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High-performance 1–3-type lead-free piezo-composites with auxetic polyethylene matrices  

V.Yu. Topolova,* and C.R. Bowenb   

aDepartment of Physics, Southern Federal University, 5 Zorge Street, 344090 Rostov-on-Don, Russia 

bDepartment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK  

ABSTRACT High piezoelectric sensitivity and large hydrostatic parameters are discussed for two 

types of 1–3-type single crystal/auxetic polymer composites. The single crystal components 

selected are based on lead free (K,Na)(Nb,Ta)O3 and (Li,K,Na)(Nb,Ta)O3 solid solutions, and the 

auxetic polymers are characterised by Poisson’s ratios –0.83  –0.29. The composites examined 

exhibit advantageous properties over conventional lead-based piezo-active composites and ceramics 

such as high longitudinal piezoelectric coefficient *

33g (102–103) mV.m/N, squared figure of merit 

( *

33Q )210-11 Pa-1, hydrostatic piezoelectric coefficient *

hg (102–103) mV.m/N and squared figure of 

merit ( *

hQ )2(10-11–10-10) Pa-1. The composites also demonstrate an infinitely large anisotropy of 

piezoelectric coefficients *

3 jd . 
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1. Introduction  

Piezo-composites are an important group of modern smart materials with tailored and  

high-performance properties. As a rule, these composites are based on perovskite-type ferroelectrics 

– either poled ceramics (often of the PZT or PbTiO3 type) or domain-engineered single crystals 

(SC) such as (1–x)Pb(Mg1/3Nb2/2)O3–xPbTiO3 (PMN–xPT) and (1–x)Pb(Zn1/3Nb2/2)O3–xPbTiO3 

[1,2]. In the last decade environmental concerns have led to attempts to eliminate lead-based 

materials from consumer items, including piezoelectric transducers, sensors and actuators. The need 

for lead-free ferroelectrics gives rise to the challenge of finding an alternative [3], to conventional 

lead-based ferroelectric ceramics and single crystals, which exhibit high piezoelectric activity to 

enhance the effective electromechanical properties of piezo-composites [2]. Recent experimental 
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studies of ferroelectric modified niobate solid solutions [4,5] suggest that these lead-free materials 

in the form of SCs can be used as the main component in modern composites, for instance, due to 

large piezoelectric d33 and g33 coefficients (see, e.g., Table 1). However no work on the piezoelectric 

performance of lead-free composites is yet to be published, and no trends in the use of lead-free 

ferroelectric SCs or ceramics have been discussed in the context of composite components, design 

and properties. The aim of this paper is to provide the first detailed demonstration of ability to 

achieve high-performance novel piezo-composites based on the SCs from Table 1. Such data will 

provide composite designers routes to design lead-free piezo-composite transducers with 

predictable and useful properties. 

2. 1–3-type composites and their effective parameters  

The composite considered is shown in Fig.1 and contains a system of ferroelectric SC rods in 

the form of rectangular parallelepipeds which are continuous in the OX3 direction, having a square 

base and characterised by a square arrangement in the (X1OX2) plane. The rods are poled along the 

[001] direction of the perovskite unit cell, and the main crystallographic axes x, y and z of each SC 

rod obey the conditions x||[001], y||[010] and z||[001]. The polymer is a passive auxetic microporous 

polyethylene (PE-n, n= 1,2,... 9) with a negative Poisson’s ratio whose elastic properties have been 

reported in [6], and are shown in Table 2. It is assumed that the relative dielectric permittivity of 

PE-n equals 2.3, as is the case for monolithic PE [7]. As a result of the microporous structure of the 

PE-n [6] matrix (Fig.1) the composite is described by a 1–3– connectivity, i.e., it belongs to the 1–

3 type in terms of work [2].  

