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On a singular initial-value problem for the

Navier-Stokes equations

L. E. Fraenkel and M. D. Preston

This paper presents a recent result for the problem introduced eleven years
ago in [1], but described only briefly there. We shall prove the following, as far
as space allows. The vorticity ω of a diffusing vortex circle in a viscous fluid
has, for small values of a non-dimensional time, a second approximation ωA+ω1

that, although formulated for a fixed, finite Reynolds number λ and exact for
λ = 0 (then ω = ωA), tends to a smooth limiting function as λ ↑ ∞.

In §1 and §2 the necessary background and apparatus are described; §3
outlines the new result and its proof.

1 Introduction

In a certain weak sense, this paper is a continuation of [1]. However, no knowl-
edge of [1] is required if the reader is willing to accept that a vorticity field in
R3 (subject to mild restrictions, but not required to have any symmetry) has
a centroid of vorticity moving with a velocity U(t) that is given by an explicit
formula when the vorticity ω(·, t) throughout R3 is known. This result is essen-
tially due to Saffman [2]; it was generalized a little (and perhaps clarified and
sharpened) in [1].

We seek a solution of the Navier-Stokes equations with the initial condition
illustrated in Figure 1: at time zero, vorticity ω is concentrated on, and is
tangential to, a horizontal circle in R3. This initial vorticity induces an initial
velocity field that has infinite kinetic energy. (The circle then diffuses and moves
vertically, at first with infinite velocity; at all positive times t > 0 the kinetic
energy is finite.)

More precisely, consider incompressible fluid occupying all of R3 and at rest
at infinity there; let x := (x1, x2, x3) be such that the frame (Ox1, Ox2, Ox3)
moves, relative to the motionless fluid at infinity, with the velocity (0, 0, U(t))
of the centroid of vorticity, the axes remaining parallel to their initial positions.
The fluid velocity relative to this moving frame is written v(x, t) and the vorticity
is

ω := curl v = ∇× v.

Our time variable is t = νT , where T denotes physical time and ν is the
kinematic viscosity (a given positive constant). This choice of t simplifies the
heat operator in (1.3) below and simplifies most subsequent equations.

In writing U(t) = (0, 0, U(t)), we have restricted attention to the cylindrical
symmetry implied by the initial condition

ω(x, 0) = κδ(z)δ(r − a)eφ, (1.1)
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Figure 1: The initial condition.

in which the circulation κ and the radius a are given positive constants, cylindri-
cal co-ordinates (z, r, φ) are defined by x =: (r cosφ, r sinφ, z), the unit vector
eφ := (− sinφ, cosφ, 0) and δ denotes the Dirac generalized function.

In terms of the vorticity ω, the fluid velocity (relative to our moving frame)
is

v(x, t) = −(0, 0, U(t)) +∇×
∫
R3

1

4π|x− x′|
ω(x′, t)dx′. (1.2)

With (1.1) and (1.2) understood, we seek ω(x, t) such that(
∂

∂t
−∆

)
ω = −1

ν
((v.∇)ω − (ω.∇)v) in R3 × (0, t̄ ) (1.3)

for some small t̄ > 0.
Of course, it would be better to solve the problem (1.1) to (1.3) for all

t > 0, but this is beyond us because we seek rather explicit answers. There are
two excuses for considering only small t, or, rather, small t/a2, which is non-
dimensional. First, once a solution for t > 0 has been established, the general
theory of the Navier-Stokes equations implies a continuation of the solution to
all time, thanks to finite energy for t > 0, cylindrical symmetry and absence
of a swirl velocity (of a velocity component in the direction eφ). Secondly, if
the viscosity ν is small, which may be the case of primary interest, then the
requirement that νT/a2 be small does not demand that the physical time T be
small.

In view of (1.1), we write

ω(x, t) =: ω(z, r, t)eφ,

and seek the solution of (1.1) to (1.3) in the scalar form ω = ωA+ω1 +ρ, where
ωA is to be a first approximation for small t/a2 and ωA + ω1 is to be a second
(improved) approximation; the remainder ρ is to make ωA + ω1 + ρ an exact
solution and is to be o(ω1) as t ↓ 0. Here are some details.
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(i) The non-linear terms on the right-hand side of (1.3) are expected to be
small for small t/a2, because ω should be approximately constant and large on
small circles in a meridional plane (φ = constant) centred at (z, r) = (0, a), so
that v is approximately tangential to such circles and approximately of constant
magnitude on each of them. (If the initial vortex circle were a straight line,
then these non-linear terms would vanish.) If the right-hand member of (1.3)
is neglected, there results the formal approximation

ωA(z, r, t) =
κ

4πt
exp

(
−s

2

4t

)(a
r

)1/2
B
(ar

2t

)
, (1.4)

where s := {z2 + (r− a)2}1/2 and B is a known function such that B(y)→ 1 as
y →∞; in fact,

B(y) := (2πy)1/2e−yI1(y) (0 ≤ y <∞), (1.5)

where I1 is the modified Bessel function of the first kind and of order 1 (as in
[3], p.77).

