Citation for published version:
Fraenkel, LE \& Preston, MD 2015, 'On A Singular Initial-Value Problem For The Navier-Stokes Equations', Mathematika, vol. 61, no. 2, pp. 277-294. https://doi.org/10.1112/S0025579314000333

DOI:

10.1112/S0025579314000333

Publication date:
2015

Document Version
Peer reviewed version

Link to publication

University of Bath

[^0]
On a singular initial-value problem for the Navier-Stokes equations

L. E. Fraenkel and M. D. Preston

This paper presents a recent result for the problem introduced eleven years ago in [1], but described only briefly there. We shall prove the following, as far as space allows. The vorticity ω of a diffusing vortex circle in a viscous fluid has, for small values of a non-dimensional time, a second approximation $\omega_{A}+\omega_{1}$ that, although formulated for a fixed, finite Reynolds number λ and exact for $\lambda=0$ (then $\omega=\omega_{A}$), tends to a smooth limiting function as $\lambda \uparrow \infty$.

In $\S 1$ and $\S 2$ the necessary background and apparatus are described; $\S 3$ outlines the new result and its proof.

1 Introduction

In a certain weak sense, this paper is a continuation of [1]. However, no knowledge of [1] is required if the reader is willing to accept that a vorticity field in \mathbb{R}^{3} (subject to mild restrictions, but not required to have any symmetry) has a centroid of vorticity moving with a velocity $\mathbf{U}(t)$ that is given by an explicit formula when the vorticity $\boldsymbol{\omega}(\cdot, t)$ throughout \mathbb{R}^{3} is known. This result is essentially due to Saffman [2]; it was generalized a little (and perhaps clarified and sharpened) in [1].

We seek a solution of the Navier-Stokes equations with the initial condition illustrated in Figure 1: at time zero, vorticity $\boldsymbol{\omega}$ is concentrated on, and is tangential to, a horizontal circle in \mathbb{R}^{3}. This initial vorticity induces an initial velocity field that has infinite kinetic energy. (The circle then diffuses and moves vertically, at first with infinite velocity; at all positive times $t>0$ the kinetic energy is finite.)

More precisely, consider incompressible fluid occupying all of \mathbb{R}^{3} and at rest at infinity there; let $x:=\left(x_{1}, x_{2}, x_{3}\right)$ be such that the frame $\left(O x_{1}, O x_{2}, O x_{3}\right)$ moves, relative to the motionless fluid at infinity, with the velocity $(0,0, U(t))$ of the centroid of vorticity, the axes remaining parallel to their initial positions. The fluid velocity relative to this moving frame is written $\mathbf{v}(x, t)$ and the vorticity is

$$
\boldsymbol{\omega}:=\operatorname{curl} \mathbf{v}=\nabla \times \mathbf{v}
$$

Our time variable is $t=\nu T$, where T denotes physical time and ν is the kinematic viscosity (a given positive constant). This choice of t simplifies the heat operator in (1.3) below and simplifies most subsequent equations.

In writing $\mathbf{U}(t)=(0,0, U(t))$, we have restricted attention to the cylindrical symmetry implied by the initial condition

$$
\begin{equation*}
\boldsymbol{\omega}(x, 0)=\kappa \delta(z) \delta(r-a) \mathbf{e}^{\phi}, \tag{1.1}
\end{equation*}
$$

Figure 1: The initial condition.
in which the circulation κ and the radius a are given positive constants, cylindrical co-ordinates (z, r, ϕ) are defined by $x=:(r \cos \phi, r \sin \phi, z)$, the unit vector $\mathbf{e}^{\phi}:=(-\sin \phi, \cos \phi, 0)$ and δ denotes the Dirac generalized function.

In terms of the vorticity $\boldsymbol{\omega}$, the fluid velocity (relative to our moving frame) is

$$
\begin{equation*}
\mathbf{v}(x, t)=-(0,0, U(t))+\nabla \times \int_{\mathbb{R}^{3}} \frac{1}{4 \pi\left|x-x^{\prime}\right|} \boldsymbol{\omega}\left(x^{\prime}, t\right) \mathrm{d} x^{\prime} . \tag{1.2}
\end{equation*}
$$

With (1.1) and (1.2) understood, we seek $\boldsymbol{\omega}(x, t)$ such that

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\Delta\right) \boldsymbol{\omega}=-\frac{1}{\nu}((\mathbf{v} \cdot \nabla) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \nabla) \mathbf{v}) \quad \text { in } \quad \mathbb{R}^{3} \times(0, \bar{t}) \tag{1.3}
\end{equation*}
$$

for some small $\bar{t}>0$.
Of course, it would be better to solve the problem (1.1) to (1.3) for all $t>0$, but this is beyond us because we seek rather explicit answers. There are two excuses for considering only small t, or, rather, small t / a^{2}, which is nondimensional. First, once a solution for $t>0$ has been established, the general theory of the Navier-Stokes equations implies a continuation of the solution to all time, thanks to finite energy for $t>0$, cylindrical symmetry and absence of a swirl velocity (of a velocity component in the direction \mathbf{e}^{ϕ}). Secondly, if the viscosity ν is small, which may be the case of primary interest, then the requirement that $\nu T / a^{2}$ be small does not demand that the physical time T be small.

In view of (1.1), we write

$$
\boldsymbol{\omega}(x, t)=: \omega(z, r, t) \mathbf{e}^{\phi}
$$

and seek the solution of (1.1) to (1.3) in the scalar form $\omega=\omega_{A}+\omega_{1}+\rho$, where ω_{A} is to be a first approximation for small t / a^{2} and $\omega_{A}+\omega_{1}$ is to be a second (improved) approximation; the remainder ρ is to make $\omega_{A}+\omega_{1}+\rho$ an exact solution and is to be $o\left(\omega_{1}\right)$ as $t \downarrow 0$. Here are some details.
(i) The non-linear terms on the right-hand side of (1.3) are expected to be small for small t / a^{2}, because $\boldsymbol{\omega}$ should be approximately constant and large on small circles in a meridional plane ($\phi=$ constant) centred at $(z, r)=(0, a)$, so that \mathbf{v} is approximately tangential to such circles and approximately of constant magnitude on each of them. (If the initial vortex circle were a straight line, then these non-linear terms would vanish.) If the right-hand member of (1.3) is neglected, there results the formal approximation

$$
\begin{equation*}
\omega_{A}(z, r, t)=\frac{\kappa}{4 \pi t} \exp \left(-\frac{s^{2}}{4 t}\right)\left(\frac{a}{r}\right)^{1 / 2} B\left(\frac{a r}{2 t}\right), \tag{1.4}
\end{equation*}
$$

where $s:=\left\{z^{2}+(r-a)^{2}\right\}^{1 / 2}$ and B is a known function such that $B(y) \rightarrow 1$ as $y \rightarrow \infty$; in fact,

$$
\begin{equation*}
B(y):=(2 \pi y)^{1 / 2} \mathrm{e}^{-y} I_{1}(y) \quad(0 \leq y<\infty) \tag{1.5}
\end{equation*}
$$

where I_{1} is the modified Bessel function of the first kind and of order 1 (as in [3], p.77).
(ii) The exponential in (1.4) prompts us to introduce inner variables

$$
\begin{equation*}
\sigma:=\frac{s}{(4 t)^{1 / 2}}, \quad \theta:=\tan ^{-1} \frac{r-a}{z} ; \tag{1.6}
\end{equation*}
$$

then the amplitude $\kappa / 4 \pi t$ in (1.4) prompts us to pose

$$
\begin{equation*}
\omega_{1}(z, r, t)=(4 t)^{-1 / 2} \tilde{\omega}_{1}(\sigma, \theta) \tag{1.7}
\end{equation*}
$$

It suffices to consider ω_{1} in an inner region: $t \downarrow 0$ with σ fixed, so that $s \downarrow 0$, because in an outer region: $t \downarrow 0$ with $s \geq$ constant >0, not only ω_{A}, but also ω, are exponentially small.

