
        

Citation for published version:
Mattsson, T, Lewis, WJT, Chew, YMJ & Bird, MR 2015, 'In situ investigation of soft cake fouling layers using
fluid dynamic gauging', Food and Bioproducts Processing, vol. 93, pp. 205-210.
https://doi.org/10.1016/j.fbp.2014.09.003

DOI:
10.1016/j.fbp.2014.09.003

Publication date:
2015

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161913881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.fbp.2014.09.003
https://researchportal.bath.ac.uk/en/publications/in-situ-investigation-of-soft-cake-fouling-layers-using-fluid-dynamic-gauging(bc9254a5-b863-4467-9be8-00d8c28fdaab).html


IN SITU INVESTIGATION OF SOFT CAKE FOULING LAYERS USING 

FLUID DYNAMIC GAUGING 

 
Tuve Mattsson1,2, William J. T. Lewis3*, Y.M. John Chew3, Michael R. Bird3 

1 Department of Chemical & Biological Engineering, Chalmers University of Technology, SE-

412 96 Gothenburg, Sweden. 
2 Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University 

of Technology, SE-100 44 Stockholm, Sweden. 
3 Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, 

UK 

*wjtl20@bath.ac.uk 

 

 

ABSTRACT 

 

Cake fouling is a phenomenon contributing to flux decline during cross-flow filtration. Its 

behaviour is also difficult to predict, especially for challenging separations wherein organic 

materials often form compressible cakes with high resistance. In this study Kraft lignin was 

used as a model material for organic foulants in cross-flow microfiltration experiments, and a 

non-contact fluid dynamic gauging (FDG) technique in pressure-mode configuration was 

used to monitor the cake fouling layers in-situ. A novel and enhanced FDG equipment was 

used; enabling an increased accuracy of the fouling layer thickness measurements and 

capable of producing higher fluid shear stresses on the cake layer for strength measurements. 

Using FDG, very thin fouling layers were observed; in addition, FDG was used to investigate 

their cohesive and adhesive strengths, showing that over a 10-fold increase in fluid shear 

stress was required to remove foulant closer to the membrane compared with that on the 

surface of the cake. 

 

INTRODUCTION 

 

For solid-liquid separation, filtration is often the preferred method and is widely utilised in a 

range of industrial sectors. Advantages of filtration compared to other methods such as drying 

include a reduced energy consumption and a lower risk of thermal damage to the separated 

materials, which is of particular importance in food and beverage processing. Filtration can be 

run in several different modes; but membrane cross-flow filtration is particularly suitable for 

difficult-to-filter materials as the build-up of the high resistance filter cake on the membrane 

surface is counteracted by fluid shear imposed by cross-flow velocity (Belfort et al. 1994). 

Despite this, undesirable flux decline due to cake fouling is still one of the main issues in 

cross-flow filtration. Therefore fundamental understanding of cake fouling phenomena, 

especially for difficult-to-filter organic materials, is crucial for the design of efficient 

separation operations.  

The effect of fouling during cross-flow filtration is readily apparent and is often investigated 

by measuring the flux decline under a constant transmembrane pressure (TMP), or 

alternatively, by examining increases in TMP under constant flux operation. For an 



understanding of the underlying phenomena however, local properties need to be ascertained. 

One challenge presented in the investigation of cake fouling is the measurement of the height 

of the cake layer, which is preferably done in situ with limited disturbance to the layer. Chen 

et al. (2004) highlighted several existing non-invasive methods including Ultrasonic Time-

Domain Reflectometry, Nuclear Magnetic Resonance, Laser Triangulometry and Direct 

Observation. A relatively new approach is Fluid Dynamic Gauging (FDG), which can 

estimate the thickness of cake layers during cross-flow filtration (Jones et al., 2012), and can 

also be used in a destructive mode to estimate local strength properties throughout the 

different layers of the cake (Lewis et al., 2012).  

