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Bayesian Tactile Object Recognition: learning and recognising objects
using a new inexpensive tactile sensor*

Tadeo Corradi1, Peter Hall2 and Pejman Iravani1

Abstract— We present a Bayesian approach to tactile object
recognition that improves on state-of-the-art in using single-
touch events in two ways. First by improving recognition
accuracy from about 90% to about 95%, using about half
the number of touches. Second by reducing the number of
touches needed for training from about 200 to about 60. In
addition, we use a new tactile sensor that is less than one tenth
of the cost of widely available sensors. The paper describes
the sensor, the likelihood function used with the Naive Bayes
classifier, and experiments on a set of ten real objects. We also
provide preliminary results to test our approach for its ability
to generalise to previously unencountered objects.

I. INTRODUCTION

A Bayesian system for object learning and recognition
using purely tactile, orientation independent information is
presented. A novel, inexpensive sensor is used, mounted on a
robotic arm which learns in an automatic manner to recognise
objects outperforming state-of-the-art. We also provide some
evidence that the system can recognise previously unseen
objects.

The system learns and recognises objects from single-
touch events using a newly developed sensor [1]. Tactile
sensations are encoded using Zernike Moments and objects
are modeled by a sum of Gaussian distributions. The ap-
proach presented does not use the orientation information
of the objects and requires only a very limited number of
training samples, making a substantial improvement over
previous work. A fully automated robot system (depicted in
Fig. 1) was constructed to learn the tactile appearance of 10
household objects and to recognise these with an accuracy
of 87% after 15 touches and 95% after 30 touches.

II. RELATED WORK

A. Tactile sensors

Tactile sensors can be designed using a variety of tech-
niques, the most common being piezo-resisitive sensors,
conductive polymers, or capacitive sensors [2]. The most
widely used in robotics include the impedance based BioTac
[3], the Weiss tactile array [4], and the capacitive array based
DigiTact [5], all of which have a price tag exceeding USD
700. Recently, efforts have been made at creating cheaper and
more accessible sensors. The TakkTile TakkArray [6] is an
open source and open hardware sensor based on an array of
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Fig. 1. The new tactile sensor mounted on a KUKA KR5-sixx-
R650 robotic arm, currently exploring the tactile appearance of a
mug.

MEMS barometers, it has a retail price of USD 500, and their
material cost is approximately USD 200. The TacTip [7] aims
to provide higher resolution whilst remaining inexpensive
as they can be non-professionally manufactured (material
cost is approximately USD 200). It is a biologically inspired
tactile sensor based on the deformation of a silicone rubber
hemispherical surface and the consequential displacement of
a number of internal papillae. A digital camera is used to
observe this displacement.

B. Recognition by grasping

Recently, there have been several projects involving recog-
nition by grasping using machine learning techniques. Prin-
cipal Component Analysis (PCA), Self Organizing Maps and
Artificial Neural Networks have been combined to process
the output of Weiss tactile sensory arrays attached to a num-
ber of robotic end-effectors, to recognize household objects
[8]. Novel recursive Gaussian kernels have been designed to
encode the various stages of contact during grasping leading
to a robust on-line system capable of learning new models
and classifying objects in real time [9]. The most accurate
system, to the best of our knowledge, is the one developed
by [10]. They extends HMP (Hierarchical Matching Pursuit,
a multi-layer hierarchical feature learning system) to include
temporal information. They test their method on 6 tactile
databases and produce an accuracy of between 80% and
100%. Whilst it is evident that combining proprioceptive
with tactile information is likely to yield better results than
either modality alone [11], [12], using grasp limits the size



of the object to be identified, requires a robotic hand, and
requires a grasp to be achieved.

C. Single contact tactile recognition

Recognition using a single touch at a time is a possible
solution which remains relatively unexplored. As far as we
know, the best results so far are achieved by [13], requiring
60 touches to converge to 90% recognition accuracy, using
200 touches for training, over a set of 5 objects.

The most common approaches for single contact tactile
object recognition are voxel based or point clouds [14], [15],
[16]. Recently, a very efficient and accurate combination
of both was developed [17], which is able to model the
object shape and the uncertainty about occupied space. They
achieve above 80% accuracy in recognition over a set of
45 objects, and from only 10 touches; however, object 3D
models are required in advance. Voxel representations and
point-clouds provide a natural way of representing tactile
information about objects, but they can be cumbersome in
terms of computational power for recognition, as they usually
comprise a large number of points/voxels whose matching to
a database can be complex, and are prone to noise which
is difficult to model. Attempts to address these problems
include merging points that are close into a probability point
modelled by a Kalman filter [18], and clustering to subdivide
the point cloud into regions which are then encoded as
features [19].

