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Abstract

When two vessels are moored side-by-side with eomagap between them, intense free surface
motions may be excited in the gap as a result ohptex hydrodynamic interactions. These
influence the motions of the two vessels, and treels in any moorings. The present paper uses
first and second order wave diffraction analysigneestigate this phenomenon. Key theoretical
aspects of the numerical analysis are first sunsedyriincluding the vital need to suppress
“irregular frequency” effects; and results are gite validate the code used. The case of a tanker
alongside a large floating FLNG barge is then ader&d in detail.

K eywor ds. Hydrodynamic interactions; closely spaced vesgglp;resonances; second order

diffraction.
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1. Introduction

A hydrodynamic issue of crucial importance in thresign of Floating Liquid Natural Gas
(FLNG) off-loading systems is that of wave indugetkractions between the vessels when moored
very closely alongside each other (or of a tanket @ gravity-based structure supporting the LNG
processing plant). Such interactions can radiagignge the hydrodynamic forces on the vessel(s)
(wave exciting forces, as well as added mass antbitg effects), and so modify the motion
responses from what would be predicted for the samssels in isolation. The close proximity of
the vessels can also lead to very large free suraations between them, in head seas as well as
beam seas and indeed in waves incident from aegthn. As a result, this topic is of considerable
current research interest [e.g. 1-5], and has beefocus of major effort in the EU Framework 6
Safe Offload research project. Both experimentdl rmumerical work has been undertaken, and the

present paper is concerned with the latter.

Several difficulties arise when one considers agppate strategies for constructing
numerical models. The problem is inherently thremethsional (3D), as is immediately apparent
when one observes in experiments the waves gedealirg the gap between two parallel vessels
that are subject to beam seas. The problem carbal&xpected to be significantly influenced by
viscous effects: linked to the roll motions of thessels responding independently, as well as to
potentially violent fluid motions in the gap andtire close vicinity of the hulls. In the futurenitay
be feasible to use a full 3D Navier-Stokes codeetplve these issues in a practical numerical
model. Prior to that, however, much may be leaoricerning the behaviour of closely spaced
vessels by implementing appropriate potential flmwdels. In particular, such models can be
expected to yield reliable predictions of the freqcies at which strong interactions will arise, and
indications of the influence of key parameters sastspacing between the hulls (i.e. gap width),
draught and gap length. Furthermore, second oiffeacdion analysis can clarify the possibilities
of strong interaction effects at double frequendresegular waves (or “sum” and “difference”
frequencies in irregular waves). Second order tffewould be important if it was found, for
example, that a swell with a period of 16 s coutdite very large responses with a period of 8s
through frequency doubling effects.

In the present work we have implemented such anseoader analysis using a frequency
domain boundary element model of the two vesseldinfinary findings for the simple geometry
of two closely spaced rectangular boxes have baemdy Sun et al. [6]. In that paper, results



were discussed in the context of some very simpédytical solutions (analogous to solutions of
the moonpool problem [7]). Here we aim to invedigie phenomenon for the rather more realistic
case of an LNG tanker alongside an FLNG barge itatli#! with some simplifications to the
geometry). We also provide here some additionaildedf the boundary element method we have
implemented. The latter are described in Sectiohthis paper. Section 3 concerns some examples
of its validation, where particular features disad are the issue of avoiding so-called “irregular
frequencies”, and the modelling of multiple bodidsich respond independently. The geometry and
meshing of the FLNG barge and LNG tanker are regtbm Section 4, and the results are given in

Section 5 followed by some conclusions.

2. Overview of the DIFFRACT modéd

2.1 Background

The boundary element method (BEM) has proved tarbevaluable technique for modelling
linear and nonlinear wave diffraction problems. WAMB, 9] is probably the most sophisticated of
the commercially available BEM based codes which aaalyze wave diffraction up to second
order. DIFFRACT is another second order diffracttmule which has been developed for research
use over many years [10-13]. It has many similgrabdities to WAMIT, though it is based on a
modified integral equation, which avoids the incement representation of the solid angle, which
is required in many implementations. For the wogkatibed here, this code has been improved and
extended, both in terms of flexibility and effic@nof use, and in providing a capability to deal
with multiple floating bodies. A feature which hagen found to be essential for solving the
problems addressed here is the capability of sepprg so-called “irregular frequencies”. These
arise when the integral equation is formulated gidime wave source Green function. Such a
formulation has the advantage in the linear probteat the integral equation only has to be
discretised on the submerged surface of the diffrgdody. It has the disadvantage, however, that
at certain “irregular frequencies” the equation hasunique solution, and the discretised system of
equations can be very poorly conditioned near dteduencies. The particular way in which this
problem has been overcome in DIFFRACT has not pusly been published, and is described
below. This requires first some explanation ofititegral equations on which first and second order
solutions are based in DIFFRACT.

