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Abstract 

 

When two vessels are moored side-by-side with a narrow gap between them, intense free surface 
motions may be excited in the gap as a result of complex hydrodynamic interactions. These 
influence the motions of the two vessels, and the forces in any moorings. The present paper uses 
first and second order wave diffraction analysis to investigate this phenomenon. Key theoretical 
aspects of the numerical analysis are first summarised, including the vital need to suppress 
“irregular frequency” effects; and results are given to validate the code used. The case of a tanker 
alongside a large floating FLNG barge is then considered in detail. 
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2B1. Introduction   

A hydrodynamic issue of crucial importance in the design of Floating Liquid Natural Gas 

(FLNG) off-loading systems is that of wave induced interactions between the vessels when moored 

very closely alongside each other (or of a tanker and a gravity-based structure supporting the LNG 

processing plant). Such interactions can radically change the hydrodynamic forces on the vessel(s) 

(wave exciting forces, as well as added mass and damping effects), and so modify the motion 

responses from what would be predicted for the same vessels in isolation. The close proximity of 

the vessels can also lead to very large free surface motions between them, in head seas as well as 

beam seas and indeed in waves incident from any direction. As a result, this topic is of considerable 

current research interest [e.g. 1-5], and has been the focus of major effort in the EU Framework 6 

Safe Offload research project. Both experimental and numerical work has been undertaken, and the 

present paper is concerned with the latter.  

 

Several difficulties arise when one considers appropriate strategies for constructing 

numerical models. The problem is inherently three dimensional (3D), as is immediately apparent 

when one observes in experiments the waves generated along the gap between two parallel vessels 

that are subject to beam seas. The problem can also be expected to be significantly influenced by 

viscous effects: linked to the roll motions of the vessels responding independently, as well as to 

potentially violent fluid motions in the gap and in the close vicinity of the hulls. In the future it may 

be feasible to use a full 3D Navier-Stokes code to resolve these issues in a practical numerical 

model. Prior to that, however, much may be learnt concerning the behaviour of closely spaced 

vessels by implementing appropriate potential flow models. In particular, such models can be 

expected to yield reliable predictions of the frequencies at which strong interactions will arise, and 

indications of the influence of key parameters such as spacing between the hulls (i.e. gap width), 

draught and gap length. Furthermore, second order diffraction analysis can clarify the possibilities 

of strong interaction effects at double frequencies in regular waves (or “sum” and “difference” 

frequencies in irregular waves). Second order effects would be important if it was found, for 

example, that a swell with a period of 16 s could excite very large responses with a period of 8s 

through frequency doubling effects.  

 

In the present work we have implemented such a second order analysis using a frequency 

domain boundary element model of the two vessels. Preliminary findings for the simple geometry 

of two closely spaced rectangular boxes have been given by Sun et al. [6]. In that paper, results 
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were discussed in the context of some very simple analytical solutions (analogous to solutions of 

the moonpool problem [7]). Here we aim to investigate the phenomenon for the rather more realistic 

case of an LNG tanker alongside an FLNG barge (albeit still with some simplifications to the 

geometry). We also provide here some additional details of the boundary element method we have 

implemented. The latter are described in Section 2 of this paper. Section 3 concerns some examples 

of its validation, where particular features discussed are the issue of avoiding so-called “irregular 

frequencies”, and the modelling of multiple bodies which respond independently. The geometry and 

meshing of the FLNG barge and LNG tanker are reviewed in Section 4, and the results are given in 

Section 5 followed by some conclusions.  

2. Overview of the DIFFRACT model 
 
2.1 Background 
 
 The boundary element method (BEM) has proved to be an invaluable technique for modelling 

linear and nonlinear wave diffraction problems. WAMIT [8, 9] is probably the most sophisticated of 

the commercially available BEM based codes which can analyze wave diffraction up to second 

order. DIFFRACT is another second order diffraction code which has been developed for research 

use over many years [10-13]. It has many similar capabilities to WAMIT, though it is based on a 

modified integral equation, which avoids the inconvenient representation of the solid angle, which 

is required in many implementations. For the work described here, this code has been improved and 

extended, both in terms of flexibility and efficiency of use, and in providing a capability to deal 

with multiple floating bodies. A feature which has been found to be essential for solving the 

problems addressed here is the capability of suppressing so-called “irregular frequencies”. These 

arise when the integral equation is formulated using the wave source Green function. Such a 

formulation has the advantage in the linear problem that the integral equation only has to be 

discretised on the submerged surface of the diffracting body. It has the disadvantage, however, that 

at certain “irregular frequencies” the equation has no unique solution, and the discretised system of 

equations can be very poorly conditioned near such frequencies. The particular way in which this 

problem has been overcome in DIFFRACT has not previously been published, and is described 

below. This requires first some explanation of the integral equations on which first and second order 

solutions are based in DIFFRACT. 

 
2.2 Governing equations 
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In the first order analysis, at each component wave frequency ω the linear velocity potential 

has the form 

 

(1) (1)( , , , ) Re ( , , ) i tx y z t x y z e ωφ − Φ =                 (1) 

 

where Re[ ] means the real part of complex number. The potential has components due to the 

incident wave (I) and the scattered waves (S). The latter include the wave diffracted by the fixed 

body (D), and radiated waves due to the combined effects of the body motions (R), so that 

    

    (1) (1) (1)
I Sφ φ φ= +  where (1) (1) (1)

S D Rφ φ φ= + .    (2) 

 

With the assumption of linearity, we can write the motions of a single rigid body as 

 

(1) (1) iRe[ ]te ωξ −=
�� �

ΞΞΞΞ                                                             (3) 

 

where 
(1)

ξ
�

 is the vector used to define the three translations and three rotations. The radiation 

potential can then be rewritten as 

 

6
(1) (1) (1)

1
R m m

m

iφ ωξ φ
=

= −∑     ( 1,2, ,6)m = ⋯         (4) 

If we further define (1) (1)
0 Iφ φ=  and (1) (1)

7 Dφ φ= , the first order potential has the form of 

6
(1) (1) (1) (1) (1)

0 7
1

m m
m

iφ φ ωξ φ φ
=

= + − +∑     (5) 

The unknown potentials (1)
mφ  (m=1,2, ….., 7) in the above Eq. (5) satisfy the usual boundary 

conditions on the mean external free surface SFe and the sea bottom, and the conditions at infinity; 

and the diffraction and radiation potentials satisfy appropriate conditions on the equilibrium body 

surface SB. 

