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ABSTRACT Extreme rainfall events, seasonal weather extremes and long term climate change present a threat to the stability of natural and 

engineered slopes by altering slope hydrology and shear strength beyond recent historical values.  

The temporal and spatial fluctuation of slope wetting and drying in response to weather event sequences can be represented using a surface 
water balance approach of rainfall infiltration and potential evapotranspiration, such as a soil moisture deficit calculation (SMD). This pro-

vides an opportunity to address the regional susceptibility of slopes to become unstable when exposed to adverse weather event sequences. 

However, case studies have shown that site specific characterisation of foundation geology (e.g. permeability and shear strength) is required 
to assess the vulnerability of specific slopes to pore water pressure fluctuations and slope failure during extreme weather events. 

The relationship between underlying geology and landslide incidence during extreme weather extremes is illustrated by comparing long term 

weather data, soil moisture deficit calculations and geological information using a database of over 400 UK landslide events that occurred 
between 2004 and 2014.  

 

RÉSUMÉ Des événements de précipitations extrêmes, des extrêmes climatiques saisonniers et les changements climatiques à long terme 
présentent une menace pour la stabilité des pentes naturelles et du génie en modifiant l'hydrologie de la pente et la résistance au cisaillement 

au-delà des valeurs historiques. 
 

La fluctuation temporelle et spatiale de mouillage de la pente et le séchage en réponse aux conditions séquences d'événements peut être 

représentée à l'aide d'une approche de l'infiltration des précipitations et l'évapotranspiration potentielle, l'équilibre des eaux de surface telles 
que le calcul du déficit de l'humidité du sol (SMD). Ceci fournit une occasion d'aborder la sensibilité régionale de pistes à devenir instable 

lorsqu'il est exposé à des séquences d'événements indésirables météo. Cependant, des études de cas ont montré que la caractérisation du site 

spécifique de la fondation de la géologie (par exemple, la perméabilité et la résistance au cisaillement) est nécessaire pour évaluer la vulné-
rabilité des pistes spécifiques à pores fluctuations de pression de l'eau et des ruptures de pente lors d'événements météorologiques extrêmes. 

 

La relation entre la géologie sous-jacente et de l'incidence des glissements de terrain au cours des extrêmes météorologiques extrêmes est 
illustré en comparant les données à long terme de météo, calcul du déficit d'humidité du sol et des données géologiques en utilisant une base 

de données de plus de 400 événements au Royaume-Uni de glissements de terrain qui ont eu lieu entre 2004 et 2014.  
 

1 INTRODUCTION 

Landslides have a significant socio-economic impact. 

This includes causing damage to property, disruption 

to transport infrastructure and posing a threat to hu-

man life (Petley et al. 2005). The assessment and mit-

igation of landslide hazards requires an understanding 

of triggering factors and how these may vary spatially 

(e.g. due to local geology) or temporally (e.g. in re-

sponse to extreme weather or changing climate pat-

terns). 



Hydrological triggering is considered to be a prin-

cipal landslide initiation mechanism (Van Asch et al. 

1999). Increased pore water pressures act to reduce the 

shear strength of soils, triggering the failure of mar-

ginally stable slopes.  

By examining historical landslide records and com-

paring them with climate data it is possible to identify 

meteorological threshold values for periods of in-

creased slope instability. A common approach is to es-

timate a meteorological threshold based on rainfall in-

tensity and duration (Guzzetti et al. 2008). However, 

the rate and quantity of surface water infiltration 

(causing increased pore water pressures) is influenced 

by the geological conditions (e.g. soil type, saturation 

and permeability) and the antecedent weather condi-

tions (Zhang et al. 2011). This can affect the time of 

landslide occurrence and the type of landslide failure 

mechanism (Leroueil 2001). 

Soil water balance approaches such as  the calcula-

tion of soil moisture deficit (SMD) can be used to con-

sider the long term influence of rainfall, runoff and 

evapotranspiration on surface water infiltration 

(Blight 2003) and to assess trends in landslide trigger-

ing. For example, Hutchinson (1995, cited Leroueil 

(2001)) showed that landslides in the London Clay 

cliffs at Southend-on-Sea occurred when SMD was 

less than around 10mm between 1967 and 1976. A 

similar relationship between landslide occurrence and 

periods of low SMD has been shown by Kovacevic et 

al. (2001, cited Macdonald et al. 2012),   Ridley (2004) 

and Wilson (2003).  

Network Rail has used SMD to predict periods of 

likely slope instability and identify risk areas within 

the rail network since 2000 (Birch & Dewar 2002). 

The Network Rail threshold considers average 

monthly rainfall above 175% of the historical long 

term average during periods of SMD close to zero 

(Winter et al. 2006). It has proved to be a valuable tool 

as part of an effective early warning system 

(Goldfingle 2010). 

An evaluation of existing landslide triggering 

thresholds and large scale trends requires records of 

the type, time and location of landslide events over a 

range of long term weather conditions including ex-

treme events and from a range of geological areas. 