2.2 Governing equations



In the first order analysis, at each component weasguencywthe linear velocity potential

has the form
dY(x,y,zt)= Re[(o(l) Ky Z )3'”“} (1)

where Re[ ] means the real part of complex humbbe potential has components due to the
incident wave (I) and the scattered waves (S). [atter include the wave diffracted by the fixed
body (D), and radiated waves due to the combinfettsfof the body motions (R), so that

@ =¢® + @ where g’ =g + . @

With the assumption of linearity, we can write thetions of a single rigid body as
=" - ReFMe“] (3)

where Z‘(l) is the vector used to define the three translatard three rotations. The radiation

potential can then be rewritten as

6

@ = - (m=1,2,-,6)  (4)

m=1

If we further defineg” = ¢f” and ¢ = ¢”, the first order potential has the form of

6
P =+ Y s+ g Q
m=1
The unknown potentialgt” (m=1,2, ..... , 7) in the above Eq. (5) satisfy the ldwaundary

conditions on the mean external free surf&geand the sea bottom, and the conditions at infinity
and the diffraction and radiation potentials sgtsppropriate conditions on the equilibrium body
surfaceSs.

In the boundary element analysis we use a GreeatiumG®™ (X,%,) satisfying the linear free

surface and seabed boundary conditions and the &deithradiation boundary condition:
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in whichv=w?/g, X=(x,y,2) are the coordinates of the field poik, =(x,,Y,,2, aje the

coordinates of the source point ardis the water depth,R:\/(x—xo)z+(y—y0)2 ,

=R +(z-2,)° 1, :\/R2 +(z+2h+2z))*. HereJy(uR) denotes the zero order Bessel function

of the first kind and: is the Fourier transform variable. This leadshi® tommonly used integral

equation for the potentiag”

C (o) (Xo) + j j qo(l)(x) ds j j G O(x)ds, @)

- D
whereV,"” (x) = ——=-2 ¢f (X) for the diffraction potential and(x) =n_(n_ is them™ component of

the generalized normal vector) for thé' radiation potential. Her€(xo) has the value 1 whexy
is in the fluid domain and 1/2 whes is on the equilibrium body surfa& as long as the body
surface is smooth. For a non-smooth surface, theeaf C(xo) will be associated with the exterior

solid angle at a surface discontinuity. The disicarity in the value ofC(x0) can cause difficulties

in solving the above integral equation near toltbeéy and the integrand has a singularity associated
with it. The approach used by Chau [14] showed thigt can be overcome by applying Green’s
theorem to the region interior to the body, bountgdhe equilibrium body surface and an inner

free surfaces. In DIFFRACT a modified integral equation is usefithe form
1-v[[_ GPds| g’ (x0)+ [[_ (a3 -4 (x ))aimds: ([ ®0ds ®)
S ° 5\ X0 an s "

The functionC(x0) has been removed from the integral equation asdrttegrand is now non-
singular. Eq. (8) is discretised, and the unknowteptialsg” solved from the matrix equations.
Wave excitation forces and hydrodynamic coefficeaie calculated by the integration of pressures

on the equilibrium body surface. The response efflbating body?m is obtained by solving the



motion equations. Theg® and ¢” which are used in the second order analysis ai@ed from

Egs. (2) and (4).

Next we consider the second order problem. The tatmpvave velocity potential to second
order can be expanded using Stokes’ perturbatidhodeas
N

P(xy.zt)=Re Yo’ Gy 2B +3 > B &y 2B v ky 2y ﬂ (9)

j=11=1

Here ¢ is thejth wave frequency, an is the total number of frequency components. Tm and

difference frequency components are

+ —

The second order diffraction potentig# then satisfy:

0;?? N "a;‘r’f . ";Z,: -0 in the fluid domair2 (10)
R ort -
a;f -0 on the seabed (12)
aang @ o =F* on the external free surface (13)

together with a radiation condition. The tefg on the equilibrium body surface incorporates the

terms due to products of its first order motiong] & defined by:

Ff=nlv . (14)

The sum frequency second order motion is
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whereg'” now represents the total first order potentidtetuencyj, and similarly forg™. It is

convenient to write the displacements in the form

*(1) A e € g - 0 = -

=& Haj xr, =& +ai xr, (16)

where & = (£0,&9,EW) are the translational motions anl= (£,&®,&®) are rotations.
Furthermore,
&6+ 66 0 0
[H +]” +[H ]] gr(l)gr(l) gr(l)gr(l) 3 l)gr o4 fél) él) 0 ) (17)
~EDED - FPED  _EDED-FOEW £ 0F O£ GO

The termF* occurring in the free surface boundary condition @3) is the product of linear terms,
driving the second order diffraction field due teetpresence of the structure. The sum-frequency
componenf” is given by

F* = —iw g o 044(1) 0 (4(1)) "4 (1)(_w12 aqoj(l) 0 4”(1)

2g 7 g oz % g o0z )
1@ om0 640(”) Icq (1)(_w 095 0 qo(”) 18
29" " g o0z il g o0z
_l_l(a)j2+a4)(D le) Mgl +0 Ws(jl) Me® +0 Ws(jl) Med)
g

where ¢’ and ¢§’ are the scattered velocity potentials, correspundo frequencieg and |

respectively, andg® and ¢f” are the incident wave velocity potentials.



The corresponding difference-frequency terms and F~ have similar forms, withey
replaced by-«y and terms of the formafh +ab;) replaced b>(ajq* + a,*bj). An asterisk denotes

the complex conjugate.