 

In the boundary element analysis we use a Green function (1)
0( , )G x x

� �

 satisfying the linear free 

surface and seabed boundary conditions and the Sommerfeld radiation boundary condition: 
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[ ] [ ]0(1)
0 0

2 0

( ) cosh ( ) cosh ( )1 1 1
( , ) 2 ( )

4 sinh( ) cosh( )

he z h z h
G x x J R d

r r h h

µµ ν µ µ
µ µ

π µ µ ν µ

−∞ + + +
= − + + − 

∫
� �

        (6) 

 

in which g/2ων = , ),,( zyxx =� are the coordinates of the field point, ),,( 0000 zyxx =�  are the 

coordinates of the source point and h is the water depth, 2
0

2
0 )()( yyxxR −+−= , 

2
0

2 )( zzRr −+= , 2 2
2 0( 2 )r R z h z= + + + .  Here J0(µR) denotes the zero order Bessel  function  

of the first kind and µ is the Fourier transform variable. This leads to the commonly used integral 

equation for the potential (1)
mφ  

 

                                 
(1)

(1) (1) (1) (1)
0 0( ) ( ) ( ) ( )

B B
m m mS S

G
C x x x ds G V x ds

n
φ φ ∂+ =

∂∫∫ ∫∫
� � � �

� ,                            (7) 

 where 
(1)

(1)
7

( )
( ) I x

V x
n

φ∂= −
∂

�

�

�  for the diffraction potential and (1)( )m mV x n=
�

( mn  is the mth component of 

the generalized normal vector) for the mth radiation potential. Here 0( )C x
�

 has the value 1 when 0x
�

 

is in the fluid domain and 1/2 when0x
�

 is on the equilibrium body surface SB as long as the body 

surface is smooth. For a non-smooth surface, the value of 0( )C x
�

 will be associated with the exterior 

solid angle at a surface discontinuity. The discontinuity in the value of 0( )C x
�

 can cause difficulties 

in solving the above integral equation near to the body and the integrand has a singularity associated 

with it. The approach used by Chau [14] showed that this can be overcome by applying Green’s 

theorem to the region interior to the body, bounded by the equilibrium body surface and an inner 

free surface SFi. In DIFFRACT a modified integral equation is used, of the form 

 

( ) ( )
(1)

(1) (1) (1) (1) (1) (1)
0 01 ( ) ( ) ( ) ( )

Fi B B
m m m mS S S

G
G ds x x x ds G V x ds

n
ν φ φ φ ∂− + − =

∂∫∫ ∫∫ ∫∫
� � � �

�            (8) 

        

The function 0( )C x
�

 has been removed from the integral equation and the integrand is now non-

singular. Eq. (8) is discretised, and the unknown potentials (1)
mφ  solved from the matrix equations. 

Wave excitation forces and hydrodynamic coefficients are calculated by the integration of pressures 

on the equilibrium body surface. The response of the floating body 
(1)

ξ
�

is obtained by solving the 
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motion equations. Then (1)φ  and (1)
Sφ  which are used in the second order analysis are evaluated from 

Eqs. (2) and (4). 

 

Next we consider the second order problem. The complete wave velocity potential to second 

order can be expanded using Stokes’ perturbation method as 

(1)

1 1 1

( , , , ) Re ( , , ) [ ( , , ) ( , , ) ]j jl jl

N N N
i t i t i t

j jl jl
j j l

x y z t x y z e x y z e x y z eω ω ωφ φ φ
+ −− − −+ −

= = =

 
Φ = + + 

 
∑ ∑∑   (9) 

 

Here ωj is the jth wave frequency, and N is the total number of frequency components. The sum and 

difference frequency components are 

 

                                                ljjlljjl ωωωωωω −=+= −+ , .   

 

The second order diffraction potentials Dφ ±  then satisfy:  

 

2 2 2

2 2 2
0D D D

x y z

φ φ φ± ± ±∂ ∂ ∂+ + =
∂ ∂ ∂

       in the fluid domain Ω                    (10) 

D I
BF

n n

φ φ± ±
±∂ ∂= − +

∂ ∂
� �                      on BS                (11) 

0D

z

φ ±∂ =
∂

                                      on the seabed                  (12) 

D
D F

z g

φ ω φ
± ±

± ±∂ − =
∂

                 on the external free surface                            (13) 

together with a radiation condition. The term BF ±  on the equilibrium body surface incorporates the 

terms due to products of its first order motions, and is defined by: 

 

BF n w
±± = ⋅

� ��

.           (14)  

 

The sum frequency second order motion is  
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( )1
( )

4 j l lj jl
w i H H rω ω

+ + +    = − + +   

�� �

 

( ) ( )(1) (1) (1) (1)(1) (1)
j ll jl l j ji iα ω χ φ α ω χ φ+ × + ∇ + × + ∇
�� �� �� ��

   (15) 

( ) ( )(1) (1)(1) (1)
j ll jχ φ χ φ − ⋅∇ ∇ − ⋅∇ ∇



�� ��

 

 

where φj
(1) now represents the total first order potential at frequency j, and similarly for φl

(1). It is 

convenient to write the displacements in the form 

 

(1) (1) (1)
jj j rχ ξ α= + ×

�� � �� �

, 

(1) (1)
ll l rχ ξ α= + ×

�� � �� �

,            (16) 

 

where (1) (1) (1)
1 2 3( , , )ξ ξ ξ ξ=

�

 are the translational motions and 

(1) (1) (1)
4 5 6( , , )α ξ ξ ξ=

��

 are rotations. 

