using (8.4), (8.14), and Lemma 8.1, we obtain (for a sufficiently small choice of
ε) that EN side

0 = O((pn log n)−1/2), which tends to zero by the assumption on pn.
Similarly, by (8.6) and (8.14), EN cor

0 = O(n−1/4/(pn log n)) = o(1). Applying (8.2)
completes the proof.

When pn = O(1/ log n), boundary effects become important in the asymptotics
for the mean number of isolated points.

Proposition 8.2 Suppose d = 2 and for some η ∈ (0, 1] we have φn ∈ Φ2,η ∩ Ψ2

for all n. Suppose pn = o(1/ log n) and also pn = ω((log n)−1n−1/3), as n→∞. Fix
α ∈ (0,∞), and assume

nI(φn) = log

(
4J2(φn)

α2J1(φn)2

)
+ log

(
n

pn

)
− log log

(
n

pn

)
+ o(1). (8.15)

Then (2.7) holds.
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Proof. Under the assumptions given, using Lemma 8.2 we have

EN int
0 = (1 + o(1))ne−nI(φn) = O

(
pn log

(
n

pn

))
→ 0. (8.16)

Also by (8.5), (8.15), and (8.1), we have

EN side
0 ∼ α

(
n

J2(φn)anpn

)1/2 (pn
n

)1/2

(log(n/pn))1/2 → α. (8.17)

Using (8.5) again along with (2.13), we obtain that e−nI(φn)/4 = Θ((anpn/n)1/4)

so that (8.6) yields EN cor
0 = O(((anpn)3n)

−1/4
), and by (8.4) (which follows from

(8.15)) and the assumption pn = ω(n−1/3(log n)−1), this shows EN cor
0 → 0. Com-

bined with (8.16) and (8.17), and (8.2), this gives us the result.

Consider the intermediate case with pn = Θ(1/ log n).

Theorem 8.1 Let α ∈ (0,∞), η ∈ (0, 1]. Suppose that φn ∈ Φ2,η ∩Ψ2 for all n, and
pn = Θ(1/ log n), and nI(φn) = log n−2 log γn+o(1), where γn denotes the solution
in (0,∞) to

γ2
n + 2γn(J2(φn)1/2/J1(φn))(pn log n)−1/2 = α. (8.18)

Then (2.7) holds.

Proof. By (2.13) and the assumption on pn, lim supn→∞(γn) <∞ and lim infn→∞(γn) >
0. By Lemma 8.2,

EN int
0 = (1 + o(1))ne−nI(φn) = (1 + o(1))γ2

n,

while by (8.5) and (8.1),

EN side
0 ∼ 2

J1(φn)

(
n

anpn

)1/2

γnn
−1/2 ∼ 2J2(φn)1/2γn

J1(φn)(pn log n)1/2
.

Also by (8.6), EN cor
0 = O(n−1/4/(pn log n)) = o(1). Combining these results and

using (8.18) and (8.2) gives us (2.7).

In the case pn = o((log n)−1n−1/3) the main contribution to EN0 comes from
near the corners of Γ.

Proposition 8.3 Suppose d = 2. Let α ∈ (0,∞), η ∈ (0, 1] and suppose (φn)n>0

are such that φn ∈ Φ2,η ∩Ψ2 for all n and pn = o((log n)−1n−1/3) and

nI(φn) = 4(log(1/pn)− log log(1/pn) + log(J2(φn)/(αJ1(φn)2))) + o(1) (8.19)

as n→∞. Assume also that rn = n−Ω(1). Then (2.7) holds.

42



Proof. Note that pn = Ω((log n)/n) since otherwise (8.19) cannot be satisfied by
bounded rn. Then log(1/pn) = Θ(log n) and (8.4) holds. By (8.6) and (8.1),

EN cor
0 ∼ 4pn log(1/pn)αJ1(φn)2/J2(φn)

J1(φn)2anpn
→ α. (8.20)

Also e−nI(φn)/4 = Θ(pn log(1/pn)) = Θ(pn log n). Therefore by (8.5) and (8.4), we
obtain that EN side

0 = O
(
n1/2(pn log n)3/2

)
, which tends to zero since we assume

pn = o(n−1/3(log n)−1).
Finally, since pn = Ω((log n)/n), using Lemma 8.2 and (8.19) we have

EN int
0 = O(ne−nI(φn)) = O(np4

n(log 1/pn)4) = O(n−2),

so EN int
0 → 0, and (3.1) then follows by (8.2).

Proof of Theorem 2.5. Immediate from Propositions 8.1, 8.2 and 8.3.

Our final result deals with the intermediate case with rn = Θ(n−1/3 log n)−1).

Theorem 8.2 Let α ∈ (0,∞), and suppose (φn)n>0 are such that pn = Θ(n−1/3(log n)−1)
and

nI(φn) = 4(log(1/pn)− log log(1/pn) + log(J2(φn)/(βnJ1(φn)2))) + o(1) (8.21)

as n→∞, with βn denoting the solution in (0,∞) to

(3J2(φn))−3/2J1(φn)3(n1/3pn log n)3/2β2
n + βn = α. (8.22)

Then (2.7) holds.

Proof. Note that (8.21) is the same as (8.19) but with α replaced by βn. As with
(8.20) we have EN cor

0 = βn + o(1). Then by (8.5) and (8.21) we have

EN side
0 ∼ (2/J1(φn))(n/an)1/2p3/2

n (log 1/pn)2β2
nJ1(φn)4J2(φn)−2.

By (8.1) and (8.21), an = nI(φn)/J2(φn) ∼ (4/J2(φn)) log(1/pn), and our assump-
tion on pn implies log 1/pn ∼ (1/3) log n, so that

EN side
0 ∼ β2

nJ1(φn)3J2(φn)−3/2n1/2p3/2
n ((log n)/3)3/2.

Hence by (8.22), E [N side
0 +N cor

0 ]→ α. Also by Lemma 8.2, EN int
0 = O(ne−nI(φn)) =

O(np4
n(log 1/pn)4) which tends to zero, and (2.7) follows by (8.2).
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