As with the first order analysis, the solution dietsecond order sum and difference
frequency terms can also be obtained by applyinges theorem to the fluid domain. The

modified integral equation for the second ordefradtion potentials is

(1-ui (I SFiG*ds)(zg o)+ ] _ (4505 ) ag ds

f (19)
=& %—g(?)ds- [[ FroG ds+ [[_Fs(0G*ds

whereV* = («)?/g and G*is the Green function for the sum and differenegjfiency problems (in

which vis replaced by/").
2.3 Discretisation of theintegral equations

Equations (8) and (19) are the underlying integ@iations used in the DIFFRACT BEM
code, corresponding to the first and second orodsl@ms respectively. These are discretised using
guadratic isoparametric elements [15]. This leads $et of matrix equations for the unknown nodal
values of velocity potential. Six-node triangulardaeight-node quadrilateral elements are used,
leading to models in which the velocity potentmlaissumed to have a quadratic variation over the

(curved) elements.

In order to reduce the computational requirememtthé case of geometries having one or
two planes of symmetry, the matrix equations acgganised and reduced in size. If for example
there is one plane of symmetry, the equation sethi complete problem (e.g. for the 7 unknowns
in the diffraction-radiation problem of a singledy) is reduced in size by approximately a factor of
two. The unknowns are split into symmetric and sgmimetric components, so the number of
equations is doubled (to 14 in this example). lar planes of symmetry, the factor is four. Details
of the formulation are given in [16]. It should beted that the approach depends on the symmetry
properties of the body geometry: the diffracted evéield will not be symmetric, and waves may

propagate at any arbitrary angle to the body.



It can be seen that Eqg. (19) involves an additiomagral over the exterior free surfage.

This is because the Green functi@h corresponding to frequencies® satisfies the homogeneous

linear free surface boundary condition rather th@ inhomogeneous second order free surface
boundary condition, Eq. (13). The integraﬁ(‘](;()Gi involves the product of derivatives of the

first-order velocity potentials, as shown in Eg8)YIor example, and is highly oscillatory. It only
decays algebraically with increasing distance frira body. In the program DIFFRACThe
external free surface is divided into three domawsr which different numerical treatments are
implemented. The first region is the inner reg, where the integration can be evaluated by
using quadratic panels defined in a region betwkerbody water line and a circumscribing circle.
The second and third regions are the remainingiqmatof the free surface exterior to the
circumscribing circle. In the second region, theegnation on the external free surface is replaced
by a line integral of individual Fourier harmoni@he third region (from the outer boundary of the
second region to infinity) is defined as the faldiregion where the evanescent components of the
scattered waves are assumed to have decayed awasllahat remains are radially propagating
waves. In the far field region, therefore, the gnéand can be approximated by a simple asymptotic

formulation, thereby improving the efficiency oktlbalculation. More details can be found in [14].

2.4 Avoidance of irregular frequencies

The equation set summarized above is well knownetsusceptible to the phenomenon of
“irregular frequencies”. This means a unique soluticannot be obtained at some discrete
frequencies. This in turn leads to sharp “jumpshumerical results in the neighbourhood of these
frequencies. These do not originate from physid@nomena; they are a feature of the integral
equation. The locations of the discrete irregul@gfiencies can be determined by theoretical
analysis for bodies with simple geometries: they @bstained from the eigenvalues of the boundary
value problem for the potential inside the bodypjeat to the linear free surface condition and a
Dirichlet condition of zero potential on the bodyface. For complex structures, it is sometimes
hard to distinguish whether the results have bedhtpd by irregular frequencies. Particularly
difficult cases are multiple-body problems, becatlsgy can show similar “jumps” at resonant
frequencies, where strong physical interactiond alse. This is even more serious for second
order problems, because correct results can onlgcheved if the computations at both second

order and first order are all free of irregularguencies. If for example one is aiming to calculate



second order results in a pair of waves at fregesma andap, then one must avoid the possibility

of any of the irregular frequencies coinciding watty of c, wp, (W+ap), or (W—wp).

There are two approaches to avoiding the “irreginquencies”. One is to use other numerical
methods which are free of “irregular frequenciesich as a boundary element method using simple
Green functions (e.g. 0/ or hybrid methods. Another is to remove theegular frequencies” by
overcoming the lack of uniqueness in the origioairfulation. We have adopted this latter approach.
The implementation is similar to that of Sun et[aF], though differs in detail. This is because th
underlying integral equations which Sun et al. hoth remove irregular frequencies are different
from those used here (Eg. (8) at first order and #§) at second order, designated the “old

equations” in what follows).

The code DIFFRACT adopts the following “new equasidfor the diffraction problem:

(1_'/“)Hsﬁ el (?(o,?)ds) @" (;(O)J,”SB (%i) (;()_#)j) (;(O))aGU;(ﬁ;(o,;()dS

N (x (20)
= —J'J'SB G(i)(io,})aﬁa%(x) dS_J‘J‘SF F(j>G(i)(;(o,;()+J‘J‘SBFéJ)(;()G(j) (%o, X)dS (%0S,)
Hsaqzé”(i)—ae(j)g(o’;()ds

ana(d')(*) (21)
ey 94" (X Dal) (v v D) (v -
=-J'J'SBG<)(XO,x) P dS‘IISFeF()G()(XO'X)dS”J‘J‘SBFB()(X)G”(Xo,x)ds (oS )
JT, v )&:"X)d =0 f0S,) (22
ORI 52600 X (:O’X)d s=0 X0S.  (23)