(ii) The exponential in (1.4) prompts us to introduce inner variables

σ :=
s

(4t)1/2
, θ := tan−1

r − a
z

; (1.6)

then the amplitude κ/4πt in (1.4) prompts us to pose

ω1(z, r, t) = (4t)−1/2ω̃1(σ, θ). (1.7)

It suffices to consider ω1 in an inner region: t ↓ 0 with σ fixed, so that s ↓ 0,
because in an outer region: t ↓ 0 with s ≥ constant > 0, not only ωA, but also
ω, are exponentially small.

The rest of this paper is devoted mainly to description of ω̃1; the Reynolds
number

λ :=
κ

2πν
(1.8)

will be an important parameter.
(iii) The problem for the remainder ρ was sketched in [1]; the function

ρ(z, r, t) must be shown to exist and to be suitably small on the whole set
R × [0,∞) × (0, t̄ ]. Considerable progress has been made with this problem
since [1] was written, but this analysis (which can only estimate ρ) is too long
and too elaborate to be described here.

2 The perturbation ω1 for fixed Reynolds num-
ber λ

With ω1 as in (1.7), we adopt the notation

(a) (σ, θ) ∈ E := (0,∞)× (−π, π],

(b) ∆σ :=

(
∂

∂σ

)2

+
1

σ

∂

∂σ
+

1

σ2

(
∂

∂θ

)2

,

(c) (Aω̃1)(σ0, θ0) :=
1

2π

∫∫
E

log
1

|σeiθ − σ0eiθ0 |
ω̃1(σ, θ)σdσdθ,

(d) ωA,0(σ, t) :=
κ

4πt
e−σ

2

,

(2.1)
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in which Aω̃1 is a stream function describing the plane flow induced by vorticity
ω̃1; the approximation ωA,0 to ωA is that appropriate to t ↓ 0 with σ fixed. We
seek ω̃1(σ, θ) by linearizing (1.2) and (1.3) about ωA,0; the problem is then to
solve the equation

−
(

∆σ + 2σ
∂

∂σ
+ 2

)
ω̃1 + λ

1− e−σ
2

σ2

∂

∂θ
ω̃1 − 4λe−σ

2 ∂

∂θ
(Aω̃1)

=
κλ

πa
g(σ) cos θ on E,

(2.2)

with side conditions

ω̃1(σ, θ)→ 0 as σ ↓ 0 and as σ ↑ ∞. (2.3)

The function g is a known, smooth function such that

(a) g(σ) = O(σ) as σ ↓ 0 ;

(b) g(σ) = O
(
σ log σ e−σ

2
)

as σ ↑ ∞ ;

in fact,

(c) g(σ) := σe−σ
2

(
3

2

1− e−σ
2

σ2
+

(
log

1

σ
−
∫ ∞
σ

e−ρ
2

ρ
dρ

)
− 1

2
(γE + 1− log 2)

)
,

(2.4)

where γE = 0.5772... denotes Euler’s constant.

Theorem 2.1. For fixed λ ∈ [0,∞), the problem (2.2) and (2.3) for ω̃1 has a
pointwise, unique solution; in particular, ω̃1(·, θ) ∈ C∞[0,∞), ω̃1(0, θ) = 0 and

ω̃1(σ, θ) = o(e−σ
2/2) as σ ↑ ∞.

Here we have space only to sketch the main steps of the proof.
(i) Under the transformation

ω̃1(σ, θ) = e−σ
2/2q(σ, θ), (2.5)

equation (2.2) becomes

−
(
∆σ − σ2

)
q + λ

1− e−σ
2

σ2

∂q

∂θ
− 4λe−σ

2/2T
(

e−σ
2/2q

)
= λeσ

2/2f(σ, θ) on E,

(2.6)

where the operator T := (∂/∂θ)A and f(σ, θ) := (κ/πa)g(σ) cos θ. Let

(ξ, η) := σ(cos θ, sin θ), q∗(ξ, η) = q∗(σ cos θ, σ sin θ) := q(σ, θ). (2.7)

The condition in (2.3) for σ ↓ 0 will be implicit in what follows; it was im-
posed only to make q∗ decent at the origin, because we shall find that q is of
form qc(σ) cos θ + qs(σ) sin θ. Henceforth the functions q∗ and q will be identi-
fied wherever no confusion is possible. Similarly, the Cartesian-co-ordinate and
polar-co-ordinate representations of other functions will be identified.