D. Appearance based tactile-only recognition

One of the first attempts at a tactile-only recognition is
[20], which uses geometric features such as lines and points
and their evolution over time. Their accuracy recognising
objects is high (83%), however the number of shapes is
only 6 and they are very basic predefined geometric solids
(cylinder, cone, etc.). The two notable recent pieces of
research which most closely relate to our study are the work
of Schneider et al. [21], and the work of Pezzementi et al.
[13].

The first [21], involves the repeated application of a
two fingered grasps using a gripper equipped with Weiss
tactile array sensors. Features are extracted, then a bag-of-
features approach is used to recognise household and in-
dustrial objects. They use an information theoretic approach
for maximum expected information gain to inform grasping
position. They obtain an accuracy of 84.6% in recognition,
using 830 tactile images for training and 16 to 20 tactile
images in the testing set. The object pose is strictly known
and fixed (small translation variance is tolerated). It could
be argued that this work uses proprioception (they know
the height of the gripper) and thus is not purely appearance
based.

Pezzementi et al. [13] use simulations to compare var-
ious methods of feature extraction, and create clusters of
these features to compile feature histograms to be compared
for object recognition. Most of their testing is performed
in simulation using 3D models of objects. The physical
testing was done using DigitTact sensors over a set of 5

objects (the context was recognition of plastic letters) using
a predefined exploring routine. They use 200 samples for
training and 100 for testing. The accuracy in these physical
experiments reaches 90% for one of their feature choices
after approximately 60 touches. It would be interesting to
see this system tested on a larger set of objects, since its
simulated performance is quite good.

III. SENSOR AND TACTILE DATA REPRESENTATION

The new sensor [1] used in this paper is based on the
same principle as the TacTip. However, it has neither papillae
nor internal gel. Instead it has a plain black smooth opaque
silicone rubber hemispherical membrane of radius 40mm
and thickness 1mm, mounted at the end of a rigid opaque
encasing for the digital camera, 3D printed in ABS 1.
The camera has a resolution of 640 by 480 pixels, and
incorporates a set of 8 white LEDs. The shading pattern of
light is used as input. When the sensor is in contact with
an object, the shading pattern on the membrane changes
accordingly (see Fig. 2). In recent work, it was shown to
recognise seven basic shapes with over 95% accuracy [1].

Due to the circular geometry of the sensor image, a
rotationally invariant representation was required. In previous
work, a number of encoding methods were compared and
it was suggested that Zernike Moments together with PCA
achieved the best performance [1]. Zernike Moments have
been shown to be useful when scale, rotation and translation
invariances are sought [22], and have been successfully
used for basic shape recognition [23]. Zernike moments
here refers to the absolute value of the inner product of a
vectorised image with a vectorised Zernike polynomial, a set
of radial complex polynomials defined on the unit disk (see
Fig. 3).

Let m ≥ n be non-negative integers, and let 0 ≤ φ ≤
2π, 0 ≤ ρ ≤ 1 define a polar coordinate system. Then the

13D model of the tactile sensor encasing, and links to the other compo-
nents are available at: https://github.com/Exhor/bathtip

Fig. 2. The new tactile sensor design (left). The main body is 3D
printed in ABS. The tip is a 1mm thick silicone rubber hemisphere.
At the base (not visible) there is a USB eSecure web-cam (running
at 640 by 480 pixels) with 8 LEDs illuminating the inside of the
silicone hemisphere. As the tip makes contact with an object, it deforms
resulting in a specific shading pattern (right).



Fig. 3. The first Zernike polynomials evaluated on a unit disk.
Here depicted as modulus (red) and phase (blue).

even and odd Zernike polynomials are defined as:

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ)

Z−mn (ρ, ϕ) = Rm
n (ρ) sin(mϕ),

Which can be indexed by:

Zj = Z
m(j)
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Where m(j), n(j) are Noll’s indices of Zernike polynomials
[24], and
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Then, the dth Zernike Moment of an image M is given by:
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))
Once the Zernike moments are obtained from the entire

training set, PCA is performed. The Zernike moments of
images obtained during validation/testing are multiplied by
the PCA dimensionality reduction matrix obtained during
training. This process is hereafter referred to as “finding the
Zernike-PCA moments”. The number of components to be
used is decided by inspecting the eigenvalues and retaining
sufficiently many principal components so as to explain 95%
of the variance in the training data.

