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Abstract 
 

The pathogen exclusion problem is the problem of finding control measures that will 

exclude a pathogen from an ecological system or, if the system is already disease-free, 

maintain it in that state.  To solve this problem we work within a holistic control 

theory framework which is consistent with conventional theory for simple systems 

(where there is no external forcing and constant controls) and seamlessly generalises 

to complex systems that are subject to multiple component seasonal forcing and 

targeted variable controls.  We develop, customise and integrate a range of numerical 

and algebraic procedures that provide a coherent methodology powerful enough to 

solve the exclusion problem in the general case.  An important aspect of our solution 

procedure is its two-stage structure which reveals the epidemiological consequences 

of the controls used for exclusion.  This information augments technical and 

economic considerations in the design of an acceptable exclusion strategy.  Our 

methodology is used in two examples to show how time-varying controls can exploit 

the interference and reinforcement created by the external and internal lag structure 

and encourage the system to ‘take over’ some of the exclusion effort.  On-off control 

switching, resonant amplification, optimality and controllability are important issues 

that emerge in the discussion.  
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1.  Introduction 

It is well known that variability in the environment can have a significant impact on 

the dynamic behaviour of epidemiological systems whether they involve humans or 

animals or both (Chesson, 1982; Grassly and Fraser, 2006).  Of particular interest is 

periodic variation, especially seasonality, but there are other examples where the 

period is greater than a year (e.g. El Nino (Koelle et al., 2005) and African rain 

patterns (Wichmann et al., 2003)) or less than a year (e.g. marine life subject to tidal 

or light intensity cycles (Rinaldi et al., 1993)).  In simple epidemiological systems 

environmental forcing acts primarily through infection transmission.  This is the case 

in childhood diseases such as measles (Dietz, 1976) where the seasonal variation is 

caused by the term structure of the school year.  In other cases several forcing 

components are in play.  A study of conjunctivitis in house finches (Hosseini et al., 

2004) found that infection is transmitted in the autumn/winter when there is 

population aggregation but breeding takes place in the summer when there is 

dispersal.  These two seasonal effects are ‘out of phase’.  A third example, also 

highlighting the importance of lags, is that of a managed game-bird population subject 

to two forms of variable external forcing: A seasonally transmitted disease and 

‘harvesting’ restricted to particular times of the year.  The choice of lag between 

transmission and harvesting determines whether harvesting reduces or increases the 

impact of the disease (Choisy and Rohani, 2006).  

Another important factor that influences how external forcing affects a system 

is the number and nature of the different infected host types (Diekmann et al., 1990, 

2010).  Unforced systems with more than one host type have received a lot of 

attention in the literature, for example Anderson and May (1981, 1986) and many 

others.  Of particular interest recently has been the spread of bovine TB between 

badgers and livestock (Cox et al. 2005, Lintott et al. 2013) and the dominance of the 

grey over the red squirrel population because of reinforcement between direct 

competition and apparent competition mediated by a parapox virus (Tompkins et al. 

2003).  Much less work has been carried out on how external forcing affects 

transmission between species and there remains much more to do in this area (Brassil, 

2006). However, seasonality in host-vector systems has received some attention. 

Bacaer and Guernaoui (2006) analysed a seasonal model for leishmaniasis in 

Chichaoua, Morocco while Wang and Zhao (2008) studied a simple seasonal model 

for dengue. 

The specific problem studied in this paper is how to exclude a pathogen from 

an epidemiological system or how to maintain that exclusion if the system is already 

disease-free.  In the absence of forcing and with constant controls the exclusion 

problem can be solved explicitly for a standard model in terms of its resident 

asymptotic state even when there are multiple host types (Diekmann et al. 1990, 

2010).  With forcing present the exclusion problem is much more difficult to solve 

(Heesterbeek and Roberts, 1995; Bacaer and Guernaoui, 2006; Wang and Zhao 2008).  

Most applications have been limited to the simplest cases with forcing only on 

infection transmission and no structure in the resident subsystem.  Further advances in 

solution methods are necessary to study the new opportunities for bringing about 

exclusion that are created when these limitations are removed.   

Our primary objective in this paper therefore is to contribute to the 

development of a sufficiently powerful coherent and insightful methodology to solve 

the exclusion problem for the general case of complex epidemiological systems that 

have a structured resident subsystem (with predation or competitive forces in play for 

example), multiple infected host types and subject to variable controls and multiple 
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seasonal forcing components.  Since the exclusion problem is a control problem, 

involving intervention with a set of control measures, we work within a control theory 

framework to find the levels of these controls that bring about exclusion.  Our 

methodology involves the following three main components: An approximation 

procedure that replaces nonlinearities by explicitly solvable linear equations 

(Greenman and Pasour, 2012); monodromy theory on which to base the numerical 

calculations (Hale, 1969); optimal control theory of use in exploring the impact of 

variable controls (Lenhart and Workman, 2007).  Integrating these different 

procedures creates an efficient ‘fit for purpose’ exclusion methodology and, in so 

doing, divides the exclusion process into two distinct stages that provide insight into 

the epidemiology of exclusion and connectivity with other approaches to be found in 

the literature.     

The paper is set out as follows.  In section 2 there is a general discussion on 

how to solve the exclusion problem for a special control u that will later provide the 

link to all other controls of interest.  In section 3 the exclusion procedure is applied to 

invasion systems with one infected state and in section 4 to systems with 2 or more 

such states.  It is in sections 3.4 and 4.4 where it is shown how to extend the theory to 

handle a general set of pre-emptive controls.  Examples illustrate what difference 

forcing can make to the exclusion dynamics and what mechanisms are activated 

during forcing to explain the changes.  This involves comparing systems with single 

or multiple host types, forcing with single or multiple components and controls that 

are constant or variable. 

 

2.  The pathogen exclusion problem from a control theory perspective 

In section 2.1 we introduce the rare invader approximation that simplifies the solution 

of the exclusion problem by dividing it into two stages.  Further we introduce the 

special control u that removes a proportion of the newly infecteds and define the 

‘effort’ required to remove the pathogen using this control.  In section 2.2 we describe 

how to apply the zero invader growth condition for exclusion by relating this 

condition to the eigenvalues of the monodromy matrix.  We discuss the relationship 

between exclusion effort and the basic reproduction number R0 when control u is 

constant and highlight the strengths of the control approach.  

 

2.1  The Rare Invader Approximation 

Consider the controlled epidemiological system modeled by the equations: 

 

   ( , , , )
dx

f x y u t
dt

      (1a) 

   ( , , , )
dy

g x y u t
dt

      (1b) 

where x is the vector of uninfected (resident) populations (for example the 

susceptibles and the immune), y the vector of the infected (invader) populations and u 

the vector of controls.  Equations (1a) are the ‘resident equations’ and (1b) the 

‘invasion equations’.  This system is subject to periodic environmental forcing as 

indicated by the explicit time dependence t of functions f, g.   We are particularly 

interested in the case that control u is variable in time but first we consider the simpler 

case where it is constant. 