(ii) In the first instance we establish a weak solution of (2.6). Let the real
Hilbert space Z be the completion of the set C∞c (R2), of real-valued, infinitely
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differentiable functions on R2 having compact support, in the norm implied by
the inner product

〈u, v〉Z :=

∫∫
R2

(
∇u · ∇v + σ2uv

)
dξdη. (2.8)

We shall say that q is a weak solution of (2.6) if (and only if) q ∈ Z and, for all
test functions u ∈ Z,

B(u, q) :=

∫∫
R2

(
∇u · ∇q + σ2uq + λ

1− e−σ
2

σ2
u
∂q

∂θ

−4λe−σ
2/2uT

(
e−σ

2/2q
))

dξdη = λ

∫∫
R2

eσ
2/2fudξdη.

(2.9)

(iii) Here is the key step of the proof.

Lemma 2.2. The bilinear form B satisfies, for all u and v in Z,

B(u, u) = ‖u‖2, (2.10)

|B(u, v)| ≤ (1 + kBλ)‖u‖‖v‖, (2.11)

where ‖ ·‖ = ‖ ·‖Z and kB is an absolute constant (independent of the variables,
parameters and functions in question).

Partial proof. We shall prove only that (2.10) holds for all functions in
C∞c (R2). The remainder of the proof is neither trivial nor immediate, but
it is of a kind familiar in Sobolev-space theory and its application to partial
differential equations.

In view of the definition of B in (2.9), we wish to prove that, for all ϕ ∈
C∞c (R2), ∫∫

R2

1− e−σ
2

σ2
ϕ
∂ϕ

∂θ
dξdη = 0

and ∫∫
R2

e−σ
2/2ϕT (e−σ

2/2ϕ) dξdη = 0.

The first of these is immediate because
∫ π
−π ϕ

∂ϕ
∂θ dθ = 0. For the second, let

A(e−σ
2/2ϕ) =: ψ; then e−σ

2/2ϕ = −∆ψ and we wish to prove that

−
∫∫

R2

(∆ψ)
∂ψ

∂θ
dξdη = 0.

Here it suffices to integrate over an open disc (or ball) B(0, R) with centre the
origin and radius R so large that B(0, R) contains the compact support of ∆ψ.
Thus the integral may be written

−
∫
∂B(0,R)

∂ψ

∂σ

∂ψ

∂θ
Rdθ +

∫∫
B(0,R)

∇ψ · ∂
∂θ
∇ψ dξdη.

That this last integral over B(0, R) vanishes is immediate as before. The
boundary integral is now independent of R and vanishes because ∂ψ/∂σ and
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∂ψ/∂θ are both O(R−1) as R ↑ ∞, by the definition (2.1)(c) of the operator A.

(iv) Existence and uniqueness of a weak solution. The forcing function in
(2.6) satisfies amply the condition∫∫

R2

eσ
2

f(σ, θ)2

1 + σ2
dξdη <∞, (2.12)

because f(σ, θ) = (κ/πa)g(σ) cos θ with g as in (2.4). This condition is sufficient
to make the forcing integral in (2.9), namely,

F (u) :=

∫∫
R2

eσ
2/2fudξdη, u ∈ Z,

a bounded linear functional evaluated at u. In other words, F belongs to the
dual space Z∗ of Z. The Lax-Milgram lemma now implies

Lemma 2.3. Equation (2.6) has a unique weak solution q and

λ

1 + kBλ
‖F‖Z∗ ≤ ‖q‖Z ≤ λ‖F‖Z∗ . (2.13)

(v) Regularity theory: pointwise estimates. We separate the variables σ and
θ. Let Y denote the real Hilbert space of functions y : [0,∞)→ R such that the
functions having values y(σ) cos θ or y(σ) sin θ belong to Z. It can be proved
that, equivalently, Y is the completion of the set

D := {ζ ∈ C∞c [0,∞) | ζ(0) = 0},

where the compact support of ζ may extend to the origin, in the norm implied
by the inner product

〈v, w〉Y :=

∫ ∞
0

(
v′w′ +

(
1

σ2
+ σ2

)
vw

)
σdσ,

where the (·)′ denotes differentiation.
It can then be proved that, if

(a)
Q(σ) := qc(σ) + iqs(σ), where (qc, qs) ∈ Y 2; (2.14)

(b) the operator T1 is defined by

(T1y)(σ) :=
1

2

∫ ∞
0

(
ρ

σ
∧ σ
ρ

)
y(ρ) ρdρ for all y ∈ Y, (2.15)

where a ∧ b denotes the lower envelope, or lesser, of a and b;
(c) for all test functions v ∈ Y ,∫ ∞

0

(
v′Q′ +

(
1

σ2
+ σ2

)
vQ− iλ1− e−σ

2

σ2
vQ+ i4λe−σ

2/2vT1(e−σ
2/2Q)

)
σdσ

= λ

∫ ∞
0

eσ
2/2fcv σdσ,

(2.16)
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where fc(σ) := (κ/πa)g(σ);
(d)

q(σ, θ) := qc(σ) cos θ + qs(σ) sin θ; (2.17)

then q satisfies (2.9), so that the right-hand member of (2.17) is the unique weak
solution of (2.6). Conversely, equations (2.9), (2.17) and (2.14) imply (2.16).

