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Abstract 

The electrophilic character of free diamidocarbenes (DACs) allows them to activate inert 

bonds in small molecules, such as NH3 and P4. Herein, we report that metal coordinated 

DACs also exhibit electrophilic reactivity, undergoing attack by Zn and Cd dialkyl precursors 

to afford the migratory insertion products [(6-MesDAC-R)MR] (M = Zn, Cd; R = Et, Me; 

Mes = mesityl). These species were formed via the spectroscopically characterised 

intermediates, [(6-MesDAC)MR2], exhibiting barriers to migratory insertion which increase 

in the order MR2 = ZnEt2 < ZnMe2 < CdMe2. Compound [(6-MesDAC-Me)CdMe] showed 

limited stability, undergoing deposition of Cd metal, by an apparent -H elimination 

pathway. These results raise doubts about the suitability of diamidocarbenes as ligands in 

catalytic reactions involving metal species bearing nucleophilic ligands (M-R, M-H).    

 

 

 

 

 

 

 

 

 

 

 

 

 



Diaminocarbenes have had a remarkable impact on the landscape of organometallic 

chemistry over the last decade, primarily because of their strong -donor properties which 

afford very stable M-C bonds.[1] In an effort to try to enhance the strength of these M-C 

interactions, many groups have attempted to alter the donor (nucleophilic) as well as acceptor 

(electrophilic) character of carbenes by manipulation of the HOMO-LUMO gap.[2] Arguably, 

cyclic alkyl amino carbenes (CAACs) and diamidocarbenes (DACs) have emerged as the 

most well-known and synthetically accessible of these derivatives.[3] In the case of CAACs, 

electrophilicity is enhanced by the presence of only a single -N atom, while DACs are made 

more electron-accepting by the incorporation of carbonyl groups adjacent to the ring N atoms 

(1 in Scheme 1). The result is that both CAACs and DACs exhibit very different reactivity to 

diaminocarbenes, behaving more like traditional triplet carbenes in undergoing reactions with 

inert bonds (C-H, H-H, N-H, P-H, P-P) and coupling reactions with CO and isocyanides.[4-6] 

At the same time, both CAACs and DACs retain enough nucleophilic character to act as two-

electron donor ligands to a range of late d-block metal centers (Ru, Rh, Ir, Pd, Cu, Au).[5,7]
 

Herein, we report the first examples of metal bound diamidocarbene ligands exhibiting 

electrophilic reactivity with the observation that compounds of the type [(6-MesDAC)MR2] 

(M = Zn, R = Et, Me; M = Cd, R = Me)[8] undergo migratory insertion of an alkyl ligand onto 

the carbenic carbon.[9,10] In the case of [(6-MesDAC)ZnEt2], this process is extremely facile, 

taking place as temperatures as low as 211 K.  

Upon addition of one equivalent of a 1.0 M heptane solution of ZnEt2 to a THF 

solution of 1, the instantaneous formation of a homogeneous red solution was observed which 

disappeared after a few seconds, and was replaced by a colourless, insoluble precipitate. This 

precipitate was characterized by X-ray crystallography as [(6-MesDAC-Et)ZnEt] (3, Scheme 

1), the product of migratory insertion of one of the Zn-ethyl groups onto the DAC ligand. The 

structure showed that 3 was polymeric (Figure 1) by virtue of weak ZnO interactions (Zn-



O = 2.166(3) Å) between neighbouring [(6-MesDAC-Et)ZnEt] units.[11] IR spectroscopy 

provided further evidence for this interaction with the appearance of a low frequency (1576 

cm-1) CO stretch for the Zn bound carbonyl and a higher frequency band at 1651 cm-1 for the 

unperturbed carbonyl group. As shown in Figure 1, the ZnO interaction affords a T-shaped 

Zn center (CDAC-Et-Zn-C 159.90(17); CDAC-Et-Zn-O 99.50(14)) bound to a single ethyl group 

(Zn-C 1.998(4) Å;[12] c.f. 1.948(5) Å in ZnEt2
[13]) and an sp3-hybridised carbon (Zn-CDAC-Et 

2.059(4) Å; N(1)-C(1)-N(2) 109.6(3); c.f. 127.72(18) in 1)[6] formed via the migratory 

insertion process. 

 

Scheme 1. Pathway to formation of migratory insertion products 3, 5 and 7. 

