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SUMMARY

Convergence results are provided for inexact two-sided inverse and Rayleigh quotient iteration, which extend
the previously established results to the generalized non-Hermitian eigenproblem and inexact solves with a
decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising
in two-sided methods is considered and the successful tuning strategy for preconditioners is extended to two-
sided methods, creating a novel way of preconditioning two-sided algorithms. Furthermore, it is shown that
inexact two-sided Rayleigh quotient iteration and the inexact two-sided Jacobi-Davidson method (without
subspace expansion) applied to the generalized preconditioned eigenvalue problem are equivalent when a
certain number of steps of a Petrov-Galerkin-Krylov method is used and when this specific tuning strategy
is applied.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. MOTIVATION

Our aim is to find solutions to the two-sided generalized non-Hermitian eigenvalue problem

Ax = λMx, AHy = λMHy, (1)

where A, M ∈ Cn×n are assumed to be large and sparse matrices, and the nonzero vectors
x ∈ Cn and y ∈ Cn are the right and left eigenvectors corresponding to the eigenvalue λ ∈ Cn.
We especially focus on the case when at least one of the matrices A, M is non-Hermitian and the
right eigenvectors are different from the left ones which is referred to as the non-normal case. The
sought eigenvalues of A, M are assumed to be finite and simple, such that yHMx 6= 0 is satisfied
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2 P. KÜRSCHNER, M. FREITAG

for the corresponding eigenvectors. If M = I , the finite condition number of a simple eigenvalue λ
is given by κ(λ) = |yHx|−1 if ‖x‖ = ‖y‖ = 1.

Computing both right and left eigenvectors simultaneously is of interest in several important
applications, e.g., in eigenvalue based model order reduction [1, 2] or for computing eigenvalue
condition numbers. In fact, the algorithms for computing certain eigentriples discussed in [1, 2] are
closely related to the methods investigated here.

If only the right (or the left) eigenvectors are sought, (one-sided) inverse or Rayleigh quotient
iteration (RQI) provide basic methods for this purpose. In general inverse iteration converges
linearly and RQI achieves quadratic, in the normal case (x = y) even cubic, convergence [3, 4].
If inexact solves are used with a fixed solve tolerance, then the order of convergence is reduced by
one. If a decreasing tolerance proportional to the eigenvalue residual norm is chosen for the inexact
solve, then the same convergence order as for exact solves can be recovered (see, for example
[5, 6, 7, 8, 9]). For the standard Hermitian eigenproblem, some relaxed conditions for achieving
linear, quadratic, or cubic convergence are given in [10]. It is also known that (one-sided) accelerated
RQI (RQI with subspace expansion) is equivalent to the Jacobi-Davidson method [11] if all linear
systems are solved either exactly or, for Hermitian problems, by a certain number of steps of the
conjugate gradient method [12]. This result has been extended to preconditioned non-Hermitian
problems in [9], when a special preconditioner is used.

For this paper we are interested in two-sided versions of inverse iteration, RQI and the related
two-sided Jacobi-Davidson method [13, 14]. We consider three important aspects of these methods:
Firstly, we extend the convergence theory of inverse iteration and RQI when inexact solves are used,
that is, we discuss the convergence of the outer iterative method. Secondly, we consider the inner
iteration arising within these inexact solves and suggest a new preconditioning strategy for this two-
sided iteration called the tuned preconditioner. Thirdly, we show that, under certain conditions, the
new preconditioning strategy is equivalent to a form of the two-sided Jacobi-Davidson method.

Convergence of the outer iterative method. Next to the aforementioned need for computing
left eigenvectors in applications such as model order reduction, a further important motivation
for considering two-sided eigenvalue iterations is that they can achieve a higher convergence rate
for non-normal problems. For instance, two-sided RQI achieves (for M = I) cubic convergence
[3, 13, 4] if the linear systems are solved exactly. Under inexact solves the convergence is locally
quadratic [13]. We extend these results to the generalized eigenvalue problem, and moreover show
that for inexact solves we can recover the convergence rate of the exact algorithms if we choose a
decreasing solve tolerance.

Preconditioners for the inner iterative method. An important consideration independent of the
convergence rate of the outer iteration is the choice of the preconditioner for the solution to the linear
systems. For standard (one-sided) eigenproblems a “tuned” preconditioner, a rank-1 modification
of the standard preconditioner, reduces the number of iterations for the inner solve considerably
[7, 8, 15], a result that has been extended to inverse subspace iteration in [16, 17]. As our main
novel contribution of this article we extend the result to two-sided inverse iteration and RQI, where,
due to the structure and the simultaneous solution of a forward and adjoint linear system, a rank-2
modification of the standard preconditioner is necessary for an efficient tuning strategy. In particular,
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TUNED PRECONDITIONERS FOR INEXACT TWO-SIDED RQI 3

we observe that the simultaneous solution of the inner linear systems is often advantageous to
solving the forward and adjoint linear systems separately.

Relation to two-sided Jacobi-Davidson method. For the standard eigenproblem M = I the
simplified two-sided Jacobi-Davidson method is equivalent to two-sided RQI, when all pairs of
linear equations are solved by a certain number of steps of a Petrov-Galerkin-Krylov method in
each outer iteration [13]. We show that our proposed novel tuned preconditioner and the techniques
from [15, 9] for the one-sided algorithms allow to establish similar equivalence results to generalized
eigenproblems and to preconditioned solves.

Plan of this article. We review and extend convergence results for two-sided inverse and
Rayleigh quotient iteration both for the exact and inexact methods in Section 2 and provide new
preconditioning strategies for the inner iteration of the two-sided methods in Section 3. In Section 4
we show the equivalence of two-sided Rayleigh quotient iteration and the Jacobi-Davidson method,
when certain preconditioners are used. Section 5 supports our theory with numerical examples.

Notation. R and C denote the real and complex numbers, Rn×m, Cn×m are n×m real
and complex matrices, respectively. We use AT and AH = A

T
for the transpose and complex

conjugate transpose of real and complex matrices. If not stated otherwise ‖ · ‖, is the Euclidean
vector, or subordinate matrix norm. The expression x⊥ stands for the orthogonal complement
{z ∈ Cn\{0} : z ⊥ x} of x ∈ Cn.

2. CONVERGENCE THEORY FOR TWO-SIDED INVERSE ITERATION AND RQI

The two-sided inverse iteration (TII) is illustrated in Algorithm 1 and requires a sufficiently good
eigenvalue approximation θ ≈ λ which is used as fixed shift. The two-sided RQI (TRQI) was
originally proposed in [18] and is obtained by choosing the current shift θk in step 5 as the two-
sided generalized Rayleigh quotient

ρ(uk, vk) :=
vHk Auk
vHk Muk

(2)

of the previous iterates, where uk and vk are approximate right and left eigenvectors. Another early
occurrence of this two-sided iteration can be found in [19, Section 13]. The main computational
effort is done in the steps 6 and 7, where two linear systems with adjoint coefficient matrices have
to be solved in each iteration to obtain new right and left eigenvector approximations. Throughout
the rest of the paper we refer to the linear system in step 6 for uk+1 as forward linear system,
and the one in step 7 for vk+1 as adjoint linear system. Moreover, subscripts k always denote
quantities of the kth iteration of Algorithm 1. In this section we review existing convergence results
on the exact and inexact methods, adapting the notation used in [13]. Note that we consider the
generalized eigenproblem here as opposed to the standard eigenproblem M = I in [13]. A result on
inexact TRQI from [13] is then extended to the generalized eigenproblem and to inexact solves with
decreasing solve tolerance.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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4 P. KÜRSCHNER, M. FREITAG

Algorithm 1: Two-sided inverse iteration (TII) and two-sided RQI (TRQI)
Input : Matrices A,M , initial vectors u1, v1, vH1 Mu1 6= 0.
Output: Approximate eigentriple (λkmax