With the integration of news and media reports into 

landslide records, the British Geological Survey 

(BGS) has collated a landslide database of over 400 

landslide events from across the UK between 2004 

and 2014.  

The aims of this paper are to consider the influence 

of long term weather, extreme rainfall and the under-

lying slope geology on the type and time of landslide 

occurrence, for comparison with existing landslide 

trigger thresholds. The type, time and location of over 

400 landslide events recorded by the BGS over ten 

years are compared with rainfall data, geological per-

meability indices and the calculated soil moisture def-

icit.  

2 METHOD 

Met Office (2014) weather data for England and for 

Scotland was used to plot daily rainfall and to calcu-

late the long term soil moisture deficit (SMD) for the 

period 2004 to 2014. This was compared with the type 

and time of landslide occurrence recorded within the 

BGS landslide database. Landslide location records 

were compared with geological maps of the superficial 

and bedrock geology. This was used to identify geo-

logical features such as low permeability soils or the 

presence of underdrainage by permeable bedrock 

which might influence groundwater response to ex-

treme weather (Briggs et al. 2013). 

 

2.1 Soil Moisture Deficit 

Soil moisture deficit is a water balance calculation of 

the volume of water required to keep a soil at its field 

capacity (the equilibrium moisture content within a 

soil allowed to drain freely under gravity). Zero SMD 

indicates a soil at field capacity, where there is poten-

tial for positive pore water pressures to be generated 

in saturated soil. 

SMD is calculated by accounting for the daily bal-

ance of rainfall, runoff, and the evapotranspiration of 

water from the soil (Clarke & Smethurst 2010). Poten-

tial evapotranspiration was estimated using the Pen-

man-Monteith equation (FAO-56 method (Zotarelli et 

al. 2010). Daily SMD was calculated for both central 

Scotland and central England using daily data from 

Met Office weather stations at Strathspey and North-

ampton respectively. SMD was not calculated at indi-

vidual sites, therefore neglecting the influence of lo-

calised weather and vegetation conditions. 



2.2 BGS Landslide Database 

The British Geological Society first created a landslide 

database in the 1980’s and the current version now 

contains over 17,000 events (Pennington et al. 2014). 

However, it is only since 2004 and the gradual inte-

gration of media reports into the system, that most 

events are recorded with accurate temporal data (i.e. a 

precise date ‘stamp’ of occurrence). Since 2004, over 

400 dated landslide records have been added to the da-

tabase (coastal landslides have been excluded from the 

scope of this study). Within the database each event is 

related to information including the type, time and lo-

cation of the landslide.  

Figure 1 shows the distribution of the events within 

the database according to the BGS landslide type clas-

sification described in Foster et al. (2012). Slope fail-

ures are the most numerous landslide failure type 

within the database. This classification contains land-

slides on man-made slopes affecting transport infra-

structure (e.g. road and rail embankments and cut-

tings).  Many of these records were reported via social 

media and the exact nature of the landslide failure is 

not known. 

Since 2012, social media has been incorporated into 

the search system used to populate the database. This 

has resulted in an increased number of recorded events 

in the period 2012-2014, as many of the smaller, low 

impact events which might have previously gone un-

reported are now detected. The use of media sources 

does not provide a comprehensive record of all events 

but it does provide a cost-efficient way to gain an un-

derstanding of landslide trends. 

Pennington et al. (2014) explored the relationship 

between antecedent rainfall and landslides in south-

west England using the BGS landslide database. Three 

different types of landslide recorded in the BGS data-

base (falls, slope failures, and translational/planar 

slides) were examined. Falls were found to correlate 

with longer term antecedent rainfall (60 days), 

whereas planar slides and slope failures correlated 

with shorter-term antecedent rainfall (between 7 and 

30 days, and between 1 and 7 days respectively). How-

ever, Pennington et al. (2014) noted that these conclu-

sions were based on a limited number of observations 

in a regional study.   

2.3 Geological Maps 

Landslide records were overlaid on superficial and 

bedrock geology maps (1:50,000 scale) using GIS 

software (ArcGIS). This associated each landslide rec-

ord with a bedrock and superficial geology (Figure 2), 

giving an indication of geological features which 

might influence local hydrogeology in response to 

weather. 

 

Figure 1. Landslide failure type division of 441 records (2004-

2014) within the BGS landslide database. 

 

 

 

Figure 2. BGS landslide database records (2004-2014) (excluding 
coastal events) overlaid on a map of UK bedrock geology (© 

NERC 2014). 



2.4 Permeability Classes 

The permeability of the superficial and bedrock geol-

ogy influences the ability of rainfall to infiltrate and to 

drain from slopes during periods of extreme rainfall 

(Briggs et al. 2013). Broad permeability classes (high, 

moderate and low) (Table 1) were used to indicate the 

influence of superficial and bedrock geology on local 

hydrogeology at the landslide locations. The permea-

bility classes were based on the BGS permeability in-

dices (Lewis et al. 2006) categorising every lithology 

within the  Digital Geological Map of Great Britain 

(DiGMapGB-50). Although this qualitative ranking of 

soil and rock permeability does not allow a great deal 

nuance, it allows a simplified examination of its influ-

ence on landslide occurrence.  

