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Figure 1: Schematic of a typical gauging nozzle showing dimensions. 

a) 1 – 4 are flow stations. 

b) P – T are points showing the different sections for 

pressure drop analysis (PQ – convergent section, QR – 

area under the rim, RS – divergent section, ST – tube 

section). 
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Figure 2: Schematic of a conical cell showing the ratios of dimensions. 

(Dp/Dj = 8, Lj/Dj = 1, Sj/Dj = 0.35, Gj/Dj = 0.1,  = 168.9o) 
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Figure 3:  Comparison of predicted streamlines at Re = 685.  

(a) – this work, (b) – Miranda & Campos (1999). 
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Figure 4:  Comparison of radial velocities at one point within the conical cell, R = 2.65, Z = 0.034.  

Solid line – this work; squares – experimental data (Miranda & Campos, 1999); dotted line – numerical predictions (finite 

difference, Miranda & Campos, 1999). 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of streamline predictions for impinging laminar submerged jet at Re = 25, defined at the jet exit. 

(a) – this work, (b) – Deshpande & Vaishnav (1982). 
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Figure 6: Comparison of predictions of the maximum dimensionless wall shear stress for an impinging laminar jet.  

Solid line – this work; dotted line –Deshpande & Vaishnav (1982). 
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Figure 7:  Computational models for different inlet boundary conditions. Boundary tags I to VI are shown in brackets. 

(a) – Model 1, (b) – Model 2, (c) – Model 3. 
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Figure 7 (b) 
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Figure 7 (c) 
 

 

Nozzle outer 

wall  

Plane wall 

Inner tube 

wall 

Axis of 

symmetry 
Inlet 

Outlet 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Dimensionless coordinates of the gauging nozzle (Rtube = 1). 
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Figure 9: Grid refinement in the region near the nozzle for a typical simulation case. 
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Figure 10: Streamlines at Ret = 260 and h/dt = 0.125 showing three distinct flow regions. 

(a) – Model 1, (b) – Model 2, (c) – Model 3, (d) – Suction region. 
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Figure 10 (d): Suction region   
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Figure 11(a): Streamlines from Model 1 at h/dt = 0.2 and Ret = 160 (left) 

and 200 (right). 
 

 



 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 11(b): Streamlines from Model 1 at h/dt = 0.2 and Ret = 8 (left) and 20 

(right). 
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Figure 12: Comparison of hydrostatic head for gauging flows (water). 

Symbols - simulation ss; solid line - experimental s. 
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Figure 13(a): Discharge coefficient versus Ret.  

Solid lines – this work; A – h/dt = 0.65, B – h/dt = 0.20, C – h/dt = 0.10; symbols – experimental data, black – this work, 

grey – (Tuladhar, 2001); squares – h/dt = 0.65, triangles – h/dt = 0.20, circles – h/dt = 0.10; dotted lines – empirical model 

from Tuladhar et al. (2000) – equation (19); B* – h/dt = 0.20, C* – h/dt = 0.10.  

Nozzle: dt = 1 mm, d = 4 mm, w = 0.5 mm,  = 0.1 mm and  = 45o. 
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Figure 13(b): Asymptotic discharge coefficient versus Ret, high Ret range.  

Solid lines – this work; A – h/dt = 0.65, B – h/dt = 0.20, C – h/dt = 0.10; symbols – experimental data, black – this work, 

grey – (Tuladhar, 2001); squares – h/dt = 0.65, triangles – h/dt = 0.20, circles – h/dt = 0.10; dotted lines – empirical model 

from Tuladhar et al. (2000) – equation (19); B* – h/dt = 0.20, C* – h/dt = 0.10.  

Nozzle: dt = 1 mm, d = 4 mm, w = 0.5 mm,  = 0.1 mm and  = 45o. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 (a): Pressure drop analysis, h/dt = 0.10. 
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Figure 14 (b): Pressure drop analysis, h/dt = 0.20. 
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Figure 14 (c): Pressure drop analysis, h/dt = 0.65. 
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Figure 15: Discharge coefficient versus Ret for CMC solutions. 

Solid lines – this work; D – h/dt = 0.34, E – h/dt = 0.18, F – h/dt = 0.10; symbols – experimental data (Colombo and 

Steynor, 2002); squares – h/dt = 0.34, triangles – h/dt = 0.18, circles – h/dt = 0.10; dotted lines – empirical model from 

Tuladhar (2001) – equation (26); D* – 0.34, E* – h/dt = 0.18, F* – h/dt = 0.10. 

Nozzle: dt = 2 mm, d = 4 mm, w = 0.2 mm,  = 0.1 mm and  = 30o. 
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Figure 16(a): Dimensionless shear stress distributions on the gauged surface. Case : Ret = 260, h/dt = 0.125.  

Thick solid line, Model 1; thin solid line, twall residuals (dimensionless) from Model 2 (equation (27)); dotted line, twall 

residuals (dimensionless) from Model 3 (equation (28)). 

  Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and w = 0.5 mm. 