IV. OBJECT LEARNING AND RECOGNITION

The proposed model stores the Zernike-PCA moments of
all tactile images and their corresponding object labels given
during training. During testing, the Zernike-PCA moments
of each new tactile image is compared against those stored
values, and the likelihood of the new image, given each
learnt object, is computed. This likelihood is defined as the
normalized sum of nC Normal probability density functions,
where nC is the number of training images used for object
C. Each one of these is evaluated at the sensed image’s
Zernike-PCA value, centered at one of the training points,

and with covariance given by the covariance matrix of all
training points2. The process is depicted in Fig. 4.

Formally, let the training set be XC = {XC,i, i =
1, ..., nC}, where XC,i is the Zernike-PCA moment vector
corresponding to the ith tactile image of object C, which was
observed nC times during training. Let W be the covariance
matrix of XC . Let Y = {Yj , j = 1, ...,m} be the sequence
of Zernike-PCA moments (PCA reduction is performed
using the dimensionality reduction matrix obtained from
the training data), where Yj represents the Zernike-PCA
moments of the jth tactile image of the object being sensed
for recognition. Then the likelihood of Yj for a given object
class C is defined as:

P (Yj |C) =
1

nC

nC∑
i=1

N (Yi|XC,i,W ) (1)

Where,

N (Yi|XC,i,W ) =
e−

1
2 (Yj−XC,i)

TW−1(Yj−XC,i)√
‖W‖(2π)d

Here, d is the dimensionality of the feature vector. Using
this likelihood function a Naive Bayes classifier was imple-
mented. This assumes that observed Zernike-PCA moments
are statically independent. Note that PCA projection here
helps to mitigate against correlations between features.

P (C|Y ) = α

m∏
j=1

P (Yj |C)P (C)

Where α is just a normalizing constant, and P (C) can be
estimated from the number of times each object is observed
during training, which in our case forms a uniform prior
distribution. Therefore object recognition can be performed
using maximum a posteriori:

Cpred = argmax
C

P (Yj |C)

The computational complexity arises from Equation 1. As-
suming there are n observations times during training, the
complexity is O(dn2) during training and O(d2n) during
testing.

V. EXPERIMENTS AND RESULTS

Two experiments were performed to test the accuracy of
the object recognition method outlined above: one to recog-
nise objects seen before within a fixed collection, the other to
test generalisation to unseen objects. Both experiments were
carried out under the same setup.

A. Experimental setup

The system consisted of a 6 degrees of freedom (DOF)
KUKA KR5-sixx-R650 robotic arm, a 6 DOF force-torque
sensor mounted on its end effector, and the new tactile sensor
mounted on the force-torque sensor (see Fig. 1). The force-
torque sensor was used to detect touch events and to ensure
the safety of the robot-object interaction.

2In practice, this is the diagonal matrix of variances, since XC is the
scores matrix resulting from PCA.



Fig. 4. The recognition process: from touch to object posterior probabilities.

The initial location of the object is assumed to be known,
but its orientation is unknown. Limited unintentional pose
alteration (less than 5% of object size) does occur during
the experiments, as a consequence of contact. The aim is
to have the robotic arm move the sensor to various point
on the object surface and collect the tactile information
autonomously. Each object was manually placed and secured
in this location. The robotic arms is programmed to perform
the following exploration procedure:

1) Define a “safety hemisphere” of radius 30cm about
the assumed object centre. The hemisphere occupies
the space above the object.

2) Generate a set of random points on that hemisphere.
3) Take the sensor to the next unvisited position in the

list, facing inwards towards the centre point.
4) Move the sensor linearly inwards, until a normal force

of 75 grams is detected.
5) Record the tactile image.
6) Retract the sensor linearly away from the object back

to the imaginary sphere.
7) Back to step 3.

B. Object recognition

The objective of the first experiment was to automatically
explore, learn and recognise objects from a set of 10 house-
hold objects (see Fig. 5): stapler, toothbrush, porridge pot,
mug, shampoo bottle, box, pen, ball, textbook, water bottle
(empty).

A total of 120 tactile images were collected for each
object. These were split into 60 for training, 30 for validation
and 30 for testing. A number of tests were attempted using
the validation data set for testing. Initially, a Naive Bayes
classifier using clustering was implemented, which resulted
in approximately 70% accuracy after 30 touches, using k-
means. Alternative clustering methods were tested, but did
not improve performance. In particular Gaussian Mixture
Models seemed suitable due to the natural representation of
the likelihood function for observed data, but the parameter
estimation led to an under-determined system for such a
small data set. The final choice of inference system is non-
parametric, and as such there is no need for a validation data
set for parameter estimation. Of the 90 samples (training and

testing) for each object, 100 different partitions (60 training
images and 30 testing images) were made, the accuracy
reported is the percentage of correct recognitions, averaged
of these 100 iterations. Fig. 6 shows the confusion matrix
after 5 and 15 touches.