The rest of this paper is devoted mainly to description of $\tilde{\omega}_{1}$; the Reynolds number

$$
\begin{equation*}
\lambda:=\frac{\kappa}{2 \pi \nu} \tag{1.8}
\end{equation*}
$$

will be an important parameter.
(iii) The problem for the remainder ρ was sketched in [1]; the function $\rho(z, r, t)$ must be shown to exist and to be suitably small on the whole set $\mathbb{R} \times[0, \infty) \times(0, \bar{t}]$. Considerable progress has been made with this problem since [1] was written, but this analysis (which can only estimate ρ) is too long and too elaborate to be described here.

2 The perturbation ω_{1} for fixed Reynolds number λ

With ω_{1} as in (1.7), we adopt the notation
(a) $(\sigma, \theta) \in E:=(0, \infty) \times(-\pi, \pi]$,
(b) $\Delta_{\sigma}:=\left(\frac{\partial}{\partial \sigma}\right)^{2}+\frac{1}{\sigma} \frac{\partial}{\partial \sigma}+\frac{1}{\sigma^{2}}\left(\frac{\partial}{\partial \theta}\right)^{2}$,
(c) $\left(A \tilde{\omega}_{1}\right)\left(\sigma_{0}, \theta_{0}\right):=\frac{1}{2 \pi} \iint_{E} \log \frac{1}{\left|\sigma \mathrm{e}^{i \theta}-\sigma_{0} \mathrm{e}^{i \theta_{0}}\right|} \tilde{\omega}_{1}(\sigma, \theta) \sigma \mathrm{d} \sigma \mathrm{d} \theta$,
(d) $\omega_{A, 0}(\sigma, t):=\frac{\kappa}{4 \pi t} \mathrm{e}^{-\sigma^{2}}$,
in which $A \tilde{\omega}_{1}$ is a stream function describing the plane flow induced by vorticity $\tilde{\omega}_{1}$; the approximation $\omega_{A, 0}$ to ω_{A} is that appropriate to $t \downarrow 0$ with σ fixed. We seek $\tilde{\omega}_{1}(\sigma, \theta)$ by linearizing (1.2) and (1.3) about $\omega_{A, 0}$; the problem is then to solve the equation

$$
\begin{align*}
-\left(\Delta_{\sigma}+2 \sigma \frac{\partial}{\partial \sigma}+2\right) \tilde{\omega}_{1}+\lambda \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} \frac{\partial}{\partial \theta} \tilde{\omega}_{1} & -4 \lambda \mathrm{e}^{-\sigma^{2}} \frac{\partial}{\partial \theta}\left(A \tilde{\omega}_{1}\right) \tag{2.2}\\
& =\frac{\kappa \lambda}{\pi a} g(\sigma) \cos \theta \text { on } E
\end{align*}
$$

with side conditions

$$
\begin{equation*}
\tilde{\omega}_{1}(\sigma, \theta) \rightarrow 0 \quad \text { as } \sigma \downarrow 0 \text { and as } \sigma \uparrow \infty . \tag{2.3}
\end{equation*}
$$

The function g is a known, smooth function such that
(a) $g(\sigma)=O(\sigma)$ as $\sigma \downarrow 0$;
(b) $g(\sigma)=O\left(\sigma \log \sigma \mathrm{e}^{-\sigma^{2}}\right)$ as $\sigma \uparrow \infty$;
in fact,
(c) $g(\sigma):=\sigma \mathrm{e}^{-\sigma^{2}}\left(\frac{3}{2} \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}}+\left(\log \frac{1}{\sigma}-\int_{\sigma}^{\infty} \frac{\mathrm{e}^{-\rho^{2}}}{\rho} \mathrm{~d} \rho\right)-\frac{1}{2}\left(\gamma_{E}+1-\log 2\right)\right)$,
where $\gamma_{E}=0.5772 \ldots$ denotes Euler's constant.
Theorem 2.1. For fixed $\lambda \in[0, \infty)$, the problem (2.2) and (2.3) for $\tilde{\omega}_{1}$ has a pointwise, unique solution; in particular, $\tilde{\omega}_{1}(\cdot, \theta) \in C^{\infty}[0, \infty), \tilde{\omega}_{1}(0, \theta)=0$ and $\tilde{\omega}_{1}(\sigma, \theta)=o\left(\mathrm{e}^{-\sigma^{2} / 2}\right)$ as $\sigma \uparrow \infty$.

Here we have space only to sketch the main steps of the proof.
(i) Under the transformation

$$
\begin{equation*}
\tilde{\omega}_{1}(\sigma, \theta)=\mathrm{e}^{-\sigma^{2} / 2} q(\sigma, \theta), \tag{2.5}
\end{equation*}
$$

equation (2.2) becomes

$$
\begin{align*}
&-\left(\Delta_{\sigma}-\sigma^{2}\right) q+\lambda \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} \frac{\partial q}{\partial \theta}-4 \lambda \mathrm{e}^{-\sigma^{2} / 2} T\left(\mathrm{e}^{-\sigma^{2} / 2} q\right) \tag{2.6}\\
&=\lambda \mathrm{e}^{\sigma^{2} / 2} f(\sigma, \theta) \quad \text { on } E,
\end{align*}
$$

where the operator $T:=(\partial / \partial \theta) A$ and $f(\sigma, \theta):=(\kappa / \pi a) g(\sigma) \cos \theta$. Let

$$
\begin{equation*}
(\xi, \eta):=\sigma(\cos \theta, \sin \theta), \quad q_{*}(\xi, \eta)=q_{*}(\sigma \cos \theta, \sigma \sin \theta):=q(\sigma, \theta) . \tag{2.7}
\end{equation*}
$$

The condition in (2.3) for $\sigma \downarrow 0$ will be implicit in what follows; it was imposed only to make q_{*} decent at the origin, because we shall find that q is of form $q_{c}(\sigma) \cos \theta+q_{s}(\sigma) \sin \theta$. Henceforth the functions q_{*} and q will be identified wherever no confusion is possible. Similarly, the Cartesian-co-ordinate and polar-co-ordinate representations of other functions will be identified.
(ii) In the first instance we establish a weak solution of (2.6). Let the real Hilbert space Z be the completion of the set $C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$, of real-valued, infinitely
differentiable functions on \mathbb{R}^{2} having compact support, in the norm implied by the inner product

$$
\begin{equation*}
\langle u, v\rangle_{Z}:=\iint_{\mathbb{R}^{2}}\left(\nabla u \cdot \nabla v+\sigma^{2} u v\right) \mathrm{d} \xi \mathrm{~d} \eta . \tag{2.8}
\end{equation*}
$$

We shall say that q is a weak solution of (2.6) if (and only if) $q \in Z$ and, for all test functions $u \in Z$,

$$
\begin{align*}
B(u, q):=\iint_{\mathbb{R}^{2}} & \left(\nabla u \cdot \nabla q+\sigma^{2} u q+\lambda \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} u \frac{\partial q}{\partial \theta}\right. \tag{2.9}\\
& \left.\quad-4 \lambda \mathrm{e}^{-\sigma^{2} / 2} u T\left(\mathrm{e}^{-\sigma^{2} / 2} q\right)\right) \mathrm{d} \xi \mathrm{~d} \eta=\lambda \iint_{\mathbb{R}^{2}} \mathrm{e}^{\sigma^{2} / 2} f u \mathrm{~d} \xi \mathrm{~d} \eta
\end{align*}
$$

(iii) Here is the key step of the proof.

Lemma 2.2. The bilinear form B satisfies, for all u and v in Z,

$$
\begin{align*}
& B(u, u)=\|u\|^{2} \tag{2.10}\\
& |B(u, v)| \leq\left(1+k_{B} \lambda\right)\|u\|\|v\| \tag{2.11}
\end{align*}
$$

where $\|\cdot\|=\|\cdot\|_{Z}$ and k_{B} is an absolute constant (independent of the variables, parameters and functions in question).

Partial proof. We shall prove only that (2.10) holds for all functions in $C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$. The remainder of the proof is neither trivial nor immediate, but it is of a kind familiar in Sobolev-space theory and its application to partial differential equations.