, ukmax
, vkmax

).
u1 = u1/‖u1‖, v1 = v1/‖v1‖.1
for k = 1, 2, . . . do2

Set λk = ρ(uk, vk).3
Test for convergence.4
Choose shift θk.5
Solve (A− θkM)uk+1 = Muk for uk+1 and normalize.6
Solve (A− θkM)Hvk+1 = MHvk for vk+1 and normalize.7

2.1. Review of the convergence of the exact methods

For investigating the convergence rate of the methods, we assume that they converge, i.e., uk → x

and vk → y and hence, θk → λ as k →∞. Then it is possible to write

uk = αk(x+ δkdk) and vk = βk(y + εkek), (3)

where δk, εk ≥ 0, uk, vk, dk, ek, x, y are unit vectors with dk ⊥MHy, ek ⊥Mx and αk, βk

are non-zero normalization constants. Moreover, the matrices A− µM , AH − µMH are surjective
mappings from (MHy)⊥ to y⊥ and (Mx)⊥ to x⊥, respectively, for all µ ∈ C in a sufficiently small
vicinity of λ. Thus, there exists a ψ ≥ 0 such that

‖(A− µM)s‖ ≥ ψ‖s‖ and ‖(A− µM)Ht‖ ≥ ψ‖t‖ (4)

for all µ in a neighborhood of λ and s ∈ (MHy)⊥, t ∈ (Mx)⊥ (cf. [1]). The following result extends
the work from [13] to the generalized eigenproblem.

Theorem 1 (Convergence of exact two-sided II and RQI)
Under the above assumptions, with uk, vk be as in (3), the following convergence results hold.

1. For TII, let θk ≡ θ be approximation to the simple eigenvalue λ with |θ − λ| = ν. Then
Algorithm 1 converges linearly, i.e.,

δk+1 ≤ γTIIδk + h.o.t., εk+1 ≤ γTIIεk + h.o.t., (5)

where γTII := ν‖M‖/ψTII.
2. TRQI achieves locally cubic convergence, i.e.,

δk+1 ≤ γTRQIδ2kεk + h.o.t. and, εk+1 ≤ γTRQIδkε
2
k + h.o.t. (6)

with γTRQI := ω(λ)‖M‖‖A− λM‖/ψTRQI and ω(λ) := |yHMx|−1.

The constants ψTII, ψTRQI ≥ 0 originate from (4) when using a constant or Rayleigh quotient shift
and h.o.t. stands for higher-order terms in δk and εk.

Proof
As in the proof of [13, Theorem 3.1] for TRQI, which is a slight generalization of the original

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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TUNED PRECONDITIONERS FOR INEXACT TWO-SIDED RQI 5

convergence proof in [3, p. 689], one can find nonzero αk+1, βk+1 such that

uk+1 = αk+1

(
x+ δk(λ− θk)d̂k

)
, vk+1 = βk+1

(
y + εk(λ− θk)êk

)
(7)

with d̂k, êk solving (A− θkM)d̂k = Mdk and (A− θkM)H êk = MHek. Applying (4) we have

‖d̂k‖ ≤
‖(A− µM)d̂k‖

ψ
=
‖Mdk‖
ψ

≤ ‖M‖
ψ

, ‖êk‖ ≤
‖M‖
ψ

,

and the result for exact TII in (5) follows. Basic calculations yield

|λ− θk| =
∣∣∣∣ δkεkeHk (A− λM)dk
yHMx+ δkεkeHk Mdk

∣∣∣∣ ≤ ω(λ)δkεk|eHk (A− λM)dk|+ h.o.t. (8)

revealing that (2) can (like the one-sided Rayleigh quotient) be seen as a quadratically accurate
eigenvalue approximation. Replacing ν in the TII result with this estimate gives the desired bound
(6).

2.2. Convergence under inexact solves

Now consider the situation when the linear systems in steps 6 and 7 are solved inexactly, for instance,

‖(A− θkM)uk+1 −Muk‖ ≤ ξR
k ‖Muk‖ < 1,

‖(A− θkM)Hvk+1 −MHvk‖ ≤ ξL
k‖MHvk‖ < 1,

(9)

where the scalars ξR
k , ξ

L
k define the accuracy to which the linear systems are solved in the kth

iteration of Algorithm 1. This inexact solution is usually carried out using Krylov subspace methods
for unsymmetric linear systems, e.g., GMRES, BiCG, BiCGstab, BiCGStab(`), QMR [20, 21],
IDR(s) [22] to name at least a few. From now on, the method used to solve the linear systems
is referred to as inner solver and its iterations are called inner iterations. The iterations of the
eigenvalue method TII or TRQI (Algorithm 1) are hence referred to as the outer iterations.

For investigating the convergence of inexact two-sided inverse and Rayleigh quotient iteration,
the following statement is helpful which immediately follows from (9):

(A− θkM)uk+1 = M(uk + ξ̃R
k ‖Muk‖fk),

(A− θkM)Hvk+1 = MH(vk + ξ̃L
k‖MHvk‖gk),

where 0 ≤ ‖Mfk‖ξ̃R
k ≤ ξR

k , 0 ≤ ‖MHgk‖ξ̃L
k ≤ ξL

k , and fk, gk are unit vectors. The following
Theorem extends [13, Theorem 5.2] to the generalized eigenproblem.

Theorem 2 (Convergence with fixed inner accuracies [13, Theorem 5.2])
Let ξR

k ≡ ξR, ξL
k ≡ ξL ∀k in (9) with max(ξR‖Muk‖, ξL‖MHvk‖)‖ω(λ) < 1 and define

ζR
k :=

ξRω(λ)‖Muk‖
1− ξRω(λ)‖Muk‖

, ζL
k :=

ξLω(λ)‖MHvk‖
1− ξLω(λ)‖MHvk‖

.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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6 P. KÜRSCHNER, M. FREITAG

1. Then we have for one step of inexact two-sided inverse iteration

δk+1 ≤ γTIIζR
k + h.o.t., and εk+1 ≤ γTIIζL

k + h.o.t.. (10)

2. For one step of inexact TRQI it holds

δk+1 ≤ δkεkγTRQIζR
k + h.o.t., and εk+1 ≤ δkεkγTRQIζL

k + h.o.t., (11)

i.e., inexact TRQI with fixed inner tolerances converges locally quadratic.

The constants γTII, γTRQI are as in Theorem 1.

Proof
For instance, for the forward linear system, using (3) and decomposing fk as

fk =
xyHM

yHMx
fk +

(
I − xyHM

yHMx

)
fk,

we find

uk + ξ̃R
k ‖Muk‖fk =

(
αk + ξ̃R

k ‖Muk‖
yHMfk
yHMx

)
x+ αkδkdk + ξ̃R

k ‖Muk‖
(
I − xyHM

yHMx

)
fk

= α̃k

(
x+

δ̃k
α̃k
d̃k

)
, d̃k ⊥MHy.

Since |α̃k| ≥ |αk| − ξ̃R
k ‖Mfk‖‖Muk‖ω(λ), δ̃k ≤ |αk|δk + ξ̃R

k ‖Mfk‖‖Muk‖ω(λ) and |αk| = 1 +

h.o.t., we obtain ∣∣∣∣ δ̃kα̃k
∣∣∣∣ = ζR

k + h.o.t.,

using ‖Mfk‖ξ̃R
k ≤ ξR

k ≡ ξR. The remainder of the proof is similar to the proof of Theorem 1.

Theorem 2 shows that inexact TII can stagnate if the steps 6, 7 of Algorithm 1 are solved to a
fixed accuracy, whereas inexact TRQI achieves quadratic convergence, as we would expect.

For one-sided methods it can be shown that, by using increasing inner accuracies, i.e., decreasing
sequences ξR

k ≤ ξR
k−1 and ξL

k ≤ ξL
k−1, the convergence rate of the exact methods can be reestablished

in the inexact ones [7, 15, 23]. The next theorem shows that this can also be achieved for the two-
sided methods by asking that ξR

k and ξL
k are proportional to the eigenvalue residual norms ‖ruk

‖ and
‖rvk‖, respectively. Hence we can achieve the same convergence rates for inexact TII and inexact
TRQI as for the exact versions of the algorithms if a decreasing inner solve tolerance is used.