Here ¢ are nodal potentials on the inner free surface. &hations are written in a compact form
to indicate how both the first order (supersciipt) and the second ordg~R) equations are

modified. Here superscript (2) is equivalenttabove, andF™ = 0, F =0. In the above form, two

integral equations (Eq. (20) and (21)) on the éguuim body surface and two integral equations
(Eq. (22) and (23)) on the inner free surface a®rporated. In Eqg. (20) and (21), the resulting
matrix is over-determined. But these equationsadided to Eq. (22) and (23) respectively, leading
to a set of matrix equations for the unknowdisand ¢/ . The resulting equations have unique

solutions at all frequencies.
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An important issue relating to the new equationghie incompatibility of the velocity
potentials¢” and ¢/ at the inner water line, the intersection curvehef body surfac& and the
inner free surfacess The value of the velocity potential on the inm&ter plane must be zero, and
that on the body should be non-zero. To avoid tlisflict, discontinuous elements are used in
discretisation of the integral equations. For adompetric quantities, continuous higher order
boundary elements are adopted to simulate thecgudfthe integration domain. For the physical
guantities on the surface of the body and theimt@art of the inner water plane, continuous hrghe
order boundary elements are adopted; for the palygi@antities on the boundary of the inner water
plane, partially discontinuous higher order bougddements are adopted (as described in [18]). By
this means, not only is geometric continuity enduteut also the physical discontinuity on the

interface of the body surface and the inner watanegis retained.

As an example, on the inner water plane of a [@rceylinder or hemisphere, the
distribution of elements could be as shown in Ei¢in which x represents geometric nodes, end
represents physical nodes). The distribution ofesad a partially discontinuous element is shown
in Fig. 2, where G1, G2, G3, G4, G5, G6, G7, G8gmemetric nodes; and P1, P2, P3, P4, P5, P6,

P7, P8 are physical nodes.

Figure 1. Sketch of elementson theinner water plane

11
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G1,P1 G2,P2* ®:; G3

Figure 2. Distribution of nodesin a quadrilateral element, as specified in local coordinates

3. Validation

The implementation of DIFFRACT based on the “olduaipns” has been extensively
verified and validated in previous publications,[13, 19, 20]. Here we compare results from the
old and new formulations for two different fixeddyoconfigurations. We also present results for

multiple moving bodies and compare these with othalished data.

3.1 Validation of method for removing theirregular frequencies
3.1.1 A single vertical uniform cylinder

We first consider the case of a vertical cylindemd comparison with the second order
analytical solution in [21]. The cylinder has raglai= 1 m and extends to the bottom in water of
depth 1 m. The theoretical solution for the logatad the irregular frequencies is easy to obtain.
The first few values associated with the first F@uharmonic circumferentially (which would
therefore affect the first order horizontal forcepecified in terms of dimensionless wave number
ka (wherek is the wave number), are obtained from the zefdheoBessel functions, &s:ka =
3.83170597, 7.01558667, 10.17346814, 13.3236918ebrfsl order quantities based on products of
first order effects (so-called “quadratic” termsjvalve all Fourier harmonics; and therefore
irregular frequencies can potentially affect thegmntities at the zeros of all orders of Bessel
function. For the second order problem, forces vadatained using the meshes in Fig. 3 (in which
the radius of the outer boundary ®t; is 2.10533 m) over the range @& < 4.0. In the specified
water depth the wave numbers which correspond totlha values of the irregular frequencies
listed above are&ka = 1.16535421, 1.84393604, 2.5731498, 3.33931M8¢an be expected
therefore that problems would arise in evaluatibthe double frequency second order potential

near these values k.

12



(a) (b)
Figure 3. Mesh used for second order analysis of vertical cylinder: (a) body surface and

external free surface; (b) inner free surface
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Figure 4. Second order horizontal forceon a cylinder dueto the 2nd order potential
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Figure 4a compares the analytical solution forderder force (in Newtons) due to th&' 2
order potential (real and imaginary parts) overrdrgge 0 <ka < 3.0, with results calculated from
the original and new equations. Figure 4(b) shdwsdetails near the irregular frequency associated
with ka = 1.84393604. In Fig. 4(c) one can see irregudgriassociated with first order effectskat
= 3.83170597; and also with second order effects kee= 3.70348133 (due to the second Fourier
harmonic and the zero of Baving the value 14.79595178). The improvemenhéresults based

on the new formulation is clear.

3.1.2 Second order forces on two fixed vertical cylinders

We next consider two vertical cylinders whose cefitres are 8 apart, in water of deptha3
a problem considered by Ghalayini and Williams [28]this case the first order horizontal forces
are susceptible to irregularities at frequenciasesponding all of the Fourier modes, because the
waves encountering one cylinder as a result otestiag) by the other contain the full spectrum of
harmonics symmetric abo#= 0. Here we consider the second order problemrevhgain all
these harmonics can contribute. It is easy to statthe lowest irregular frequencies correspond

to ka= 0.6293948494, 0.9638441312, 1.28505690:34,

Figure 5 shows the general arrangement and theeseshployed (in the numerical model
two planes of symmetry have been applied and ttiesaf the outer boundary 8¢, is 4.5a). The
horizontal forces on each cylinder due to the sdarder potential are shown over the rangeka <
< 1.5in Fig. 6(a), as calculated using the old aed equation formulations. These are for constant

wave steepneddi=0.277(k is calledky in [22], andH is the incident wave height) and results are