Furthermore,            

(1) (1) (1) (1)
5 5 6 6

(1) (1) (1) (1) (1) (1) (1) (1)
4 5 4 5 4 4 6 6
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
4 6 4 6 5 6 5 6 4 4 5 5

0 0

0
j l j l

j l l j j l j llj jl

j l l j j l l j j l j l

H H

ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

+ +

 +
 

   + = − − − +    
 − − − − + 

.         (17) 

 

The term F± occurring in the free surface boundary condition Eq. (13) is the product of linear terms, 

driving the second order diffraction field due to the presence of the structure. The sum-frequency 

component F+ is given by 

 

                 

)(
2

)(

)(
2

)(
2

)(
2

)(
2

)1()1()1()1()1()1(

2

)1(2)1(2
)1(

2

)1(2)1(2
)1(

2

)1(2)1(2
)1(

2

)1(2)1(2
)1(

SlSjIlSjSlIj
lj

SjSjj
Il

lSlSll
Ij

j

jjj
Sl

llll
Sj

j

g

i

zzgg

i

zzgg

i

zzgg

i

zzgg

i
F

φφφφφφ
ωω

φφω
φωφφωφ

ω

φφω
φωφφωφ

ω

∇⋅∇+∇⋅∇+∇⋅∇
+

+

∂
∂

+
∂

∂−
−

∂
∂

+
∂

∂−
−

∂
∂

+
∂

∂−
−

∂
∂

+
∂

∂−−
=+

                         (18) 

where )1(
Sjφ and )1(

Slφ  are the scattered velocity potentials, corresponding to frequencies j and l 

respectively, and )1(
Ijφ and )1(

Ilφ  are the incident wave velocity potentials. 
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The corresponding difference-frequency terms w
−��

 and F −  have similar forms, with lω  

replaced by lω−  and terms of the form (a jbl + alb j )  replaced by (a jbl
* + al

*b j ) . An asterisk denotes 

the complex conjugate.  

 

As with the first order analysis, the solution of the second order sum and difference 

frequency terms can also be obtained by applying Green's theorem to the fluid domain. The 

modified integral equation for the second order diffraction potentials is 

( ) ( )0 01 ( ) ( ) ( )

( ) ( ) ( )

Fi B

B Fe B

D D DS S

I
BS S S

G
G ds x x x ds

n

G x ds F x G ds F x G ds
n

ν φ φ φ

φ

±
± ± ± ± ±

±
± ± ± ± ±

∂− + −
∂

∂= − − +
∂

∫∫ ∫∫

∫∫ ∫∫ ∫∫

� � �

�

� � �

�

    (19) 

where ν± = (ω±)2/g and G± is the Green function for the sum and difference frequency problems (in 

which ν is replaced by ν±). 

 

2.3 Discretisation of the integral equations 

 

Equations (8) and (19) are the underlying integral equations used in the DIFFRACT BEM 

code, corresponding to the first and second order problems respectively. These are discretised using 

quadratic isoparametric elements [15]. This leads to a set of matrix equations for the unknown nodal 

values of velocity potential. Six-node triangular and eight-node quadrilateral elements are used, 

leading to models in which the velocity potential is assumed to have a quadratic variation over the 

(curved) elements. 

 

In order to reduce the computational requirements in the case of geometries having one or 

two planes of symmetry, the matrix equations are reorganised and reduced in size. If for example 

there is one plane of symmetry, the equation set for the complete problem (e.g. for the 7 unknowns 

in the diffraction-radiation problem of a single body) is reduced in size by approximately a factor of 

two. The unknowns are split into symmetric and antisymmetric components, so the number of 

equations is doubled (to 14 in this example). For two planes of symmetry, the factor is four. Details 

of the formulation are given in [16]. It should be noted that the approach depends on the symmetry 

properties of the body geometry: the diffracted wave field will not be symmetric, and waves may 

propagate at any arbitrary angle to the body. 

 



 9 

It can be seen that Eq. (19) involves an additional integral over the exterior free surface SFe. 

This is because the Green function G± corresponding to frequencies ±ω  satisfies the homogeneous 

linear free surface boundary condition rather than the inhomogeneous second order free surface 

boundary condition, Eq. (13). The integrand ( )F x G± ±
�

 involves the product of derivatives of the 

first-order velocity potentials, as shown in Eq. (18) for example, and is highly oscillatory. It only 

decays algebraically with increasing distance from the body. In the program DIFFRACT, the 

external free surface is divided into three domains over which different numerical treatments are 

implemented. The first region is the inner region SFe1, where the integration can be evaluated by 

using quadratic panels defined in a region between the body water line and a circumscribing circle. 

The second and third regions are the remaining portions of the free surface exterior to the 

circumscribing circle. In the second region, the integration on the external free surface is replaced 

by a line integral of individual Fourier harmonics. The third region (from the outer boundary of the 

second region to infinity) is defined as the far field region where the evanescent components of the 

scattered waves are assumed to have decayed away and all that remains are radially propagating 

waves. In the far field region, therefore, the integrand can be approximated by a simple asymptotic 

formulation, thereby improving the efficiency of the calculation. More details can be found in [14]. 

 

2.4 Avoidance of irregular frequencies 

 

 The equation set summarized above is well known to be susceptible to the phenomenon of  

“irregular frequencies”. This means a unique solution cannot be obtained at some discrete 

frequencies. This in turn leads to sharp “jumps” in numerical results in the neighbourhood of these 

frequencies. These do not originate from physical phenomena; they are a feature of the integral 

equation. The locations of the discrete irregular frequencies can be determined by theoretical 

analysis for bodies with simple geometries: they are obtained from the eigenvalues of the boundary 

value problem for the potential inside the body, subject to the linear free surface condition and a 

Dirichlet condition of zero potential on the body surface. For complex structures, it is sometimes 

hard to distinguish whether the results have been polluted by irregular frequencies. Particularly 

difficult cases are multiple-body problems, because they can show similar “jumps” at resonant 

frequencies, where strong physical interactions will arise. This is even more serious for second 

order problems, because correct results can only be achieved if the computations at both second 

order and first order are all free of irregular frequencies. If for example one is aiming to calculate 
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second order results in a pair of waves at frequencies ω1 and ω2, then one must avoid the possibility 

of any of the irregular frequencies coinciding with any of ω1, ω2, (ω1+ω2), or  (ω1−ω2). 