Theorem 3 (Convergence with decreasing inner tolerances)
Let the assumptions of Theorem 2 hold but choose

ξR
k = ηR

k‖ruk
‖ and ξL

k = ηL
k‖rvk‖, (12)

for some ηR
k , η

L
k > 0, where ruk

= (A− θkM)uk and rvk = (A− θkM)Hvk. Then there exist
ηR
k , η

L
k < 1 such that the following estimates hold.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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TUNED PRECONDITIONERS FOR INEXACT TWO-SIDED RQI 7

1. For inexact TII:

δk+1 < γTIIδk + h.o.t. and, εk+1 ≤ γTIIεk + h.o.t.

2. For inexact TRQI:

δk+1 < γTRQIδ2kεk + h.o.t. and εk+1 ≤ γTRQIε2kδk + h.o.t.

The constants γTII, γTRQI are again the ones from Theorem 1.

Proof
We proceed through the proof for the linear system for the right eigenvector approximation. The
result for εk+1 in the adjoint linear system for the left eigenvector approximation can be obtained
similarly. Using (3), (8), and |αk| = 1 + h.o.t. one finds

‖ruk
‖ = ‖Auk − θkMuk‖ = ‖αk(λ− θk)Mx− αkδk(A− θkM)dk‖
≤ δk‖(A− θkM)dk‖+ h.o.t., (13)

and, using (12), this can be plugged into the expression for ζR
k to obtain

ζR
k ≤

ηR
k δk‖Muk‖‖(A− θkM)dk‖ω(λ)

1− ηR
k δk‖Muk‖‖(A− θkM)dk‖ω(λ)

. (14)

The fraction on the right hand side of the above expression can be bounded from above by δk if

ηR
k < ((1 + δk)‖Muk‖‖(A− θkM)dk‖ω(λ))

−1
.

Assuming that this inequality holds, the result for inexact TII then follows from using (14) in (10).
For the left eigenvector approximation one finds in a similar way that

ηL
k <

(
(1 + εk)‖MHvk‖‖(A− θkM)Hek‖ω(λ)

)−1
.

has to hold. The result for inexact TRQI follows as before from (8).

Remark 4
Note that due to the large constants in any of the previous theorems, the actual convergence might be
slower than stated for highly non-normal problems. Hence, it might be more adequate to rephrase the
statement of Theorem 3 in the sense that the convergence of the inexact methods can be improved
by using increasing inner accuracies. It is possible that the bound on ηk can be very small, in
particular for highly non-normal problems and simple, but not very well separated eigenvalues.
Hence, theoretically a full solution might be required using these bounds, however, in practice,
numerical experiments show that much larger constants are possible and no full solution is required.

Remark 5
In order to implement the decreasing solve tolerance in practice one usually chooses
ξR
k = min{ϕR

0 , ‖ruk
‖} or ξR

k = min{ϕR
1 , ϕR

2‖ruk
‖}, and ξL

k = min{ϕL
0 , ‖rvk‖} or ξL

k =

min{ϕL
1 , ϕ

L
2‖rvk‖}, where ϕR

i < 1, ϕL
i < 1, i = 0, 1, 2, are sufficiently small constants.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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8 P. KÜRSCHNER, M. FREITAG

Inspired by TRQI a two-sided Jacobi-Davidson method with bi-orthogonal basis vectors can be
designed [14, 13] (see Section 4). It is well known that a simplified version of the Jacobi-Davidson
method (a method without subspace expansion) is equivalent to Rayleigh quotient iteration if the
linear systems are solved exactly. Hence, the same convergence rates as stated in Theorem 1 can be
expected (see also [13, Theorem 4.1]).

For the inexact versions of both algorithms the equivalence between the methods does not hold
and, hence, the convergence theories cannot be carried over. In fact, in [13, Theorem 5.3]) it was
shown that two-sided Jacobi-Davidson achieves locally linear convergence whereas TRQI converges
locally quadratically (see Theorem 2) for a fixed solve tolerance. However, as also noted in [13],
this does not mean that inexact two-sided JD has a worse behavior than inexact TRQI.

In Section 4 we show that both methods are in fact still equivalent for inexact solves if a certain
preconditioner and type of linear system solver is used, and, hence, the convergence theories for
both methods can be carried over.

3. THE INNER ITERATION AND TUNED PRECONDITIONERS

In this section we investigate the behavior of preconditioned Krylov subspace methods for solving
the linear systems (9) inexactly. We distinguish between two strategies: Solving those two linear
systems separately by two runs of a Krylov subspace method or, since the matrices in both linear
systems are adjoint to each other, simultaneously by suitable Krylov subspace methods. Superscripts
(i) refer to quantities related to the ith inner iteration.

3.1. Separate solution

If the systems in (9) are solved separately, a whole range of Krylov subspace methods are available.
For illustration purposes GMRES is considered here. For the solution of the linear system Cuk+1 =

Muk or CHvk+1 = MHvk, where C = (A− θkM), consider, for instance, Cx = b. If the right
hand side b is an eigenvector of C and we start GMRES (or in fact any Krylov method) with zero
initial guess, then the method converges within one step. For inexact inverse iteration or Rayleigh
quotient iteration without a preconditioner and M = I , the right hand side b turns out to be an
approximation to the eigenvector of C which becomes increasingly better as the outer iteration
proceeds (see [12]) and, thus, an improved performance of the inner iteration is observed even if the
system becomes more and more singular. If (left or right) preconditioners are applied, this property
gets lost and the right hand side b is generally far from a good approximation to the eigenvector
of C. For the standard, one-sided methods tuned preconditioners have been proposed, which are
rank-one updates of the standard preconditioners and force the right hand side of the linear system
to be an approximation to the eigenvector of the system matrix, in fact, in the limit, i.e., if the outer
iteration has converged, they are exact eigenvectors of the system matrix [9, 7, 24, 15, 25].

For the analysis we concentrate on a fixed shift and the forward linear system, the motivation
for the adjoint linear system and variable shifts is similar. Moreover, we choose decreasing inner
tolerances ξRk = ηR‖ruk

‖ in order to obtain convergence, see Theorem 3. We explain our strategy
using a right preconditioner, but the theory extends to the case of left preconditioners (see [15]).

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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TUNED PRECONDITIONERS FOR INEXACT TWO-SIDED RQI 9

Let the smallest eigenvalue c1 of C be separated from the other n− 1 eigenvalues. We block-
diagonalise C as

C = [vc1VC2
]

[
c1 0

0 C2

]
[vc1VC2

]−1, (15)

where ‖vc1‖ = 1 and VC2 has orthonormal columns. The following Lemma explains the role the
right hand side plays in the solution of the linear system Cx = b when Krylov subspace methods
are used. It follows directly from [16, Theorem 3.7],[17, Lemma 3.1].

Lemma 6 ([17, Lemma 3.1])
Suppose the field of values W (C2) = { z∗C2z

z∗z : z ∈ Cn−1, z 6= 0} or the ε-pseudospectrum Λε =

{z ∈ Cn−1 : ‖(zI − C2)−1‖ > ε} is contained in a convex closed bounded set E in the convex
plane with 0 6∈ E. Assume GMRES is used to solve Cx = b, where b ∈ Cn can be decomposed
as b = vc1b1 + VC2

b2, where vc1 and VC2
are given in (15) and b2 ∈ Cn−1, b1 6= 0. Let x(i) be the

approximate solution to Cx = b obtained after the ith GMRES iteration with x(0) = 0. If

i ≥ 1 +Da

(
Db + log

‖b2‖
ξ‖b‖

)
, (16)

then ‖b− Cx(i)‖/‖b‖ < ξ. The constants Da and Db depend on the spectrum of C.