  The solution of the (pathogen) exclusion problem (to exclude or prevent 

invasion of a pathogen) is simplified by using the Rare Invader Approximation (RIA) 
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which assumes that the number of infecteds is so small that they can be ignored in the 

resident equations (1a) and so small that the invasion equations (1b) can be linearised 

about the disease free equilibrium. This approximation holds in the early stage of an 

invasion or in the final stage of exclusion.  The RIA defines a two-stage solution 

procedure: First solve the decoupled resident equations: ( , 0, , )dx dt f x u t  for x.  

Then solve the linear invasion equations after substitution of the asymptotic resident 

solution, x∞, i.e. solve: ( , 0, , )dy dt G x u t y  where ( , , , )G x y u t g y    is the 

matrix of derivatives of vector function g.  Matrix G is the Jacobian for the invasion 

subsystem and will be labeled more simply as J:     

 .
dy

J y
dt

      (2)  

The problem is to find controls u where the asymptotic growth rate of the infected 

populations in (2) is zero.  These solutions define the ‘pathogen threshold’ separating 

solutions where the growth rate is negative (i.e. the pathogen is excluded) and positive 

(i.e. the pathogen invades).  On this threshold the RIA becomes exact and so its use in 

solving the exclusion problem is appropriate. 

 In epidemiological models with compartmental structure and with the controls 

inactive, matrix J in (2) can be written as J = F – V where F is the transmission matrix 

specifying the number of newly infecteds (per infected individual) for each host type 

and V is the transition matrix that specifies the flow rates between compartments and 

with the external world.  The term ‘host type’ identifies the state a host enters at the 

point of infection and hence the different ways in which infection can occur 

(Diekmann and Heesterbeek (2000); Hartemink et al. 2008).  We will also use the 

term ‘infected state’ to identify the states a host can be in throughout its infected 

lifetime. The host types identify a subset of the infected states.  For example, for the 

SEIR model there is one host type (the latent state E), but two infected states (the 

latent state E and the infectious state I).  For the SISI model, describing the 

transmission of disease without latency within and between two host species, there are 

two host types corresponding to the I states and these are also the infected states.  This 

model is discussed in section 4. 

Now consider the effect of the special control, constant in time and acting 

alone, that allows only the proportion u of the newly infecteds for each host type to 

survive, the remainder being removed (by culling or quarantine for example).  Then 

the invasion matrix equation (2) becomes:  

( )
dy

uF V y
dt

  .          (3) 

Control value u satisfies the constraints: 0 < u ≤ 1 with u = 1 indicating an inactive 

control.  To exclude the pathogen we need to reduce u sufficiently but common 

experience suggests that the smaller u is the disproportionately greater the effort 

required to reduce it further.  To model this feature in a simple but realistic way we 

will take the effort to be inversely proportional to u so that the effort required to 

exclude the pathogen (i.e. the ‘exclusion effort’) is the inverse of the value of u that 

will move the system to the pathogen threshold.  We will denote the ‘exclusion effort’ 

with constant control u by E0 when environmental forcing is present and 0E  when 

not.     

 

2.2  Solving the invasion equation when control u remains constant in time 
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If there is no variation in the environment, controls or the decoupled resident 

asymptotic state then standard linear algebraic methods can be used to solve the 

matrix invasion equation (3) explicitly (in terms of the asymptotic resident population 

levels) and the exclusion problem (to find the exclusion value 0E  for control u) by 

imposing the condition of zero asymptotic growth for the invaders.  This condition 

requires that 0 is the leading eigenvalue of the now constant matrix J.  A necessary 

condition for this to be the case is that the determinant (det) of J is 0.  We can pursue 

this argument further by rewriting equation (3) as: 

1 1( )( )
dy

FV u I uV y
dt

    

with V non-singular (i.e. det(V) ≠ 0) and I the identity matrix.  A condition for zero 

growth is that 1 1det( ) 0FV u I   , i.e. u-1 is an eigenvalue of FV-1.  So if exclusion 

is to happen in the long term u-1 = 0E must be the dominant eigenvalue of matrix FV-1, 

the so-called Next Generation Matrix.  This eigenvalue is in fact equal to the basic 

reproduction number R0, i.e. 0E = R0 (Diekmann et al., 2010; Hartemink et al., 2008). 

Conventionally R0 is expressed in epidemiological terms as the expected number of 

secondary infections arising from a ‘typical’ infected individual in an otherwise naïve 

population. (For a more precise definition see Diekmann et al., 2010).  In control 

terms, R0 is equal to the effort required for pathogen exclusion using the constant 

control u.      

If the system is subject to periodic environmental forcing then in general there 

will no longer be an explicit solution to equation (3) because even though it remains 

linear the elements of J will be time-dependent (Hale, 1969).  (An exception is when 

there is just one infected population.  Then (3) can be solved directly by integration.)  

We have two choices: Solve (3) numerically or use an approximate method to obtain 

an analytic solution.  In the numerical method, solving (3) and then imposing the zero 

growth condition is equivalent to constructing the linear operator that shifts the 

system forward in time through a complete cycle.  If the control is chosen so that the 

dominant eigenvalue of the matrix defining this operator, the so-called monodromy 

matrix, is equal to 1 then the system will return to its original state after completing a 

cycle if started in the corresponding eigenstate or will eventually reach this state 

otherwise.  In this eigenstate there will be no growth or decay in the infected 

populations over a cycle.  The eigenvalues of the monodromy matrix are called 

Floquet multipliers and the theory on which it is based is called Floquet theory.  The 

algorithm for constructing the monodromy matrix is presented in Section 4.  

 The second method for solving the exclusion problem is algebraic, yielding an 

approximate formula for the invader growth rate (Greenman and Pasour, 2012) which 

can be used to explore the general properties of the threshold dynamics of the system.  

In this second method the invading populations are written as power series in the 

strengths of the environmental variations.  This enables the equations (3) to be 

transformed into an unbounded set of linear differential equations that can be solved 

explicitly in sequence.  For medium strength forcing a good enough approximation 

can usually be obtained to second order in forcing strength, yielding a Quadratic 

Approximation (QA) for the average growth rate (over a cycle), with the linear term 

zero.  It is important to note that this approximation can also be used for solving the 

resident equations when nonlinearities are present and when the resident subsystem is 

asymptotically unstable. 
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With forcing, the exclusion effort E0 associated with constant control u is 

equal to the ‘generalised’ basic reproduction number introduced by Bacaer and 

Gueranoui (2006).  It is necessary to generalise R0 because, as originally defined, R0 

would depend on the time when secondary infections were initiated by infected 

individuals.  The generalised R0 is equal to the limit of the ratio of new infections in 

two successive generations, as the number of elapsed generations becomes large 

(Bacaer and Ait Dads, 2011), thus steering around this time- dependency problem.  

The interpretation in control terms does not change.  It remains clear, direct and 

operationally useful.  