 

There are two approaches to avoiding the “irregular frequencies”. One is to use other numerical 

methods which are free of “irregular frequencies”, such as a boundary element method using simple 

Green functions (e.g. 1/r), or hybrid methods. Another is to remove the “irregular frequencies” by 

overcoming the lack of uniqueness in the original formulation. We have adopted this latter approach. 

The implementation is similar to that of Sun et al. [17], though differs in detail. This is because the 

underlying integral equations which Sun et al. modify to remove irregular frequencies are different 

from those used here (Eq. (8) at first order and Eq. (19) at second order, designated the “old 

equations” in what follows). 

 

The code DIFFRACT adopts the following “new equations” for the diffraction problem: 

( )
( )

( ) ( ) ( ) ( ) ( ) 0
0 0 0

( )
( ) ( ) ( ) ( ) ( )

0 0 0 0

( , )1 ( , ) ( ) ( ) ( )

( )
( , ) ( , ) ( ) ( , ) )

F Bi

B F B

j
j j j j j

D D DS S

j
j j j j jI

B BS S S

G x xG x x ds x x x ds
n

x
G x x ds F G x x F x G x x ds x S

n

ν φ φ φ

φ

∂ − + − 
  ∂

∂= − − +                ( ∈
∂

∫∫ ∫∫

∫∫ ∫∫ ∫∫

� �

� � � � �

�

�

� � � � � � � �

�

     (20) 

( )
0( )

( )
( ) ( ) ( ) ( ) ( )

0 0 0 0

( , )
( )

( )
( , ) ( , ) ( ) ( , ) )

B

i
B F Be

j
j

DS

j
j j j j jI

B FS S S

G x x
x ds

n

x
G x x ds F G x x ds F x G x x ds x S

n

φ

φ

∂
∂

∂= − − +            ( ∈
∂

∫∫

∫∫ ∫∫ ∫∫

� �

�

�

�

� � � � � � � �

�

    (21) 

( )
0( )

0
( , )

( ) 0                                                                                       ( )
Fi

j
j

BS

G x x
x ds x S

n
ψ ∂ = ∈

∂∫∫
� �

� �

�      (22) 

( )
0( ) ( )

0 0
( , )

( ) ( ) 0                                                                      ( )
i

Fi

j
j j

FS

G x x
x x ds x S

n
ψ ψ ∂+ = ∈

∂∫∫
� �

� � �

�      (23) 

Here ψ(j) are nodal potentials on the inner free surface. The equations are written in a compact form 

to indicate how both the first order (superscript j=1) and the second order (j=2) equations are 

modified. Here superscript (2) is equivalent to ± above, and F(1) = 0, (1)
BF =0. In the above form, two 

integral equations (Eq. (20) and (21)) on the equilibrium body surface and two integral equations 

(Eq. (22) and (23)) on the inner free surface are incorporated. In Eq. (20) and (21), the resulting 

matrix is over-determined. But these equations are added to Eq. (22) and (23) respectively, leading 

to a set of matrix equations for the unknowns φ(j) and ψ(j) . The resulting equations have unique 

solutions at all frequencies. 
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 An important issue relating to the new equations is the incompatibility of the velocity 

potentials φ(j)  and ψ(j) at the inner water line, the intersection curve of the body surface SB and the 

inner free surface SFi. The value of the velocity potential on the inner water plane must be zero, and 

that on the body should be non-zero. To avoid this conflict, discontinuous elements are used in 

discretisation of the integral equations. For all geometric quantities, continuous higher order 

boundary elements are adopted to simulate the surface of the integration domain. For the physical 

quantities on the surface of the body and the interior part of the inner water plane, continuous higher 

order boundary elements are adopted; for the physical quantities on the boundary of the inner water 

plane, partially discontinuous higher order boundary elements are adopted (as described in [18]). By 

this means, not only is geometric continuity ensured, but also the physical discontinuity on the 

interface of the body surface and the inner water plane is retained. 

 

 As an example, on the inner water plane of a circular cylinder or hemisphere, the 

distribution of elements could be as shown in Fig. 1 (in which × represents geometric nodes, and ● 

represents physical nodes). The distribution of nodes in a partially discontinuous element is shown 

in Fig. 2, where G1, G2, G3, G4, G5, G6, G7, G8 are geometric nodes; and P1, P2, P3, P4, P5, P6, 

P7, P8 are physical nodes. 

 

 
Figure 1. Sketch of elements on the inner water plane 
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Figure 2. Distribution of nodes in a quadrilateral element, as specified in local coordinates 

 

3. Validation 
 

The implementation of DIFFRACT based on the “old equations” has been extensively 

verified and validated in previous publications [12, 13, 19, 20]. Here we compare results from the 

old and new formulations for two different fixed body configurations. We also present results for 

multiple moving bodies and compare these with other published data. 

 

 
3.1 Validation of method for removing the irregular frequencies 

3.1.1 A single vertical uniform cylinder 

We first consider the case of a vertical cylinder, and comparison with the second order 

analytical solution in [21]. The cylinder has radius a = 1 m and extends to the bottom in water of 

depth 1 m. The theoretical solution for the location of the irregular frequencies is easy to obtain. 