We now choose the test function in (2.16) to be a Green function of the
operator

−
(

d

dσ

)2

− 1

σ

d

dσ
+

(
1

σ2
+ σ2

)
,

which results from insertion of (2.17) into (2.6). It is legitimate to choose

v(σ) = K(ρ, σ) :=


1
σ sinh σ2

2 .
1
ρ exp

(
−ρ

2

2

)
if σ ≤ ρ,

1
σ exp

(
−σ

2

2

)
. 1ρ sinh ρ2

2 if σ ≥ ρ,
(2.18)

because K(ρ, ·) ∈ Y for fixed ρ ∈ (0,∞). Then (2.16) yields, after an integration
by parts, the integral equation

Q(ρ) =λ

∫ ∞
0

K(ρ, σ)eσ
2/2fc(σ)σdσ

+ iλ

∫ ∞
0

K(ρ, σ)

(
1− e−σ

2

σ2
Q(σ)− 4e−σ

2/2T1(e−σ
2/2Q)

)
σdσ.

(2.19)

Since Lemma 2.3 provides bounds for ‖qc‖Y and ‖qs‖Y , the regularity of Q,
and pointwise bounds, can be deduced from (2.19) and from Lemma 3.8 below
without great difficulty.

3 The perturbation ω1 as λ ↑ ∞
We return to equations (2.1) to (2.4) and define a stream function ψ̃1 := Aω̃1.
Then ω̃1 = −∆σψ̃1 and (2.2) becomes(

∆σ + 2σ
∂

∂σ
+ 2

)
∆σψ̃1 − λ

1− e−σ
2

σ2

∂

∂θ
∆σψ̃1 − 4λe−σ

2 ∂ψ̃1

∂θ

=
κλ

πa
g(σ) cos θ on E.

(3.1)

In view of (2.5) and (2.17), the function ψ̃1 has the form

ψ̃1(σ, θ) = ψ̃1c(σ) cos θ + ψ̃1s(σ) sin θ. (3.2)

We divide (3.1) by λ(1 − e−σ
2

)/σ2, write the cos θ and sin θ parts as separate
equations and define, similarly to (2.14),

Ψ(σ) = ψ̃1c(σ) + iψ̃1s(σ). (3.3)

7



With the notation

(a) ∆1 :=

(
d

dσ

)2

+
1

σ

d

dσ
− 1

σ2
,

(b) α(σ) :=
4σ2

eσ2 − 1
,

(c) β(σ) :=
σ2

1− e−σ2 ,

(d) E := ∆1 + 2σ
d

dσ
+ 2,

(3.4)

the problem for ω̃1 is to solve the equation

−iβ(σ)

λ
E(∆1Ψ) + {∆1 + α(σ)}Ψ = −i κ

πa
β(σ)g(σ), 0 < σ <∞, (3.5)

with the side conditions

as σ ↓ 0, (∆1Ψ)(σ)→ 0, Ψ′(σ) = O(1) and Ψ(σ) = O(σ);

as σ ↑ ∞, (∆1Ψ)(σ)→ 0, Ψ′(σ) = O(σ−2) and Ψ(σ) = O(σ−1).
(3.6)

Here the conditions on ∆1Ψ come from (2.3); the conditions on Ψ′ and Ψ are
implied by Ψ = −T1(∆1Ψ), with T1 as in (2.15), and by conditions on ∆1Ψ
much weaker than those in Theorem 2.1.

For λ ↑ ∞, equation (3.5) with (3.6) seems to form a singular perturbation
problem, since a small parameter multiplies the highest derivatives. Surpris-
ingly, this turns out not to be the case; nevertheless there is work to be done.

Apparently, if Ψ0(σ) := limλ↑∞Ψ(σ;λ) exists, then it must satisfy

{∆1 + α(σ)}Ψ0 = −i κ
πa
β(σ)g(σ), 0 < σ <∞, (3.7)

and the six side conditions (3.6). We proceed to explore this problem.

Lemma 3.1. The equation

{∆1 + α(σ)}u = 0, 0 < σ <∞, (3.8)

has solutions

U(σ) :=
1

σ

(
1− e−σ

2
)

(3.9)

and

V (σ) :=
1

σ
− U(σ) log

(
eσ

2

− 1
)
. (3.10)

Here U is an eigensolution (with eigenvalue 0) in that it satisfies not only (3.8)
but also all six side conditions (3.6).

Proof. This is a matter of direct calculation.

Lemma 3.2. The forcing function in (3.7) is orthogonal to the eigensolution
U in the sense that ∫ ∞

0

U(σ)β(σ)g(σ)σdσ = 0. (3.11)
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Hence the problem (3.7) and (3.6) has a (non-unique) solution

Ψ0(σ) = c0U(σ) + i
κ

2πa

∫ σ

0

{U(ρ)V (σ)− U(σ)V (ρ)}β(ρ)g(ρ) ρdρ (3.12)

for every c0 ∈ C.