One of the most important advantages of the control theory approach to 

pathogen exclusion over conventional theory is the seamless transition that can be 

made from constant to variable controls. Such a transition is essential when there is 

environmental forcing since variable controls can often take advantage of the 

fluctuations generated by the forcing to reduce the exclusion effort, for example by 

reducing the size of a susceptible population when infection transmission is at its 

highest.  Of particular interest is the least effort control strategy which can be found 

by harnessing the power of optimal control theory.  However this particular 

optimisation problem is highly singular and requires a special algorithm involving the 

monodromy matrix to solve it. 

 

3.  Solving the pathogen exclusion problem for a model with one infected state  

To keep the analysis simple, attention in this section is restricted to environmentally 

forced systems with just one host type and no latency.  In this case the single invasion 

equation (3) can be solved explicitly and a formula for exclusion effort E0, obtained 

by QA (section 3.1).  This formula can be used to identify the factors that contribute 

to the distortion of the pathogen threshold (lying between the exclusion and invasion 

regions) and the effect of lags between forcing components on exclusion effort 

(section 3.2).  The least effort when control u is varying is found as the exact solution 

to an optimal control problem (section 3.3).  The final step is establishing the 

relationship between the special control u and a general pre-emptive control using the 

two-stage structure of the algorithm to solve the exclusion problem. 

 

3.1 Constant control in a variable environment 

When infection transmission is density-dependent (McCallum et al., 2001) the single 

host invasion equation (3) becomes: 

0 ( )
dI

u SI d I uF V I
dt

        (4)  

where I is the infectious and S the susceptible population,  the infection transmission 

coefficient varying periodically (with period p) due to environmental forcing and d0 

the exit rate from the infectious state.  Comparison with (3) gives F = S, V = d0 and y 

= I.  Suppose the susceptible population S is known from the solution to the resident 

equation(s) in RIA.  Then we can solve (4) exactly to find the average growth rate ave 

of the infected population I over a cycle, by first dividing by I(t), then integrating over 

a cycle.  Precisely: 

0

1 ( ) 1 1 1
ln

(0)
ave

I p dI
dt u Sdt d

p I p I dt p
 

 
    

 
     (5) 

When u is constant it can be factored out of the integral and the condition ave = 0  

trivially solved for u (i.e. u = (pd0/Sdt)).  This is the level of control u that will bring 

about pathogen exclusion.  If, further, S is constant in RIA then u = (0S/d0)
-1 for 
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exclusion where 0 is the average infection transmission coefficient, unchanged from 

the unforced value if  is held at 0.  However if resident populations are forced as 

well as  then both S and  will vary in time and the exclusion level of (constant) 

control u will change due to the forcing.  This is because the integral  Sdt  in (5) will 

depend on the ‘covariance’ between the S and  oscillations.  Formula (5) holds 

whatever the structure of the resident subsystem provided there is only one 

susceptible population S.  For example in the SIR model there are two residents, S and 

R (= recovered).  Similarly in a predator (P) - prey (S) system with immune predator 

and susceptible prey there are also two residents, S and P.   

To examine in more detail what can happen when there is covariance between 

S and  consider the familiar SIS model with just one resident (S) and one invader (I):   
2

( )
dS H

aH r bS I SI
dt K

          (6a) 

0

dI
u SI d I

dt
        (6b) 

  

where H = S + I and K is the carrying capacity.  Note that the density-dependence 

indicated by K works through fertility rather than mortality.  Parameters r = a – b and 

d0 = b +  + where a is the initial (per capita) birth rate, b is the natural mortality 

rate,  is the virulenceand    is the recovery rate.  In RIA the term in brackets in the 

resident equation (6a) is deleted and H is replaced by S (since I = 0).  The invasion 

equation (6b) is already linear in I.  Consider the case where there are variations in  

and K with time profiles:  

0 1(1 cos( ))t        and 0 2(1 cos( ))K K t     (7) 

where 0 and K0 are the average values, 1 and 2 are the forcing strengths, p is the 

period of the cycle,  = 2/p and  is the (phase) lag between these two forcing 

components.  The analysis is not straightforward because the resident equation (6a) 

cannot be solved exactly in scenario (7) even in RIA.  An approximate formula for the 

control level u that achieves exclusion is obtained using a quadratic approximation 

(QA) in forcing strengths 1, 2.  The end result is that the exclusion effort E0 (equal 

to u-1 at exclusion) is given by: 
2

0 0 2 2 1 2 1 cos( )E A A A            (8) 

where A0 is the exclusion effort for no forcing (i.e. 0 0A E ),   the internal lag (with 

S taking time to adjust to changes in K) and A1, A2 are two non-negative constants 

dependent on the unforced model parameters and the forcing period.  For details of 

the calculation see Appendix A.   

 

3.2 Interference and reinforcement   

Equation (8) is a general formula for the pathogen threshold of the SIS model for 

scenario (7) in (, E0) space.  For the parameter values given as set 1 in Table B1 

(Appendix B) the threshold has the shape (bb) shown in Fig 1.  In the region above 

the threshold the pathogen is excluded but below the threshold it can invade.  To 

understand the mechanisms that create the change in position and shape of the 

threshold under environmental forcing, suppose that initially the forcing is inactive. 

Then the threshold lies along the line (aa) (Fig 1) at effort level 0E .  Now activate the 

forcing on K, but not on .  Then the threshold ‘shifts’ from line (aa) to line (cc), due 

to the average value of the now oscillating S population being lowered.  This ‘shift’ 
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corresponds to the second term on the right hand side of (8).   If the forcing on  is 

also activated then there is a nonlinear distortion (bb) of the threshold about (cc) 

caused by the ‘covariance’ between the oscillations in and K, generating the 

dependence of E0 on the lag .  This distortion corresponds to the third term in (8).   

Of special interest is the minimum point A on threshold (bb) where least effort is 

required to exclude the pathogen.  At this value of  the oscillations of  and S are 

exactly ‘out of phase’.   is at its highest when S is at its lowest (Fig 2) thereby 

reducing the impact of high infection transmission, the average number of newly 

infecteds and hence E0.  At the highest point B of threshold (bb) there is 

‘reinforcement’ (rather than the ‘interference’ at point A) with  and S exactly ‘in 

phase’ rising and falling together, increasing the effectiveness of infection 

transmission and hence E0.  The shape of the forced threshold shown in Fig 1 will 

hold for all choices of model parameters since (8) is a general formula (for medium 

strength forcing).  However there are differences in the detail.  For example in Fig 1 

forcing will reduce the exclusion effort required whatever the lag.  This is not always 

the case.  For larger 1 but smaller 2 (e.g. 1 = 0.95, 2 = 0.5) it is possible for the 

point B to lie above the (unforced) line (aa) in which case exclusion effort will be 

increased with forcing.  It is also possible for point A to lie below the line E0 = 1 (e.g. 

1 = 0.5, 2 = 0.85). But E0 < 1 means that the pathogen has already been excluded 

without the need for intervention.  (E0 < 1 implies  u > 1, i.e. newly infecteds have to 

be added to the system to ensure that the zero growth condition ave = 0 is satisfied.)   