 



 

 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 0.50 1.00 1.50 2.00

R

- 
P

w
a
ll

 /
 4
r

v
c
2

0.00

4.00

8.00

12.00

16.00

20.00

N
o

rm
a
l 

s
tr

e
s
s
 r

e
s
id

u
a
ls

 
Figure 16(b): Dimensionless normal stress distributions on the gauged surface. Case: Ret = 260, h/dt = 0.125.  

Thick solid line, Model 1; thin solid line, - Pwall residuals (dimensionless) for Model 2 (equation (27)); dotted line, -Pwall 

residuals (dimensionless) for Model 3 (equation (28)). 

  Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and w = 0.5 mm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17(a): Shear stress distributions on the gauged surface, Case: h/dt = 0.10.  

Solid line, Ret = 904; dotted line, Ret = 4. 
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Figure 17(b): Normal stress distributions on the gauged surface, Case: h/dt = 0.10.  

Solid line, Ret = 904; dotted line, Ret = 4. 
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Figure 18: Maximum wall shear stress versus Ret (water). 

Identification of data sets: A - s = 340 mm; B – s = 200 mm; C – s = 140 mm. 
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Figure 19(a): Shear and normal stress distributions on the gauged surface, Case: Ret = 20, h/dt = 0.20. 

Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and w = 0.5 mm. 

Grey solid line,  = 60o, black solid line,  = 45o, dotted line,  = 30o. 

0.00

1.00

2.00

3.00

4.00

5.00

0.00 1.00 2.00 3.00 4.00

r  [mm]

- 
P

w
a

ll
 [

P
a
]

0.00

0.20

0.40

0.60

0.80

1.00

t
w

a
ll
 [

P
a
]Inner radius of nozzle rim, r i  = 0.5 mm



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19(b): Shear and normal stress distributions on the gauged surface, Case: Ret = 400, h/dt = 0.20. 

Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and w = 0.5 mm. 

Grey solid line,  = 60o, black solid line,  = 45o, dotted line,  = 30o. 
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Figure 20(a): Shear stress distributions on the gauged surface, Case: Ret = 20, h/dt = 0.20.  

Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and  = 45o. 

Grey solid line, w = 1.0 mm, black solid line, w = 0.5 mm, dotted line, w = 0.25 mm. 
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Figure 20(b): Shear stress distributions on the gauged surface, Case: Ret = 400, h/dt = 0.20. 

Nozzle:  dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and  = 45o.  

Grey solid line, w = 1.0 mm, black solid line, w = 0.5 mm, dotted line, w = 0.25 mm. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20(c): Normal stress distributions on the gauged surface, Case: Ret = 20, h/dt = 0.20. 

Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and  = 45o. 

Grey solid line, w = 1.0 mm, black solid line, w = 0.5 mm, dotted line, w = 0.25 mm. 
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Figure 20 (d): Normal stress distributions on the gauged surface, Case: Ret = 400, h/dt = 0.20. 

Nozzle: dt = 1.0 mm, d = 4.0 mm,  = 0.1 mm and  = 45o.  

Grey solid line, w = 1.0 mm, black solid line – w = 0.5 mm, dotted line – w = 0.25 mm. 
 

 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.00 1.00 2.00 3.00 4.00

r  [mm]

- 
P

w
a

ll
[

P
a
]

Inner radius of nozzle rim, r i  = 0.5 mm



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 (a): Shear stress distributions on the gauged surface, Case: Ret = 20, h/dt = 0.20. 

Nozzle: dt = 1.0 mm, w = 0.5 mm,  = 0.1 mm and  = 45o. 

Grey solid line, d = 8.0 mm, black solid line, d = 4.0 mm. 
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Figure 21 (b): Shear stress distributions on the gauged surface, Case: Ret = 400, h/dt = 0.20. 

Nozzle: dt = 1.0 mm, w = 0.5 mm,  = 0.1 mm and  = 45o. 

Grey solid line, d = 8.0 mm, black solid line, d = 4.0 mm. 
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Table 1: Summary of the values of L1 used in the simulations. 

 

 

 



 

Sucrose solution 

(w/w %) 

Viscosity (kg/ms) 

Experimental 
Mathlouthi and 

Genotelle (1995) 

15% 0.00145 0.00140 

25% 0.00224 0.00215 

35% 0.00373 0.00374 

 

 

 

 

 

 

 

 

Table 2: Summary of the viscosities for sucrose solutions at 25oC. 

 

 

 

 

 

 



 

 

 

CMC solution (w/w %) n k 

0.8% high viscosity 0.59 0.60 

0.5% high viscosity 0.61 0.40 

0.3% high viscosity 0.67 0.18 

0.8% low viscosity 0.85 0.033 

0.5% low viscosity 0.93 0.0106 

0.3% low viscosity 0.98 0.0044 

 

 

 

 

Table 3: Summary of the rheological parameters for CMC solution at 25oC (Colombo & Steynor, 2002). 

 

 

 - 0.31  - 0.41  - 0.0182  - 0.2  - 0.255  - 0.29   - 0.45  Z 
 R - 0.29  - 0.00249  - 0.335  - 0.355  - 0.255  - 0.34 