 

Table 1 – BGS landslide database events (2004-2014) categorised 

by BGS permeability class.  

Permeability Class  England/Wales Scotland 

Bedrock Geology 

Low permeability 

 

6 

 

27 

Moderate permeability 214 43 

High permeability 

Unknown 

Superficial Geology 

Low permeability 

Moderate permeability 

High permeability 

Unknown 

94 

20 

 

6 

82 

26 

220 

37 

0 

 

12 

48 

25 

22 

   

3 RESULTS AND DISCUSSION 

The rainfall data, soil moisture deficit and permeabil-

ity classes were used to explore trends within the BGS 

landslide database. The following questions were con-

sidered: 

 

Landslides and specifically slope failures are associ-

ated with low SMD (Hutchinson 1995, cited Leroueil 

2001; Ridley 2004) 

Figure 3 shows that around 66% of landslide events 

occurred when SMD was at, or very close to zero. If 

the failures are sorted by type, this relationship be-

comes much more pronounced. Approximately 90% 

of slope failures occurred when SMD was less than 

1mm. Flow and fall type failures occurred less fre-

quently during periods of low SMD. Cumulative rain-

fall analysis showed that slope failures are triggered 

by lesser antecedent rainfall than flow or fall type fail-

ures (Pennington et al. 2014). Slope failures are more 

closely linked to prolonged, low intensity surface wa-

ter infiltration than fall or flow type failures. 

 

 
Figure 3 – Landslide events by failure type during periods of low 

(<1mm) Soil Moisture Deficit (2004-2014).  

 

 

 

 
Figure 4 – A comparison of the cumulative percentage of landslide 

events and the number of days of zero SMD prior to failure, sorted 
by failure type. 



A rapid reduction in SMD (e.g.. intensive rainfall fol-

lowing a prolonged dry period) is associated with 

earthwork slope failures (Macdonald et al. 2012) 

No correlation was observed between slope failures 

(or any type of failure) and a large ( > 25mm) reduc-

tion in SMD  during the week prior to failure.  

 

Landslides are associated with intensive rainfall on 

the day of failure (Guzzetti et al. 2008) 

The majority of the events were triggered by daily 

rainfall of less than 10mm. Daily rainfall alone was 

not a good indicator of landslide occurrence. 

 

Landslides and specifically slope failures are associ-

ated with above-average rainfall during periods of 

low SMD (Birch & Dewar 2002) 

Figure 4 shows that slope failures generally occur after 

longer periods of zero SMD than falls or flows. Figure 

5 shows that slope failures in England correspond well 

with periods when both SMD is zero and daily rainfall 

is above the long term average. This relationship also 

applied to slope failures in Scotland but was not ap-

parent for other types of failure.  

 

Areas of high permeability superficial geology are 

vulnerable to landslide events following sudden inten-

sive rainfall (Corominas 2001, cited Tofani et al. 

2006) 

Figure 6 compares daily rainfall with landslide events 

within the high and low superficial permeability clas-

ses. Records from the moderate permeability class are 

omitted (130 records). Landslides in the high superfi-

cial permeability class are associated with high inten-

sity rainfall (51 records). Landslides in the low super-

ficial permeability class are associated with low 

intensity rainfall (18 records). Pore water pressures 

Figure 5 – Slope failures in England compared with of periods of low (< 1mm ) Soil Moisture Deficit (SMD) and rainfall above the 
1971-2000 long term average (LTA)  

 

Figure 6 – A comparison of daily rainfall with landslides in areas of high and low permeability superficial geology (Table 1) 



within high permeability soils are more likely to re-

spond to intensive rainfall events and surface water in-

filtration than low permeability soils, where greater 

runoff occurs.  

Preliminary results indicate that the presence of 

lower permeability bedrock (33 records; Table 1), 

does not show increased landslide occurrence during 

periods of zero SMD. Further differentiation of the 

permeability classes is required to explore the large 

number of landslide events in moderate permeability 

bedrock (257 records). 

4 CONCLUSIONS 

The relationship between daily rainfall, soil moisture 

deficit and underlying slope geology were examined 

using a database of 441 landslide events between 2004 

and 2014. 

 

The data shows that a combined rainfall intensity and 

water balance assessment can be a useful proxy for 

predicting slope failure type landslide occurrence 

when daily rainfall is above the long term average and 

the soil moisture deficit is close to 0 mm. However, 

intense rainfall (> 10 mm per day) or rapid changes in 

the calculated soil moisture deficit (> 25 mm per day) 

were not good indicators of slope failure or other land-

slide failure types. 

 

Factors including the permeability of the superficial 

geology play a role in determining whether a slope 

will fail in response to an intensive rainfall event or a 

prolonged period of wet weather.  

 

Further work is being undertaken to identify more lo-

calised phenomena by improving the spatial resolution 

of both the permeability classification and the weather 

data used in the SMD calculations. It is anticipated that 

this will benefit from continual additions to the BGS 

landslide database following the extremely wet winter 

of 2013/2014. 
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