So in this case forcing brings about exclusion without intervention.  (Note that 

formula (8) provides a good approximation for relatively high values of the forcing 

strengths i (~ 0.6) because the effective forcing strength in (8) is quadratic in the i.) 

The analysis also applies to other scenarios, for example when birth rate a or 

mortality b rather than K is forced.  But then A2 = 0 and so there is no shift.  Similar 

shapes and behaviour reappear in more complex structured models as we will see.  

 

3.3  Variable control: optimality 

Previous work (e.g. Choisy and Rohani, 2006) has shown that exclusion effort can 

often be reduced by using controls that vary in time.  How much reduction is 

achievable is found from the minimum exclusion effort (E*) given by the solution of 

the optimal control problem (9) below.  This allows us to compare minimum effort E* 

(for a varying control) with effort E0 (for a constant control) and hence with R0 (the 

basic reproduction number).  

For a model with invasion equation (3) the least effort required to achieve 

pathogen exclusion is found by solving the optimal control problem for control u = 

u(t) that ensures zero growth (9c) and minimises average effort (9a) over a cycle, i.e.    

minimise: 
1 1

( )
dt

p u t            (9a) 

subject to:  ( ) ( ) ( ) .
dy

u t F t V t y
dt

       (9b)   

                                  and:   y(0) = y(p)     (9c) 

          and:    0 < u(t) over a cycle   0 ≤ t ≤ p.  (9d) 

This optimal control problem is formulated for a general (compartmental) 

epidemiological system.  It can be reduced to a set of algebraic and differential 

equations using Hamiltonian theory (Lenhart and Workman 2007) but in this case the 

standard numerical algorithm to solve these equations is highly unstable.  So in 

section 4.3 we introduce a novel algorithm that overcomes this difficulty. However, 
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when there is just one infected state an exact solution can be found.  Precisely, the 

optimal control u(t) and minimum effort E* are given by:   

 
1

( )
( )

A F t
u t

  where 
( )

( )

F w dw
A

V w dw




    (10a) 

  
 

2

*
( )1

( )

F w dw
E

p V w dw





    (10b)  

where the integrals are evaluated over a cycle and provided the constraints (9d) are 

satisfied.  (For details see Appendix C.)   To interpret these results it is useful to 

introduce the notion of (instantaneous) effort E(t) being exerted at moment t.  Then 

E(t)= 1/u(t)  in (10a) and 
* (1 ) ( )E p E t dt   in (10b).  So the distribution of effort 

E(t) over time that minimises exclusion effort is proportional to ( )F t  following the 

variation in F(t) but modulated by the square root damping.  The fact that E(t) and 

F(t) are in phase, rising or falling together, means that the survival factor u(t) is out of 

phase with the newly infecteds, i.e the smallest proportion that survive is when the 

number of newly infected, F(t), is at its greatest.  The net effect is that the total 

number of surviving newly infecteds falls and as a result so does the exclusion effort.  

Problem (9) is in fact an optimal scheduling problem.  E* is the least effort 

required in scheduling the removal of newly infecteds to achieve pathogen exclusion.  

E* therefore maintains a direct link between control and second generation infecteds.  

This optimal scheduling formulation can be advantageously compared with ways of 

handling external forcing that find alternative solutions to the time-dependency 

problem in second generation infection (Williams and Dye, 1997; Omori and Adams, 

2011). 

As an example consider again the SIS model (6) in scenario (7) with F(t) = 

(t)S(t), V(t) = d0 and parameter values given in Table B1 (set 1).  When  = 0.33 (at 

point B in Fig 1), least effort under variable control is E*=1.53 (calculated from 

(10b)), less than the effort under constant control E0 = 1.67.  This compares with E* = 

1.396 and E0 = 1.403 (at point A) when  = 1.34.  Fig 3 shows how the optimal 

control effort varies over a cycle.  Path d is for lag  = 0.33(point B in Fig 1) and 

path b for lag 1.34 (point A in Fig 1).  Also superimposed are the optimal control 

paths for  = (path a) and 3/2 (path c) to show how path d evolves into path b and 

conversely.  As indicated in (10a) these paths are synchronised with the variations in 

the newly infecteds F = S.  With reinforcement (path d) there are large amplitude 

fluctuations about a high average level (because S and  are in phase) while with 

interference (path b) the amplitude and average level are much lower (because S 

and are out of phase).  In fact for interference, constant control gives a good 

approximation for path b and for E* (as we have seen from 10b). 

These calculations illustrate the general inequalities E* ≤ E0 (by optimality) 

and 1< E* that hold when exclusion takes place under forcing.  The inequality 1 < E* 

follows from the constraint: u(t) ≤ 1 (9d) at each point of a cycle. (u(t) > 1 would 

mean ‘adding’ rather than removing newly infecteds).  However for exclusion, u(t)  

has to be less than 1 for at least part of the cycle and inactive (u(t) = 1) for the 

remaining part otherwise the inequality would not be strict.  In these inactive 

intervals, between switching the control off and on again, the system ‘takes over’.  If 

u(t) = 1 for all t (with E* = 1) then there is control inactivity throughout the cycle, i.e. 

the pathogen is already at threshold.  An example of switching behaviour is seen on 
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path d (Fig 3).  Control u is switched off at t = 2.8 and on again at t = 3.8.  Switching 

happens when forcing is strong enough that the large fluctuations for path d breach 

the constraint. The switching that occurs is a ‘clever’ solution found by the optimality 

algorithm that efficiently reschedules removal of newly infecteds in response to the 

constraint. 

The inequality E* ≤ E0 can be rewritten in terms of the basic reproduction 

number as E* ≤ R0 (since E0 = R0 (Bacaer and Gueranoui, 2006)).  So in control terms 

R0 will in general overestimate the effort required to exclude the pathogen when a 

system is forced because of the assumption that the control is constant in time. 

 

3.4  Generalisation: Pathogen exclusion using pre-emptive controls 

At first sight it might appear that the special control u used to remove newly infecteds 

would be of little interest since in the great majority of situations it would be difficult 

to implement.  However we now show that u plays a much more significant role as a 

key component in the analysis of other more practical exclusion controls.  In fact we 

can use the methods that have been developed in this section and that will be 

generalised in the next to help solve the exclusion problem for a general pre-emptive 

control P (acting only on the resident populations) such as culling or vaccination for 

example.  

 The decoupling of the resident subsystem in RIA means that the analysis of 

the impact of P can be divided into two stages.  Applying control P leads first to 

changes in the resident populations and then to changes in the invasion populations 

through the links that exist between these two subsystems.  It is in this second stage 

that we reintroduce the previous control u that will mimic the action of control P to 

find the invader growth rate and hence the exclusion effort.  