14



nondimensionalized bypgH7a%2 (herep is the fluid densityg is the acceleration due to gravity).
The figures may (with difficulty) be compared withe plots in [22], in which a much larger
ordinate is used because other components of toealso plotted. The agreement appears to be
satisfactory. Figure 6(b) shows expanded versidrthase plots over the range of wave numbers
close to that corresponding to the first irregut@quency given above. The improvement from

using the new equations is again clear.

eylinder 1 cylinder 2

a
incident wave m m
X

-
N
=
N

(b) ()

Figure5. General arrangement (a) and meshes (b, c) for the two-cylinder problem

i cylinder 2
10 cylinder 1 10 Yl
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I - - - new equations r - - - new equations
0.8
0.6
Looal
0.2+
0.0
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(a)
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0.50 0.55 0.60 0.65 0.70 0.75 0.50 0.55 0.60 0.65 0.70 0.75
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(b)

Figure6. 2" order force dueto 2" order potential (nondimensionalized by pogH 78%/2)

3.1.3 Linear horizontal forces on a fixed box

This case concerns a fixed box having a rectangwkterplane area (length=1.125m,
width=0.325m), and draft=0.125m. This corresporas tconfiguration investigated in the SAFE
OFFLOAD programme, for which results were obtaim¢dnodel scale over a specified range of
wave periods. The meshes used for the linear daays shown in Fig. 7. Although the shapes of
some of the elements on the inner surface in Kly. appear somewhat distorted, our experience is
that satisfactory results are obtained. The resilsurge and sway forces based on old and new
equation are compared in Fig. 8 (hekeis the incident wave amplitude). Again the irregul
frequencies can be obtained by means of some siamdéysis. They correspond to the wave
periods indicated by vertical lines over the ran§)0.25s <T < 0.3s in Fig. 8. The large number of
irregular frequencies for this configuration is wetriking. It may be clearly seen that, as expbcte
the irregular frequency effects that are triggestedend on the direction of the incident wave. The
graphs show that the original equations providaltesvhich to all intents and purposes are useless

over substantial parts of the period range. The eguations, however, yield satisfactory results.
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(b)
Figure 7. Meshesfor rectangular box linear analysis: (a) body surface; (b) inner free surface
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Figure8. Linear forceson abox: a) surgeforcein head seas; b) sway forcein beam seas

3.2 Validation of analysisfor multiple moving bodies. two free floating truncated cylinders
There are rather few published results for the atawh problem corresponding to two

independently oscillating bodies, and fewer stifi &ny) for the second order forces on
independently oscillating bodies. The former prableas been considered by Matsui and Tamaki

17



[23], who obtained results for a pair of bodies d@ymultiple scattering approach. In this, an
axisymmetric boundary element source distributioaswised to model each body. We here
investigate the case of two freely floating truechtylinders and compare the generalised added
mass and damping matrices, and the responsesthgitiesults given for this case in [23]. Figure 9
shows the general arrangement, and the body suriasbes for two different DIFFRACT models

(coarse mesh 1 and finer mesh 2, using one plasgnuinetry).

Cylinder 1 Cylinder 2

CG. CG.
0.5a) 052

=

Figure 9. General arrangement and two meshes used for the pair of truncated cylinders
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Examples of cross coupling hydrodynamic termssam@vn in non-dimensional form in Fig. 10.
These are the added ma&s® and radiation dampin@®\?, corresponding to the surge force on

cylinder 1 due to surge motion of cylinder 2, focentre-to-centre spacirsg3a. Results from the
two meshes in Fig. 9 are almost indistinguishaBlemparison with values taken from the plots
given in [23] shows very slight disagreement (plolysiinked to the inaccuracy in reading off the

published graphs), although the trends are verjlaim

4. Configuration and numerical models of FLNG and L NG tanker

We now apply our boundary element model to onehefdase studies investigated in the
Safe Offload project. The two vessels are in alfgreonfiguration side by side, with a small gap
of 4m between them. The water depth is 250 m. Huwergtry, inertia and hydrostatic properties of
the FLNG are given in tables 1-2, and the corredpmnproperties for the tanker are in tables 3-4.
The geometry of the tanker was simplified for thmalysis. This was to enable the complex second-
order problem of very closely spaced vessels sscthese to be investigated in detail without
incurring excessive computing times. A particuknget of the simplification is to ensure that both
the FLNG barge and the tanker are symmetric forkadh It is convenient then in the numerical
modelling to make use of the existence of a pldreymmetry through the midships of both vessels.
The geometry of the two vessels for meshing isefioee as shown in Fig. 11. The analysis is
essentially based on the assumptions of poteidial 1n order however to calculate realistic values

of roll (and coupled sway) in freely-floating staté is necessary to account for additional dampin
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due to viscous effects. We have used values prdvigeNoble Denton [24], as shown in table 5.

This is in addition to the radiation damping autticaly calculated by the diffraction code.