In view of the definition of B in (2.9), we wish to prove that, for all $\varphi \in$ $C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\iint_{\mathbb{R}^{2}} \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} \varphi \frac{\partial \varphi}{\partial \theta} \mathrm{~d} \xi \mathrm{~d} \eta=0
$$

and

$$
\iint_{\mathbb{R}^{2}} \mathrm{e}^{-\sigma^{2} / 2} \varphi T\left(\mathrm{e}^{-\sigma^{2} / 2} \varphi\right) \mathrm{d} \xi \mathrm{~d} \eta=0
$$

The first of these is immediate because $\int_{-\pi}^{\pi} \varphi \frac{\partial \varphi}{\partial \theta} \mathrm{d} \theta=0$. For the second, let $A\left(\mathrm{e}^{-\sigma^{2} / 2} \varphi\right)=: \psi$; then $\mathrm{e}^{-\sigma^{2} / 2} \varphi=-\Delta \psi$ and we wish to prove that

$$
-\iint_{\mathbb{R}^{2}}(\Delta \psi) \frac{\partial \psi}{\partial \theta} \mathrm{d} \xi \mathrm{~d} \eta=0 .
$$

Here it suffices to integrate over an open disc (or ball) $\mathcal{B}(0, R)$ with centre the origin and radius R so large that $\mathcal{B}(0, R)$ contains the compact support of $\Delta \psi$. Thus the integral may be written

$$
-\int_{\partial \mathcal{B}(0, R)} \frac{\partial \psi}{\partial \sigma} \frac{\partial \psi}{\partial \theta} R \mathrm{~d} \theta+\iint_{\mathcal{B}(0, R)} \nabla \psi \cdot \frac{\partial}{\partial \theta} \nabla \psi \mathrm{d} \xi \mathrm{~d} \eta
$$

That this last integral over $\mathcal{B}(0, R)$ vanishes is immediate as before. The boundary integral is now independent of R and vanishes because $\partial \psi / \partial \sigma$ and
$\partial \psi / \partial \theta$ are both $O\left(R^{-1}\right)$ as $R \uparrow \infty$, by the definition (2.1)(c) of the operator A.
(iv) Existence and uniqueness of a weak solution. The forcing function in (2.6) satisfies amply the condition

$$
\begin{equation*}
\iint_{\mathbb{R}^{2}} \frac{\mathrm{e}^{\sigma^{2}} f(\sigma, \theta)^{2}}{1+\sigma^{2}} \mathrm{~d} \xi \mathrm{~d} \eta<\infty \tag{2.12}
\end{equation*}
$$

because $f(\sigma, \theta)=(\kappa / \pi a) g(\sigma) \cos \theta$ with g as in (2.4). This condition is sufficient to make the forcing integral in (2.9), namely,

$$
F(u):=\iint_{\mathbb{R}^{2}} \mathrm{e}^{\sigma^{2} / 2} f u \mathrm{~d} \xi \mathrm{~d} \eta, \quad u \in Z
$$

a bounded linear functional evaluated at u. In other words, F belongs to the dual space Z^{*} of Z. The Lax-Milgram lemma now implies

Lemma 2.3. Equation (2.6) has a unique weak solution q and

$$
\begin{equation*}
\frac{\lambda}{1+k_{B} \lambda}\|F\|_{Z^{*}} \leq\|q\|_{Z} \leq \lambda\|F\|_{Z^{*}} \tag{2.13}
\end{equation*}
$$

(v) Regularity theory: pointwise estimates. We separate the variables σ and θ. Let Y denote the real Hilbert space of functions $y:[0, \infty) \rightarrow \mathbb{R}$ such that the functions having values $y(\sigma) \cos \theta$ or $y(\sigma) \sin \theta$ belong to Z. It can be proved that, equivalently, Y is the completion of the set

$$
D:=\left\{\zeta \in C_{c}^{\infty}[0, \infty) \mid \zeta(0)=0\right\}
$$

where the compact support of ζ may extend to the origin, in the norm implied by the inner product

$$
\langle v, w\rangle_{Y}:=\int_{0}^{\infty}\left(v^{\prime} w^{\prime}+\left(\frac{1}{\sigma^{2}}+\sigma^{2}\right) v w\right) \sigma \mathrm{d} \sigma
$$

where the $(\cdot)^{\prime}$ denotes differentiation.
It can then be proved that, if
(a)

$$
\begin{equation*}
Q(\sigma):=q_{c}(\sigma)+i q_{s}(\sigma), \quad \text { where }\left(q_{c}, q_{s}\right) \in Y^{2} \tag{2.14}
\end{equation*}
$$

(b) the operator T_{1} is defined by

$$
\begin{equation*}
\left(T_{1} y\right)(\sigma):=\frac{1}{2} \int_{0}^{\infty}\left(\frac{\rho}{\sigma} \wedge \frac{\sigma}{\rho}\right) y(\rho) \rho \mathrm{d} \rho \quad \text { for all } y \in Y \tag{2.15}
\end{equation*}
$$

where $a \wedge b$ denotes the lower envelope, or lesser, of a and b;
(c) for all test functions $v \in Y$,

$$
\begin{align*}
& \int_{0}^{\infty}\left(v^{\prime} Q^{\prime}+\left(\frac{1}{\sigma^{2}}+\sigma^{2}\right) v Q-i \lambda \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} v Q+i 4 \lambda \mathrm{e}^{-\sigma^{2} / 2} v T_{1}\left(\mathrm{e}^{-\sigma^{2} / 2} Q\right)\right) \sigma \mathrm{d} \sigma \\
& =\lambda \int_{0}^{\infty} \mathrm{e}^{\sigma^{2} / 2} f_{c} v \sigma \mathrm{~d} \sigma \tag{2.16}
\end{align*}
$$

where $f_{c}(\sigma):=(\kappa / \pi a) g(\sigma)$;
(d)

$$
\begin{equation*}
q(\sigma, \theta):=q_{c}(\sigma) \cos \theta+q_{s}(\sigma) \sin \theta ; \tag{2.17}
\end{equation*}
$$

then q satisfies (2.9), so that the right-hand member of (2.17) is the unique weak solution of (2.6). Conversely, equations (2.9), (2.17) and (2.14) imply (2.16).

We now choose the test function in (2.16) to be a Green function of the operator

$$
-\left(\frac{\mathrm{d}}{\mathrm{~d} \sigma}\right)^{2}-\frac{1}{\sigma} \frac{\mathrm{~d}}{\mathrm{~d} \sigma}+\left(\frac{1}{\sigma^{2}}+\sigma^{2}\right)
$$

which results from insertion of (2.17) into (2.6). It is legitimate to choose

$$
v(\sigma)=K(\rho, \sigma):= \begin{cases}\frac{1}{\sigma} \sinh \frac{\sigma^{2}}{2} \cdot \frac{1}{\rho} \exp \left(-\frac{\rho^{2}}{2}\right) & \text { if } \sigma \leq \rho \tag{2.18}\\ \frac{1}{\sigma} \exp \left(-\frac{\sigma^{2}}{2}\right) \cdot \frac{1}{\rho} \sinh \frac{\rho^{2}}{2} & \text { if } \sigma \geq \rho\end{cases}
$$

because $K(\rho, \cdot) \in Y$ for fixed $\rho \in(0, \infty)$. Then (2.16) yields, after an integration by parts, the integral equation

$$
\begin{align*}
Q(\rho)=\lambda & \int_{0}^{\infty} K(\rho, \sigma) \mathrm{e}^{\sigma^{2} / 2} f_{c}(\sigma) \sigma \mathrm{d} \sigma \\
& +i \lambda \int_{0}^{\infty} K(\rho, \sigma)\left(\frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} Q(\sigma)-4 \mathrm{e}^{-\sigma^{2} / 2} T_{1}\left(\mathrm{e}^{-\sigma^{2} / 2} Q\right)\right) \sigma \mathrm{d} \sigma \tag{2.19}
\end{align*}
$$

Since Lemma 2.3 provides bounds for $\left\|q_{c}\right\|_{Y}$ and $\left\|q_{s}\right\|_{Y}$, the regularity of Q, and pointwise bounds, can be deduced from (2.19) and from Lemma 3.8 below without great difficulty.