In this study, an enhanced FDG equipment is used to study soft cake fouling layers during 

cross-flow microfiltration of an organic model material, a Kraft lignin, which forms cohesive 

fouling layers and cakes which exhibit some degree of compressibility. Previous studies have 

concentrated on ultrafiltration under turbulent conditions (Jones et al., 2012), or 

microfiltration of near ideal particle suspensions (Lister et al., 2011). The use of lignin in this 

study demonstrates the complex behaviour of an organic material, which presents problems 

similar to those seen during the microfiltration of food based materials.  

 

EXPERIMENTAL 

 

Material 

 

The model fouling material used in this study is a washed Lignoboost™ softwood Kraft lignin 

(Öhman et al., 2008); an organic substance that forms cohesive fouling layers. Lignoboost™ 

lignin is a chemically modified lignin precipitated under acidic conditions from the black 

liquor in the Kraft process and contains different phenyl propane structural elements. As Kraft 

lignin is known to be alkali-soluble (e.g. Öhman et al., 2007), the pH of the investigated 

suspensions was kept below 4 through addition of sulphuric acid to ensure that only 

precipitated lignin was present during experiments. The solid density of the lignin particles 

was measured at 1350 kg m-3 using a gas pycnometer (AccuPyc II 1340, Micromeritics). The 

size distribution of the lignin suspension varied noticeably between experiments, and was 

characterised each time by laser diffraction (Mastersizer X, Malvern). Each experiment was 

performed with a total volume of 15 litres of 0.02 vol% suspension in reverse osmosis water 

at pH 3.7 (adjusted using sulphuric acid) at ambient temperature (16-19°C). The suspension 

was prepared right before each experiment from a stock slurry of 1-2 vol% lignin that had 

been stirred for at least 48 h to ensure sufficient dispersion. 

The suspension was filtered using a hydrophilic regenerated cellulose membrane of 0.2 µm 

nominal pore size (RC58, Whatman), which was wetted prior to use. This pore size was 

selected so that all lignin particles were rejected by the membrane and cake formation was the 

predominant fouling mechanism. 

Cross-flow filtration apparatus 

 



The basic technique of pressure-mode fluid dynamic gauging is explained fully elsewhere 

(Lewis et al. 2012).Thickness measurements are performed by measuring the pressure drop 

through a nozzle, shown in Figure 1 while a controlled flow of liquid, 𝑚𝑔, is drawn into it. 

The pressure drop is used to estimate the nozzle clearance, ℎ. At a known clearance, ℎ0, from 

the surface the thickness reading, 𝛿, is calculated using 𝛿 = ℎ0 − ℎ. The apparatus used in 

this work was adapted and improved from that previously reported for cross-flow 

microfiltration by Lewis et al. (2012). Here, a smaller nozzle geometry (inner tube diameter, d 

= 3 mm, nozzle opening diameter dt = 0.5 mm) was used, the dimensions of which are shown 

in Figure 1. This conferred the following advantages over its predecessor: 

 

1. More accurate thickness measurements 

2. Ability to study cake response to fluid shear stresses in excess of 50 Pa 

3. Smaller footprint in the flow cell 

 

 
 

Figure 1. Schematic representation of the FDG nozzle, where ∆𝑝 is used to indicate the clearance, ℎ at an 

induced flowrate, 𝑚𝑔. Dimensions are in mm.  

 

This nozzle was mounted on to a purpose-built polycarbonate test section, a schematic for 

which is shown in Figure 2. The test section housed a 250 mm flow channel of 15 mm square 

cross-section. A flat sheet membrane was mounted on to the bottom surface of this channel 

within a stainless steel cassette, which held it tightly against a porous spacer. The resulting 

flow cell within the test section contained a 150×15 mm porous surface set 1 mm lower than 

the rest of the flow cell, with tapered edges down to this point. The use of this setup allowed 

for facile removal of the membrane after experiments while avoiding loss of surface fouling. 

The bottom of the test section contained a small channel to collect permeate.  

 

Thickness readings were determined by drawing fluid through the gauge using a syringe 

pump (Touchscreen 100 series, Cole-Parmer), whilst measuring pressure drop using a 

differential pressure transducer, dP1 (PX26-001DV, Omega Engineering). The gauge position 

was controlled from a PC by means of a stepper motor attached to a linear guide rail 

(KR1501AM, THK). The position was measured to an accuracy of ±0.5 μm by a linear 

variable differential transformer (SM-series LVDT, RS Components). The syringe pump was 

also connected to the PC, allowing fully remote control and automation of thickness readings.  