The effective electromechanical properties of the composite in Fig.1 are determined using the 

matrix method [2]. For m=const the elastic compliances E

abs*  (at electric field E=const), piezoelectric 

coefficients *

ijd  and dielectric permittivities  *

ff
 (at mechanical stress =const) are evaluated. Based 

on these properties, the effective parameters *=*(m) are analysed as follows: the piezoelectric 

coefficient *

33g  (from *

kld =  *

fk
*

flg ), squared figure of merit ( *

33Q )2= *

33d *

33g =( *

33d )2/  *

33
, thickness 



3 

 

electromechanical coupling factor (ECF) *

tk =[( Dc*

33
– Ec*

33
)/ Dc*

33
]1/2, and hydrostatic parameters such as 

*

hd = *

33d + *

32d + *

31d , *

hg = *

33g + *

32g + *

31g , squared figure of merit ( *

hQ )2= *

hd *

hg  and ECF *

hk = *

hd ( E

hs*  *

33
)-1/2, 

where Dc*

33
 and Ec*

33
 are elastic moduli at electric displacement D=const and electric field E=const, 

respectively, and E

hs*  is the hydrostatic elastic compliance at E=const. The parameters *

33g  and ( *

33Q )2 

characterise the longitudinal sensitivity, and ( *

33Q )2 is also linked to the sensor signal-to-noise ratio 

[2]. In hydrophone applications *

hd
 
and *

hg
 
characterise the piezoelectric activity and sensitivity, 

respectively. The parameter ( *

hQ )2 is a hydrostatic analog of ( *

33Q )2 and describes the effectiveness of 

the material as a hydrophone and actuator. The ECFs *

tk  and *

hk  describe the efficiency of the 

conversion of electric energy into mechanical energy and vice versa at the thickness oscillation 

mode (subscript ‘t’) or under hydrostatic loading (subscript ‘h’). 

Table 3 shows the largest maximum values of effective parameters of the lead free 

composites. It can be seen that PE-5 and PE-8 show the highest ‘activity’ in achieving the largest 

max*(m) values irrespective of the type of SC, and the next important polymer is PE-9. PE-5 is 

characterised by the largest elastic compliance s11 (Table 2) which strongly influences the 

piezoelectric response along the OX3 direction. PE-8 and PE-9 have Poission’s ratios  < –0.5, 

however the s11 of PE-8 is larger and promotes a stronger piezoelectric response along OX3. It 

should be highlighted that the manufacture of composites with such small SC volume fractions 

(m<0.05), which are related to max *

33g , max *

hg  and max[( *

hQ )2], can be challenging. Fig.2 show the 

ranges wherein *

33g , *

hg , ( *

33Q )2, and ( *

hQ )2 vary at m=0.05 and 0.10. Changes in *

33g  are in a relatively 

narrow range and related to moderate changes in s11 of PE-n (Table 2). The changes in ( *

33Q )2 are 

more distinct in comparison to *

33g ; this is a result of a rapid increase in *

33d  and a slow increase in 

 *

33
 in the 1–3-type SC/polymer composite [2]. Changes in both *

hg  and ( *

hQ )2 are predominantly the 

result of the elastic properties of PE-n with a negative Poisson ratio  that promotes a validity of 

inequalities *

hg > *

33g  and ( *

hQ )2>( *

33Q )2 due to positive contributions from *

31d , *

32d , *

31g , and *

32g  in wide 
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ranges of volume-fraction. The larger values of *

33g , *

hg , ( *

33Q )2, and ( *

hQ )2 in Fig.2,a,c in comparison 

to those in Fig.2,b,d stem from the fact that the piezoelectric coefficient d33 of KNN-TL is 

approximately 2.2 times larger than d33 of KNN-T (Table 2).    

The use of auxetic polymers leads to a non-monotonic behaviour of the piezoelectric 

coefficient *

31d  and  

*

31d (m*)=0.                   (1) 

While Eq.(1) holds, the piezoelectric anisotropy of the composite *

33d /| *

31d |, and its hydrostatic 

parameters obey equalities *

hd = *

33d , *

hg = *

33g , ( *

hQ )2=( *

33Q )2, and *

hk = *

33d ( E

hs*  *

33
)-1/2. However, our 

findings show that *

33d , *

33g  and ( *

33Q )2 change in wide ranges, as seen in Fig.3,a,c, while *

hk  and *

tk  

undergo minor changes (Fig.3,b,d) when replacing PE-n at m=m* from Eq.(1). Due to the 1–3-type 

composite structure (Fig.1), the condition *

tk = *

33k  is valid with an accuracy to 3% at m=m*. The 

correlation between the volume fraction m* and Poisson ratio  (Fig.3,e) highlights the key role of 

the elastic properties of the polymer matrix in achieving an infinitely large piezoelectric anisotropy 

for the composite.   