 To illustrate this process consider again the single invasion equation (4) with 

just one link to the resident subsystem.  Equation (4) will take the form (11a) if u is 

‘turned off’ (i.e. u = 1) and the susceptible population S becomes a function of P and 

t.  If instead P is ‘turned off’ (with P = 0 say) then (4) will take the form (11b): 

0( ) ( , )
dI

t S P t I d I
dt

      (11a)  

0( ) (0, )
dI

u t S t I d I
dt

      (11b) 

The equivalence relationship between the values of the two controls u, P that bring 

about exclusion when acting on their own is read off from (11) as: 

   u = S(P, t)/S(0, t) = u(P, t)    (12) 

i.e. u will depend on P and (in general) t.  This ‘indirect’ control, u, will be varying 

(but not necessarily optimal) if there is periodic environmental forcing on the 

residents or the ‘direct’ control P is varied or both.  The level of control P that gives 

exclusion can be found by integrating (11a) and imposing the condition ave = 0, i.e. 

by solving the integral equation: (t)S(P, t)dt = pd0.  This can be done by iterating on 

P using bisection or the secant method (Lenhart and Workman, 2007).  Control u then 

follows from (12). This indirect control u has an important role to play in giving 

insight into the epidemiological impact of the direct control P.  This impact can be 

measured by the (average) exclusion effort E1 = p-1u-1dt applicable whether or not 

variable control u is optimal.  (Subscript ‘1’ in E1 indicates variable control.)  

Conversely, one can reverse the calculation to find the direct control P that 

corresponds to an indirect control u.  For example, it would be of interest to find the 

control P that corresponds to the least effort control (10a).  However, in relating direct 
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and indirect controls, controllability issues can arise.  There may not be a direct 

control that corresponds to least epidemiological impact.  

As an example of exclusion under direct control consider again the SIS model 

(6) with culling control P applied to the resident population and modeled in (6a) by 

the addition of the term (-cPS) where c measures culling ‘effectiveness’.  For 

definiteness suppose that both the birth rate a and transmission rate  are 

environmentally forced with  lagging a by phase 1 while (direct) control P is varied 

(sinusoidally) with lag 2 relative to the birth rate.  Lag 1 is pre-determined by the 

environment while lag 2 is a control variable.  For a given choice of 2 we can find 

the value of P0 (the average value of P) that brings about exclusion by solving (11a).  

Of particular interest is the value of 2 that gives the lowest P0 for a given 1.  How P0 

depends on these lags is shown in the ‘direct control’ threshold of Fig 4a based on the 

parameters specified in Table B1 (set 2).  The epidemiological consequences of these 

control choices are shown in Fig 4b where the (indirect) exclusion effort E1
 (for the 

equivalent second stage control u) is plotted against the two lags to form the ‘indirect 

control’ threshold.  

Of special interest is the strong peak in the indirect effort E1 (Fig 4b) when lag 

1 is close in value to the internal lag  generated by the external forcing (i.e. when 1 

~ /2) and when a and P are close to being out of phase (i.e. 2  ~ ).  Approaching 

this peak the proportionate reduction in the newly infected population increases 

sharply.  At the peak the population is, in effect, being reduced by two thirds 

compared to one half when  2  ~ 0 (and 1 ~ /2).  However, interference between 

control and environmental variations means that this increase in E1 is achieved with 

just a modest increase (11%) in the direct control P0 away from its point of least value 

when 2  ~  (Fig 4a). Intuitively we would want to reduce u (i.e. survival of the newly 

infected) by as much as possible.  This is discouraged by the high effort in doing this 

by indirect control.  But this ‘resonance’ effect allows this increased effort to be 

substantially reduced by using a direct control.    

This resonant (phase) amplification is the result of applying maximum forcing 

(i = 1).   It does not occur for medium strength forcing where QA would be valid.  

For example for forcing at half strength (i = 0.5) the percentage changes in direct and 

indirect efforts that would lower the survival rates at peak position are comparable.  

The amplification emerges as exploration of the model at higher strengths is carried 

out using numerical methods.   Sinusoidal forcing at maximum strength is an 

important case to consider since it can be taken as an approximate model for the many 

seasonal activities, such as breeding, hibernation or harvesting, that only occur for a 

restricted part of the ‘year’.  The ability to explore this part of control space is 

therefore essential. 

Note also that there is a range of values of lag 1 where the controls are 

inactive (1.15 ≤ 1 ≤ 1.58) indicating that the system is capable on its own of 

keeping the pathogen excluded.  This inactive interval could reflect, for example, a 

latitudinal gradient or a time gradient created by climate change.  Travelling along 

such a gradient would eventually require switching the control back on again. 

 

4.  Exclusion with multiple infected states 

In this section we go back to equation (3) and follow the development of the control 

theory approach taken in section 3 but with two or more infected states and hence a 

Jacobian for the invasion equation (3) of size 22 or greater.  Since (3) can no longer 

be solved explicitly we will discuss two alternative approaches: A review of how to 
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construct the monodromy matrix and a summary of how to develop and customise the 

quadratic approximation method.  For clarity of exposition we limit discussion of 

these methods to systems with 2 infected states since they are straightforward to 

generalise to higher dimensions.  We discuss the properties of the special control u in 

(3) when constant, variable and optimal and its use in solving the exclusion problem 

for pre-emptive controls.  

 

4.1  The monodromy matrix for 2 (or more) infected states and constant control u 

The following three-step algorithm generates the monodromy matrix and hence the 

solution of the exclusion problem when there are two infected states (and at least 1 

host type) and control u is constant (Hale 1969):  [1] Solve equations (3) over one 

cycle (with period p) starting with initial condition y(0) = (1, 0)T.  Let y(p) = (v1, w1)
T 

be the solution at the end of that cycle.  (T indicates transpose.)  [2] Repeat this 

calculation but with y(0) = (0, 1)T and let y(p) = (v2, w2)
T.  The monodromy matrix 

1 2

1 2

v v
M

w w

 
  
 

.  [3] Adjust control u so that the dominant eigenvalue of matrix M 

equals 1.  This is the value of u that gives zero growth over a cycle and hence 

exclusion.    

As an example consider a compartmental epidemiological model with two 

host species subject to density-dependent seasonally transmitted infection with no 

latency.  It will have a Jacobian of the form: 

1 11 1 1 12 1 11 1 12 1

2 21 2 22 2 2 21 2 22 2

0

0

uS d uS S S d
J u

uS uS d S S d

   

   

     
       

     
.  (13) 

The constant control variable u defines the common survival factor for each cohort of 

newly infecteds.  Parameters ij are the inter- and intra-transmission coefficients 

(from host j to host i) and d1, d2 the exit rates from the infectious states.  There is 

forcing on the ij according to the time profiles:  

  ij = ij0(1 + i cos(t + ij))     (i, j = 1, 2) (14)                      

where ij0 are the average values, i the forcing strengths and ij the lags with 1j = 0, 

2j =  ≥ 0.  This models seasonal variation in the susceptibility of the two hosts to the 

disease, with maximum susceptibility of the two hosts occurring at different times of 

the year if lag  
  S1, S2 are the susceptible host populations determined by the resident 

dynamics decoupled in RIA.  In the simplest case with no forcing and no direct 

interaction the two hosts will be at their carrying capacities (i.e. S1 = K1, S2 = K2).  But 

one or both host populations can be below capacity if, for example, they are prey to 

an immune predator or one of them is in fact a predator as well as a host.  When the 

residents are subject to forcing S1 or S2 or both will be time-dependent.   