The first few values associated with the first Fourier harmonic circumferentially (which would 

therefore affect the first order horizontal force), specified in terms of dimensionless wave number 

ka (where k  is the wave number), are obtained from the zeros of the Bessel functions J1 as: ka = 

3.83170597, 7.01558667, 10.17346814, 13.32369194. Second order quantities based on products of 

first order effects (so-called “quadratic” terms) involve all Fourier harmonics; and therefore 

irregular frequencies can potentially affect these quantities at the zeros of all orders of Bessel 

function. For the second order problem, forces were obtained using the meshes in Fig. 3 (in which 

the radius of the outer boundary of SFe1 is 2.10533 m) over the range 0< ka < 4.0. In the specified 

water depth the wave numbers which correspond to half the values of the irregular frequencies 

listed above are ka =  1.16535421, 1.84393604, 2.5731498, 3.33931087. It can be expected 

therefore that problems would arise in evaluation of the double frequency second order potential 

near these values of ka. 
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                            (a)                    (b) 

Figure 3. Mesh used for second order analysis of vertical cylinder: (a) body surface and 

external free surface; (b) inner free surface 

 

 

   
(a) 

   
(b) 

 



 14 

   
(c) 

Figure 4. Second order horizontal force on a cylinder due to the 2nd order potential 

 

Figure 4a compares the analytical solution for the 2nd order force (in Newtons) due to the 2nd 

order potential (real and imaginary parts) over the range 0 < ka < 3.0, with results calculated from 

the original and new equations. Figure 4(b) shows the details near the irregular frequency associated 

with ka = 1.84393604. In Fig. 4(c) one can see irregularities associated with first order effects at ka 

= 3.83170597; and also with second order effects near ka = 3.70348133 (due to the second Fourier 

harmonic and the zero of J2 having the value 14.79595178). The improvement in the results based 

on the new formulation is clear. 

 
 
3.1.2 Second order forces on two fixed vertical cylinders 

We next consider two vertical cylinders whose centre lines are 3a apart, in water of depth 3a, 

a problem considered by Ghalayini and Williams [22]. In this case the first order horizontal forces 

are susceptible to irregularities at frequencies corresponding all of the Fourier modes, because the 

waves encountering one cylinder as a result of scattering by the other contain the full spectrum of 

harmonics symmetric about θ = 0. Here we consider the second order problem, where again all 

these harmonics can contribute. It is easy to show that the lowest irregular frequencies correspond 

to ka= 0.6293948494, 0.9638441312, 1.2850569034, ….  

 

Figure 5 shows the general arrangement and the meshes employed (in the numerical model  

two planes of symmetry have been applied and the radius of the outer boundary of SFe1 is 4.5a). The 

horizontal forces on each cylinder due to the second order potential are shown over the range 0 < ka 

< 1.5 in Fig. 6(a), as calculated using the old and new equation formulations. These are for constant 

wave steepness kH=0.2π (k is called k0 in [22], and H is the incident wave height) and results are 
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nondimensionalized by ρgHπa2/2 (here ρ is the fluid density, g is the acceleration due to gravity). 

The figures may (with difficulty) be compared with the plots in [22], in which a much larger 

ordinate is used because other components of force are also plotted. The agreement appears to be 

satisfactory. Figure 6(b) shows expanded versions of these plots over the range of wave numbers 

close to that corresponding to the first irregular frequency given above. The improvement from 

using the new equations is again clear. 

 

 

(a) 

 

     

(b)                                                           (c) 

Figure 5. General arrangement (a) and meshes (b, c) for the two-cylinder problem 

        

   
       (a) 
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       (b) 

 

Figure 6. 2nd order force due to 2nd order potential (nondimensionalized by ρρρρgHππππa2/2 ) 

     

 

3.1.3 Linear horizontal forces on a fixed box  

This case concerns a fixed box having a rectangular waterplane area (length=1.125m, 

width=0.325m), and draft=0.125m. This corresponds to a configuration investigated in the SAFE 

OFFLOAD programme, for which results were obtained at model scale over a specified range of 

wave periods. The meshes used for the linear analysis are shown in Fig. 7. Although the shapes of 

some of the elements on the inner surface in Fig. 7(b) appear somewhat distorted, our experience is 

that satisfactory results are obtained. The results of surge and sway forces based on old and new 

equation are compared in Fig. 8 (here A is the incident wave amplitude). Again the irregular 

frequencies can be obtained by means of some simple analysis. They correspond to the wave 

periods indicated by vertical lines over the range of 0.25s < T < 0.3s in Fig. 8. The large number of 

irregular frequencies for this configuration is very striking. It may be clearly seen that, as expected, 

the irregular frequency effects that are triggered depend on the direction of the incident wave. The 

graphs show that the original equations provide results which to all intents and purposes are useless 

over substantial parts of the period range. The new equations, however, yield satisfactory results. 
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(a) 

 

  
(b)  

Figure 7. Meshes for rectangular box linear analysis: (a) body surface; (b) inner free surface 

 
 

   
    (a)                 (b) 

 

Figure 8. Linear forces on a box: a) surge force in head seas; b) sway force in beam seas 

 

3.2 Validation of analysis for multiple moving bodies: two free floating truncated cylinders 

There are rather few published results for the radiation problem corresponding to two 

independently oscillating bodies, and fewer still (if any) for the second order forces on 

independently oscillating bodies. The former problem has been considered by Matsui and Tamaki 
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[23], who obtained results for a pair of bodies by a multiple scattering approach. In this, an 

axisymmetric boundary element source distribution was used to model each body. We here 

investigate the case of two freely floating truncated cylinders and compare the generalised added 

mass and damping matrices, and the responses, with the results given for this case in [23]. Figure 9 

shows the general arrangement, and the body surface meshes for two different DIFFRACT models 

(coarse mesh 1 and finer mesh 2, using one plane of symmetry). 

 

 

 

   

   
 

Figure 9. General arrangement and two meshes used for the pair of truncated cylinders 
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Figure 10. Coupled added mass and damping in surge for independently oscillating cylinders    
 

 

 Examples of cross coupling hydrodynamic terms are shown in non-dimensional form in Fig. 10. 

These are the added mass (1)(2)
1 1A  and radiation damping (1)(2)

1 1B , corresponding to the surge force on 

cylinder 1 due to surge motion of cylinder 2, for a centre-to-centre spacing s=3a. Results from the 

two meshes in Fig. 9 are almost indistinguishable. Comparison with values taken from the plots 

given in [23] shows very slight disagreement (possibly linked to the inaccuracy in reading off the 

published graphs), although the trends are very similar. 