Proof. Again this is a matter of direct calculation, but the calculation is not
short. With β defined by (3.4)(c) and g by (2.4)(c), the analytic proof of the
orthogonality condition (3.11) seens to require a page. (However, with any
machine capable of numerical integration, numerical verification of (3.11) is
quick and easy.) We note that Liouville’s formula for Wronskians yields

U(σ)V ′(σ)− U ′(σ)v(σ) = − 2

σ
, 0 < σ <∞. (3.13)

The following lemma is also relevant.

Lemma 3.3. Define, for suitable functions f ,

(Gf)(σ) :=
1

2

∫ σ

0

{U(ρ)V (σ)− U(σ)V (ρ)} f(ρ) ρdρ, 0 < σ <∞, (3.14)

and

J(f) :=

∫ ∞
0

V (ρ)f(ρ) ρdρ. (3.15)

Assume that f ∈ C[0,∞), that
∫∞
0
U(ρ)f(ρ) ρdρ = 0, that f(σ) = O(σ) as σ ↓ 0

and that f(σ) = O(σme−σ
2

), with m ≥ 1, as σ ↑ ∞. Then

{∆1 + α(σ)} (Gf)(σ) = −f(σ) in (0,∞); (3.16)

as σ ↓ 0,
(Gf)(σ) = O(σ3) and (∆1Gf)(σ) = O(σ); (3.17)

as σ ↑ ∞,

(Gf)(σ) = −1

2
J(f)σ−1 +O(σme−σ

2

), (3.18)

(Gf)′(σ) =
1

2
J(f)σ−2 +O(σm−1e−σ

2

), (3.19)

(Gf)′′(σ) = −J(f)σ−3 +O(σme−σ
2

), (3.20)

and
(∆1Gf)(σ) and (EGf)(σ) are O(σme−σ

2

). (3.21)

Proof. Equation (3.16) follows from the definition of Gf and two differentiations.
That (Gf)(σ) = O(σ3) as σ ↓ 0 also follows from the definition; then the
differential equation (3.16) shows that (∆1Gf)(σ) = O(σ) as σ ↓ 0. In order to
prove (3.18) and (3.19), we note that U(σ) ∼ 1/σ and V (σ) ∼ −σ as σ ↑ ∞,
whence∫ σ

0

U(ρ)f(ρ) ρdρ =

(∫ ∞
0

−
∫ ∞
σ

)
U(ρ)f(ρ) ρdρ = 0 +O(σm−1e−σ

2

),∫ σ

0

V (ρ)f(ρ) ρdρ =

(∫ ∞
0

−
∫ ∞
σ

)
V (ρ)f(ρ) ρdρ = J(f) +O(σm+1e−σ

2

),
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from which (3.18) and (3.19) follow.
The differential equation (3.16) and the estimate (3.18) of Gf imply that

(∆1Gf)(σ) = O(σme−σ
2

) as σ ↑ ∞. What has been proved now implies the
estimates of (Gf)′′(σ) and (EGf)(σ) for σ ↑ ∞.

The result (3.12) prompts two questions. How (if at all) is c0 to be evaluated?
How smooth is Ψ0? Analogues of both these questions will have to be answered
more generally for each function Ψn in an identity

Ψ(σ;λ) =

N∑
n=0

λ−nΨn(σ) +RN (σ;λ).

Here we anticipate later results and note that, with J as in (3.15),

c0 = i
κ

2πa
J(βg) = i

κ

a
(0.11527...). (3.22)

This follows from the equation governing Ψ1, which requires an orthogonality
condition involving Ψ0.

Because of the function Q =: Q(·;λ) defined by (2.14) and (2.16), we now
define Q0 = q0c + iq0s by

Q0(σ) := −eσ
2/2(∆1Ψ0)(σ)

= eσ
2/2
(

4c0σe−σ
2

− α(σ)(Gh0)(σ)− h0(σ)
)
,

(3.23)

where h0 := −i(κ/πa)βg. Evidently q0c = 0.
It will emerge from Theorem 3.5 that Q0 is the limit of Q(·;λ) as λ ↑ ∞. In

Figures 2 and 3, Q0 is compared with Q(·;λ) for large λ; these values of Q(·;λ)
were obtained by numerical solution of the equation

−(∆1 − σ2)Q− iλ1− e−σ
2

σ2
Q+ i4λe−σ

2/2T1(e−σ
2/2Q) =

κλ

πa
eσ

2/2g(σ). (3.24)

This equation is equivalent to (2.6), because of (2.17); it is also the pointwise
form of (2.16); with the condition that Q(σ)→ 0 as σ ↓ 0 and as σ ↑ ∞, it has
a pointwise, unique solution. Figures 2 and 3 are consistent with the result of
Theorem 3.5 that, as λ ↑ ∞,

qc(·;λ) = O(λ−1) and qs(·;λ)− q0s = O(λ−2).

