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Depending on the Ginzburg-Landau material parameter  , superconductors can either be 

fully diamagnetic if     √  (type I superconductors) or accommodate magnetic field in 

the form of Abrikosov vortices if     √  (type II superconductors).
1,2

 At Bogomolny 

critical point,        √ , a state, infinitely degenerated with respect to vortex spatial 

configurations, arises.
3,4

 While conventional type I and type II superconductors are 

investigated in depth, a thorough understanding of magnetic behaviour in the near-

Bogomolny critical regime at      is still lacking. Here we report that in restricted systems 

the critical regime expands over a finite interval of   forming critical superconducting state. 

We show that in this state, in a sample with dimensions comparable with the vortex core 

size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh 

instability
5 

upon increasing   and decays by emitting single vortices. Superconducting 

vortices materialize Nielsen-Olesen singular solutions of the Abelian Higgs model pervasive 

in phenomena ranging from quantum electrodynamics to cosmology.
6,7,8,9

   Our work, 

revealing transient dynamics of Abrikosov-Nielsen-Olesen vortices in systems with 

boundaries, promises access to novel effects in quantum field theory via bench-top 

laboratory experiments. 
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The evolution of magnetic properties of an infinite superconductor when crossing    is shown in 

Fig. 1.  Type I superconductors with      expel magnetic field H until it reaches a critical field 

   beyond which superconductivity is destroyed (Fig. 1 b,e).  In type II superconductors with 

    , superconductivity extends into a wider region,          , where magnetic field 

penetrates the sample in the form of Abrikosov vortices, tiny filaments of the normal phase 

surrounded by encircling supercurrents (Fig. 1 a,d), each carrying a quantum magnetic flux 

        .  

Finite-size systems acquire new features enriching their phase diagram.  Most importantly, type I 

superconductors fall into an intermediate state, comprising alternating domains of normal and 

superconducting phases with the period     √   for        ,
10

 where   is the coherence 

length and   is the sample thickness.  The intermediate state forms in the interval         
     (    is the shape-dependent demagnetization factor) triggered by the local magnetic 

field near the edges of the sample exceeding the critical value    and locally destroying 

superconductivity (Fig. 1c, f).  In type II superconductors, nucleation of superconductivity occurs 

first near the sample boundary at a specific surface critical field        .  In type I 

superconductors     can exceed    if   
   , as shown in Fig. 1b,e.  

Near kappa-induced criticality, with domains containing only a few flux quanta, the intermediate 

state is unstable towards breaking into an Abrikosov lattice and transient effects become 

important.  To analyze transient behavior, we consider a sample with   
    containing a single 

domain or droplet of the normal phase, i.e. a sample with the lateral size   comparable with the 

period d of the domain structure.  This droplet is nothing but a giant vortex with a normal core 

comprising several flux quanta.
11

 Its critical fission occurs via splitting an N-quanta-droplet (Nq-

droplet) into a      )q-droplet  and a single 1q vortex moving away, see Fig. 2.  To calculate 

the energy difference between the Nq-droplet and the configuration consisting of the residual 

    )q-droplet and the separated vortex, we construct a perturbation theory in the vicinity of 

the Bogomolny point over the small parameter        
  [see Supplementary Information 

(SI)] and identify three contributions to the interaction energy, see Fig. 2c: 

                      ,     (1) 

where l is the distance between the vortex and the droplet.  The intrinsic interaction energy of the 

(N-1)q-droplet with the separated vortex calculated in,
12

 see also SI and,
13

 is 

         
 

 √ 

 

 
  

      ,                 (2) 

where   is the London electromagnetic screening length. This term yields attraction at   <0 as 

expected.  Magnetostatic repulsion energy due to stray fields generated by vortices near the 

sample surface, is 

                
      ,              √     (3) 

Finally, the confinement energy due to interaction of the external field H with the vortex,  

holding the droplet together is:   

          
 

  

 

 
  

      ,                     (4) 

As follows from Eq. (4), decreasing the field reduces the confinement strengths.  At some 

threshold field, the repulsive forces begin to dominate and a single vortex splits from the 
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droplet.  Upon further decreasing the field, individual vortices sequentially detach from the 

droplet and escape from the sample.  This disintegration mechanism is analogous to the 

instability introduced by Lord Rayleigh
5
 in 1882 leading to fragmentation of charged liquid 

droplets due to the competition between long-range Coulomb repulsion forces and a short-range 

molecular attraction. 

The threshold field Hinst(N) at which the Nq-droplet becomes unstable is determined from the 

instability point when the energy      changes its curvature and transforms from a convex 

function to a concave one, and Eqs. (1) – (4), yield:  

         
 

  
[
    

 
      

  

  √ 

 

  
 ]   .    (5) 

Direct disintegration of an Nq-droplet into N single vortices requires surmounting a higher 

confinement energy barrier than one-by-one vortex decoupling.  