 
 

3B4. Configuration and numerical models of FLNG and LNG tanker 

We now apply our boundary element model to one of the case studies investigated in the 

Safe Offload project. The two vessels are in a parallel configuration side by side, with a small gap 

of 4m between them. The water depth is 250 m. The geometry, inertia and hydrostatic properties of 

the FLNG are given in tables 1-2, and the corresponding properties for the tanker are in tables 3-4. 

The geometry of the tanker was simplified for this analysis. This was to enable the complex second-

order problem of very closely spaced vessels such as these to be investigated in detail without 

incurring excessive computing times. A particular target of the simplification is to ensure that both 

the FLNG barge and the tanker are symmetric fore and aft. It is convenient then in the numerical 

modelling to make use of the existence of a plane of symmetry through the midships of both vessels. 

The geometry of the two vessels for meshing is therefore as shown in Fig. 11. The analysis is 

essentially based on the assumptions of potential flow. In order however to calculate realistic values 

of roll (and coupled sway) in freely-floating states, it is necessary to account for additional damping 
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due to viscous effects. We have used values provided by Noble Denton [24], as shown in table 5. 

This is in addition to the radiation damping automatically calculated by the diffraction code. 

 

We stress the difficulty of the calculation we are attempting. We are unaware of any other 

authors who have included such a narrow gap compared to the size of the bodies themselves (4m 

versus 400m). Clearly any contamination of the solution from irregular frequencies would 

completely destroy the solution. Our extensive testing and comparisons to known analytic solutions 

[6] provides confidence in the quality of the results.  

 

  

Figure 11. Configuration of FLNG and Tanker 

 

 

Table 1. FLNG Principal Particulars 

Length BP 400.0 metres 

Breadth 70.0 metres 

Depth to Main Deck 36.0 metres 

 

 

 

Table 2. FLNG Mass Properties (Loaded Draft) 
 

Mean Draft 21.254 metres 

Displacement 610,000 tonnes 

Vertical Centre of Gravity 22.4 metres 

Metacentric Height (GM) 7.44 metres 

Transverse Radius Gyration (Krr) 24 metres 
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Table 3. Tanker Principal Particulars 
 

Length BP  276.0 metres 

Breadth 46.0 metres 

Depth to Main Deck 25.5 metres 

 
 

Table 4. Tanker Mass Properties (Loaded Draft) 
 

Mean Draft 11.4 metres 

Displacement 97,000 tonnes 

Vertical Centre of Gravity 16.0 metres 

Metacentric Height (GM) 4.8 metres 

Transverse Radius Gyration (Krr) 14.0 metres 

 

 

Table 5. Added Additional damping in roll 
 

FLNG 9.00E9 N-m/(rad/s) 

Tanker 6.00E8 N-m /(rad/s) 

 

The sizes and distributions of element meshes on boundary surfaces of the fluid domain are 

very important in the present simulations, especially for the second-order analyses. This has been 

examined in the context of two boxes in [6]. Satisfactory convergence of numerical results for the 

present second-order problem has been achieved up to ω～0.85 rad/s. Figures 12 and 13 show the 

meshes that have been used in the present computations, based on the experience gained in [6] for 

the simpler geometry of two rectangular boxes. In figure 13(a), the radius of the outer boundary of 

SFe1 is 2500 m. On the other hand, to match the meshes on the body surface and obtain accurate 

results from the numerical integration, the meshes on the external free surface have to be limited to 

reasonable sizes (the meshes around the gap are shown in figure 13(b)). Comparing different 

meshes on the external free surface (Figure 3(a), 5(b) and 13), one finds that the size of meshed 

region SFe1 may change dramatically for different configurations. This is related to the incident 

wave number, water depth and dimensions of the structure. For larger structures in deeper water, 

bigger meshed regions SFe1 are needed to achieve converged results at higher wave frequencies: this 

is associated with the numerical treatment of the free surface forcing terms, described in [14]. 
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(a)       (b) 

Figure 12. Meshes on the body surface (a) and inner free surface (b) 
 

    
 

Figure 13. Meshes on the external free surface 

4B5. Results 

5.1 Motions and wave elevations in head seas 

Both fixed and floating states are considered in the computations. The results are presented (for 

head seas in this sub-section, subsequently for the two beam sea cases) in the following order: first 

order motions; first order elevations; second order mean elevations; second order double frequency 

elevations. The amplitude of the incident wave is in all cases taken as 1.0 m. The translations and 

wave elevations are in metres, and the rotational motions are in degrees. In the figures showing 

wave elevations, the left hand plot corresponds to the vessels being fixed, and the right hand plot is 

for the case when the FLNG barge and the tanker both are free to respond independently. In the 

second order contribution of wave elevation with the vessels free, the contribution of second order 

motions is neglected. In the convention we have adopted here for head seas, waves are incident 

along the y-axis (see Fig. 11). In both this and in the subsequent beam sea cases, the wave elevation 

is calculated on the wall of FLNG barge, at its mid length 200m from each end, and the gap is 4m 

wide. 
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        (a)                                                                           (b) 

  

      (c)                                                                           (d) 

  

(e)                                                                           (f) 

Figure 14. Surge, sway, heave, roll, pitch, yaw motion of Tanker and FLNG in head seas 
 

In head sea cases, there are motions in the 6 degrees of freedom of each vessel. RAOs of the 

tanker and the FLNG in this configuration are shown in Fig. 14. Over the range of frequencies 

considered, the tanker usually has larger motions than the FLNG, because of the greater inertia of 
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the latter. The results are plotted at a frequency spacing of 0.01 rad/s and the frequencies of some 

predicted maximum amplitudes are identified by the numbers indicated alongside the peaks. 