 

Diffusion ordered (DOSY) NMR experiments suggested that 3 dissociates into a 

monomer in solution, on the basis of the good agreement between the value of 4.7 Å 

determined for the hydrodynamic radius (rH, measured in CD2Cl2) and the value of 5.3 Å 

calculated for the monomeric unit of 3 from the solid-state structure (rX-ray).
[14] The 1H and 

13C{1H} NMR spectra showed resonances that were diagnostic of the migratory insertion 

process and the resultant de-symmetrisation of the six-membered heterocyclic ring. The Zn-

bound ethyl group exhibited two resonances in the 1H NMR spectrum (CH2,  = 0.00 ppm; 



CH3,   = 0.84 ppm) at lower frequency than those of the migrated ethyl group (CH2,   = 

0.73 ppm; CH3,   = 2.27 ppm). This correlated in a 1H-13C HMBC spectrum to a resonance 

arising from the quaternary NCN carbon at   = 88.0 ppm.[15]  

 

Figure 1. Molecular structure of 3. Ellipsoids are shown at the 50% level. All hydrogen 

atoms are removed for clarity. Selected bond lengths [Å] and angles [deg]: Zn(1)-C(1) 

2.059(4), Zn(1)-C(27) 1.998(4), Zn(1)-O(2#) 2.166(3), C(2)-O(1) 1.230(5), C(4)-O(2) 

1.238(5), C(1)-Zn(1)-C(27) 159.90(17), C(1)-Zn(1)-O(2#) 99.50(14), N(1)-C(1)-N2) 

109.6(3).  # atoms generated by symmetry operation 3/2 – x, –1/2 + y, ½ – z. 

 

When ZnEt2 was added to a cold (178 K) [D8]-THF solution of 6-MesDAC, the 

intermediate responsible for the red colour was stabilized indefinitely, allowing its 

spectroscopic characterization as the Zn diamidocarbene adduct, [(6-MesDAC)ZnEt2] (2, 

Scheme 1).[16] This displayed CH2 and CH3 proton resonances at   = -0.48 ppm and   = 0.70 

ppm, respectively, which integrated in a ratio of 4:6:4 with a signal at   = 7.05 ppm for the 

four aromatic protons of the mesityl rings of 6-MesDAC, confirming the 2:1 ratio of Et:6-

MesDAC ligands. The 13C signal for the Zn-carbene resonated at ca.   = 236 ppm. Upon 

warming the sample above 211 K, the NMR signals for 2 rapidly disappeared and, indeed, 



removal of the NMR tube from the spectrometer at this temperature revealed the 

characteristic colourless precipitate of 3.  

 

Figure 2. Molecular structure of 7. Ellipsoids are shown at the 20% level. Solvent and 

hydrogen atoms are removed for clarity. Selected bond lengths [Å] and angles [deg]: Cd(1)-

C(1) 2.197(6), Cd(1)-C(8) 2.107(8), Cd(1)-O(2#) 2.416(5), C(2)-O(1) 1.226(8), C(4)-O(2) 

1.227(8), C(1)-Cd(1)-C(8) 162.1(3), C(1)-Cd(1)-O(2#) 95.50(19), N(1)-C(1)-N(2) 108.0(4). # 

atoms generated by symmetry operation –x, 1/2 + y, ½ – z. 

 

Analogous low temperature experiments with ZnMe2 or CdMe2 and 1 (Scheme 1) 

gave yellow rather than red solutions, but comparable spectroscopic data to 2 (4: ZnCH3:  = 

-1.40 (1H),  = -9.1 ppm (13C); Zn-C6-MesDAC:  = 237.6 ppm (13C); 6: CdCH3:  = -1.12 (1H), 

 = -7.9 ppm (13C); Cd-C6-MesDAC:  = 252.9 (13C)).[17] Higher barriers were found for the 

subsequent migratory insertion reactions, with the Zn and Cd products 5 and 7 being formed 

at 245 and 267 K respectively.[18] X-ray crystallography showed that 7 was polymeric in the 

solid-state (Figure 2) although, unsurprisingly, both the CdO (2.416(5) Å) and Cd-C 

(Cd(1)-C(1) 2.197(6), Cd(1)-C(8) 2.107(8) Å) distances were longer than in the Zn species 

(Figure 2).[19] Analysis of both structures revealed substantial distortions from planarity with 

respect to the carbene mesityl substituents. This is evidenced by the distances of the ortho 



methyl carbon atoms from the mean planes of the phenyl rings to which each is bonded. 