We stress the difficulty of the calculation we ateempting. We are unaware of any other
authors who have included such a narrow gap cordpar¢éhe size of the bodies themselves (4m
versus 400m). Clearly any contamination of the tsmhu from irregular frequencies would
completely destroy the solution. Our extensiveingsand comparisons to known analytic solutions
[6] provides confidence in the quality of the resul

70

200

@

Figure 11. Configuration of FLNG and Tanker

Table 1. FLNG Principal Particulars

Length BP 400.0 metres
Breadth 70.0 metres
Depth to Main Deck 36.0 metres

Table2. FLNG Mass Properties (Loaded Draft)

Mean Draft 21.254 metres
Displacement 610,000 tonnes
Vertical Centre of Gravity 22.4 metres
Metacentric Height (GM) 7.44 metres
Transverse Radius GyratioK() 24 metres
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Table 3. Tanker Principal Particulars

Length BP 276.0 metres
Breadth 46.0 metres
Depth to Main Deck 25.5 metres

Table 4. Tanker Mass Properties (Loaded Draft)

Mean Draft 11.4 metres
Displacement 97,000 tonnes
Vertical Centre of Gravity 16.0 metres
Metacentric Height (GM) 4.8 metres
Transverse Radius Gyratiok;() 14.0 metres

Table5. Added Additional damping in roll

FLNG 9.00E9 N-m/(rad/s)
Tanker 6.00E8 N-m /(rad/s)

The sizes and distributions of element meshes ondsry surfaces of the fluid domain are
very important in the present simulations, espbcialr the second-order analyses. This has been
examined in the context of two boxes in [6]. Safisbry convergence of numerical results for the
present second-order problem has been achieved wip-0.85 rad/s. Figures 12 and 13 show the

meshes that have been used in the present congmstaltiased on the experience gained in [6] for
the simpler geometry of two rectangular boxes.dare 13(a), the radius of the outer boundary of
Sa is 2500 m. On the other hand, to match the meshebe body surface and obtain accurate
results from the numerical integration, the megrethe external free surface have to be limited to
reasonable sizes (the meshes around the gap amn shofigure 13(b)). Comparing different
meshes on the external free surface (Figure 3(h), &nd 13), one finds that the size of meshed
region S may change dramatically for different configuraso This is related to the incident
wave number, water depth and dimensions of thetsirel For larger structures in deeper water,
bigger meshed regior$se; are needed to achieve converged results at highee Wequencies: this

is associated with the numerical treatment of the Surface forcing terms, described in [14].
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Figure 12. Meshes on the body surface (a) and inner free surface (b)

Figure 13. Meshes on the external free surface

5. Results

5.1 Motions and wave elevationsin head seas

Both fixed and floating states are considered m ¢bmputations. The results are presented (for
head seas in this sub-section, subsequently famtbdeam sea cases) in the following order: first
order motions; first order elevations; second ordean elevations; second order double frequency
elevations. The amplitude of the incident wavenigli cases taken as 1.0 m. The translations and
wave elevations are in metres, and the rotatior@iams are in degrees. In the figures showing
wave elevations, the left hand plot correspondstieovessels being fixed, and the right hand plot is
for the case when the FLNG barge and the tankdr A free to respond independently. In the
second order contribution of wave elevation wita tlessels free, the contribution of second order
motions is neglected. In the convention we haveptatb here for head seas, waves are incident
along the y-axis (see Fig. 11). In both this anthemsubsequent beam sea cases, the wave elevation
is calculated on the wall of FLNG barge, at its f@dgth 200m from each end, and the gap is 4m

wide.
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Figure 14. Surge, sway, heave, roll, pitch, yaw motion of Tanker and FLNG in head seas

In head sea cases, there are motions in the 6aetegfdreedom of each vessel. RAOs of the
tanker and the FLNG in this configuration are shawrfig. 14. Over the range of frequencies

considered, the tanker usually has larger motibas the FLNG, because of the greater inertia of
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the latter. The results are plotted at a frequespacing of 0.01 rad/s and the frequencies of some

predicted maximum amplitudes are identified byrthenbers indicated alongside the peaks.
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Figure 15. First-order elevation at mid length along the FLNG in head seas. (a) fixed state; (b)

freely-floating state

The first order elevationjgy | at mid length along the FLNG are shown in Fig. [t5both

the fixed and floating cases, there are many peaki&h correspond to then( 0) near-trapping
modes described in [6]. In a( 0) mode, the free surface across the gap isvilaile the surface
along the gap will include roughlyn21 half wave lengths (bearing in mind that the lengft the
gap is somewhat ill-defined for these two vesséMdifterent lengths). By comparing the first-order
elevations in fixed and freely-floating states iig.F15, one can observe a shift of the peak
frequencies. The first peak @t=0.76 rad/s which arises in the fixed state varsishethe floating
state. While in the fixed state the first-ordervakgoons include just the effects of incident and
diffracted potentials, in the floating states rédia potentials also contribute to the elevatiofise
latter appear to cause almost complete cancellafidine first peak at this central point (and as$o

all points along the gap), though a small resi@dudl.76rad/s is just visible on the plot.