3 The perturbation ω_{1} as $\lambda \uparrow \infty$

We return to equations (2.1) to (2.4) and define a stream function $\tilde{\psi}_{1}:=A \tilde{\omega}_{1}$. Then $\tilde{\omega}_{1}=-\Delta_{\sigma} \tilde{\psi}_{1}$ and (2.2) becomes

$$
\begin{align*}
&\left(\Delta_{\sigma}+2 \sigma \frac{\partial}{\partial \sigma}+2\right) \Delta_{\sigma} \tilde{\psi}_{1}-\lambda \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} \frac{\partial}{\partial \theta} \Delta_{\sigma} \tilde{\psi}_{1}-4 \lambda \mathrm{e}^{-\sigma^{2}} \frac{\partial \tilde{\psi}_{1}}{\partial \theta} \tag{3.1}\\
&=\frac{\kappa \lambda}{\pi a} g(\sigma) \cos \theta \quad \text { on } E
\end{align*}
$$

In view of (2.5) and (2.17), the function $\tilde{\psi}_{1}$ has the form

$$
\begin{equation*}
\tilde{\psi}_{1}(\sigma, \theta)=\tilde{\psi}_{1 c}(\sigma) \cos \theta+\tilde{\psi}_{1 s}(\sigma) \sin \theta \tag{3.2}
\end{equation*}
$$

We divide (3.1) by $\lambda\left(1-\mathrm{e}^{-\sigma^{2}}\right) / \sigma^{2}$, write the $\cos \theta$ and $\sin \theta$ parts as separate equations and define, similarly to (2.14),

$$
\begin{equation*}
\Psi(\sigma)=\tilde{\psi}_{1 c}(\sigma)+i \tilde{\psi}_{1 s}(\sigma) \tag{3.3}
\end{equation*}
$$

With the notation
(a) $\quad \Delta_{1}:=\left(\frac{\mathrm{d}}{\mathrm{d} \sigma}\right)^{2}+\frac{1}{\sigma} \frac{\mathrm{~d}}{\mathrm{~d} \sigma}-\frac{1}{\sigma^{2}}$,
(b) $\alpha(\sigma):=\frac{4 \sigma^{2}}{\mathrm{e}^{\sigma^{2}}-1}$,
(c) $\beta(\sigma):=\frac{\sigma^{2}}{1-\mathrm{e}^{-\sigma^{2}}}$,
(d) $\mathcal{E}:=\Delta_{1}+2 \sigma \frac{\mathrm{~d}}{\mathrm{~d} \sigma}+2$,
the problem for $\tilde{\omega}_{1}$ is to solve the equation

$$
\begin{equation*}
-i \frac{\beta(\sigma)}{\lambda} \mathcal{E}\left(\Delta_{1} \Psi\right)+\left\{\Delta_{1}+\alpha(\sigma)\right\} \Psi=-i \frac{\kappa}{\pi a} \beta(\sigma) g(\sigma), \quad 0<\sigma<\infty \tag{3.5}
\end{equation*}
$$

with the side conditions

$$
\begin{align*}
& \text { as } \sigma \downarrow 0, \quad\left(\Delta_{1} \Psi\right)(\sigma) \rightarrow 0, \quad \Psi^{\prime}(\sigma)=O(1) \quad \text { and } \quad \Psi(\sigma)=O(\sigma) ; \\
& \text { as } \sigma \uparrow \infty, \quad\left(\Delta_{1} \Psi\right)(\sigma) \rightarrow 0, \quad \Psi^{\prime}(\sigma)=O\left(\sigma^{-2}\right) \quad \text { and } \quad \Psi(\sigma)=O\left(\sigma^{-1}\right) . \tag{3.6}
\end{align*}
$$

Here the conditions on $\Delta_{1} \Psi$ come from (2.3); the conditions on Ψ^{\prime} and Ψ are implied by $\Psi=-T_{1}\left(\Delta_{1} \Psi\right)$, with T_{1} as in (2.15), and by conditions on $\Delta_{1} \Psi$ much weaker than those in Theorem 2.1.

For $\lambda \uparrow \infty$, equation (3.5) with (3.6) seems to form a singular perturbation problem, since a small parameter multiplies the highest derivatives. Surprisingly, this turns out not to be the case; nevertheless there is work to be done.

Apparently, if $\Psi_{0}(\sigma):=\lim _{\lambda \uparrow \infty} \Psi(\sigma ; \lambda)$ exists, then it must satisfy

$$
\begin{equation*}
\left\{\Delta_{1}+\alpha(\sigma)\right\} \Psi_{0}=-i \frac{\kappa}{\pi a} \beta(\sigma) g(\sigma), \quad 0<\sigma<\infty \tag{3.7}
\end{equation*}
$$

and the six side conditions (3.6). We proceed to explore this problem.
Lemma 3.1. The equation

$$
\begin{equation*}
\left\{\Delta_{1}+\alpha(\sigma)\right\} u=0, \quad 0<\sigma<\infty, \tag{3.8}
\end{equation*}
$$

has solutions

$$
\begin{equation*}
U(\sigma):=\frac{1}{\sigma}\left(1-\mathrm{e}^{-\sigma^{2}}\right) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
V(\sigma):=\frac{1}{\sigma}-U(\sigma) \log \left(\mathrm{e}^{\sigma^{2}}-1\right) . \tag{3.10}
\end{equation*}
$$

Here U is an eigensolution (with eigenvalue 0) in that it satisfies not only (3.8) but also all six side conditions (3.6).

Proof. This is a matter of direct calculation.
Lemma 3.2. The forcing function in (3.7) is orthogonal to the eigensolution U in the sense that

$$
\begin{equation*}
\int_{0}^{\infty} U(\sigma) \beta(\sigma) g(\sigma) \sigma \mathrm{d} \sigma=0 \tag{3.11}
\end{equation*}
$$

Hence the problem (3.7) and (3.6) has a (non-unique) solution

$$
\begin{equation*}
\Psi_{0}(\sigma)=c_{0} U(\sigma)+i \frac{\kappa}{2 \pi a} \int_{0}^{\sigma}\{U(\rho) V(\sigma)-U(\sigma) V(\rho)\} \beta(\rho) g(\rho) \rho \mathrm{d} \rho \tag{3.12}
\end{equation*}
$$

for every $c_{0} \in \mathbb{C}$.
Proof. Again this is a matter of direct calculation, but the calculation is not short. With β defined by (3.4)(c) and g by (2.4)(c), the analytic proof of the orthogonality condition (3.11) seens to require a page. (However, with any machine capable of numerical integration, numerical verification of (3.11) is quick and easy.) We note that Liouville's formula for Wronskians yields

$$
\begin{equation*}
U(\sigma) V^{\prime}(\sigma)-U^{\prime}(\sigma) v(\sigma)=-\frac{2}{\sigma}, \quad 0<\sigma<\infty \tag{3.13}
\end{equation*}
$$

The following lemma is also relevant.
Lemma 3.3. Define, for suitable functions f,

$$
\begin{equation*}
(\mathcal{G} f)(\sigma):=\frac{1}{2} \int_{0}^{\sigma}\{U(\rho) V(\sigma)-U(\sigma) V(\rho)\} f(\rho) \rho \mathrm{d} \rho, \quad 0<\sigma<\infty \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
J(f):=\int_{0}^{\infty} V(\rho) f(\rho) \rho \mathrm{d} \rho . \tag{3.15}
\end{equation*}
$$