These distances range from 0.20 to 0.28 Å (in 3) and 0.20 to 0.23 Å (in 7). In all cases, the 

methyl groups lean towards the carbonyl groups. Space filling models suggest steric clashes 

between the latter and the ipso carbons of proximate mesityl functionalities. This appears to 

induce some slight ring puckering in the solid state, the effect of which is exaggerated by the 

methyl deviations quoted herein. DOSY measurements on 7 once more supported a 

monomeric structure in solution (rH = 4.9 Å, rX-ray = 5.5 Å).[14]  

Significant differences were observed in the solution behavior of 3, 5 and 7. Whereas 

3 was fully soluble and indefinitely stable in CD2Cl2 under anaerobic conditions (even up to 

323 K), the methyl analogue, 5, proved to be only partially soluble in the same solvent even 

at 313 K. This enabled 1H NMR data to be recorded, but efforts to record complete 13C data 

proved fruitless as the compound decomposed over a period of hours. In the case of the Cd 

complex 7, dilute and totally homogeneous dichloromethane solutions were stable, although 

attempts to crystallize the compound from saturated solutions resulted in quantitative 

decomposition over 12-24 h, with deposition of metallic Cd (confirmed by powder X-ray 

diffraction)[20] and elimination of methane and the known exocyclic alkene 8 (Scheme 2). 

This was characterized by the appearance of a diagnostic vinylic 1H NMR signal at   = 3.25 

ppm.[4l] In light of the heterogeneous conditions necessary for the decomposition of 7, the 

exact mechanism remains unclear, although -H elimination from the C-bound methyl group 

onto Cd, followed by reductive elimination of CH4 from a putative Cd methyl hydride 

intermediate appears most probable. 

 

Scheme 2. Decomposition reaction of [(6-MesDAC-Me)CdMe], 7. 



In summary, we have described the first examples of electrophilic reactivity being 

observed in metal coordinated diamidocarbene (DAC) ligands with the observation of 

migratory insertion reactions of Zn and Cd alkyl groups. These processes proceed via 

(DAC)MR2 intermediates, which are only stable below room temperature, undergoing 

migratory insertion between 211 and 267 K. These findings could have implications for the 

stability of metal DAC species under catalytic conditions in which metal alkyl or metal 

hydride groups are also present. Given our interest in metal DAC catalysis,[21] we are 

endeavouring to investigate this in more detail. 
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Scheme 1. Pathway to formation of migratory insertion products 3, 5 and 7. 

 

Figure 1. Molecular structure of 3. Ellipsoids are shown at the 50% level. All hydrogen 

atoms are removed for clarity. Selected bond lengths [Å] and angles [deg] in 3: Zn(1)-C(1) 

2.059(4), Zn(1)-C(27) 1.998(4), Zn(1)-O(2#) 2.166(3), C(2)-O(1) 1.230(5), C(4)-O(2) 

1.238(5), C(1)-Zn(1)-C(27) 159.90(17), C(1)-Zn(1)-O(2#) 99.50(14), N(1)-C(1)-N2) 

109.6(3).  # Atoms generated by symmetry operation 3/2 – x, –1/2 + y, ½ – z. 

 

Figure 2. Molecular structure of 7. Ellipsoids are shown at the 20% level. Solvent and 

hydrogen atoms are removed for clarity. Selected bond lengths [Å] and angles [deg] in 7: 

Cd(1)-C(1) 2.197(6), Cd(1)-C(8) 2.107(8), Cd(1)-O(2#) 2.416(5), C(2)-O(1) 1.226(8), C(4)-

O(2) 1.227(8), C(1)-Cd(1)-C(8) 162.1(3), C(1)-Cd(1)-O(2#) 95.50(19), N(1)-C(1)-N(2) 

108.0(4). # Atoms generated by symmetry operation –x, 1/2 + y, ½ – z. 

 

Scheme 2. Decomposition reaction of [(6-MesDAC-Me)CdMe], 7. 
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Retention of electrophilic character by the diamidocarbene 6-MesDAC (Mes = mesityl; DAC 

= diamidocarbene) in the adducts [(6-MesDAC)MR2] (MR2 = ZnEt2, ZnMe2, CdMe2) results 

in migratory insertion reactions to generate [(6-MesDAC-R)MR]. The ease of migratory 

insertion follows the order ZnEt2 > ZnMe2 > CdMe2, occurring well below room temperature 

in all cases (see scheme). 
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