For details about Da and Db we refer the reader to [16, 15], for our analysis these constants have
very little significance. We have the following Theorem for the number of inner iterations of the
unpreconditioned algorithm (see [17, Theorem 3.2]) applied to the forward linear system.

Theorem 7
Assume that (un)preconditioned GMRES is used to solve the linear system Cuk+1 = Muk,
where C = A− θM to the prescribed tolerance in (9), and ξRk = ηR‖ruk

‖ from (12). Then under
assumptions in Theorem 3 we have uk → x linearly, and the lower bound on the GMRES iterations
from Lemma 6 increases as the outer iteration proceeds.

Proof
From (16) the lower bound on the GMRES iterations is

ik ≥ 1 +Da

(
Db + log

‖(b2)k‖
ηR‖ruk

‖‖Muk‖

)
. (17)

Using (13) we have

ηR‖ruk
‖‖Muk‖ ≤ δk‖(A− θkM)dk‖ηR‖M‖+ h.o.t.,

and clearly the denominator in the second term of (17) converges to zero as uk → x since δk → 0.
The nominator (b2)k is the component of Muk = vc1(b1)k + VC2

(b2)k which is not in the direction
of the eigenvector vc1 of C. As Muk →Mx which is not an eigenvector of C = A− θM we
have ‖(b2)k‖ → ‖b2‖ 6= 0, where Mx = vc1b1 + VC2

b2. Hence, the expression on the right of (17)
increases as the outer iteration k increases.
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10 P. KÜRSCHNER, M. FREITAG

Remark 8
An equivalent result to Theorem 7 holds for the adjoint linear system in step 7 of Algorithm 1. Note
that Theorem 7 only shows that a lower bound on ik increases, there is no result on the behaviour of
the actual iteration count. However, numerical results in [15] endorse that our theoretical findings
on the iteration bound are indicative of the actual performance of the iterations.

Now consider the (right) preconditioned systems

CP−1ũk+1 = Muk, P−1ũk+1 = uk+1, (18)

where P is a preconditioner forC = A− θM . Theorem 7 also holds for (18), as, in general, the right
hand side Muk is not an approximate eigenvector of CP−1. (In the limit, Mx is not an eigenvector
of CP−1.) A new type of preconditioner was considered in [7, 15]. Consider preconditioners Pk
such that

Pkuk = Muk or Pkuk = Auk. (19)

In both cases the right hand side Muk is an approximate eigenvector of CP−1k , since, using (3),

(A− θM)P−1k Muk − (λ− θ)Muk = (A− λM)uk = αkδk(A− λM)dk,

or, assuming λ 6= 0, after basic calculations

(A− θM)P−1k Muk −
λ− θ
λ

Muk = αkδk

(
I − (A− θM)P−1k

λ

)
(A− λM)dk,

and, as uk → x we have δk → 0 and Muk is an approximate eigenvector of (A− θM)P−1k . For
the choices of Pk in (19) we then have ‖(b2)k‖ = Dcδk in Theorem 7 and the lower bound on the
iteration number does not increase. We observe this in the numerical examples in [15].

In order to satisfy the first condition in (19) we may choose

Pk = I + (Muk − uk)uHk or Pk = P + (Muk − Puk)uHk , (20)

depending on the availability of a preconditioner. We refer to this as M -variant of Pk. Similar we
may choose the A-variant,

Pk = I + (Auk − uk)uHk or Pk = P + (Auk − Puk)uHk , (21)

in order to satisfy the second condition in (19). Note that these choices are just rank-one updates of
the identity or the preconditioner and can be efficiently implemented using the Sherman-Morrison-
Woodbury formula [26].

Remark 9
For the adjoint linear system we use M - and A-variants of a tuned preconditioner Qk such that

Qkvk = MHvk or Qkvk = AHvk, (22)
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TUNED PRECONDITIONERS FOR INEXACT TWO-SIDED RQI 11

instead of (19) in order to satisfy the property that the right hand side of the linear system is an
approximation for the eigenvector of the system matrix. This can be achieved by

Qk = PH + (MHvk − PHvk)vHk , (23)

or Qk = PH + (AHvk − PHvk)vHk . (24)

Note that the strategy of tuning can in fact be applied to any Krylov method (that is, if the right hand
side of the system is an approximation for the eigenvector of the system we obtain convergence in
few steps), however, explicit bounds are only available for certain Krylov methods such as GMRES.

For steps 6 and 7 of Algorithm 1 it can be more efficient to solve both the forward and adjoint
systems simultaneously, which we will consider in the next section. The concept of tuning for
simultaneous solution is examined in Section 3.3.

3.2. Simultaneous solution

Since the coefficient matrices in both linear systems are adjoint to each other, they can be solved
simultaneously to the desired accuracy in one run of Krylov subspace methods which are based on
the two-sided (non-symmetric) Lanczos process. There, for the solution of a linear system Cx = b,
biorthogonal bases for the Krylov subspaces

K(i)
R (C, s) = span

{
s, Cs, . . . , Ci−1s

}
and K(i)

L (CH , t) = span
{
t, CHt, . . . , (CH)i−1t

}
are built for some generating Krylov vectors s and t. Probably the most prominent methods
belonging to this class are the bi-conjugate gradient (BiCG) [27] and Quasi Minimal Residual
method (QMR) [28], which can also implicitly solve an adjoint system CHy = c if the generating
vectors are chosen suitably, e.g., s = b− Cx(0), t = c− CHy(0) for some initial guesses x(0), y(0).
This is, however, only rarely exploited in practice [29, 30], but here we make explicit use of this
property.

The two-sided Lanczos process is the generalization of standard Lanczos process for
nonsymmetric matrices. Let the columns of W (i) and Z(i) span biorthonormal bases for K(i)

R and
K(i)

L , and assume for simplicity that zero initial vectors x(0), y(0) are used. Then the approximate
solutions after i steps of the two-sided Lanczos for linear systems [21, Algorithm 7.2] are given by

x(i) = W (i)(T (i))−1(Z(i))Hb and y(i) = Z(i)(T (i))−H(W (i))Hc,

where T (i) := (Z(i))HCW (i) is tridiagonal. In other words, the approximate solutions are
constructed according to a Petrov-Galerkin projection of the linear system, and hence we call
methods following this approach Petrov-Galerkin methods for solving the linear systems when not
referring to a particular implementation.

Recursively updating an LU decomposition of T (i) for solving the small i× i linear systems leads
to the short-recurrence formulation of BiCG [27] which is more economical in terms of the amount
of work since only a small and constant number of vectors needs to be stored in each step to get
x(i), y(i). In Algorithm 2 the basic preconditioned BiCG algorithm is illustrated. It is possible
that Algorithm 2 breaks down. On the one hand when the underlying two-sided Lanczos process
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12 P. KÜRSCHNER, M. FREITAG

Algorithm 2: Preconditioned BiCG [20]

Input : C, b, c, initial guesses x(0), y(0), preconditioner P ≈ C.
Output: x̃, ỹ approximately solving Cx = b, CHy = c.
γ(−1) = 1, p(0) = q(0) = 0.1
f (0) = b− Cx(0), g(0) = c− CHy(0).2
for i = 1, 2, . . . , do3

Solve Ps(i−1) = f (i−1), PHt(i−1) = g(i−1) for s(i−1), t(i−1).4

γ(i−1) = (g(i−1))Hs(i−1), β(i−1) = γ(i−1)

γ(i−2) .5

p(i) = s(i−1) + β(i−1)p(i−1), q(i) = t(i−1) + β(i−1)q(i−1).6
v(i) = Cp(i), w(i) = CHq(i).7

α(i) = γ(i−1)

(q(i))Hv(i)
.8

x(i) = x(i−1) + α(i)p(i), y(i) = y(i−1) + α(i)q(i).9

f (i) = f (i−1) − α(i)v(i), g(i) = g(i−1) − α(i)w(i).10

breaks down, i.e., γ(i) = 0 but s(i), g(i) are nonzero vectors, which is referred to as breakdown
of the first kind or Lanczos breakdown. On the other hand, it is possible that a pivotless LU
decomposition of T (i) does exist which is called breakdown of the second kind or pivot breakdown.
This happens in Algorithm 2 when (q(i))Hv(i) = 0 in step 8. Lanczos breakdowns can be handled by
sophisticated look-ahead strategies (see, e.g., [31] and the references therein) which leads to rather
complicated expressions where the short-recurrence property of BiCG is also lost to some extend.
In the remainder we assume that these breakdowns do not occur. Breakdowns of the second kind
appear to be a special issue in the context of solving the adjoint linear systems of TRQI and are
investigated in more depth in the next subsection.