Assume that $f \in C[0, \infty)$, that $\int_{0}^{\infty} U(\rho) f(\rho) \rho \mathrm{d} \rho=0$, that $f(\sigma)=O(\sigma)$ as $\sigma \downarrow 0$ and that $f(\sigma)=O\left(\sigma^{m} \mathrm{e}^{-\sigma^{2}}\right)$, with $m \geq 1$, as $\sigma \uparrow \infty$. Then

$$
\begin{equation*}
\left\{\Delta_{1}+\alpha(\sigma)\right\}(\mathcal{G} f)(\sigma)=-f(\sigma) \quad \text { in }(0, \infty) \tag{3.16}
\end{equation*}
$$

as $\sigma \downarrow 0$,

$$
\begin{equation*}
(\mathcal{G} f)(\sigma)=O\left(\sigma^{3}\right) \quad \text { and } \quad\left(\Delta_{1} \mathcal{G} f\right)(\sigma)=O(\sigma) \tag{3.17}
\end{equation*}
$$

as $\sigma \uparrow \infty$,

$$
\begin{align*}
(\mathcal{G} f)(\sigma) & =-\frac{1}{2} J(f) \sigma^{-1}+O\left(\sigma^{m} \mathrm{e}^{-\sigma^{2}}\right) \tag{3.18}\\
(\mathcal{G} f)^{\prime}(\sigma) & =\frac{1}{2} J(f) \sigma^{-2}+O\left(\sigma^{m-1} \mathrm{e}^{-\sigma^{2}}\right) \tag{3.19}\\
(\mathcal{G} f)^{\prime \prime}(\sigma) & =-J(f) \sigma^{-3}+O\left(\sigma^{m} \mathrm{e}^{-\sigma^{2}}\right), \tag{3.20}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\Delta_{1} \mathcal{G} f\right)(\sigma) \quad \text { and } \quad(\mathcal{E G} f)(\sigma) \quad \text { are } O\left(\sigma^{m} \mathrm{e}^{-\sigma^{2}}\right) \tag{3.21}
\end{equation*}
$$

Proof. Equation (3.16) follows from the definition of $\mathcal{G} f$ and two differentiations. That $(\mathcal{G} f)(\sigma)=O\left(\sigma^{3}\right)$ as $\sigma \downarrow 0$ also follows from the definition; then the differential equation (3.16) shows that $\left(\Delta_{1} \mathcal{G} f\right)(\sigma)=O(\sigma)$ as $\sigma \downarrow 0$. In order to prove (3.18) and (3.19), we note that $U(\sigma) \sim 1 / \sigma$ and $V(\sigma) \sim-\sigma$ as $\sigma \uparrow \infty$, whence

$$
\begin{aligned}
& \int_{0}^{\sigma} U(\rho) f(\rho) \rho \mathrm{d} \rho=\left(\int_{0}^{\infty}-\int_{\sigma}^{\infty}\right) U(\rho) f(\rho) \rho \mathrm{d} \rho=0+O\left(\sigma^{m-1} \mathrm{e}^{-\sigma^{2}}\right) \\
& \int_{0}^{\sigma} V(\rho) f(\rho) \rho \mathrm{d} \rho=\left(\int_{0}^{\infty}-\int_{\sigma}^{\infty}\right) V(\rho) f(\rho) \rho \mathrm{d} \rho=J(f)+O\left(\sigma^{m+1} \mathrm{e}^{-\sigma^{2}}\right)
\end{aligned}
$$

from which (3.18) and (3.19) follow.
The differential equation (3.16) and the estimate (3.18) of $\mathcal{G} f$ imply that $\left(\Delta_{1} \mathcal{G} f\right)(\sigma)=O\left(\sigma^{m} \mathrm{e}^{-\sigma^{2}}\right)$ as $\sigma \uparrow \infty$. What has been proved now implies the estimates of $(\mathcal{G} f)^{\prime \prime}(\sigma)$ and $(\mathcal{E G} f)(\sigma)$ for $\sigma \uparrow \infty$.

The result (3.12) prompts two questions. How (if at all) is c_{0} to be evaluated? How smooth is Ψ_{0} ? Analogues of both these questions will have to be answered more generally for each function Ψ_{n} in an identity

$$
\Psi(\sigma ; \lambda)=\sum_{n=0}^{N} \lambda^{-n} \Psi_{n}(\sigma)+R_{N}(\sigma ; \lambda) .
$$

Here we anticipate later results and note that, with J as in (3.15),

$$
\begin{equation*}
c_{0}=i \frac{\kappa}{2 \pi a} J(\beta g)=i \frac{\kappa}{a}(0.11527 \ldots) . \tag{3.22}
\end{equation*}
$$

This follows from the equation governing Ψ_{1}, which requires an orthogonality condition involving Ψ_{0}.

Because of the function $Q=: Q(\cdot ; \lambda)$ defined by (2.14) and (2.16), we now define $Q_{0}=q_{0 c}+i q_{0 s}$ by

$$
\begin{align*}
Q_{0}(\sigma) & :=-\mathrm{e}^{\sigma^{2} / 2}\left(\Delta_{1} \Psi_{0}\right)(\sigma) \\
& =\mathrm{e}^{\sigma^{2} / 2}\left(4 c_{0} \sigma \mathrm{e}^{-\sigma^{2}}-\alpha(\sigma)\left(\mathcal{G} h_{0}\right)(\sigma)-h_{0}(\sigma)\right), \tag{3.23}
\end{align*}
$$

where $h_{0}:=-i(\kappa / \pi a) \beta g$. Evidently $q_{0 c}=0$.
It will emerge from Theorem 3.5 that Q_{0} is the limit of $Q(\cdot ; \lambda)$ as $\lambda \uparrow \infty$. In Figures 2 and $3, Q_{0}$ is compared with $Q(\cdot ; \lambda)$ for large λ; these values of $Q(\cdot ; \lambda)$ were obtained by numerical solution of the equation

$$
\begin{equation*}
-\left(\Delta_{1}-\sigma^{2}\right) Q-i \lambda \frac{1-\mathrm{e}^{-\sigma^{2}}}{\sigma^{2}} Q+i 4 \lambda \mathrm{e}^{-\sigma^{2} / 2} T_{1}\left(\mathrm{e}^{-\sigma^{2} / 2} Q\right)=\frac{\kappa \lambda}{\pi a} \mathrm{e}^{\sigma^{2} / 2} g(\sigma) \tag{3.24}
\end{equation*}
$$

This equation is equivalent to (2.6), because of (2.17); it is also the pointwise form of (2.16); with the condition that $Q(\sigma) \rightarrow 0$ as $\sigma \downarrow 0$ and as $\sigma \uparrow \infty$, it has a pointwise, unique solution. Figures 2 and 3 are consistent with the result of Theorem 3.5 that, as $\lambda \uparrow \infty$,

$$
q_{c}(\cdot ; \lambda)=O\left(\lambda^{-1}\right) \quad \text { and } \quad q_{s}(\cdot ; \lambda)-q_{0 s}=O\left(\lambda^{-2}\right) .
$$

Definition. We shall say that a function $\varphi:[0, \infty) \rightarrow \mathbb{C}$ is satisfactory on $[0, k)$ if (and only if) there exist coefficients b_{n} and a number $k>0$ such that

$$
\varphi(\sigma):=\sum_{n=0}^{\infty} b_{n} \sigma^{2 n+1} \quad \text { for } \quad 0 \leq \sigma<k
$$

Lemma 3.4. (i) The function βg is satisfactory on $\left[0,(2 \pi)^{1 / 2}\right)$.
(ii) If f is satisfactory on $\left[0,(2 \pi)^{1 / 2}\right)$, then so is $\mathcal{G} f$.

Proof. (i) We note that

$$
\beta(\sigma) g(\sigma)=\sigma \mathrm{e}^{-\sigma^{2}}\left(\frac{3}{2}+\frac{\sigma^{2}}{1-\mathrm{e}^{-\sigma^{2}}}\left(\int_{\sigma}^{1} \frac{1-\mathrm{e}^{-\rho^{2}}}{\rho} \mathrm{~d} \rho+C_{0}+C_{1}\right)\right),
$$

Figure 2: The perturbations for $q_{c}(\alpha)$ and $q_{s}(\alpha)$ for $\lambda=10^{3} / 2 \pi$ and $\lambda=\infty$.