Each thickness reading is also coupled with an indication of the fluid shear stress, 𝜏𝑤, 

imposed on the cake surface by gauging flows, which is a function of the gauge height, h. 

This is given by (Middleman 1998): 

 
𝜏𝑤 = 𝜇 (

6𝑚𝑔

𝜌ℎ2
)

1

𝑑𝑡
  (1) 

 

where 𝜇 is the viscosity of the fluid, 𝑚𝑔 is the mass flow of fluid through the gauge, and 𝜌 is 

the density of the fluid. This value represents the greatest shear stress applied during FDG 

readings, which occurs at the inner edge of the nozzle rim (a radial distance of dt/2 from the 

centreline) (Chew et al., 2004). 

 

 

Figure 2. Schematic representation of polycarbonate test section. Dimensions are in mm. The two 

pressure transducers dP1 and dP2 are used for determination of TMPand for FDG measurements 

respectively. 

The test section was mounted in the flow loop shown in Figure 3, which was operated in feed 

and bleed mode. Fluid was circulated from a feed tank through the test section by a 

centrifugal pump (P16, Charles Austen). A 500 mm entry section of 15 mm square duct was 

installed immediately prior to the test section to ensure laminar flow on entry. The cross-flow 

velocity was controlled using valves V2 and V5, and measured by a variable area flowmeter 

(1100-series Rotameter, KDG). Transmembrane pressure was controlled by a needle valve 

(V8) and measured by a differential pressure transducer, dP2 (PX26-005DV, Omega 

Engineering). Permeate was collected on an electronic balance (FX-3000i, A&D) which was 

connected to the PC for flow measurement. 

 



 

Figure 3. Schematic representation of the filtration rig. 

Calibration for thickness measurements 

Thickness measurements were made by interpolating from a calibration plot of ∆𝑝 vs. ℎ/𝑑𝑡. 

In previous work (Lewis et al. 2012) this plot had been determined by taking measurements 

over a clean stainless steel surface. For this apparatus, however, a plot was determined by 

computational fluid dynamics (CFD) simulations (not detailed in this work). This method was 

used because the position of the gauge at which ℎ0 = 0 could not be set accurately enough 

against a solid surface.  

 

An additional complication of performing FDG over membrane surfaces is that the position of 

the membrane can shift between experiments. In order to ensure the accuracy of thickness 

readings this must be taken into account. To correct for this, measurements of ∆𝑝 vs. ℎ/𝑑𝑡 

over a clean membrane surface (where ℎ = ℎ0) were made in an automated sequence 

controlled by the PC. This included positioning of the gauge at various intervals of ℎ/𝑑𝑡 and, 

with the syringe pump drawing fluid through the nozzle, taking a measurement of ∆𝑝 for 

each. By inspection of this data when compared with the calibration plot, it was possible to 

identify the offset position of the membrane. This is demonstrated in Figure 4 wherein the 

same data is plotted against the CFD-derived calibration curve both before and after adjusting 

for offset. The entire process was built into the control system for this apparatus, allowing an 

offset to be adjusted prior to fouling experiments.  

 

In this new setup, thickness readings with an accuracy of ±2.3 μm were achievable given an 

error in ∆𝑝 of 0.25 mbar. At lower clearances, a resolution down to 0.5 μm could be achieved, 

where it is limited by the accuracy of the LVDT. The automation of the calibration process 

and gauge movements greatly improved the speed at which experiments could be achieved 

compare with the earlier setup (Lewis et al. 2012). With further adaptions to the control 

program it should be possible to fully automate thickness measurements as well. 



 

Figure 4. Calibration data profile for a membrane surface before (open symbols) and after (closed 

symbols) adjusting for offset. The solid line represents a calibration plot obtained from CFD. 