As a numerical example take the parameters given in Table B2 (set 1) with 

forcing at strength 1 = 2 = 0.95 and with variation in susceptibility of the two host 

species exactly out of phase (i.e. ~ in (14)).   For the residents suppose there is no 

forcing and no direct interaction and hence that S1 = K1, S2 = K2.  Applying the 

algorithm above, the value of the control u leading to zero growth over a cycle turns 

out to be u = 0.663, in which case the monodromy matrix 
0.765 0.881

0.203 0.238
M

 
  
   

has 

dominant eigenvalue 1.  When there is no environmental variation (1 = 2 = 0 in 

(14)) u = 0.738, so a further reduction in the newly infected population of 8% is 
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required due to the forcing.  In terms of exclusion effort E0 = 1.509 (with forcing) and 

0E = 1.355 (without).  In contrast, if the calculation is repeated for  = 0 (i.e. the host 

susceptibilities are exactly in phase) then forcing results in almost no change in the 

exclusion control level or effort.  These results are shown in the plot of control u 

against lag in Fig 5a which shows that the imposition of environmental variation 

necessitates a further reduction in control u to achieve exclusion whatever the lag, i.e. 

the forced threshold in terms of u lies entirely below the unforced threshold.  

(Equivalently the plot of exclusion effort E0 against lag  lies entirely above the line 

of unforced effort 
0E .)   

 

4.2 The Quadratic Approximation for 2 (or more) infected states 

It is not always the case that more exclusion effort is needed when there is forcing.  

This can be deduced from the second method for finding the exclusion value of u. 

This method uses a quadratic approximation (QA) in the forcing strengths 1, 2 to 

generate an approximate formula for the growth rate (Greenman and Pasour 2012).  

The first step in setting up this procedure is to separate out the growth rate dynamics 

in order to study the zero growth condition more directly. For a two host model with 

infectious states I1, I2, and  Jacobian  
A B

J
C D

 
  
 

 we can rewrite matrix equation (2) 

as the equations: 

2( )
dz

C D A z Bz
dt

                 (15a) 

 
1 dX

A Bz
X dt

       (15b) 

where  X = I1, z = I2/I1, y = (I1, I2)
T and  is the growth rate.  For J given by (13) with 

residents at their carrying capacities, A= uK111 – d1, B = uK112, C = uK221, D = 

uK2 22 – d2.  In scenario (14) elements A, B, C, D will depend on t, 1, 2,  and 

control u.  

Equation (15a) is decoupled and to be solved first, with its solution then substituted in 

(15b) to determine .  Although (15a) is not linear it can be transformed into an 

infinite set of linear equations that can be exactly solved in sequence.  This can be 

done by writing z as a series in powers of the forcing strengths   1 = 2  supposed 

equal for simplicity, i.e.  z = z0 + z1 + 2z2 + … , and then collecting together terms 

of the same power in (15a).  From (15b) we can then find the average growth rate 

(ave) by integration over a cycle and hence the level of the control u and effort E0 

needed to bring about exclusion when the zero growth condition is imposed.   

The algebraic analysis is made easier if the simpler question is asked as to 

whether forcing increases or decreases the exclusion control value.  This can be 

answered if the growth rate in (15b) is evaluated for control value u(0)  that brings 

about exclusion when there is no forcing.  Then the forced average growth rate ave   is 

given by the following power series in :  

     ave   =  (unforced growth rate) + (linear term) + 2(quadratic term) + …. (16). 

The first of these terms is zero as is the linear term (because the variations average to 

zero) while the quadratic term equals N/ where numerator N and denominator  are 

given by: 

  1 2 1 2 0( cos( ) sin( ) )N            (17a) 

  
2 2

1 2 1 22( )[( ) ]         .    (17b) 
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Here 1 = u(0)K1110 – d1, 2 = u(0)K2220 – d2, 1 = (1 + 2)(d1 + d2) + 2d1d2, 
2

2 1 2 0 1 2 1( ) , ( )d d d d       .
 
(For details of the calculation see Appendix A.)  

On the unforced threshold, 1 and 2 are both negative since at exclusion neither host 

species can support the pathogen.  So at  = 0 the quadratic term is positive (if d1 ≠ 

d2) and hence control u needs to decrease further to achieve exclusion.  Whether this 

is the case for all lag values depends on whether or not equation N = 0 has a solution 

for .  For the parameters in Table B2 (set 1) there is no solution but for the 

parameters in Table B2 (set 2) there is.  So for this second parameter set there are lag 

values  where control u needs to be reduced further (ave positive) and other values 

where u has been reduced too much (ave negative) (Fig 5b).    

The threshold distortions of Fig 5 produced by forcing on this multiple host 

model have a structure similar to those shown in Fig 1.  In both cases the forced 

threshold is obtained from the unforced threshold by a shift (cf 0 in (17a)) followed 

by a sinusoidal-like distortion.  The lag positioning of the stationary points of the 

distortion is determined by the internal lag of the system (cf 1/2 in (17a)).  Whether 

exclusion effort is increased or decreased by the forcing depends on the relative 

magnitudes of the shift and distortion amplitude.  It would not be surprising if these 

features were to be present in most models with sinusoidal forcing. 

 

4.3  The optimal scheduling problem for multiple infected states 

For invasion systems with multiple infected states such as (13) it is rarely possible to 

solve the optimal scheduling problem (9) exactly.  Instead we introduce a new 

iterative algorithm based on the Hamiltonian method of solution (Lenhart and 

Workman, 2007) described in Appendix C.   For (9) this means solving the following 

set of equations: 

1( ) ( ). . ( ) ( ) . ( ) .
dy d

a u s t F y t b J y c J
dt dt


         (18) 

subject to end point conditions on (b).  Here J = uF – V,  = (1, 2) is the vector of 

adjoint (dual) variables and s is a ‘free’ parameter that plays a key role in the 

calculation.  The algorithm iterates on the single control u = u(t) which will be a 

function of t at each stage of the iteration except for the first where we take as the 

(default) starting value the exclusion level of u when assumed constant in time.  We 

will still be able to use the monodromy matrix method for (numerically) solving 

equations (b), (c) even though u is now variable.  At each stage of the iteration the 

algorithm proceeds as follows:  [1]  Find the monodromy matrix for system (18b) 

using the current approximation for u.  Adjust s so that the dominant eigenvalue is 1.  