Other less prominent methods which are also capable of a simultaneous solution of forward and
adjoint linear system are GLSQR [30, 32, 33] as well as unsymmetric variants of MINRES and
SYMMLQ [33], where other Krylov-like subspaces which are not related to the two-sided Lanczos
process are used.

3.2.1. Breakdowns of BiCG with two-sided RQI Before discussing tuned preconditioners for the
simultaneous solution, we shall have a look at the issue of breakdowns of BiCG within two-sided
Rayleigh quotient iteration. Apply the above BiCG to the linear systems occurring in, say iteration
k of TRQI, i.e., C = A− θkM, b = Muk, c = MHvk, where uk, vk are approximations to right
and left eigenvectors of A, M , respectively.

Theorem 10 (Breakdown of BiCG within TRQI)
If Algorithm 2 is applied within TRQI with x(0) = y(0) = 0 then BiCG suffers from breakdown of
the second kind in the first iteration if M = P = In or Puk = Muk, PHvk = MHvk holds.

Proof
For M = P = In, the first BiCG iteration gives p(1) = s(0) = f (0) = uk, q(1) = t(0) = g(0) = vk.
With v(1) = (A− θkIn)p(1) and θk being the two-sided Rayleigh quotient this yields

(q(1))Hv(1) = vHk (A− θkIn)uk = vHk

(
A− vHk Auk

vHk uk
In

)
vk = 0,
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TUNED PRECONDITIONERS FOR INEXACT TWO-SIDED RQI 13

such that α(1) in step 8 is not defined and the iteration cannot continue. According to [34] this is
exactly a breakdown of the second kind (pivot breakdown). The case Puk = Muk, PHvk = MHvk

can be dealt with similarly.

Note that QMR also encounters a breakdown due to (q(1))Hv(1) = 0 (cf. [20, Figure 2.8])
although this is not referred to as pivot breakdown.

Of course, since in most situations applying a preconditioner P 6= I might be feasible or
even necessary, and Puk 6= Muk, PHvk 6= MHvk will most likely generically hold, this kind of
breakdown appears to be no intrinsic issue. It will, however, play a role for the preconditioners
proposed in the next subsection and thus we shall discuss some strategies to circumvent this issue.

Although in inner-outer eigenvalue iterations it is common to start the inner solver with zero initial
vectors since they are not biased towards any eigenvector directions, one could also use nontrivial
starting vectors, e.g., random ones. A more appealing idea might be to set the starting vectors equal
to the approximate eigenvectors of the previous TII / TRQI iteration as x(0) = uk, y(0) = vk since
uk, vk may already be close to the sought solutions of the current step.

Another approach is to use the the composite step BiCG (CSBCG) algorithm [34] which is
intrinsically designed to deal with those pivot breakdowns. The CSBCG/LAL implementation [35]
of this method appears to be the most stable choice for our purpose and will therefore be used in our
numerical examples.

3.3. Tuned preconditioners for the simultaneous solution

Now we discuss the application of tuned preconditioners for a Petrov-Galerkin method to solve both
systems in Algorithm 1 in one run. If Sk is a tuned preconditioner for the forward linear system,
then SHk should be a tuned preconditioner for the adjoint one. Additionally, by incorporating the
concept of tuning, the M - and A-variant of Sk should satisfy

Skuk = Muk and SHk vk = MHvk, (25)

or Skuk = Auk and SHk vk = AHvk, (26)

respectively. It is easy to see that this cannot be achieved with an rank-one modification of a standard
preconditioner as in the one-sided case or when both systems are solved one by one. Instead, we
propose a rank-two modification of the form

Sk = P + akb
H
k + ckd

H
k ,

where P ∈ Cn×n is the standard preconditioner, and ak, bk, ck, dk ∈ Cn are vectors yet to be
determined. For the case (25) we assume w.l.o.g. that vHk Muk = 1. Choosing bk := MHvk, ck :=

Muk leads to

Puk + ak +Mu(dHk uk) = Muk, (27)

PHvk + (MHvka
H
k )vk + dk = MHvk. (28)
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14 P. KÜRSCHNER, M. FREITAG

Rearranging (27) for ak, and inserting it into (28) gives

(P −M)Hvk = uHk [(P −M)Hvk + dk]MHvk − dk,

such that we may choose dk := −(P −M)Hvk, which yields ak := −(P −M)uk + τkuk with
τk := vHk (P +M)uk. The complete tuned preconditioner is then

Sk = P + [Muk, Puk]

[
τk −1

−1 0

]
[MHvk, P

Hvk]H . (29)

It is checked easily that Sk and SHk satisfy (25). With the Sherman-Morrison-Woodbury formula
[26] and fk := P−1Muk, gk := P−HMHvk, αk := vHk MP−1Muk, the applications of Sk, SHk are

S−1k = P−1 + [fk, uk]

[
−αk 0

0 1

]−1 [
gHk
vHk

]
= P−1 + ukv

H
k −

fkg
H
k

αk
, (30a)

S−Hk = P−H + vku
H
k −

gkf
H
k

αk
. (30b)

For each outer iteration two extra applications of P are required to compute the vectors fk, gk and
apply Sk, in particular we need one solve with P and PH . This amounts to the same extra costs as
for the tuned preconditioner for the separate solution (see Section 3.1). Note that fk, gk as well as the
scalar αk can be constructed and stored before the inner solver is started. For a tuned preconditioner
satisfying (26) the vectors defining Sk become fk := P−1Auk, gk := P−HAHvk, αk = vHk Afk and
using the scaling vHk Auk = 1. WhenA is singular this variant of Sk should only be used if a nonzero
eigenvalue is sought.

4. EQUIVALENCE BETWEEN TWO-SIDED RAYLEIGH QUOTIENT ITERATION AND
TWO-SIDED SIMPLIFIED JACOBI-DAVIDSON METHOD WITH PRECONDITIONED

ITERATIVE SOLVES

The two-sided Jacobi-Davidson [14, 13] (TJD) is an extension of the (one-sided) Jacobi-Davidson
[36, 37] to compute eigentriples of nonnormal eigenvalue problems. A first idea of such a method
was already briefly mentioned in [36]. Here we discuss the simplified TJD given in Algorithm 3
which does work with one-dimensional subspaces for the right and left eigenvector approximations.
In [13, Proposition 5.5.] it was shown (using a result for one-sided methods from [12]) that for

the standard eigenvalue problem simplified TJD is equivalent to TRQI when all pairs of linear
systems are solved by a certain number of steps of a Petrov-Galerkin-Krylov method§ in each outer
iteration. This result, however, does not extend to the GEP and to preconditioned solves. In this
section we show that the result can be extended for the GEP and to preconditioned TRQI and TJD
if the preconditioner for TRQI is chosen in a specific way. Note that by Petrov-Galerkin method

§The authors of [13] used BiCG in the theorem, which should be understood as any Petrov-Galerkin type method that
produces the required bases without suffering from breakdowns (personal communication with M. E. Hochstenbach).
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Algorithm 3: Simplified two-sided Jacobi-Davidson method (TJD) (biorthogonal version)
[14, 13]
Input : Matrix A, initial vectors u1, v1, vH1 Mu1 6= 0.
Output: Approximate eigentriple (θkmax

, ukmax
, vkmax

).
for k = 1, 2, . . . do1

Set θk = ρ(uk, vk).2
Compute residuals ruk

= Auk − θkMuk, rvk = AHvk − θkMHvk.3
Test for convergence.4
Solve (approximately) sk ⊥MHvk, tk ⊥Muk from5

Π1(A− θkM)Π2sk = −ruk
, (31a)

ΠH
2 (A− θkM)HΠH

1 tk = −rvk , (31b)

where Π1 = I − Mukv
H
k

vHk Muk
and Π2 = I − ukv

H
k M

vHk Muk
.