  

        (a)       (b)  

Figure 15. First-order elevation at mid length along the FLNG in head seas: (a) fixed state; (b) 

freely-floating state 

 

The first order elevations | |η  at mid length along the FLNG are shown in Fig. 15. In both 

the fixed and floating cases, there are many peaks, which correspond to the (m, 0) near-trapping 

modes described in [6]. In a (m, 0) mode, the free surface across the gap is flat; while the surface 

along the gap will include roughly 2m-1 half wave lengths (bearing in mind that the length of the 

gap is somewhat ill-defined for these two vessels of different lengths). By comparing the first-order 

elevations in fixed and freely-floating states in Fig. 15, one can observe a shift of the peak 

frequencies. The first peak at ω=0.76 rad/s which arises in the fixed state vanishes in the floating 

state. While in the fixed state the first-order elevations include just the effects of incident and 

diffracted potentials, in the floating states radiation potentials also contribute to the elevations. The 

latter appear to cause almost complete cancellation of the first peak at this central point (and also at 

all points along the gap), though a small residual at 0.76rad/s is just visible on the plot. 

 

Figure 16 shows the mean second order elevations mη  plotted against the incident wave 

frequency. In these comparisons of mean elevations in the fixed and floating states, similar near-

trapping phenomena and frequency shifts are found. At low frequencies, all the mean elevations at 

points half way along the gap are positive, corresponding to a mean set-up, whereas at high 

frequency a mean setdown occurs. 
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        (a)       (b)  

Figure 16.  Mean elevation at mid length along the FLNG in head seas: (a) fixed state; (b) 

freely-floating state 

 

Figure 17 shows the modulus of the quadratic component (see §3.1.1) of the second order 

elevation (2)| |qη  plotted against the incident wave frequency. Again the results for the floating state 

miss the first peak at ω=0.76 rad/s. The corresponding modulus of the potential component (2)| |pη  

(that due to the second order potential) is shown in Fig. 18. In this, a peak corresponding to the first 

peak in the first-order results is found in both fixed and floating states, at ω=0.38 rad/s. This of 

course is half of the frequency exciting the first order peak in the left hand plot of Fig. 16. The 

modulus of the total elevation (2)| |η  is shown in Fig. 19. 

  

        (a)       (b)  

Figure 17.  Quadratic component of second-order elevations at mid length along the FLNG in 

head seas: (a) fixed state; (b) freely-floating state 
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                     (a)       (b)  

Figure 18.  Potential component of second-order elevations at mid length along the FLNG in 

head seas: (a) fixed state; (b) freely-floating state 

 
 

  

                      (a)       (b)  

 

Figure 19.  Total second-order elevations at mid length along the FLNG in head seas: (a) fixed 

state; (b) freely-floating state 

 
 

From Figs. 16-19 we conclude that the potential component predominates in the results for 

the second order elevation. Taken at face value, regular incident waves of amplitude 1m, if lying 

within a series of narrow frequency bands, are predicted to induce waves in the gap of some 4-5m 

amplitude. In practice, these theoretical predictions of amplitude cannot be expected to match 

experimental results precisely. Where the second order results are predicted to be as high as first 

order results, one can question the implications of the perturbation expansion. Furthermore, the 
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physical phenomenon is influenced by viscous effects leading to additional fluid damping, as 

discussed in the Conclusions and, for example, in Sun et al. [6] and Pauw et al. [4]. There is 

however no reason to doubt the predictions of violent motions at or near to the relevant wave 

frequencies identified here. 

 

5.2 Motions and elevations in beam sea-1 

This case (i.e. waves in the negative x-direction in Fig. 11) corresponds to the tanker being 

situated on the exposed (upwave) side of the FLNG.  In both beam sea cases, there are motions in 3 

degrees of freedom of each vessel, due to the symmetry of the problem. The associated RAOs of the 

tanker and FLNG in the beam sea-1 configuration are shown in Fig. 20. It is worth mentioning that 

larger roll motions are found here than in [25], because more frequencies have been calculated: the 

frequency spacing is 0.01rad/s here compared with 0.05rad/s in [25]. 

 

  

      (a)                                                                                      (b) 

 

      (c) 

Figure 20.  Sway, heave, and roll motions of tanker and FLNG in beam sea-1 
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Similar to the elevations in the head sea case, near-trapping phenomena and frequency shifts 

are found, as seen in Fig. 21. In the floating state, some small wiggles arise at low frequencies (see 

Fig. 21(b)). The first hump at ω=0.43 rad/s corresponds to the peak in the roll motion of the tanker 

(see Fig. 20(c)). The second hump at ω=0.52 rad/s corresponds to the peak in the heave motion of 

the tanker (see Fig. 20(b)). 

 

The implications of these results, particularly for roll, are rather dramatic – for a 14s 

incident wave of 1m amplitude, a roll amplitude of 23° is predicted for the tanker. Whilst at this 

frequency, there is virtually no roll for the FLNG barge, long period swell with a 20s period would 

induce a 5° roll motion of the FLNG barge, potentially large enough for LNG production to have to 

cease. Both scenarios might occur for an FLNG production facility located off west Africa and 

excited by swell from the Southern Ocean.  

  

        (a)       (b)  

Figure 21. First-order elevations at mid length along the FLNG in beam sea-1: (a) fixed state; 

(b) freely-floating state 

 
 

Figure 22 shows the comparison of the mean elevation in the two states. Similar near-

trapping phenomena and frequency shifts are found as above. There are fewer wiggles at high 

frequencies than in the head sea case. 
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        (a)       (b)  

Figure 22. Mean elevations at mid length along the FLNG in beam sea-1: (a) fixed state; (b) 

freely-floating state 

 Figures 23 and 24 show the amplitudes of the quadratic and potential components of the 

second order elevation, and Fig. 25 shows the total, in each case plotted against incident wave 

frequency. Similar near-trapping phenomena and frequency shifts are found. Significant 

cancellations are found between the quadratic and potential components in both fixed and floating 

states. At low frequencies in the fixed case (0.3-0.7 rad/s), the potential components again dominate 

the others. At 0.76 rad/s in the fixed case, however, the quadratic component predominates. At 0.81 

rad/s in the fixed case, the potential component is the larger one. In the floating case, the potential 

component always predominates. The peaks in the total second order elevation at low frequencies 

become comparable to the peak value at 0.81 rad/s. 