Figure 16 shows the mean second order elevatjnslotted against the incident wave
frequency. In these comparisons of mean elevaiiorise fixed and floating states, similar near-
trapping phenomena and frequency shifts are foAhtébw frequencies, all the mean elevations at
points half way along the gap are positive, comesing to a mean set-up, whereas at high

frequency a mean setdown occurs.
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Figure 16. Mean elevation at mid length along the FLNG in head seas. (a) fixed state; (b)

freely-floating state

Figure 17 shows the modulus of the quadratic corapb(see 83.1.1) of the second order

eIevation|/7(§2) | plotted against the incident wave frequency. Adharesults for the floating state

miss the first peak ab=0.76 rad/s. The corresponding modulus of the piaﬂecomponenwgz) |

(that due to the second order potential) is shawiig. 18. In this, a peak corresponding to thet fir

peak in the first-order results is found in botkefi and floating states, at=0.38 rad/s. This of

course is half of the frequency exciting the fiostler peak in the left hand plot of Fig. 16. The

modulus of the total elevatigm‘® | is shown in Fig. 19.
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Figure 17. Quadratic component of second-order elevations at mid length along the FLNG in

head seas: (a) fixed state; (b) freely-floating state
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Figure 18. Potential component of second-order elevations at mid length along the FLNG in

head seas. (a) fixed state; (b) freely-floating state
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Figure 19. Total second-order elevations at mid length along the FLNG in head seas. (a) fixed

state; (b) freely-floating state

From Figs. 16-19 we conclude that the potential pament predominates in the results for
the second order elevation. Taken at face valugjlaie incident waves of amplitude 1m, if lying
within a series of narrow frequency bands, areipted to induce waves in the gap of some 4-5m
amplitude. In practice, these theoretical predigiof amplitude cannot be expected to match
experimental results precisely. Where the secodédraresults are predicted to be as high as first

order results, one can question the implicationshef perturbation expansion. Furthermore, the
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physical phenomenon is influenced by viscous effdeading to additional fluid damping, as
discussed in the Conclusions and, for example,un & al. [6] and Pauw et al. [4]. There is
however no reason to doubt the predictions of wibl®otions at or near to the relevant wave

frequencies identified here.

5.2 Motions and elevationsin beam sea-1

This case (i.e. waves in the negatiwdirection in Fig. 11) corresponds to the tankanye
situated on the exposed (upwave) side of the FLINGhoth beam sea cases, there are motions in 3
degrees of freedom of each vessel, due to the sympoifehe problem. The associated RAOs of the
tanker and FLNG in the beam sea-1 configuratiorshoevn in Fig. 20. It is worth mentioning that
larger roll motions are found here than in [25]¢cdese more frequencies have been calculated: the

frequency spacing is 0.01rad/s here compared witbra@d/s in [25].
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Figure 20. Sway, heave, and roll motions of tanker and FLNG in beam sea-1
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Similar to the elevations in the head sea case;tragaping phenomena and frequency shifts
are found, as seen in Fig. 21. In the floatingestabme small wiggles arise at low frequencies (see
Fig. 21(b)). The first hump a#=0.43 rad/s corresponds to the peak in the rolionatf the tanker
(see Fig. 20(c)). The second humpwat0.52 rad/s corresponds to the peak in the heavmmof
the tanker (see Fig. 20(b)).

The implications of these results, particularly foll, are rather dramatic — for a 14s
incident wave of 1m amplitude, a roll amplitude2¥ is predicted for the tanker. Whilst at this
frequency, there is virtually no roll for the FLNgarge, long period swell with a 20s period would
induce a 5 roll motion of the FLNG barge, potentially largeoeigh for LNG production to have to
cease. Both scenarios might occur for an FLNG prtda facility located off west Africa and

excited by swell from the Southern Ocean.
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Figure 21. First-order elevations at mid length along the FLNG in beam sea-1: (a) fixed state;

(b) freely-floating state

Figure 22 shows the comparison of the mean elavatiothe two states. Similar near-
trapping phenomena and frequency shifts are foundbemve. There are fewer wiggles at high

frequencies than in the head sea case.
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Figure 22. Mean elevations at mid length along the FLNG in beam sea-1: (a) fixed state; (b)

freely-floating state

Figures 23 and 24 show the amplitudes of the @i@dand potential components of the
second order elevation, and Fig. 25 shows the,totatach case plotted against incident wave
frequency. Similar near-trapping phenomena and ufeqy shifts are found. Significant
cancellations are found between the quadratic atehpal components in both fixed and floating
states. At low frequencies in the fixed case (073r@d/s), the potential components again dominate
the others. At 0.76 rad/s in the fixed case, howehe quadratic component predominates. At 0.81
rad/s in the fixed case, the potential componetitaslarger one. In the floating case, the poténtia
component always predominates. The peaks in tiaé ¢etond order elevation at low frequencies

become comparable to the peak value at 0.81 rad/s.
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Figure 23. Quadratic component of second-order elevations at mid length along the FLNG in

beam sea-1: (a) fixed state; (b) freely-floating state
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Figure 24. Potential component of second-order elevations at mid length along the FLNG in

beam sea-1: (a) fixed state; (b) freely-floating state

point (-2,0) point (-2,0)
20 25 0.81
20 |-
15 +
15
S 10 - S
= = q0L
5 i - L/
5L
0 | L | L 1 L 1 L 1 0 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3 0.4 0.5 0.6 0.7 0.8 0.9
o (rad/s) o (rad/s)
(@ (b)

Figure 25. Total second-order elevations at mid length along the FLNG in beam sea-1: (a)

fixed state; (b) freely-floating state

5.3 Motionsand devationsin beam sea-2

This configuration (i.e. waves in the positixadirection in Fig. 11) corresponds to the
tanker on the sheltered side (downwave) of the FLING2 associated RAOs are shown in Fig. 26.
Again larger roll motions are found than in [25¢chuse of the smaller frequency increment used
here. The peak heave and roll motions of the taakeenot as large as in the beam sea-1 case due to
the sheltering effect of the FLNG.
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Figure 26. Sway, heave and roll motion of tanker and FLNG in beam sea-2