Set uk+1 = (uk + sk)/‖uk + sk‖2, vk+1 = (vk + tk)/‖vk + tk‖2.6

we explicitly refer to any Krylov subspace method that uses biorthonormal bases for dual Krylov
subspaces and performs a Petrov-Galerkin type projection for obtaining approximate solutions for
dual linear systems in the considered eigenvalue methods. Therefore, we assume that no breakdown
occurs or that those are dealt with appropriately (cf. the discussion in Section 3.2.1).

In the following we neglect the index k for the outer iteration as we are only interested in the inner
solves. The approximate solutions uk+1, vk+1 of the linear systems in Algorithm 1 are denoted by
u+, v+. Furthermore we assume w.l.o.g. that u and v satisfy the normalisation vHMu = 1. Then
the projections in Algorithm 3 become Π1 = I −MuvH and Π2 = I − uvHM .

Since the operators in (31a) and (31b) are adjoint to each other, the above version of TJD allows
the application of Petrov-Galerkin-Krylov methods for solving both systems simultaneously. If the
application of a preconditioner P is desired, it has to be projected accordingly, i.e. one has to use
the projected preconditioners

P̃ := Π1PΠ2 and P̃H := ΠH
2 P

HΠH
1 (32)

for (31a) and (31b), respectively. Note that P̃ , P̃H are mappings from (MHv)⊥ to v⊥ and (Mu)⊥

to u⊥. Exploiting the inherent biorthogonality relations leads to applications of both projected
preconditioners (see [2],[36])

P̃ † = ΠPP−1, (P̃H)† = P−H(ΠP )H ,

where

ΠP =

(
I − P−1MuvHM

vHMP−1Mu

)
.

Note that Π2ΠP = ΠP . In order to ensure applicability of a Petrov-Galerkin type methods one has
to use, e.g., right preconditioning for one correction equation and left preconditioning for the other
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16 P. KÜRSCHNER, M. FREITAG

one, such that the pair of preconditioned correction equations become

Π1(A− θM)ΠPP−1s̃ = −ru, ΠPP−1s̃ = s,

P−H(ΠP )H(A− θM)HΠH
1 t = −P−H(ΠP )Hrv.

The preconditioned equations for TRQI are

(A− θM)P−1ũ = Mu, P−1ũ = u+,

P−H(A− θM)Hv+ = P−HMHv.

Note that the other way around, i.e., using left and right preconditioning in the forward and
adjoint linear system, respectively, is of course also possible as well as using both left and right
preconditioning for each linear system (cf. [14] for this strategy in TJD). In the following we
consider the tuned preconditioner S with a rank-two modification which satisfies (25) (Su = Mu,
SHv = MHv) and is given by (29) with its inverse (30). In order to show the equivalence of TRQI
with a tuned preconditioner and simplified TJD with a standard preconditioner we require the
following Lemma. The proofs of Lemma 11 and Theorem 12 mimic the ones of [12, 38, 9, 13, 15].

Lemma 11 (Generalization of [13, Lemma 5.4], [9, Lemma 1 and Lemma 3] and [15, Lemma 5.1])
Let Π1 := I −MuvH , Π2 := I − uvHM , C := A− θM , ru = Cu and rv = CHv and vHMu = 1.
Let P be a standard preconditioner and let the tuned preconditioner S satisfy (25). Introduce the
subspaces

K(i)
R = span{Mu,CS−1Mu, (CS−1)2Mu, . . . , (CS−1)iMu},
L(i)

R = span{Mu, ru, (Π1CΠSS−1)ru, . . . , (Π1CΠSS−1)i−1ru},
M(i)

R = span{Mu, ru, (Π1CΠPP−1)ru, . . . , (Π1CΠPP−1)i−1ru},

as well as the subspaces

K(i)
L = span{S−HMHv,S−HCHS−HMHv, (S−HCH)2S−HMHv, . . .

. . . , (S−HCH)iS−HMHv},
L(i)

L = span{v,S−H(ΠS)Hrv, (S−H(ΠS)HCHΠH
1 )S−H(ΠS)Hrv, . . .

. . . , (S−H(ΠS)HCHΠH
1 )i−1S−H(ΠS)Hrv},

M(i)
L = span{v, P−H(ΠP )Hrv, (P

−H(ΠP )HCHΠH
1 )P−H(ΠP )Hrv, . . .

. . . , (P−H(ΠP )HCHΠH
1 )i−1P−H(ΠP )Hrv}.

For every i ≥ 1 we have K(i)
R = L(i)

R =M(i)
R and K(i)

L = L(i)
L =M(i)

L .

Proof
Using (30a) and vHMu = 1 we have that ΠSS−1 = Π2S−1 = S−1Π1. Then K(i)

R = L(i)
R and K(i)

L =

L(i)
L follow directly from [13, Lemma 5.4],[15, Lemma 5.1] (applied to CS−1 and S−HCH ).

Furthermore

ΠSS−1 = S−1 − uvH = P−1 − P−1MuvHMP−1

vHMP−1Mu
= ΠPP−1,
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as well as S−H(ΠS)H = P−H(ΠP )H using (30a), (30b) and both L(i)
R =M(i)

R and L(i)
L =M(i)

L

follow immediately.

Theorem 12 (Generalization of [13, Proposition 5.5],[15, Theorem 5.2] and [9, Theorem 4])
Let u, v be approximate right and left eigenvectors of A,M , normalized such that vHMu = 1.
Moreover, s(i), t(i) denote the approximate solutions to the correction equations of simplified
TJD obtained with a Petrov-Galerkin method using standard preconditioners P, PH . Then for the
approximate solutions u(i+1), v(i+1) to the TRQI equations obtained after i+ 1 steps of the same
Petrov-Galerkin method applying the tuned preconditioner S with Su = Mu and SHv = MHv it
holds

u(i+1) = µ1(s(i) + u) and v(i+1) = µ2(t(i) + v),

for some constants µ1, µ2.

Proof
The spaces spanned by i steps of a preconditioned Petrov-Galerkin method applied to the JD
correction equations are

span
{
ru, (Π1CΠPP−1)ru, . . . , (Π1CΠPP−1)i−1ru

}
,

span
{
P−H(ΠP )Hrv, (P−H(ΠP )HCHΠH

1 )P−H(ΠP )Hrv, . . .

. . . , (P−H(ΠP )HCHΠH
1 )i−1P−H(ΠP )Hrv

}
,

which, according to Lemma 11 and with ΠS = Π2, are equal to

span
{
ru, (Π1CΠ2S−1)ru, . . . , (Π1CΠ2S−1)i−1ru

}
,

span
{
S−HΠH

2 rv, (S−HΠH
2 C

HΠH
1 )S−HΠH

2 rv, . . .

. . . , (S−HΠH
2 C

HΠH
1 )i−1S−HΠH

2 rv
}
,

respectively. Let the columns of W (i) and Z(i) span the biorthonormal bases for these two spaces
generated by the Petrov-Galerkin method. It holds Mu ⊥ Z(i) and v ⊥W (i) such that

uHMHZ(i) = vHW (i) = 0, Π1W
(i) = W (i), ΠH

1 Z
(i) = Z(i).

The approximate solutions s(i), t(i) are then given by s(i) = Π2S−1s̃(i) = S−1Π1s̃
(i), s̃(i) = W (i)w,

t(i) = Z(i)z, where

w = −(T (i))−1(Z(i))Hru = −(T (i))−1(Z(i))HAu,

z = −(T (i))−H(W (i))HS−HΠH
2 rv = −(T (i))−H(W (i))HS−HAHv,
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with T (i) := (Z(i))HCS−1W (i). There we have used that S−HΠH
2 rv = ΠH

1 (S−HAHv −
θS−HMHv) = ΠH

1 (S−HAHv − θv) and ΠH
1 v = 0. Consequently,

s(i) = −S−1W (i)(T (i))−1(Z(i))HAu,

t(i) = −Z(i)(T (i))−H(W (i))HS−HAHv.