After 15 touches the overall accuracy is 87% ; however,
there is still a marked (approx. 19%) confusion between the
toothbrush and the pen. These objects are very similar to
touch in many of their local patches. This confusion repre-
sents 2.7% of the inaccurate predictions after 30 touches.
There is high uncertainty about the stapler in the first 5
touches, perhaps reflecting the varied tactile features of its
surface.

Fig. 7 shows the average accuracy for all objects, over 100
trials. As a comparison, best previous results (averaged over
7 trials) are shown [13]. The recognition accuracy follows a
similar pattern in all methods, however our system gains a
clear advantage from the start, and it stabilizes after about
25 touches.

C. Classifying unseen objects

In the second experiment, the potential for classification
of previously unseen objects was preliminarily tested. The
aim was to discern if the system had potential to classify
objects that had not been used in training. Five previously

Fig. 5. The objects to be learnt and recognised.
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Fig. 6. Confusion matrices showing recognition errors for the 10
household objects, after 5 and 15 touches.

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

 

 

Our system

Previous best (PF)

Previous best (MNTI)

Fig. 7. Accuracy as a function of the number of touches, averaged
over 100 trials. Comparison to previous work by [13], showing
their best performing features: “Polar Fourier” (PF) and “Moment
Normalized Translation Invariant” (MNTI).

untouched objects were sensed and attempted to be classified
using the system outlined above. The objects used were: a
plastic card, a different mug, a different pen, a smaller and
harder ball, and another textbook (soft-back). This time the
full data set for the 10 known objects was used for training,
and 120 images of the unseen object were used in testing.
Fig. 8 shows the posterior probabilities of each of the known
10 objects, assigned to each of the new objects, against the
number of touches.

The plastic card is very different to any known objects and
as such causes high confusion initially. The system finally
settles for classifying it as a mug or a pot. The new pen
is initially very confidently classified as a pen, but after
10 touches there is growing confusion with the pot model.
This may be due to the rounded edge of the pot having
a similar curvature to the pen. The other three objects are
on average ”correctly” classified. There is some confusion
between the mug and the pot when classifying the new mug,
which is understandable due to the similarity between the two
known objects. These preliminary results show promise that
the system may be generalisable to unseen objects, but are
modest in scale and as such not conclusive: further research
is required. It seems that objects very similar to the known
ones (new book, new ball, new mug, new pen) are classified
”correctly” very quickly, and as such the level of uncertainty
at the beginning of the exploration could be used to inform
a system that predicts new classes.

Fig. 8. Attempting to classify previously untouched objects. Posterior
distribution over the known object classes, when testing is performed on
five objects not sensed during training. Averaged over 100 trials.

D. Timings

All timings provided are for single-threaded, unoptimized,
MATLAB code, running on a Core i7-4700MQ 2.4Ghz with
8Gb DDR3-1600 RAM. Zernike moment calculation took
on an average of 3.7 × 10−3 s per tactile image. Feature
dimensionality was always 21 or 22. For the first experiment
(600 images in training), training took an average of 1.7 ×
10−8 s, and testing 8.6 × 10−4 s per tactile image. For the
second experiment (1200 images in training), training took
an average of 1.7 × 10−8 s, and testing 1.2 × 10−3 s per
tactile image. All these timings are substantially lower than
the average time it takes the robotic arm to take a reading
(approximately 30 seconds).

VI. CONCLUSION

A new inexpensive tactile sensor combined with an au-
tomated simple Bayesian object identity inference system
were presented. They were shown to achieve accuracy in
recognition outperforming state-of-the-art, for single contact,
local appearance based tactile object recognition. The sensor



was made open source and can has a total material cost
of approximately USD 30, substantially less than any other
commercial or open source tactile sensor available, making
it widely available to experts and hobbyists. A system was
designed to autonomously collect tactile information from a
range of household objects, using this new sensor, mounted
on a robotic arm and aided by a force-torque sensor. These
results are obtained using a very limited number of training,
validation and testing images, about a third of previous
similar work. In addition, preliminary results show potential
for unseen object classification, yet more research is needed.
Recognition is performed in real time.

Inference is performed using a Naive Bayes classifier. As
such, there is a an assumption of independence between
observed features. This assumption is potentially limiting and
a more sophisticated probabilistic model may be needed as
the number of classes grows larger.

At present, exploration takes approximately 30 seconds
per reading, 30 minutes to learn an object’s representation
and 15 minutes to recognise it with 95% confidence. Whilst
attempts were made to create a reactive system, robot control
is relatively rigid. It would be interesting to explore ways
of using machine learning to make the robot control more
efficient and self-adapting. Future work will also include
sensor fusion, attempting to harness the potential shown here
to complement active vision systems.
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