Experimental conditions 

 

Filtration experiments were run in feed and bleed mode where no more than 0.9 L filtrate was 

withdrawn and the recovered cakes consisted of 1-3% of the total volume of lignin in the 

starting suspension. A TMP of 100 mbar was applied in all the experiments. The same cross-

flow velocity (u = 0.1 m s-1) was used in all of the experiments, corresponding to a Reynolds 

number, Reduct = 1550. A fresh membrane was used in each experiment, and the position of 

the mounted membrane was calibrated using the gauge during a clean water filtration running 

at the set operating conditions. This procedure took about10 min of which the automated 

calibration was completed within 3 min. After calibration, the filtration was commenced by 

adding 1 litre of diluted stock slurry directly to the feed tank. During the measurements of the 

cake layer, data was only collected while the gauge was at most h = 125 μm above the 

estimated position of the cake layer, as it is a principle of FDG that pressure changes become 

significant where h/dt ≤ 0.25 (Tuladhar et al., 2000). Thickness readings were made at the 

greatest clearance possible to reduce fluid shear stress on the surface of the cake which 

induces its removal. 

Filtrations were commenced with the gauge retracted over 10 mm from the surface and no 

gauging flow active to avoid interference with cake growth. Because the stress imposed by 

the gauging flows on the cake during thickness measurements can cause some cake removal 

and/or impede its growth, successive thickness measurements were not taken during a single 

filtration. Instead each experiment was run up to a specific end-point time: 750, 1000, and 

2000 s respectively, in order to attain a time-related estimation for cake growth. For each end-

point time FDG was used to estimate cake thickness, then to perform destructive strength 

measurements by eroding the cake layer-by-layer. For each new strength measurement the 

probe was kept stationary until a stable value was recorded, the time required for the 

stabilisation, about 15 s, was similar at all positions with the exception of the very last 

measurements close to the membrane. The whole process took less than 400 s, with the 

thickness measurement completed within100 s after the end-point time. Cross-flow filtration 

carried on during this process; however, due to the shear stress imposed by FDG on the cake 

surface, it is unlikely that further fouling in this position would occur.  



RESULTS & DISCUSSION 

 

Between 6 and 7 experiments were performed for each end-point filtration time, from these 

experiments between 3 and 4 were deemed viable for further analysis based on their similar 

starting (clean water) flux, and concordance between the flux decline curves.  

Characterisation 

 

Examples of particle size distributions of the lignin suspensions are shown in Figure 5, 

representing three cases: a low, medium and high average particle size. Characteristic values 

for the span are summarised in Table 1. 

 
Figure 5. Size distribution of the lignin particles/agglomerates based on volume for three samples. The size 

distribution was measured using laser diffraction. 
 
Table 1. Size distribution of the lignin particles/agglomerates from Figure 5.  

D(x) indicates that x % in volume of the particles are smaller than the value stated, while D[3,2] denotes the 

surface area moment mean and D[4,3] the volume moment mean respectively. 

 D(10) (μm) D(50) (μm) D(90) (μm) D[3,2] D[4,3] 

Low 1.7 5.4 24.8 3.7 11.0 

Medium 1.8 6.1 35.3 4.2 14.3 

High 1.9 8.6 60.3 5.0 19.9 

 

The difference between the size distributions are limited for the small particle range and much 

more pronounced for larger particles. These variations in particle size distributions were 

observed between different stock slurries and individual samples from the same slurry. 

Reasons for this have not yet been thoroughly explored but are likely to include small 

variations in their mechanical treatment (e.g. stirring); however these variations did not 

appear to have a significant impact on flux decline curves or the terminal flux. It should also 

be noted that even the smallest particles present were larger than the nominal membrane pore 

diameter of 0.2 μm, indicating that the main fouling phenomenon should be surface/cake 

fouling.  

Cross-flow filtration and cake layer characteristics 

 

Even for a suspension with such low lignin concentration as 0.02 vol%, a significant flux 

decline could be observed. Figure 6 shows that initial fouling on the surface had a high 

resistance, as indicated by the significant drop in flux at a constant TMP. The minor flux 



increase that can be observed in the initial phase (Figure 6.b) can be contributed to a rise in 

TMP due to an increase in hydrostatic pressure upstream of the pump caused by the addition 

of lignin to the feed tank. The TMP needed to be manually regulated but was kept constant 

within ±5 mbar during the whole experiment. Of the experiments deemed viable, as described 

above, the initial (clean water) flux was found to vary from 1720-1990 L m-2 h-1. These 

variations could be attributed to a small degree of background fouling, and small variations 

between temperature and available membrane area between experiments.  