The composites studied here show particular advantages over some piezo-active lead-

containing composites and ceramics. For instance, for a 1–3 PMN–0.30PT SC /epoxy composite [1] 

max *

33g = 440 mV.m/N (at a small volume fraction m=0.018) which is approximately 1.5 times 

smaller than *

33g  of the KNN-T-based composite (see Fig.2,c,d). The values of *

hg  shown in Fig.2 

are approximately 5–16 times more than the max *

hg  of 1–3 PMN–xPT SC/araldite and PZN–xPT 

SC/araldite composites, and the ( *

hQ )2 values (Fig.2) are 20–43 times more than values of 

max[( *

hQ )2] of the aforementioned lead-based 1–3 composites [2]. The effective parameters shown 

in Fig.3 can also be compared to those of highly anisotropic ferroelectric ceramics. For example, a 

modified PbTiO3 ceramic [8] is characterised by d33= 51 pC/N and g33= 32.6 mV.m/N at d33/d31=  
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–11.6, i.e., the d33 and g33 of this ceramic are smaller than *

33d  and *

33g  of the KNN-TL- and KNN-T-

based composites (Fig.3) at *

33d /| *

31d |.  

3. Conclusions  

The letter provides the first detailed examination of lead-free 1–3-type SC/auxetic PE-n 

composites which can be regarded as advanced materials with high piezoelectric sensitivity 

[ *

33g (102–103) mV.m/N], large squared figures of merit [( *

33Q )210-11 Pa-1] and change in the sign of 

the piezoelectric coefficient *

31d . Eq.(1) holds due to the auxetic polymer matrix and opens up 

possibilities of achieving a very large piezoelectric anisotropy at *

33d 102 pC/N and *

33k 0.7–0.8. 

The hydrostatic piezoelectric response is characterised by *

hg (102–103) mV.m/N, ( *

hQ )2(10-11– 

10-10) Pa-1 and *

hk 0.3–0.4 at the thickness ECF *

tk 0.7–0.8. A comparative study has been 

undertaken on the performance of the 1–3-type piezo-composites that contain auxetic polymers. 

The results indicate there is potential for the use of lead-free piezo-composites as active elements of 

piezoelectric sensors, transducers, hydrophones, acoustic, and energy-harvesting devices.   

Acknowledgements. Prof.Dr. C.R.Bowen acknowledges funding from the European Research 

Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant 

Agreement no.320963 on Novel Energy Materials, Engineering Science and Integrated Systems 

(NEMESIS). The work has been performed using the equipment of the Centre of Collective Use 

“High Technologies” at the Southern Federal University within the framework of the project 

RFMEFI59414X0002, and Prof.Dr. V.Yu.Topolov acknowledges the financial support thereby.   

References 

[1] Wang F, He C, Tang Y. Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epoxy 1–3 piezoelectric 

composites prepared by the lamination technique. Mater Chem Phys 2007;105:273–7.    

[2] Topolov VYu, Bowen CR. Electromechanical properties in composites based on ferroelectrics. London: 

Springer; 2009.  

[3] Priya S, Nahm S, editors. Lead-free piezoelectrics. New York, Dordrecht, Heidelberg, London: Springer;  



6 

 

2012.     

[4] Zheng L, Huo X, Wang R, Wang J, Jiang W, Cao W. Large size lead-free (Na,K)(Nb,Ta)O3 piezoelectric 

single crystal: growth and full tensor properties. CrystEngComm 2013;15:7718–22. 

[5] Huo X, Zheng L, Zhang R, Wang R, Wang J, Sang S, Wang Y, Yang B, Cao W. A high quality lead-free 

(Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric 

coefficients with macroscopic 4mm symmetry. CrystEngComm 2014;16:9828–33. 

[6] Evans KE, Alderson KL. The static and dynamic moduli of auxetic microporous polyethylene. J Mater 

Sci Lett 1192;11:1721–4. 

[7] Groznov IN. Dielectric permittivity. In: Physics encyclopaedia. Moscow: Sovetskaya Entsiklopediya; 

1983, p. 178–9 (in Russian).  