Definition. We shall say that a function ϕ : [0,∞)→ C is satisfactory on [0, k)
if (and only if) there exist coefficients bn and a number k > 0 such that

ϕ(σ) :=

∞∑
n=0

bnσ
2n+1 for 0 ≤ σ < k.

Lemma 3.4. (i) The function βg is satisfactory on [0, (2π)1/2).
(ii) If f is satisfactory on [0, (2π)1/2), then so is Gf .

Proof. (i) We note that

β(σ)g(σ) = σe−σ
2

(
3

2
+

σ2

1− e−σ2

(∫ 1

σ

1− e−ρ
2

ρ
dρ+ C0 + C1

))
,

10



Figure 2: The perturbations for qc(α) and qs(α) for λ = 103/2π and λ =∞.

Figure 3: The perturbations for qc(α) and qs(α) for λ = 104/2π and λ =∞.

where

C0 := −
∫ ∞
1

e−ρ
2

ρ
dρ, C1 := −1

2
(γE + 1− log 2) ,

and that the function w defined by

w(z) =
z

1− e−z
if z ∈ C \ {0} \ {poles} and w(0) = 1,

is holomorphic for |z| < 2π.
(ii) Let

W (σ) :=
1

σ
− U(σ) log

eσ
2 − 1

σ2
,

where the limiting value of (eσ
2 − 1)/σ2 is taken at σ = 0. Then

V (σ) = W (σ)− 2U(σ) log σ

11



and

(Gf)(σ) =
1

2
W (σ)

∫ σ

0

U(ρ)f(ρ) ρdρ− 1

2
U(σ)

∫ σ

0

W (ρ)f(ρ) ρdρ

+ σ2U(σ)

∫ 1

0

(log t)U(σt)f(σt) tdt.

The functions with values σ2W (σ), U(σ) and f(σ) are all satisfactory on [0, (2π)1/2),
so that Gf inherits this property.

Theorem 3.5. The perturbation ω̃1 has a representation

ω̃1(σ, θ;λ) = cos θ
{
λ−1ζ1(σ) + λ−3ζ3(σ) + ζ5(σ;λ)

}
+ sin θ

{
ζ0(σ) + λ−2ζ2(σ) + ζ4(σ;λ)

} (3.25)

in which, for m = 0, 1, 2, 3 and n = 4, 5,
(a) the functions ζm and ζn(·;λ) belong to C∞[0,∞) and are satisfactory on
[0, (2π)1/2);

(b) as σ ↑ ∞, ζm(σ) = O(σ2m+4e−σ
2

) and ζn(σ;λ) = o(e−σ
2/2) for fixed λ;

(c) as λ ↑ ∞, ζn(σ;λ) = O(λ−n), uniformly over σ ∈ [0,∞).

The proof will be by means of further lemmas. Let Ψ := ψ̃1c + iψ̃1s, as
before, and let Ω := −∆1Ψ, so that Ω = ω̃1c + iω̃1s. Our plan is to construct
identities

Ψ(σ;λ) =

N∑
n=0

λ−nΨn(σ) +RN (σ;λ), (3.26)

Ω(σ;λ) =

N∑
n=0

λ−nΩn(σ) + rN (σ;λ), (3.27)

in which estimates of the remainders RN and rN can be crude. In fact, we
shall prove only that RN and rN are O(λ1−N ), but this is sufficient for (3.25)
if N ≥ 6.

The terms of the expansion of Ψ are to satisfy

{∆1 + α(σ)}Ψn = hn, n = 0, 1, ..., N, (3.28)

where
h0(σ) = −i κ

πa
β(σ)g(σ), (3.29)

hn := iβE(∆1Ψn−1) for n = 1, ..., N, (3.30)

and

−iλ−1β(σ)E(∆1RN ) + {∆1 + α(σ)}RN = iλ−N−1β(σ)E(∆1ΨN ); (3.31)

then the right-hand member of (3.26) will satisfy the equation (3.5) governing
Ψ.

Since Ω = −∆1Ψ and Ψ = T1Ω, this scheme corresponds to

−Ωn + α(σ)T1Ωn = hn, n = 0, 1, ...., N, (3.32)

iλ−1β(σ)ErN − rN + α(σ)T1rN = −iλ−N−1β(σ)EΩN , (3.33)

where hn = −iβ(σ)EΩn−1 for n = 1, ..., N .
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Lemma 3.6. In order that equation (3.28), with the side conditions (3.6), have
a solution, it is necessary that∫ ∞

0

U(σ)hn(σ)σdσ = 0, n = 0, 1, ..., N ; (3.34)

equivalently, that ∫ ∞
0

σ2g(σ)dσ = 0 if n = 0, (3.35)∫ ∞
0

σ2(EΩn−1)(σ)dσ = 0 if n = 1, ..., N. (3.36)