The Rayleigh instability can be observed if the field          falls into the region of the 

existence of the vortex droplet.  On the descending field branch, vortex droplet appears as a 

residual of the normal state in the finite sample below the surface critical field            . 

Alternatively, on the ascending branch, the droplet can form as a result of the field penetration in 

a Meissner state.  The threshold is defined by the condition that the external field at the sample 

edges,        , exceeds the field of first penetration into an infinite sample,    
 

        

       

       
  ,

14
  which gives the superheating field             for the lower bound of 

field penetration into a finite superconducting sample.  

Criticality can be tuned by temperature variation of               .  In a Pb superconductor 

     changes from           at    , which is slightly less thаn   , to        at   
          and is well described by the phenomenological formula                   

 ),
15

 

see Fig. 3b.  Therefore, micron-sized samples of Pb, an exemplary type I superconductor, offer a 

natural laboratory to study vortex droplet fission.  We selected a triangular shaped Pb meso-

crystal with lateral side dimensions of ~2.2 µm, thickness of ~0.7µm, and critical temperature 

          shown in the lower inset of Fig. 3a. The measurements on the crystal were done 

using a two-dimensional electron gas (2DEG) ballistic Hall micro-probe array magnetometer
16,17

 

(see Fig. 3a lower inset). The temperature variation of   gives rise to the phase diagram of Pb 

shown in Fig. 3c.  The temperature dependence for    is standard,            [        
 ], 

with               .
18

 The critical fields      and     are expressed through    as given 

above with the best-fit value n = 0.37. The curves for   ,     and     cross pair-wise near 

approximately         . The dotted lines show the instability field          for various N 

calculated from equation (5). We further focus on the temperature region        , which is 

the most favorable for the experimental observation of Rayleigh instability of the vortex droplet. 

At      the lines          for large N fall out from the range of existence of 

superconductivity, implying that there the droplet may become unstable with respect to splitting 

into single vortices. Our 3D numerical simulations, done using the phenomenologically 

adapted Ginzburg-Landau theory to account for the correct temperature dependence of   and 

Hc,
19

  show the intermediate regime with a mixture of droplet and one-quanta vortices, see Fig. 4. 

Note that in the temperature range         where           , the droplet can form 

only in the descending field regime, since in ascending field the sample remains in the Meissner 

state until the field reaches     at which superconductivity vanishes. 
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The temperature dependencies of   ,     and     displayed in Fig. 3c are in a good agreement 

with those of Fig. 3a obtained experimentally. The data were extracted from field dependent 

magnetization curves as shown in the upper inset to Fig. 3a.  From     and    one obtains the 

temperature dependence of the Ginzburg-Landau parameter      through   . The temperature 

dependence of the Ginzburg-Landau parameter                corresponds to the bulk 

behavior, shown in Fig. 3b. Together with       this gives a penetration           [  
      

 ] with            and a zero temperature coherence length ξ(0)≈66 nm. To see the 

droplet fission, we use the individual vortex observation technique, analogous to that used in
16

 

for observation of entrance and exit of individual vortices in small type II superconductors.  The 

     dependencies at      and at        shown in insets of Fig. 3b and Fig. 3d have a 

different character, the difference stemming from the temperature dependence of     .   

At        where           and is slightly less than   , the lower inset of Fig. 3b delineates 

the mixed-state-like behavior of      in which the individual vortices are stabilized by the 

repulsion due to the stray field.  First, upon increasing the applied field to           from the 

zero-field-cooled state, the absolute value of the magnetization grows proportionally to   due to 

Meissner screening.  Beyond Hsh, the magnetic flux starts to penetrate the sample and the 

magnetization decreases smoothly. An extrapolation of the linear drop of the absolute value of 

     to zero agrees with the bulk value         , but the diamagnetic signature of 

superconductivity disappears only at             (see Fig. 3a,b).  At the reversing branch, 

the onset of the transition is observed at       but the magnetization remains close to zero, as 

long as the magnetic flux can freely leave the sample. Upon further change of H, the 

magnetization becomes modulated by a saw-like structure, which reflects the effect of pinning 

that traps vortices within the sample.  The drops in M(H) dependence correspond to the one-by-

one escape of vortices from the sample, similar to what is observed in
16,20

.  Upon switching the 

sign of the field, vortices leave the sample, which finally falls into the Meissner state and the 

process repeats itself cyclically.   