First order elevations for this case are shownig E7. As in the beam sea-1 case, near-
trapping phenomena and frequency shifts are fobmthe floating state, the wiggles arising at low
frequencies (see Fig. 27(b)) are not as signifiesnin the beam sea-1 case, because the heave and

roll motions of the tanker are lower at the peaktrencies.
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Figure 27. First-order elevations at mid length along the FLNG in beam sea-2: (a) fixed state;
(b) freely-floating state

In the comparisons of mean elevations in the tvadest shown in Fig. 28, similar near-
trapping phenomena and frequency shifts may be. Sd@n mean elevations at high frequencies
tend to almost zero, with some very small wiggles.
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Figure 28. Mean elevations at mid length along the FLNG in beam sea-2: (a) fixed state; (b)

freely-floating state

Figures 29 and 30 show the amplitudes of the qtiadaad potential components of the
second order elevation, and Fig. 31 shows the .t@&ahilar near-trapping phenomena and
frequencies are found. From these results, we camclede that the potential component
predominates in both fixed and floating cases. Caomg the peak values of the quadratic
component, potential component and total elevatadmost complete cancellation between the
guadratic and potential components can be seénoftinterest that the largest peak elevation for
the floating case in Fig. 31(b) is obtained at @& s, which corresponds to half the frequency of
the first peak in the first order elevation for feed case (see Fig. 27(a)).

32



point (-2,0)

point (-2,0)

0.81

2.0 0.76 3.5
3.0
1.5 25
20

— 10} —

= = 15}
05 L 1.0 —
F J 0.81 0.5

0.0 — e . . 0.0
0.3 0.4 0.5 06 0.7 0.8 0.9 0.3

o (rad/s)
(@)

0.4

0.5

0.6 0.7 0.8 0.9
o (rad/s)

(b)

Figure 29. Quadratic component of second-order elevations at mid length along the FLNG in

beam sea-2: (a) fixed state; (b) freely-floating state
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Figure 30. Potential component of second-order elevations at mid length along the FLNG in

beam sea-2: (a) fixed state; (b) freely-floating state

33



oint (-2,0 oint (-2,0
10 point (-2,0) 15 point (-2,0)

0.38

0.76

10

I
D

. 0.
0.48 0.520.56

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o (rad/s) o (rad/s)
(@ (b)

Figure 31. Total second-order elevations at mid length along the FLNG in beam sea-2: (a)

fixed state; (b) freely-floating state

6. Conclusions

The aim of this paper is to illustrate the sigraht wave interaction effects associated with a
practical configuration of FLNG vessel with a tanke a side-by-side arrangement at very close
spacing. The results suggest that very high loedlisee surface elevations can occur in the gap at
set of discrete wave frequencies. The analyses bese undertaken with fine meshes of quadratic
elements, which capture the intense fluid motiortkiwthe gap between the vessels.

Investigations have been conducted for the vedsmisto move independently, as well as
for the case when they are fixed. In the latteedhsre is an additional peak in the linear fregyen
response of the wave elevation in the gap, at aildkequency than that of the lowest large peak in
the case of freely moving vessels. This is obsemdmbth head and beam sea configurations. The
lowest peak in the second order frequency resptorsime free surface in the gap, for both fixed
and free cases, is at half the frequency of thesbwnear peak for the fixed body case. The ldrges
peaks, both linear and second order, arise in s with the tanker upwave of the FLNG (beam
sea — 1). Unsurprisingly this is the case caudmglargest heave motions of the tanker. These,
however, occur at a heave resonant frequency (ad2) well below the frequency of the first very

large peak in the linear free surface elevatiomwbenh the freely moving vessels (0.81 rad/s).
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It must be recognised that the peaks in elevatipreslicted by these potential flow
calculations would not necessarily match very dioige results from experiments: viscous effects
can be expected to provide additional damping awer above that due to wave radiation. There is
no reason, however, to suspect that the frequeratigdbe peaks would not be predicted well.
Various attempts have been made by others to ingpitoe calculation of the interaction effects by
incorporating some fictitious damping into the pdial flow models, with the damping parameter
chosen empirically such as to provide a match weixiperimental data. The difficulty of this
approach has been highlighted in [4]. It was fothrat fitting one quantity, such as motion response,
led to a different value of damping parameter fnwhat is obtained from another quantity, such as
mean drift force. It may be that the most apprdpriquantity would be the peak free surface
elevation in the gap, and this is currently unamestigation using experimental data obtained at
Imperial College as part of the Safe Offload progmee. This is unlikely to be conclusive, however,
because in some of the experiments the measuréd peshe free surface elevation were higher
than the potential flow predictions. Another ditfity should also be recognised: the unknown
dependence of the fluid damping on the physicdlesaawhich the vessels are modelled. Further
numerical work based on solution of the Navier $sokquations can be expected to shed light on

this issue in due course.

As a practical point, we stress the magnitude efftee-surface and body motions which
can be excited by small amplitude waves when twgelaessels are in very close proximity. Even
if the practical responses in the field are a faofd or 3 smaller than our idealised results g3gg
there are likely to be major problems associatdd thie design of LNG loading arms to cope with
such large vessel motions, and violent wave motighin the gap could threaten both equipment
and crew should water be thrown up above deck.level
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