  
Figure 6.a. Flux decline and TMP during a 2000 s 

experiment. 

Figure 6.b. Initial flux decline and TMP during the 

first 200 s of a 2000 s experiment. 

  

The viable flux decline curves for the three different end point times showed good agreement 

when superimposed, as demonstrated in Figure 7. Average cake thickness estimates and their 

spread are also shown in this figure. Some height measurements in the range 0.2< h/dt ≤ 0.25 

incurred an error larger than 5 µm due to less stable pressure readings, these results were not 

considered in thickness estimates reported below. These unstable measurements could 

indicate the presence of a very lose layer on the top of the cake that is easily removed at low 

fluid shear stress.      

A considerably high cake resistance was observed for relatively thin cake layers, and relating 

the estimated cake thickness to the particle size measured by laser diffraction indicates layers 

of 5-10 average particles or agglomerate diameters. The spread in the height estimates also 

tends to increase as the cake grows; an interesting phenomenon that could perhaps be related 

to deformation of the cake layer.  

  



Figure 7. Example of flux decline curves from three 

different experiments (superimposed) together with 

average height measurements. Error bars indicates 

highest/lowest height estimate from the experiments. 

Figure 8. Estimated cake thickness against calculated 

fluid shear stress for each filtration experiment. Note 

the log scale on the x-axis. Cake layers below 10 μm 

could not be investigated due to high 

strength/proximity to the membrane.  

 

Figure 8 shows the effect of the applied fluid shear stress from gauging flows on the cake 

thickness as the gauge is moved gradually towards the cake, removing the cake layers. The 

shear stress plotted is calculated from Eq. (1), which estimates the peak fluid shear on the 

surface below the gauge, 𝜏𝑤, which gives the maximum at a given clearance, occurring at the 

inner edge of the gauging nozzle (Lewis et al., 2012). This gives an indication of the fluid 

shear stress required to remove the individual layers of the formed cake, i.e. an estimation of 

the local cohesive strength of the cake. These estimations also give an indication of the cross-

flow conditions required for the removal of the individual cake layers. The figure shows how 

the strength of the cake layers increase 10-fold as the membrane is approached (note the log 

scale on the x-axis). This indicates that the removal of the cake fouling layer closest to the 

membrane is difficult to achieve. Further studies of the effects of varying TMP are underway, 

and cake thickness readings are used with gravimetric analyses to indicate cake solidosity and 

specific resistance.  

 

CONCLUSIONS 

 

The cake fouling for cross-flow microfiltration of a model material, Kraft lignin, was 

investigated with fluid dynamic gauging. The new smaller gauge (with a nozzle throat 

diameter of dt = 0.5 mm) could be used to successfully indicate the growth of the cake, as 

well as for estimations of local cohesive cake strength throughout the cake, down to 10-20 μm 

from the membrane. Combined flux measurements and thickness estimates indicate a high-

resistance fouling layer less than 100 µm thick developed within less than an hour’s filtration 

time. Strength measurements indicate a 10-fold increase in cohesive strength of the local cake 

layers when comparing the layers close to the membrane with the top layers.  
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NOMENCLATURE 

Roman 

d inside diameter of gauge tube [m] 

𝑑𝑡 inside diameter of nozzle throat [m]  

ℎ gauge height above a deposit [m]  

ℎ0 gauge height above the membrane [m]  

𝑚𝑔  mass flow of fluid through the gauge [kg s-1]  



𝑢 cross flow velocity in the test section [m s-1] 

∆𝑝 pressure drop [Pa]  

Greek 

𝛿 filter cake thickness [m]  

𝜇 viscosity of the fluid [Pa s]  

𝜌 density [kg m-3]  

𝜏𝑤 fluid shear stress [N m-2]  

 

Acronyms 

dP Differential pressure 

FDG Fluid Dynamic Gauging 

LVDT Linear Variable Differential Transformer 

TMP Transmembrane Pressure 
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