The full      curve at        , shown in the inset of Fig. 3d, is exemplary for the single 

droplet regime at         where Hc3, Hc < Hsh are close to each other and where by tuning 

the field we can control the vortex droplet fission.  An expanded view of one quadrant of the data 

is shown in Fig. 5 for T=6.7 K and 7.0 K.  On the ascending field at T = 6.7 K, the Meissner state 

is maintained up to    .    At       the magnetization abruptly drops to zero. Moving from 

high field along the descending branch, one sees that superconductivity emerges at       , but 

the system falls into a vortex droplet state.  

After formation of superconductivity,      at the descending branch follows the envelope 

shape                   modulated by the single quantum jumps due to one-by-one 

escape of vortices from the sample.  Deviation from this dependence starts at H = 0.85Hc 

marking the transition of the intermediate state to the metastable regime of the vortex droplet 

containing N=5 bounded vortices.  Upon further field reduction, the disintegration of the droplet 

follows the scenario of instability, governed by Eq. (5).  We marked experimentally observed 

values of          for N=5,4,3 and 2 on the theoretical phase diagram Fig. 3d by solid red dots. 

The data show a perfect agreement with theoretical predictions.  The final two-quanta jump 

corresponds to disappearance of the last 2-quanta droplet: the last 2q vortex droplet splits 

symmetrically so that both vortices leave the sample simultaneously.  A similar behavior is 

observed in the T = 7.0 K data (Fig. 5b), where the maximum quantum number is N = 3.  
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Besides, near Tc the coherence and screening lengths become comparable to the size of the 

sample, and the proposed theory applies only marginally.  Thus, while, in general, the 

observations are consistent with the theoretical phase diagram of Fig. 3c,d, the experimental 

points appear slightly off the theoretical instability curves. 

 
Methods summary 

Micron-sized lead superconducting crystals were grown on a highly oriented pyrolytic graphite 

(HOPG) substrate syntheszied via an electrochemical process, which we developed earlier.
21

  By 

carefully selecting the electrodeposition parameters, we can grow a plethora of 3D-shaped 

mesoscopic Pb superconductors with various geometries such as pyramids, pentagons, needles 

and brushes.  
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Figure captions 

Figure 1. Superconducting phase diagrams and corresponding magnetization curves. Top 

panel: phase diagrams and relevant critical fields for (a) type II, (b) critical, (c) type I, and (d) 

type I finite-size superconductors.  Bottom panel, the corresponding M(H) dependencies. Note 

that Hc3 > Hc holds only as long as       .  

Figure 2. Droplet fission. Top panels: Distribution of the magnetic flux in the (a) Meissner state, 

(b) vortex droplet state showing the calculated stray fields and (c) sketch of the vortex interaction 

forces (Fe, Fc, and Fi) corresponding to the interaction energies (Ue, Uc and Ui) between the 

droplet and a separated single vortex.  Bottom panels: (d) –(f) Sequential dynamics of the droplet 

fission process showing the calculated stray fields. 

Figure 3. Experimantal phase diagrams.  (a) Experimental phase diagram of the meso-Pb 

crystal.  (top inset) M(H) at T=0.36K demonstrating how Hsh, Hc3 and Hc were obtained 

experimentally.  (bottom inset) experimental set-up of the crystal and the Hall probe array. (b) 

The κ(T) dependence of Pb (adopted from
15
). (c) Theoretical temperature dependencies of Hc, 

Hc3 and Hsh. (d) expanded interval Tx<T<Tc . Numbered dotted lines show the calculated locus of 

instabilities with respect to N→N-1 vortex droplet fission.   Red dots show the corresponding 

instabilities at T=6.7K and at T=7.0K, associated with the data in Fig. 5. (Inset to b) shows the 

experimental M(H) dependencies in the diluted vortex gas regime at T=2K and (Inset to d) in the 

metastable vortex-droplet  fission regime at  T=6.7K.  

Figure 4. Exemplary vortex configurations in the critical region. Evolution of the 

ground state vortex structures upon decreasing magnetic field in a mesoscale triangular 

superconducting Pb prism at κ ~ κc in the extended critical region where vortex droplet can 

coexist with separate vortices. This particular simulation is performed for T=5.5K, and 

parameters of the Pb sample Tc=7.2K, ξ(0)=66nm and λ(0)=45nm, with two-fluid model 

temperature dependencies 
19

. 

Figure 5. Magnetization curves displaying vortex droplet fission. Experimental M(H) curves 

at (a) 6.7 K and (b) 7.0 K. The applied magnetic field is normalized by            [  
      

 ], with              and          . On increasing field (red curves) the Meissner 

state (    ) survives up to Hc   Hsh. On decreasing field (blue curves), the   -vortex droplet 

undergoes sequential Rayleigh decay (black arrows). The green curves show the full stability 

ranges of the droplet states, obtained by reversing the field sweep direction. 
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