The variation y(t) over a cycle is then calculated from (18b) by taking as initial vector 

an eigenvector for this eigenvalue 1 of the monodromy matrix.  [2] Find the 

variation(t) over a cycle in a similar fashion, but simplified by the knowledge that 

the ‘adjoint’ monodromy matrix for (18c) will necessarily have eigenvalue 1 for the 

previously calculated value of s.   [3]  Finally construct the next approximation for u 

from (18a) where s is left free and where y(t), (t) in (18a) are the solutions of (18b), 

(18c) just calculated.    

 The need for a special algorithm to solve this particular optimal control 

problem arises because the standard solution method with end point conditions on the 

state variables (y) is highly unstable.  This is understandable given that we are 

searching for the knife-edge threshold between exponential growth and exponential 

decay.  To get around this instability we use the property that if one of the 

monodromy matrices for (18b), (18c) has eigenvalue 1 then so has the other matrix.  
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This follows from the fact that the inner product: .y has the same value at the end of 

successive cycles, a result that can be proved from equations (18b), (18c). That 

parameter ‘s’ is ‘free’ reflects the fact that the solutions of the linear equations (18b), 

(18c) with periodic boundary solutions are defined up to a multiplicative constant.  

The values of these constants are chosen so that the parameter ‘s’ in (18a) renders the 

dominant eigenvalue of the monodromy matrix of (18b) equal to 1. 

 As an example of this algorithm consider again Jacobian (13) in scenario (14) 

with parameter values given in Table B2 (set 1).  Our iterative algorithm finds optimal 

solutions for given choices of lag , starting the iteration with the constant solutions 

for those choices.  Of particular interest are the lag values:  = 0,  (see (14) and Fig 

5a).  The optimal control paths corresponding to these two values are shown in Fig 6. 

For curve ‘a’ (0) we find that (
0E , E0, E*) = (1.355, 1.356, 1.236) where

0E ; E0; 

E* is the constant unforced; constant forced; optimal forced exclusion effort.  So 

effort can be reduced to well below the constant control level by varying the control.  

It therefore looks to be worthwhile using varying controls in this case.  However for 

control curve ‘b’ () we find that (
0E , E0, E*) = (1.355, 1.509, 1.506) so there is 

little advantage in varying the control with forcing present.  This is reminiscent of the 

results obtained for model (6) in Fig 3 but the mechanism is very different, not least 

because of the very strong forcing.  For  0 the two hosts go through the infection 

cycle in synchrony with little net infection transfer.  In effect they act as single hosts 

with optimal control in phase with the newly infecteds, hence the similarity with path 

d in Fig 3, in particular the switching behaviour.  At  ~ , with one host on the up 

part of the infection cycle and the other on the down part, there is significant transfer 

to sustain the infection at a high level with little fluctuation.  So the constant control 

solution is a good approximation but the required exclusion effort is much higher. 

       

4.4  Pathogen exclusion using pre-emptive controls 

As a generalisation of the discussion in section 3.4, consider a resident subsystem in 

RIA with pre-emptive vector control P and links to the invasion subsystem involving 

the vector of susceptible populations S = S(P, t).  The invader growth rate can be 

found from the monodromy matrix and the exclusion levels of P from the zero growth 

condition.  We can separate out the equivalent indirect controls for the second stage of 

the exclusion process by defining: ui   = Si(P, t)/Si(0, t) where Si denotes the host i  

susceptible population.  In the multiple host case therefore we will be using a vector u 

of indirect controls, its components targeting specific hosts.  This makes sense.  It is 

likely to be highly inefficient to use the same level of control for hosts which have 

substantially different dynamical characteristics.   

As an example consider the 2 host SISI model with resident equations in RIA 

given by: 

  dSi/dt = riSi – (ri/Ki)Si
2 – ci Pi Si     (i = 1, 2), (19) 

where P = (P1, P2)
T.  Its Jacobian J1 is obtained from (13) with u = 1 and is subject to 

scenario (14).  If there is no forcing on the residents and the (culling) controls Pi are 

constant in time then (asymptotically) Si = Ki(1 – (ciPi)/ri).  The solution of the 

exclusion problem can now be obtained by inserting these values for Si in J1 and then 

solving (2) subject to the condition ave = 0.  From the exclusion values for Pi one can 

find the indirect controls ui as ui = Si/Ki = (1 – (ciPi)/ri).  In terms of targeted indirect 

controls u1, u2 the Jacobian for the model now reads as: 
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1 1 11 1 1 1 12 1 1 11 1 1 12 1

2 2 21 2 2 22 2 2 2 21 2 2 22 2

0

0

u K d u K u K u K d
J

u K u K d u K u K d

   

   

     
       

     
. (20) 

 

Having assembled all the necessary pieces we can now explore the exclusion 

dynamics of the SISI model in both direct and indirect control spaces, using the 

parameter values to be found in TableB2 (set 3).  The ‘control map’ of Fig 7 shows 

the pathogen exclusion threshold in (u1, u2) space for different values of lag  (see 

(14)). (The unforced threshold (for clarity not shown) lies close to but above the 

threshold (a) for  = 0.)  Q0 is the point where the controls are both inactive and lies in 

the exclusion region for each threshold.  On threshold (a) only u2 is used at point Q1; 

at Q2, on the diagonal line u1 = u2, the control has the same action on both hosts; Q3 is 

inaccessible because it would require infinite exclusion effort to reach u1 = 0.  

Similarly for points on the other thresholds, namely (b), (c) for  = /2, .  Fig 7 

illustrates the fact that for this model, with constant controls and forcing only on 

infection transmission, exclusion effort increases whatever the lag.  

 Intuitively it makes sense to focus control effort on the reservoirs of infection, 

in this case at point Q1 with u1 = 0 and u2 ≠ 0 (i.e. host 2 is a reservoir of infection but 

not host 1).   However a closer look at Fig 7 suggests that this might not always be the 

best strategy.  At Q1 it would be necessary to reduce the newly infected by over 60% 

(for threshold (a)) which might not be achievable.  However at point Q4 where there is 

removal of 15% of the host 1 newly infected, the required percentage reduction in 

host 2 newly infected to achieve exclusion is reduced to about 35%.  For comparison, 

at Q2 both controls u1, u2 are equal to 0.75, i.e. there is exclusion when the newly 

infected of both hosts are reduced by 25%.  The strategy of control only on the 

reservoir of infection is cast in even more doubt if lag =  for then about 75% of 

host 2 newly infected have to be removed (threshold (c)).  The reason for the high 

level of newly infected reduction required at Q1 is the fact that host 1 is not far away 

from also being a reservoir of infection.  In fact if (110) is increased to 1.1  (with both 

hosts then being reservoirs of infection) the threshold is shifted to position (d) in Fig 7 

with both controls u1, u2 having to be used since the shifted end points are 

inaccessible, both requiring an infinite amount of effort to reach.  Finally, note that 

the thresholds corresponding to (a), (b), (c) for direct controls Pi can be constructed 

from Fig 7 using the relations: ciPi = (ri/ci)(1 – ui). 