Figure 3: The perturbations for $q_{c}(\alpha)$ and $q_{s}(\alpha)$ for $\lambda=10^{4} / 2 \pi$ and $\lambda=\infty$.
where

$$
C_{0}:=-\int_{1}^{\infty} \frac{\mathrm{e}^{-\rho^{2}}}{\rho} \mathrm{~d} \rho, \quad C_{1}:=-\frac{1}{2}\left(\gamma_{E}+1-\log 2\right),
$$

and that the function w defined by

$$
w(z)=\frac{z}{1-\mathrm{e}^{-z}} \quad \text { if } \quad z \in \mathbb{C} \backslash\{0\} \backslash\{\text { poles }\} \quad \text { and } \quad w(0)=1
$$

is holomorphic for $|z|<2 \pi$.
(ii) Let

$$
W(\sigma):=\frac{1}{\sigma}-U(\sigma) \log \frac{\mathrm{e}^{\sigma^{2}}-1}{\sigma^{2}}
$$

where the limiting value of $\left(\mathrm{e}^{\sigma^{2}}-1\right) / \sigma^{2}$ is taken at $\sigma=0$. Then

$$
V(\sigma)=W(\sigma)-2 U(\sigma) \log \sigma
$$

and

$$
\begin{aligned}
&(\mathcal{G} f)(\sigma)=\frac{1}{2} W(\sigma) \int_{0}^{\sigma} U(\rho) f(\rho) \rho \mathrm{d} \rho-\frac{1}{2} U(\sigma) \int_{0}^{\sigma} W(\rho) f(\rho) \rho \mathrm{d} \rho \\
&+\sigma^{2} U(\sigma) \int_{0}^{1}(\log t) U(\sigma t) f(\sigma t) t \mathrm{~d} t
\end{aligned}
$$

The functions with values $\sigma^{2} W(\sigma), U(\sigma)$ and $f(\sigma)$ are all satisfactory on $\left[0,(2 \pi)^{1 / 2}\right)$, so that $\mathcal{G} f$ inherits this property.

Theorem 3.5. The perturbation $\tilde{\omega}_{1}$ has a representation

$$
\begin{array}{r}
\tilde{\omega}_{1}(\sigma, \theta ; \lambda)=\cos \theta\left\{\lambda^{-1} \zeta_{1}(\sigma)+\lambda^{-3} \zeta_{3}(\sigma)+\zeta_{5}(\sigma ; \lambda)\right\} \tag{3.25}\\
+\sin \theta\left\{\zeta_{0}(\sigma)+\lambda^{-2} \zeta_{2}(\sigma)+\zeta_{4}(\sigma ; \lambda)\right\}
\end{array}
$$

in which, for $m=0,1,2,3$ and $n=4,5$,
(a) the functions ζ_{m} and $\zeta_{n}(\cdot ; \lambda)$ belong to $C^{\infty}[0, \infty)$ and are satisfactory on [0, $\left.(2 \pi)^{1 / 2}\right)$;
(b) as $\sigma \uparrow \infty, \zeta_{m}(\sigma)=O\left(\sigma^{2 m+4} \mathrm{e}^{-\sigma^{2}}\right)$ and $\zeta_{n}(\sigma ; \lambda)=o\left(\mathrm{e}^{-\sigma^{2} / 2}\right)$ for fixed λ;
(c) as $\lambda \uparrow \infty, \zeta_{n}(\sigma ; \lambda)=O\left(\lambda^{-n}\right)$, uniformly over $\sigma \in[0, \infty)$.

The proof will be by means of further lemmas. Let $\Psi:=\tilde{\psi}_{1 c}+i \tilde{\psi}_{1 s}$, as before, and let $\Omega:=-\Delta_{1} \Psi$, so that $\Omega=\tilde{\omega}_{1 c}+i \tilde{\omega}_{1 s}$. Our plan is to construct identities

$$
\begin{align*}
& \Psi(\sigma ; \lambda)=\sum_{n=0}^{N} \lambda^{-n} \Psi_{n}(\sigma)+R_{N}(\sigma ; \lambda) \tag{3.26}\\
& \Omega(\sigma ; \lambda)=\sum_{n=0}^{N} \lambda^{-n} \Omega_{n}(\sigma)+r_{N}(\sigma ; \lambda) \tag{3.27}
\end{align*}
$$

in which estimates of the remainders R_{N} and r_{N} can be crude. In fact, we shall prove only that R_{N} and r_{N} are $O\left(\lambda^{1-N}\right)$, but this is sufficient for (3.25) if $N \geq 6$.

The terms of the expansion of Ψ are to satisfy

$$
\begin{equation*}
\left\{\Delta_{1}+\alpha(\sigma)\right\} \Psi_{n}=h_{n}, \quad n=0,1, \ldots, N \tag{3.28}
\end{equation*}
$$

where

$$
\begin{gather*}
h_{0}(\sigma)=-i \frac{\kappa}{\pi a} \beta(\sigma) g(\sigma), \tag{3.29}\\
h_{n}:=i \beta \mathcal{E}\left(\Delta_{1} \Psi_{n-1}\right) \text { for } n=1, \ldots, N, \tag{3.30}
\end{gather*}
$$

and

$$
\begin{equation*}
-i \lambda^{-1} \beta(\sigma) \mathcal{E}\left(\Delta_{1} R_{N}\right)+\left\{\Delta_{1}+\alpha(\sigma)\right\} R_{N}=i \lambda^{-N-1} \beta(\sigma) \mathcal{E}\left(\Delta_{1} \Psi_{N}\right) ; \tag{3.31}
\end{equation*}
$$

then the right-hand member of (3.26) will satisfy the equation (3.5) governing Ψ.

Since $\Omega=-\Delta_{1} \Psi$ and $\Psi=T_{1} \Omega$, this scheme corresponds to

$$
\begin{gather*}
-\Omega_{n}+\alpha(\sigma) T_{1} \Omega_{n}=h_{n}, \quad n=0,1, \ldots, N \tag{3.32}\\
i \lambda^{-1} \beta(\sigma) \mathcal{E} r_{N}-r_{N}+\alpha(\sigma) T_{1} r_{N}=-i \lambda^{-N-1} \beta(\sigma) \mathcal{E} \Omega_{N}, \tag{3.33}
\end{gather*}
$$

where $h_{n}=-i \beta(\sigma) \mathcal{E} \Omega_{n-1}$ for $n=1, \ldots, N$.

Lemma 3.6. In order that equation (3.28), with the side conditions (3.6), have a solution, it is necessary that

$$
\begin{equation*}
\int_{0}^{\infty} U(\sigma) h_{n}(\sigma) \sigma \mathrm{d} \sigma=0, \quad n=0,1, \ldots, N \tag{3.34}
\end{equation*}
$$

equivalently, that

$$
\begin{gather*}
\int_{0}^{\infty} \sigma^{2} g(\sigma) \mathrm{d} \sigma=0 \quad \text { if } \quad n=0 \tag{3.35}\\
\int_{0}^{\infty} \sigma^{2}\left(\mathcal{E} \Omega_{n-1}\right)(\sigma) \mathrm{d} \sigma=0 \quad \text { if } \quad n=1, \ldots, N \tag{3.36}
\end{gather*}
$$

Proof. Let $\mathcal{M}:=\Delta_{1}+\alpha(\sigma)$. Assume that u and v are in $C^{2}(0, \infty)$, that $\sigma u(\sigma) v^{\prime}(\sigma) \rightarrow 0$ as $\sigma \downarrow 0$ and as $\sigma \uparrow \infty$ and that $\sigma u^{\prime}(\sigma) v(\sigma) \rightarrow 0$ as $\sigma \downarrow 0$ and as $\sigma \uparrow \infty$. Then integration by parts yields

$$
\begin{equation*}
\int_{0}^{\infty} u(\mathcal{M} v) \sigma \mathrm{d} \sigma=\int_{0}^{\infty}(\mathcal{M} u) v \sigma \mathrm{~d} \sigma \tag{3.37}
\end{equation*}
$$

Now let $u=U$ and $v=\Psi_{n}$. If Ψ_{n} satisfies (3.6), then the foregoing hypotheses are satisfied. If also $\mathcal{M} \Psi_{n}=h_{n}$, then

$$
\begin{equation*}
\int_{0}^{\infty} U h_{n} \sigma \mathrm{~d} \sigma=\int_{0}^{\infty} U\left(\mathcal{M} \Psi_{n}\right) \sigma \mathrm{d} \sigma=\int_{0}^{\infty}(\mathcal{M} U) \Psi_{n} \sigma \mathrm{~d} \sigma=0 \tag{3.38}
\end{equation*}
$$

Equations (3.35) and (3.36) follow from the identity $U(\sigma) \beta(\sigma)=\sigma$ and from the definitions of h_{n}.