Proof. Let M := ∆1 + α(σ). Assume that u and v are in C2(0,∞), that
σu(σ)v′(σ) → 0 as σ ↓ 0 and as σ ↑ ∞ and that σu′(σ)v(σ) → 0 as σ ↓ 0 and
as σ ↑ ∞. Then integration by parts yields∫ ∞

0

u(Mv)σdσ =

∫ ∞
0

(Mu)v σdσ. (3.37)

Now let u = U and v = Ψn. If Ψn satisfies (3.6), then the foregoing hypotheses
are satisfied. If also MΨn = hn, then∫ ∞

0

Uhn σdσ =

∫ ∞
0

U(MΨn)σdσ =

∫ ∞
0

(MU)Ψn σdσ = 0. (3.38)

Equations (3.35) and (3.36) follow from the identity U(σ)β(σ) = σ and from
the definitions of hn.

If hn satisfies not only the orthogonality condition (3.34), but also the other
hypotheses on f in Lemma 3.3 (and this will be the case), then the differential
equation (3.28), with side conditions (3.6), has solutions

Ψn = cnU − Ghn, n = 0, 1, ..., N, (3.39)

whence

Ωn(σ) = −(∆1Ψn)(σ) = 4cnσe−σ
2

− α(σ)(Ghn)(σ)− hn(σ), (3.40)

for every cn ∈ C.
In order to evaluate c0, ..., cN and in order to discuss rN , we extend the def-

inition (3.30) to hN+1. Recall from Lemma 3.2 that for n = 0 the orthogonality
condition (3.34) has already been established.

Lemma 3.7. For n = 0, 1, ..., N , the necessary condition
∫∞
0
Uhn+1σdσ = 0

implies that cn = − 1
2J(hn), where J(·) is defined by (3.15).

Proof. Extended to ΩN , the orthogonality condition (3.36) states that, for n =
0, 1, ..., N ,

0 =

∫ ∞
0

σ2(EΩn)dσ = −4

∫ ∞
0

σ2Ωndσ,

by an integration by parts for which it suffices that Ωn ∈ C2(0,∞), that Ω′n(σ) =
o(σ−2) both as σ ↓ 0 and as σ ↑ ∞, that Ωn = o(σ−1) as σ ↓ 0 and that
Ωn = o(σ−3) as σ ↑ ∞.
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Next, we observe that, if Ψn ∈ C2(0,∞) and if both σ2Ψ′n(σ) and σΨn(σ)
have limits both as σ ↓ 0 and as σ ↑ ∞, then

0 =

∫ ∞
0

σ2(∆1Ψn)dσ =
[
σ2Ψ′n − σΨn

]∞
0
,

in which limiting values are implied on the right-hand side. In view of (3.39),
the orthogonality condition is now

cn
[
σ2U ′ − σU

]∞
0

=
[
σ2(Ghn)′ − σ(Ghn)

]∞
0
.

Referring to the definition of U in (3.9) and to the description of Gf in Lemma
3.3, one is led to cn = − 1

2J(hn).

It is time to relate the ζm and ζn(·;λ) in Theorem 3.5 to the Ωn and
rN in (3.27). We noted after (3.23) that Q0 is imaginary. Since Ω(σ) =
exp(−σ2/2)Q(σ), the function Ω0 is imaginary. Then, since h1 = −iβEΩ0,
the function h1 and the coefficient c1 are real. Equation (3.40) shows that Ω1

is real. An easy induction now shows that Ωn is imaginary if n is even and Ωn
is real if n is odd.

Accordingly, if N is odd, then

ζ1 = Ω1, ζ3 = Ω3 and ζ5(·;λ) = λ−5Ω5 + ...+ λ−NΩN + Re rN (·;λ),

ζ0 = −iΩ0, ζ2 = −iΩ2 and ζ4(·;λ) = −i
(
λ−4Ω4 + ...+ λ−N+1ΩN−1

)
+ Im rN (·;λ).

(3.41)

If N is even, then there is a similar array.
Because of the explicit formula (3.40) for Ωn (with hn = −iβEΩn−1, with

cn = − 1
2J(hn) and with the operator G described by Lemmas 3.3 and 3.4),

enough may have been said about Ωn to justify the claims made for ζ0 to ζ3 in
Theorem 3.5. For example, the result

ζm(σ) = O(σ2m+4e−σ
2

) as σ ↑ ∞ (3.42)

follows for m = 0 from β(σ) ∼ σ2 and from the overestimate g(σ) = O(σ2e−σ
2

),

which imply that h0 and Ω0 are O(σ4e−σ
2

). Then repeated use of hn+1 =
−iβEΩn leads to (3.42).