[8] Ikegami S, Ueda I, Nagata T. Electromechanical properties of PbTiO3 ceramics containing La and Mn. J 

Acoust Soc Am 1971;50:1060–6. 

Table 1. Room-temperature elastic compliances E

abs  (in 10-12 Pa-1), piezoelectric coefficients dij (in 

pC/N) and relative dielectric permittivities  fr
/0 of ferroelectric SCs (4mm symmetry) 

SC Es11
 Es12

 Es13
 Es33

 Es44
 Es66

 d31 d33 d15 
11

/0 
33

/0 

(K0.562Na0.438). 

.(Nb0.768Ta0.232)O3 

(KNN-T) [4] 

11.9 –4.30 –5.60 15.5 12.0 10.7 –77.0 162 45.0 291 267 

[Lix(K0.501Na0.499)1-x]. 

.(Nb0.660Ta0.340)O3 

(KNN-TL) [5] 

17.2 –5.11 –10.7 27.0 15.4 13.9 –163 354 171 1100 790 

Table 2. Room-temperature elastic compliances of auxetic PE-n [6]  

n 1 2 3 4 5 6 7 8 9 

s11, 10-10 Pa-1 1.97 2.36 2.02 2.10 2.72 2.59 1.88 2.36 2.30 

s12, 10-10 Pa-1 0.571 0.755 0.646 0.735 1.14 1.17 0.921 1.37 1.91 

Table 3. Largest maximum values of effective parameters of composites 

 max *

33g , 

mV.m/N 

max *

hg , 

mV.m/N 

max[( *

33Q )2], 

10-12 Pa-1 

max[( *

hQ )2], 

10-12 Pa-1 

max *

hd , 

pC/N 

max *

tk  max *

hk  

http://pubs.rsc.org/en/content/articlelanding/2013/ce/c3ce40658j
http://pubs.rsc.org/en/content/articlelanding/2013/ce/c3ce40658j
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KNN-T SC/auxetic PE-n composite 

Value 984 1730 59.5 160 142 0.830 0.477 

At PE-n PE-5 PE-8 PE-5 PE-8 PE-8 PE-5 PE-9 

At m 0.022 0.022 0.055 0.042 0.132 0.595 0.095 

KNN-TL SC/auxetic PE-n composite 

Value 706 1230 63.1 154 253 0.785 0.435 

At PE-n PE-5 PE-8 PE-5 PE-8 PE-5 PE-5 PE-8 

At m 0.017 0.016 0.070 0.046 0.168 0.543 0.092 

 

  

 

Fig. 1. Schematic of the SC/polymer composite. (X1X2X3) is the rectangular co-ordinate system. m 

and 1–m are volume fractions of SC and polymer, respectively, x, y and z are main crystallographic 

axes of SC. The spontaneous polarisation vector of the SC rod Ps(1) is shown via the arrow. SC rods 

with square bases are regularly distributed in the polymer matrix, and centres of symmetry of the 

bases form a simple square lattice in the (X1OX2) plane. Electrodes are to be applied parallel to the 

(X1OX2) plane. 

    

a       b 
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c       d 

Fig. 2. Piezoelectric coefficients *

33g  and *

hg  (in mV.m/N) and squared figures of merit ( *

33Q )2 and 

( *

hQ )2 (in 10-13 Pa-1) of 1–3-type KNN-TL SC/auxetic PE-n (a,c) and KNN-T SC/auxetic PE-n (b,d) 

composites at m= 0.05 (a,b) and 0.10 (c,d). 

    

a       b 

      

c       d 

 

e 
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Fig. 3. Piezoelectric coefficients *

33d  (in pC/N), *

33g  (in mV.m/N), squared figure of merit ( *

33Q )2 (in  

10-13 Pa-1) and ECFs *

tk  and *

hk  which are related to the 1–3-type KNN-T SC/auxetic PE-n 

composite at the volume fraction m= *

Im  (a,b) and to the 1–3-type KNN-TL SC/auxetic PE-n 

composite at m= *

IIm  (c,d), volume fractions of SC *

Im  and *

IIm , which obey Eq.(1), and Poisson’s 

ratios  of PE-n (e). 

 

 