If h_{n} satisfies not only the orthogonality condition (3.34), but also the other hypotheses on f in Lemma 3.3 (and this will be the case), then the differential equation (3.28), with side conditions (3.6), has solutions

$$
\begin{equation*}
\Psi_{n}=c_{n} U-\mathcal{G} h_{n}, \quad n=0,1, \ldots, N \tag{3.39}
\end{equation*}
$$

whence

$$
\begin{equation*}
\Omega_{n}(\sigma)=-\left(\Delta_{1} \Psi_{n}\right)(\sigma)=4 c_{n} \sigma \mathrm{e}^{-\sigma^{2}}-\alpha(\sigma)\left(\mathcal{G} h_{n}\right)(\sigma)-h_{n}(\sigma), \tag{3.40}
\end{equation*}
$$

for every $c_{n} \in \mathbb{C}$.
In order to evaluate c_{0}, \ldots, c_{N} and in order to discuss r_{N}, we extend the definition (3.30) to h_{N+1}. Recall from Lemma 3.2 that for $n=0$ the orthogonality condition (3.34) has already been established.

Lemma 3.7. For $n=0,1, \ldots, N$, the necessary condition $\int_{0}^{\infty} U h_{n+1} \sigma \mathrm{~d} \sigma=0$ implies that $c_{n}=-\frac{1}{2} J\left(h_{n}\right)$, where $J(\cdot)$ is defined by (3.15).

Proof. Extended to Ω_{N}, the orthogonality condition (3.36) states that, for $n=$ $0,1, \ldots, N$,

$$
0=\int_{0}^{\infty} \sigma^{2}\left(\mathcal{E} \Omega_{n}\right) \mathrm{d} \sigma=-4 \int_{0}^{\infty} \sigma^{2} \Omega_{n} \mathrm{~d} \sigma
$$

by an integration by parts for which it suffices that $\Omega_{n} \in C^{2}(0, \infty)$, that $\Omega_{n}^{\prime}(\sigma)=$ $o\left(\sigma^{-2}\right)$ both as $\sigma \downarrow 0$ and as $\sigma \uparrow \infty$, that $\Omega_{n}=o\left(\sigma^{-1}\right)$ as $\sigma \downarrow 0$ and that $\Omega_{n}=o\left(\sigma^{-3}\right)$ as $\sigma \uparrow \infty$.

Next, we observe that, if $\Psi_{n} \in C^{2}(0, \infty)$ and if both $\sigma^{2} \Psi_{n}^{\prime}(\sigma)$ and $\sigma \Psi_{n}(\sigma)$ have limits both as $\sigma \downarrow 0$ and as $\sigma \uparrow \infty$, then

$$
0=\int_{0}^{\infty} \sigma^{2}\left(\Delta_{1} \Psi_{n}\right) \mathrm{d} \sigma=\left[\sigma^{2} \Psi_{n}^{\prime}-\sigma \Psi_{n}\right]_{0}^{\infty}
$$

in which limiting values are implied on the right-hand side. In view of (3.39), the orthogonality condition is now

$$
c_{n}\left[\sigma^{2} U^{\prime}-\sigma U\right]_{0}^{\infty}=\left[\sigma^{2}\left(\mathcal{G} h_{n}\right)^{\prime}-\sigma\left(\mathcal{G} h_{n}\right)\right]_{0}^{\infty}
$$

Referring to the definition of U in (3.9) and to the description of $\mathcal{G} f$ in Lemma 3.3 , one is led to $c_{n}=-\frac{1}{2} J\left(h_{n}\right)$.

It is time to relate the ζ_{m} and $\zeta_{n}(\cdot ; \lambda)$ in Theorem 3.5 to the Ω_{n} and r_{N} in (3.27). We noted after (3.23) that Q_{0} is imaginary. Since $\Omega(\sigma)=$ $\exp \left(-\sigma^{2} / 2\right) Q(\sigma)$, the function Ω_{0} is imaginary. Then, since $h_{1}=-i \beta \mathcal{E} \Omega_{0}$, the function h_{1} and the coefficient c_{1} are real. Equation (3.40) shows that Ω_{1} is real. An easy induction now shows that Ω_{n} is imaginary if n is even and Ω_{n} is real if n is odd.

Accordingly, if N is odd, then

$$
\begin{array}{r}
\zeta_{1}=\Omega_{1}, \zeta_{3}=\Omega_{3} \text { and } \zeta_{5}(\cdot ; \lambda)=\lambda^{-5} \Omega_{5}+\ldots+\lambda^{-N} \Omega_{N}+\operatorname{Re} r_{N}(\cdot ; \lambda) \\
\zeta_{0}=-i \Omega_{0}, \zeta_{2}=-i \Omega_{2} \text { and } \zeta_{4}(\cdot ; \lambda)=-i\left(\lambda^{-4} \Omega_{4}+\ldots+\lambda^{-N+1} \Omega_{N-1}\right) \\
+\operatorname{Im} r_{N}(\cdot ; \lambda) . \tag{3.41}
\end{array}
$$

If N is even, then there is a similar array.
Because of the explicit formula (3.40) for Ω_{n} (with $h_{n}=-i \beta \mathcal{E} \Omega_{n-1}$, with $c_{n}=-\frac{1}{2} J\left(h_{n}\right)$ and with the operator \mathcal{G} described by Lemmas 3.3 and 3.4), enough may have been said about Ω_{n} to justify the claims made for ζ_{0} to ζ_{3} in Theorem 3.5. For example, the result

$$
\begin{equation*}
\zeta_{m}(\sigma)=O\left(\sigma^{2 m+4} \mathrm{e}^{-\sigma^{2}}\right) \quad \text { as } \sigma \uparrow \infty \tag{3.42}
\end{equation*}
$$

follows for $m=0$ from $\beta(\sigma) \sim \sigma^{2}$ and from the overestimate $g(\sigma)=O\left(\sigma^{2} \mathrm{e}^{-\sigma^{2}}\right)$, which imply that h_{0} and Ω_{0} are $O\left(\sigma^{4} \mathrm{e}^{-\sigma^{2}}\right)$. Then repeated use of $h_{n+1}=$ $-i \beta \mathcal{E} \Omega_{n}$ leads to (3.42).