For the linear systems of TRQI we know by Lemma 11 that the columns of [Mu, W (i)] and [v, Z(i)]

are biorthonormal bases of

span
{
Mu,CS−1Mu, . . . , (CS−1)iMu

}
,

span
{
S−HMHv,S−HCHS−HMHv, . . . , (S−HCH)iS−HMHv

}
.

The approximate solutions are then given by u(i+1) = S−1ũ(i+1), ũ(i+1) = µ1Mu+W (i)p and
v(i+1) = µ2v + Z(i)q, where µ1, µ2 ∈ C and p, q ∈ Ci are determined by

T̂ (i)

[
µ1

p

]
=

[
1

0

]
and (T̂ (i))H

[
µ2

q

]
=

[
1

0

]
,

with

T̂ (i) =

[
vHCS−1Mu vHCS−1W (i)

(Z(i))HCS−1Mu T (i)

]
.

The (1, 1)-entry in T̂ (i) is zero and p, q are hence obtained from

p = −µ1(T (i))−1(Z(i))HAu, q = −µ2(T (i))−H(W (i))HS−HAHv,

and hence u(i+1) = µ1(s(i) + S−1Mu) and v(i+1) = µ2(t(i) + v), from which the desired result
follows.

Remark 13
Lemma 11 and Theorem 12 also reveal an equivalence of TRQI and TJD in the unpreconditioned
case (P = I) for the GEP when the tuning operator

T = I + [Mu, u]

[
vHu+ 1 −1

−1 0

]
[MHv, v]H , (33)

which satisfies Tu = Mu and THv = MHv is used in TRQI and TJD is necessarily preconditioned
by Π1Π2 (cf. (32)). If M = I these actions are not required which immediately gives [13,
Proposition 5.5.].

Remark 14
The above theorems also hold when a fixed shift is used, i.e., θk ≡ θ ∀k ≥ 1, leading to an
equivalence result of TII and simplified TJD.
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Figure 1. Convergence history of exact and inexact TII (left), TRQI (right) for the reactor example using
fixed and decreasing inner tolerances. The decreasing tolerances for TII and TRQI where set via ξR/L

k =

min
(
0.1, 0.1‖ruk/vk‖

)
and ξR/L

k = min
(
0.5, ‖ruk/vk‖

)
, respectively.

5. NUMERICAL EXAMPLES

We run numerical experiments regarding the discussed convergence properties of TII / TRQI in
Section 2, the preconditioning and tuning strategies in Section 3, and the equivalence of TRQI
and simplified TJD in Section 4. All experiments were carried out using MATLAB R© 7.11.0 on a
compute server using 4 Intel R©Xeon R©@2.67 GHz CPUs with 8 cores per CPU and 1 TB RAM.

5.1. Convergence of inexact methods

At first we verify the convergence results of Section 2 using the nuclear reactor example from [15,
Example 5.1]. The dimension of this generalized eigenvalue problem is n = 2048 such that the
occurring linear systems can be solved cheaply using the MATLAB R© backslash. For the inexact
solves the CSBSG/LAL [35] method was employed and no preconditioning was required. We look
for the eigenvalue λ = 8.0097 and and its associated right and left eigenvectors. The shift for TII was
set to θ = 8. The initial vectors u1, v1 are the perturbed eigenvectors corresponding to λwhich were
generated using the eigs(A,M,1,8) and eigs(A’,M’,1,8) commands. The perturbation
was chosen small enough such that TRQI, whose convergence strongly depends on the given initial
vectors, converged to the sought eigentriple. In Figure 1 max (‖ruk

‖, ‖rvk‖) is plotted versus the
outer iteration number k for both methods. As predicted by Theorem 2 inexact TII stagnates
for two different fixed inner accuracies (ξR/L = 0.1, 10−4). It achieves the same convergence
speed as with exact solves when decreasing inner tolerances (ξR/L

k = min
(
0.1, 0.1‖ruk/vk‖

)
) are

used as proposed by Theorem 3. A similar observation can be made for inexact TRQI in the
right plot, although there the difference between fixed (ξR/L = 0.9) and decreasing inner tolerances
(ξR/L
k = min

(
0.5, ‖ruk/vk‖

)
) is only marginal due to the fast speed of convergence and the mild

nature of the problem.

5.2. Preconditioned inner solves and tuning

For investigating the performance of the inexact solves using the proposed tuned preconditioners, we
use three examples which are summarized, together with the settings for TII and TRQI, in Table I.
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Table I. Matrix dimension n, sought eigenvalue λ, shift θ, wanted outer accuracy εeig, ilu drop tolerance χ,
and inner accuracies ξR/L

k in inexact TII, TRQI for the examples IFISS, anemo, FDM for testing the standard
and tuned preconditioners.

Ex. n λ θ εeig χ ξR/L
k TII ξR/L

k TRQI

IFISS 66049 2450.8 2500 10−10 0.01 0.1min
(
1, ‖ruk/vk‖

)
0.5min

(
1, ‖ruk/vk‖

)
anemo 29008 -305.35 -300 10−10 0.1 0.1min

(
1, ‖ruk/vk‖

)
0.01

FDM 78400 -1011.28 -1000 10−9 0.0005 0.5min
(
ξR/L
k−1, ‖ruk/vk‖

)
0.001

The IFISS example was obtained with the IFISS 3.2 package [39] by discretizing a convection-
diffusion equation on (−1, 1)2 by Q1 finite elements on a uniform 256×256 grid. The matrices
A, M are provided by the test example T-CD2. The matrices of the anemo example‡ are obtained
from a finite element discretization of the temperature flow around an anemometer (flow sensing
device) [40]. In the last example, FDM, M = I and A represents a five-point stencil centered finite
difference discretization on a uniform 280× 280 grid of

∆h− 10ξ1
∂h

∂ξ1
− 1000ξ2

∂h

∂ξ2
= 0 on Ω = (0, 1)2 for h = h(ξ1, ξ2)

with homogeneous Dirichlet boundary conditions.
For all three examples the starting vectors for TRQI were constructed as in the previous example

and the outer iteration was terminated when max (‖ruk
‖, ‖rvk‖) < εeig. The linear systems are

solved separately with GMRES and also simultaneously with CSBCG. Without preconditioning
the inner solvers did not converge at all or within a reasonable amount of time. The standard
preconditioners P are incomplete LU decompositions of A− θM with a drop tolerances of χ
and PH was chosen for the adjoint linear system. The tuned preconditioners are Pk, Qk within
GMRES, and Sk within CSBCG, and are given as in Section 3. We used the M -variants which
satisfy (20),(23),(29) as well as the A-variants which satisfies (21),(24). Table II gives the required
outer iterations k, the total inner iterations i (i.e., matrix vector products with A− θkM ) and
their average number over all outer iterations, the total number of applications with P and PH ,
and the consumed CPU time for these experiments. Using the tuned preconditioners leads to a
decreased number of inner iterations compared to the application of the standard preconditioners
in the majority of cases. This reduction is more significant for TII than for TRQI because of the
significantly higher number of outer iterations such that savings regarding the runtime are more
obvious for TII. With GMRES the outer iterations seemed to have problems converging for some
of the used preconditioners in the anemo and FDM example. These happened especially for the
M -variant of Pk, Qk. In most cases, these issues could be cured if the inner accuracies or the
drop tolerances for the incomplete LU factorization were lowered a bit further. Moreover, similar
numerical issues with the tuned preconditioner as reported in [23, Section 6] were observed in
some of these problematic cases. For most situations where the outer iterations converged, CSBCG
required more inner iterations then GMRES, but thanks to its short recurrence formulation, does so
in less time. The storing and orthogonalization of the basis vectors of GMRES is more expensive
than the additional iterations, and inherent matrix vector products, of the longer runs of CSBCG.