On the other hand, the remainder rN requires further discussion. Under the
transformations

rN (σ) = e−σ
2/2PN (σ) = e−σ

2/2 {pNc(σ) + ipNs(σ)} , (3.43)

pN (σ, θ) := pNc(σ) cos θ + pNs(σ) sin θ, (3.44)

equation (3.33) becomes

−(∆σ − σ2)pN +
λ

β(σ)

∂

∂θ
pN − 4λe−σ

2/2T (e−σ
2/2pN ) = λ−Neσ

2/2fN (σ, θ),

(3.45)
where

fN (σ, θ) = Re
{

(EΩN )(σ)e−iθ
}
. (3.46)
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The operator on the left-hand side of (3.45) is that in (2.6); as in §2, it follows
that equation (3.45) has a unique weak solution bounded by

‖pN‖Z ≤
κ

a
ANλ

−N , (3.47)

where AN depends only on N .
Choosing the test function in the definition of weak solution as in (2.18), we

obtain the equation

PN (ρ) = λ−N
∫ ∞
0

K(ρ, σ) eσ
2/2(EΩN )(σ)σdσ

+ iλ

∫ ∞
0

K(ρ, σ)

(
PN (σ)

β(σ)
− 4e−σ

2/2T1(e−σ
2/2PN )

)
σdσ.

(3.48)

This leads without difficulty to a pointwise solution PN ∈ C2[0,∞) such that
PN (0) = 0 and such that PN (σ) → 0 as σ ↑ ∞. (Correspondingly, rN (σ) is
o(exp(−σ2/2)) as σ ↑ ∞.) Equation (3.48) and the bound (3.47) now imply
that PN (σ;λ) is O(λ−N+1) uniformly over σ ∈ [0,∞). Moreover, the equation

−(∆1 − σ2)PN −
iλ

β(σ)
PN + 4iλe−σ

2/2T1(e−σ
2/2PN ) = λ−Neσ

2/2EΩN ,

may be written as

P ′′N = − 1

σ
P ′N +

(
1

σ2
+ σ2

)
PN − ...− λ−Neσ

2/2EΩN .

The right-hand member of this is in C1[k,∞) for any k > 0, say in C1[1,∞).
Therefore P ′′N ∈ C1[1,∞). Repetition of this step shows that PN ∈ C∞[1,∞).

It remains to prove that PN is better than C2 at and near the origin. We
return to equation (3.33) for rN and to the equation

EΩ +
iλ

β(σ)
Ω− 4iλe−σ

2

T1Ω = −κλ
πa
g

for Ω = ω̃1c + iω̃1s; our final lemma applies to both rN and Ω.

Lemma 3.8. Assume that the equation

Eu+
iλ

β(σ)
u− 4iλe−σ

2

T1u = λf (3.49)

has a solution u ∈ C2[0,∞) such that u(0) = 0 and such that u(σ) is o(exp(−σ2/2))
as σ ↑ ∞. Assume also that u is unique because it is the transformed version of
a solution in the Hilbert space Z.

Then u is satisfactory on [0, (2π)1/2) whenever f has this property.

Proof. We shall prove that there are coefficients an such that

u(σ) =

∞∑
n=0

anσ
2n+1 for 0 ≤ σ < b

if b ∈ (0, (2π)1/2). Here we are not constructing a series solution ab initio in
the usual way; rather, we are establishing a regularity property of a known,
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unique solution. Therefore we may regard a0 = u′(0) and
∫∞
0
udσ as known;

we proceed to calculate the other coefficients in terms of these. The equation is
satisfied, subject to convergence of the series, if for n = 0, 1, 2, ...

4(n+ 1)(n+ 2)an+1 = −4(n+ 1)an −
n∑
j=0

(Bn−jaj +An−jτj) + λfn, (3.50)

where

Bm =
iλ(−1)m

(m+ 1)!
, Am =

4iλ(−1)m+1

m!
,

τ0 =
1

2

∫ ∞
0

udσ, τm = −1

4

am−1
m(m+ 1)

for m ≥ 1,

and

f(σ) =

∞∑
n=0

fnσ
2n+1 for 0 ≤ σ < (2π)1/2.

Hence there is a constant C = C(b) such that |fn| ≤ Cb−2n.
Now, for every p ∈ {1, 2, 3, ...} there is a number Γp = Γp(b, λ) such that

|an| ≤ Γpb
−2n for n = 0, 1, ..., p. We may suppose that Γp ≥ κ/α. Then (3.50)

implies that
|an+1| ≤ Γpb

−2n−2ϕ(n, λ) for n ≤ p,

where

ϕ(n, λ) :=
2π

4(n+ 1)(n+ 2)

(
4(n+ 1) + λ(1 + π)e2π +

4λ|τ0|(2π)n

n!
+ λC

)
.

For fixed λ, we choose p so large that ϕ(p, λ) ≤ 1 and so large that ϕ(n, λ)
decreases for n ≥ p. Then |am| ≤ Γpb

−2m not merely for m ≤ p, but also for
m ≥ p+ 1.
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