On the other hand, the remainder r_{N} requires further discussion. Under the transformations

$$
\begin{gather*}
r_{N}(\sigma)=\mathrm{e}^{-\sigma^{2} / 2} P_{N}(\sigma)=\mathrm{e}^{-\sigma^{2} / 2}\left\{p_{N c}(\sigma)+i p_{N s}(\sigma)\right\} \tag{3.43}\\
p_{N}(\sigma, \theta):=p_{N c}(\sigma) \cos \theta+p_{N s}(\sigma) \sin \theta \tag{3.44}
\end{gather*}
$$

equation (3.33) becomes

$$
\begin{equation*}
-\left(\Delta_{\sigma}-\sigma^{2}\right) p_{N}+\frac{\lambda}{\beta(\sigma)} \frac{\partial}{\partial \theta} p_{N}-4 \lambda \mathrm{e}^{-\sigma^{2} / 2} T\left(\mathrm{e}^{-\sigma^{2} / 2} p_{N}\right)=\lambda^{-N} \mathrm{e}^{\sigma^{2} / 2} f_{N}(\sigma, \theta) \tag{3.45}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{N}(\sigma, \theta)=\operatorname{Re}\left\{\left(\mathcal{E} \Omega_{N}\right)(\sigma) \mathrm{e}^{-i \theta}\right\} \tag{3.46}
\end{equation*}
$$

The operator on the left-hand side of (3.45) is that in (2.6); as in $\S 2$, it follows that equation (3.45) has a unique weak solution bounded by

$$
\begin{equation*}
\left\|p_{N}\right\|_{Z} \leq \frac{\kappa}{a} A_{N} \lambda^{-N} \tag{3.47}
\end{equation*}
$$

where A_{N} depends only on N.
Choosing the test function in the definition of weak solution as in (2.18), we obtain the equation

$$
\begin{align*}
P_{N}(\rho)= & \lambda^{-N} \int_{0}^{\infty} K(\rho, \sigma) \mathrm{e}^{\sigma^{2} / 2}\left(\mathcal{E} \Omega_{N}\right)(\sigma) \sigma \mathrm{d} \sigma \\
& +i \lambda \int_{0}^{\infty} K(\rho, \sigma)\left(\frac{P_{N}(\sigma)}{\beta(\sigma)}-4 \mathrm{e}^{-\sigma^{2} / 2} T_{1}\left(\mathrm{e}^{-\sigma^{2} / 2} P_{N}\right)\right) \sigma \mathrm{d} \sigma . \tag{3.48}
\end{align*}
$$

This leads without difficulty to a pointwise solution $P_{N} \in C^{2}[0, \infty)$ such that $P_{N}(0)=0$ and such that $P_{N}(\sigma) \rightarrow 0$ as $\sigma \uparrow \infty$. (Correspondingly, $r_{N}(\sigma)$ is $o\left(\exp \left(-\sigma^{2} / 2\right)\right)$ as $\sigma \uparrow \infty$.) Equation (3.48) and the bound (3.47) now imply that $P_{N}(\sigma ; \lambda)$ is $O\left(\lambda^{-N+1}\right)$ uniformly over $\sigma \in[0, \infty)$. Moreover, the equation

$$
-\left(\Delta_{1}-\sigma^{2}\right) P_{N}-\frac{i \lambda}{\beta(\sigma)} P_{N}+4 i \lambda \mathrm{e}^{-\sigma^{2} / 2} T_{1}\left(\mathrm{e}^{-\sigma^{2} / 2} P_{N}\right)=\lambda^{-N} \mathrm{e}^{\sigma^{2} / 2} \mathcal{E} \Omega_{N}
$$

may be written as

$$
P_{N}^{\prime \prime}=-\frac{1}{\sigma} P_{N}^{\prime}+\left(\frac{1}{\sigma^{2}}+\sigma^{2}\right) P_{N}-\ldots-\lambda^{-N} \mathrm{e}^{\sigma^{2} / 2} \mathcal{E} \Omega_{N} .
$$

The right-hand member of this is in $C^{1}[k, \infty)$ for any $k>0$, say in $C^{1}[1, \infty)$. Therefore $P_{N}^{\prime \prime} \in C^{1}[1, \infty)$. Repetition of this step shows that $P_{N} \in C^{\infty}[1, \infty)$.

It remains to prove that P_{N} is better than C^{2} at and near the origin. We return to equation (3.33) for r_{N} and to the equation

$$
\mathcal{E} \Omega+\frac{i \lambda}{\beta(\sigma)} \Omega-4 i \lambda \mathrm{e}^{-\sigma^{2}} T_{1} \Omega=-\frac{\kappa \lambda}{\pi a} g
$$

for $\Omega=\tilde{\omega}_{1 c}+i \tilde{\omega}_{1 s} ;$ our final lemma applies to both r_{N} and Ω.
Lemma 3.8. Assume that the equation

$$
\begin{equation*}
\mathcal{E} u+\frac{i \lambda}{\beta(\sigma)} u-4 i \lambda \mathrm{e}^{-\sigma^{2}} T_{1} u=\lambda f \tag{3.49}
\end{equation*}
$$

has a solution $u \in C^{2}[0, \infty)$ such that $u(0)=0$ and such that $u(\sigma)$ is $o\left(\exp \left(-\sigma^{2} / 2\right)\right)$ as $\sigma \uparrow \infty$. Assume also that u is unique because it is the transformed version of a solution in the Hilbert space Z.

Then u is satisfactory on $\left[0,(2 \pi)^{1 / 2}\right)$ whenever f has this property.
Proof. We shall prove that there are coefficients a_{n} such that

$$
u(\sigma)=\sum_{n=0}^{\infty} a_{n} \sigma^{2 n+1} \quad \text { for } \quad 0 \leq \sigma<b
$$

if $b \in\left(0,(2 \pi)^{1 / 2}\right)$. Here we are not constructing a series solution $a b$ initio in the usual way; rather, we are establishing a regularity property of a known,
unique solution. Therefore we may regard $a_{0}=u^{\prime}(0)$ and $\int_{0}^{\infty} u \mathrm{~d} \sigma$ as known; we proceed to calculate the other coefficients in terms of these. The equation is satisfied, subject to convergence of the series, if for $n=0,1,2, \ldots$

$$
\begin{equation*}
4(n+1)(n+2) a_{n+1}=-4(n+1) a_{n}-\sum_{j=0}^{n}\left(B_{n-j} a_{j}+A_{n-j} \tau_{j}\right)+\lambda f_{n} \tag{3.50}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{m}=\frac{i \lambda(-1)^{m}}{(m+1)!}, \quad A_{m}=\frac{4 i \lambda(-1)^{m+1}}{m!} \\
& \tau_{0}=\frac{1}{2} \int_{0}^{\infty} u \mathrm{~d} \sigma, \quad \tau_{m}=-\frac{1}{4} \frac{a_{m-1}}{m(m+1)} \text { for } m \geq 1
\end{aligned}
$$

and

$$
f(\sigma)=\sum_{n=0}^{\infty} f_{n} \sigma^{2 n+1} \quad \text { for } \quad 0 \leq \sigma<(2 \pi)^{1 / 2}
$$

Hence there is a constant $C=C(b)$ such that $\left|f_{n}\right| \leq C b^{-2 n}$.
Now, for every $p \in\{1,2,3, \ldots\}$ there is a number $\Gamma_{p}=\Gamma_{p}(b, \lambda)$ such that $\left|a_{n}\right| \leq \Gamma_{p} b^{-2 n}$ for $n=0,1, \ldots, p$. We may suppose that $\Gamma_{p} \geq \kappa / \alpha$. Then (3.50) implies that

$$
\left|a_{n+1}\right| \leq \Gamma_{p} b^{-2 n-2} \varphi(n, \lambda) \quad \text { for } \quad n \leq p,
$$

where

$$
\varphi(n, \lambda):=\frac{2 \pi}{4(n+1)(n+2)}\left(4(n+1)+\lambda(1+\pi) \mathrm{e}^{2 \pi}+\frac{4 \lambda\left|\tau_{0}\right|(2 \pi)^{n}}{n!}+\lambda C\right)
$$

For fixed λ, we choose p so large that $\varphi(p, \lambda) \leq 1$ and so large that $\varphi(n, \lambda)$ decreases for $n \geq p$. Then $\left|a_{m}\right| \leq \Gamma_{p} b^{-2 m}$ not merely for $m \leq p$, but also for $m \geq p+1$.

References

[1] L.E. Fraenkel and J.B. McLeod, A diffusing vortex circle in a viscous fluid. IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics (edited by A.B. Movchan), 489-500. Kluwer Academic Publishers (2003).
[2] P.G. Saffman, The velocity of viscous vortex rings. Stud. Appl. Math. 49 (1970), 371-380.
[3] G.N. Watson, Theory of Bessel Functions. Cambridge University Press (1952).

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ## Take down policy

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