‡Available at modelreduction.org.
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Table II. Results for inexact TII and TRQI using standard and tuned preconditioners for the IFISS, anemo,
and FDM examples. There, k and i are the required outer and total inner iterations.

Ex. Methods Prec. k i aver. # precs time
IF

IS
S

TII - GMRES
standard 38 936 25 936 30.6
tuned, M 39 325 9 401 16.4
tuned, A 38 679 18 753 24.2

TII - CSBCG
standard 38 1436 39 1436 29.1
tuned, M 38 856 23 930 19.9
tuned, A 38 650 18 724 15.7

TRQI - GMRES
standard 4 174 58 174 5.9
tuned, M 4 110 37 116 3.8
tuned, A 4 190 63 196 5.8

TRQI - CSBCG
standard 4 258 86 258 5.2
tuned, M 4 228 76 234 4.6
tuned, A 4 194 65 200 4.0

an
em

o

TII - GMRES
standard 8 1685 241 1685 55.6
tuned, M stagnation at max (‖ruk‖, ‖rvk‖) ≈ 7.6
tuned, A 10 1398 155 1416 42.3

TII - CSBCG
standard 6 1530 306 1530 15.8
tuned, M 6 1116 223 1126 9.9
tuned, A 7 1120 187 1132 10.4

TRQI - GMRES
standard no convergence
tuned, M stagnation at max (‖ruk‖, ‖rvk‖) ≈ 7.6

tuned, A stagnation at max (‖ruk‖, ‖rvk‖) ≈ 10−4

TRQI - CSBCG
standard 3 484 242 484 4.6
tuned, M 3 466 233 470 4.8
tuned, A 3 430 215 434 3.9

FD
M

TII - GMRES
standard 36 1110 32 1110 89.1
tuned, M stagnation at max (‖ruk‖, ‖rvk‖) ≈ 10−8

tuned, A 34 153 5 219 48.7

TII - CSBCG
standard 28 1060 39 1060 35.5
tuned, M 31 200 7 260 9.9
tuned, A 30 116 4 174 7.5

TRQI - GMRES
standard 3 76 38 76 5.7
tuned, M no convergence
tuned, A 3 60 30 64 4.7

TRQI - CSBCG
standard 3 168 84 168 5.3
tuned, M 3 142 71 146 4.6
tuned, A 3 152 76 156 5.1

From this one should by no means conclude that the simultaneous solution via methods such as
CSBCG is in general the most efficient way. Good results for the separate solution can also be
acquired by other short recurrence methods, e.g., restarted GMRES, BiCGstab(`) [21] or IDR(s)
[22]. In Figure 2 the inner iterations are plotted against the outer iterations for the IFISS example.
The two plots on the left for inexact TII show that, as predicted by Theorem 7, the number inner
iterations increases along the outer iteration when a standard preconditioners is employed. Using
tuned preconditioners not only reduces the number of required inner iterations for GMRES (top left
plot), but also keeps this number approximately constant after a start up time in the beginning. The
effect is similar for CSBCG, although there the number of inner iterations shows a more oscillating
behavior.

Although for TRQI (right plots) the reduction of the number of inner iterations is also given,
this number does still increase as the outer iteration proceeds. This increase seems to be, however,
smaller than for the standard preconditioner which is particularly visible in the CSBCG experiment.
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Figure 2. Progress of the required inner iterations against the outer iterations for inexact TII and TRQI using
different solvers and preconditioners for the IFISS example.

Similar observation were made for the other two examples. To conclude, the inexact two-sided
methods with preconditioned inner solves show a similar behavior as the one-sided methods as it
was, e.g., investigated in [15, Theorem 3.5] using GMRES as inner solver.

Comparing theM -andA-variants of the tuned preconditioners in Table II and Figure 2, there is no
clear hint which one of these variants performs best. For the IFISS example theM -variant yields the
best results when GMRES is used but CSBCG seems to benefit more from theA-variant. In the other
two examples, taking the convergence problems with GMRES into account, it appears that the A-
variant should be chosen for GMRES, but there is no clear winner for both variants of S in CSBCG.
Moreover, different choices regarding the initial vectors, inner accuracies and drop tolerances could
lead to different behaviors w.r.t. the M - and A-variants of the tuned preconditioners.

5.3. Equivalence of preconditioned RQI and BiJD

We use the IFISS example to investigate the equivalence of TRQI and simplified TJD as proposed
in Section 4. The maximum number of inner iterations was restricted to 8 (7) for TRQI (TJD) and
we do not stop when a certain inner accuracy is met. To compensate for rounding errors and a
possible loss of (bi)orthogonality due to the short recurrence formulation of CSBCG which could
spoil the results, we employ the basic two-sided Lanczos method [21, Algorithm 7.2] with re-
biorthogonalization of the generated dual Krylov bases. In line with Theorem 12 and Remark 13 we
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Figure 3. Convergence history of inexact TRQI and simplified TJD with 8, respectively 7, iterations of two-
sided Lanczos using no preconditioner and tuning operator (left), standard and tuned preconditioner (right).

use the standard (P, PH) and the M-variant of the tuned (Sk) preconditioners, as well as the tuning
operator Tk from (33) and no preconditioner at all for the inner solves.

The convergence history for 20 outer iterations of TRQI, TJD is illustrated in Figure 3. In the left
plot the results for P = I are shown. As predicted by Remark 13, TJD and TRQI are equivalent
when the tuning operator Tk is applied to the linear systems. Not surprisingly, this operator has
no effect for TJD. TRQI without the application of Tk shows a different behavior which would
be identical to the other ones if M = I . We also see that rounding errors induce minor differences
between TRQI and TJD using Tk in the final outer iterations. In other similar experiments (not
reported here) these differences can be larger if more inner or outer iterations are employed.

Similar observations can be made for the preconditioned case in the right plot. As proposed by
Theorem 12, TJD using the standard and tuned preconditioner as well as TRQI using the tuned
preconditioner give the same results. Again, only TRQI with a standard preconditioner shows a
different residual history which would also be the case when M = I .

6. CONCLUSIONS

We have discussed, reviewed and extended the convergence analysis on exact and inexact two-sided
inverse iteration and Rayleigh quotient iteration established in [13] to the generalized non-Hermitian
eigenvalue problem. We showed that, if inexact solves are used with a prescribed decreasing solve
tolerance then the inexact two-sided methods recover the convergence rates of the exact two-
sided methods, that is linear convergence for inexact two-sided inverse iteration and locally cubic
convergence for inexact two-sided Rayleigh quotient iteration.

Moreover, we extended the results on the tuned preconditioner for one-sided inverse iteration
and Rayleigh quotient iteration [7, 8, 15] to the two-sided methods, where the forward and adjoint
linear systems are solved simultaneously and therefore a rank-two modification of the standard
preconditioner has to be used for the tuning strategy.

Finally, we showed that the equivalence of inexact two-sided Rayleigh quotient iteration and
inexact two-sided Jacobi-Davidson method (without subspace expansion), which was established
in [13] for the standard eigenproblem without a preconditioner (when a certain number of steps
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of a Petrov-Galerkin-Krylov method is used), also holds for the generalized preconditioned
eigenproblem (when a specific preconditioning strategy is applied).

Future work should validate the tuning strategies when subspace acceleration is used in TRQI
and TJD as one would use in practice. Moreover, inexact, two-sided, shift-invert Arnoldi [41] can
be considered and we expect to be able to use similar tuning ideas as in the one-sided case [42, 43].
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