  

        (a)       (b)  

Figure 23. Quadratic component of second-order elevations at mid length along the FLNG in 

beam sea-1: (a) fixed state; (b) freely-floating state 
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   (a)            (b)  

Figure 24. Potential component of second-order elevations at mid length along the FLNG in 

beam sea-1: (a) fixed state; (b) freely-floating state 

 
 

  

        (a)       (b)  

Figure 25. Total second-order elevations at mid length along the FLNG in beam sea-1: (a) 

fixed state; (b) freely-floating state 

 
 

5.3 Motions and elevations in beam sea-2 

This configuration (i.e. waves in the positive x-direction in Fig. 11) corresponds to the 

tanker on the sheltered side (downwave) of the FLNG. The associated RAOs are shown in Fig. 26. 

Again larger roll motions are found than in [25], because of the smaller frequency increment used 

here. The peak heave and roll motions of the tanker are not as large as in the beam sea-1 case due to 

the sheltering effect of the FLNG. 
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       (a)                                                                        (b) 

 

      (c) 

Figure 26. Sway, heave and roll motion of tanker and FLNG in beam sea-2 
 

First order elevations for this case are shown in Fig. 27. As in the beam sea-1 case, near-

trapping phenomena and frequency shifts are found. In the floating state, the wiggles arising at low 

frequencies (see Fig. 27(b)) are not as significant as in the beam sea-1 case, because the heave and 

roll motions of the tanker are lower at the peak frequencies. 
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                       (a)       (b)  

 

Figure 27. First-order elevations at mid length along the FLNG in beam sea-2: (a) fixed state; 

(b) freely-floating state 

 
 

In the comparisons of mean elevations in the two states, shown in Fig. 28, similar near-

trapping phenomena and frequency shifts may be seen. The mean elevations at high frequencies 

tend to almost zero, with some very small wiggles. 

 

  

                          (a)       (b)  

 

Figure 28. Mean elevations at mid length along the FLNG in beam sea-2: (a) fixed state; (b) 

freely-floating state 

 
 

Figures 29 and 30 show the amplitudes of the quadratic and potential components of the 

second order elevation, and Fig. 31 shows the total. Similar near-trapping phenomena and 

frequencies are found. From these results, we can conclude that the potential component 

predominates in both fixed and floating cases. Comparing the peak values of the quadratic 

component, potential component and total elevation, almost complete cancellation between the 

quadratic and potential components can be seen. It is of interest that the largest peak elevation for 

the floating case in Fig. 31(b) is obtained at 0.38 rad/s, which corresponds to half the frequency of 

the first peak in the first order elevation for the fixed case (see Fig. 27(a)). 
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                      (a)       (b)  

Figure 29. Quadratic component of second-order elevations at mid length along the FLNG in 

beam sea-2: (a) fixed state; (b) freely-floating state 

 

  

        (a)       (b)  

Figure 30. Potential component of second-order elevations at mid length along the FLNG in 

beam sea-2: (a) fixed state; (b) freely-floating state 
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        (a)       (b)  

Figure 31. Total second-order elevations at mid length along the FLNG in beam sea-2: (a) 

fixed state; (b) freely-floating state 

 

 

6. Conclusions  

 

The aim of this paper is to illustrate the significant wave interaction effects associated with a 

practical configuration of FLNG vessel with a tanker in a side-by-side arrangement at very close 

spacing. The results suggest that very high localised free surface elevations can occur in the gap at a 

set of discrete wave frequencies. The analyses have been undertaken with fine meshes of quadratic 

elements, which capture the intense fluid motions within the gap between the vessels.  

 

Investigations have been conducted for the vessels free to move independently, as well as 

for the case when they are fixed. In the latter case there is an additional peak in the linear frequency 

response of the wave elevation in the gap, at a lower frequency than that of the lowest large peak in 

the case of freely moving vessels. This is observed in both head and beam sea configurations. The 

lowest peak in the second order frequency response for the free surface in the gap, for both fixed 

and free cases, is at half the frequency of the lowest linear peak for the fixed body case. The largest 

peaks, both linear and second order, arise in beam seas with the tanker upwave of the FLNG (beam 

sea – 1). Unsurprisingly this is the case causing the largest heave motions of the tanker. These, 

however, occur at a heave resonant frequency (0.52 rad/s) well below the frequency of the first very 

large peak in the linear free surface elevation between the freely moving vessels (0.81 rad/s). 
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It must be recognised that the peaks in elevations predicted by these potential flow 

calculations would not necessarily match very closely the results from experiments: viscous effects 

can be expected to provide additional damping over and above that due to wave radiation. There is 

no reason, however, to suspect that the frequencies of the peaks would not be predicted well. 

Various attempts have been made by others to improve the calculation of the interaction effects by 

incorporating some fictitious damping into the potential flow models, with the damping parameter 

chosen empirically such as to provide a match with experimental data. The difficulty of this 

approach has been highlighted in [4]. It was found that fitting one quantity, such as motion response, 

led to a different value of damping parameter from what is obtained from another quantity, such as 

mean drift force. It may be that the most appropriate quantity would be the peak free surface 

elevation in the gap, and this is currently under investigation using experimental data obtained at 

Imperial College as part of the Safe Offload programme. This is unlikely to be conclusive, however, 

because in some of the experiments the measured peaks in the free surface elevation were higher 

than the potential flow predictions. Another difficulty should also be recognised: the unknown 

dependence of the fluid damping on the physical scale at which the vessels are modelled. Further 

numerical work based on solution of the Navier Stokes equations can be expected to shed light on 

this issue in due course. 

 

As a practical point, we stress the magnitude of the free-surface and body motions which 

can be excited by small amplitude waves when two large vessels are in very close proximity. Even 

if the practical responses in the field are a factor of 2 or 3 smaller than our idealised results suggest, 

there are likely to be major problems associated with the design of LNG loading arms to cope with 

such large vessel motions, and violent wave motion within the gap could threaten both equipment 

and crew should water be thrown up above deck level.  
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