These observations are relevant to pathogen mediated competition between 

livestock and wildlife, e.g. bovine TB in badgers. The badger (host 2) is undoubtedly 

a reservoir of infection in the UK and therefore has to be controlled for exclusion to 

happen.  The situation with livestock is less clear, but it is not far from being a 

reservoir of infection if it is not already (Cox et al., 2005).  

An alternative exclusion strategy for the example of Fig 7 (with 110 = 0.93) is 

to control only the (single) reservoir of infection (i.e with u1 = 1, P1 = 0) but now with 

a time varying control P2 to see whether exclusion effort can be reduced.  In Fig 8 we 

show the contour map of the threshold surface in which the exclusion value of P20 

(the average of variable P2) is plotted against lag 1 =  (the lag between hosts) and 

lag 2 between P2 and host 1.  The map shows a saddle point S with ‘mountains’ M 

on either side and ‘valleys’ V in between.  It is along the valley (V – S – V) that one 

looks for least P20 for given 1.  Comparison of the data for Figs 7 and 8 shows that 

one can always find a value of 2 where P20 (Fig 8) is lower than constant P2 (Fig 7) 

whatever 1 when P1 = 0.  So varying P2 can reduce (average) direct effort, often 

substantially.  We can continue the analysis by finding out how close is the optimal 



 17 

indirect control u2* to the indirect control u2 generated by P2 when its average value is 

at a minimum (Fig 8).  Conversely we can find the shape of the direct control P2 

equivalent to u2* since the sinusoidal shape we have chosen may not be the most 

appropriate.   

This example illustrates the importance of working in indirect as well as direct 

control space.  The indirect space, defined by the set of universal controls (ui), deals 

with epidemiological issues, such as reservoirs of infection.  Since the structures of 

the pathogen threshold in direct and indirect spaces are closely related knowledge 

about one of these structures provides information about the other.  As a result we can 

compare in greater depth possible exclusion strategies against both epidemiological 

and economic criteria. 

 

5. Discussion 

Our primary objective has been to solve the pathogen exclusion problem for eco-

epidemiological model systems with a high level of complexity.  This includes 

systems with multiple (infected) host types and subject to multi-component (periodic) 

environmental forcing and a general set of direct (pre-emptive) controls.  The natural 

way to approach this problem is as a control problem since it involves intervention in 

the system with a set of control measures to achieve a given objective.  Our adoption 

of an explicit holistic control framework opens up access to an extensive body of 

knowledge (from a range of scientific disciplines) based on essential concepts such as 

‘effort’, ‘optimisation’ and ‘controllability’ and it allows a seamless development of 

the model system when new features such as constraints on controls or system 

parameters are to be added.  In short, this flexible framework provides an ideal 

‘laboratory’ for the exploration of exclusion dynamics and the design of suitable 

control strategies that take into account all relevant factors. 

Examples in the literature (e.g. Choisy and Rohani, 2006; Packer et al., 2005; 

Omori and Adams, 2011) suggest that the complexity created by a system’s internal 

structure or by a varying environment (or both) opens up a range of new opportunities 

for bringing about exclusion, for example by exploiting interference between 

fluctuating controls and system components or by encouraging the system to ‘take 

over’ some of the effort required in exclusion.  What are the specific mechanisms 

driving such behaviour and what other complex interactions exist that might be of 

advantage in excluding the pathogen?  To be able to answer such questions it is 

essential to have efficient numerical and analytic solution methods that provide 

insight into the dynamics of exclusion.   

The obvious way of solving the exclusion problem is to use exhaustive 

simulation, by searching over a grid to find out when there is invasion and when there 

is not.  But this is highly inefficient.  A major gain in efficiency is achieved by using 

the Rare Invader Approximation to create a two-stage process, first solving the 

disease-free resident equations and then using the monodromy matrix to find the 

asymptotic invader growth rate and hence the direct controls that will bring about 

exclusion.  One can be more ambitious by using a polynomial approximation in the 

forcing strengths to generate approximate formulae for the equations of the pathogen 

thresholds and hence test for the generality of the results obtained by numerical means 

within and between different families of models. 

An important additional advantage of the two-stage structure of our numerical 

and analytic procedures is that we can use it to explore in more detail the 

epidemiological aspects of exclusion.  Precisely we can construct special (indirect) 

controls targeting the different types of the newly infecteds in the invasion equations 
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which have the same effect on the invaders as the original direct (pre-emptive) 

controls.  Taken together the direct and indirect controls enable epidemiological 

considerations as well as the practical, technical and economic issues associated with 

implementing the direct controls to be taken into account when designing an 

exclusion strategy. 

These special controls, that act on the newly infected, also allow us to connect 

and compare our control theory approach with the conventional approach based on 

the basic reproduction number R0.  Precisely, for both forced and unforced systems, if 

the special control is the same on all types of newly infecteds and is constant in time 

the exclusion effort is equal in value to R0.  In this restricted sense the control theory 

approach is consistent with conventional theory.  The properties of R0 can be 

translated into control terms and conversely.  However the control theory approach 

has distinct advantages in forced systems.  The transition to forced systems is 

seamless, an operationally meaningful link with second generation infecteds is 

retained and the theory is readily generalised by relaxing the constraints that the 

impact of the special control is the same for all infected host types and is constant in 

time.  With variability in time we can find the least effort special control as a solution 

of the optimal scheduling problem.  Finally, to bring us full circle, the overarching 

control framework allows us to link the usually unrealisable special (indirect) controls 

with the (direct) controls that are realisable (Heffernan et al., 2005). 

The examples of pathogen thresholds distorted under external forcing have 

shown suggest that there are three basic ‘building blocks’ involved:  A shift due to 

changes in average population levels; a sinusoidal-like distortion due to covariance 

between forcing and population variations; a repositioning of this distortion due to 

internal lags in the system in response to the forcing.  The relative ‘sizes’ of these 

effects, together with the strength of the forcing, determine the overall impact of the 

forcing on exclusion effort.  Individually these effects suggest various ways of 

reducing the effort.  For example one may take advantage of interference in the 

covariance effect when the lag is a control variable; offset reinforcement by using a 

variable control; use the shift effect when there is no seasonality by also varying the 

control.  

These basic exclusion strategies can be hidden in the complexity of the 

systems responses to the forcing and they may also generate more subtle ways to 

exclude the pathogen.  Of interest is ‘persuading’ the system to ‘take over’ some of 

the exclusion effort while the control remains inactive (Figs 3, 4, 6).  Switching a 

control on and off is familiar in harvesting (Bairagi et al., 2008), in game-bird 

management (Choisy and Rohani, 2006) and is also relevant to pathogen exclusion.  

We have also looked at ‘extreme’ forcing which can lead to period resonance 

(Greenman and Pasour, 2012) and phase resonance (Fig 4) (Zambrano et al., 2008).   

There is much more work to be carried out in studying pathogen and other 

types of exclusion when there is external forcing and internal structure.  For example, 

we are currently investigating a model for dengue in which control measures aimed at 

reducing exposure to the mosquito population are targeted at different age groups in 

the host population.  Further development and application of the theory and 

techniques we have introduced in this paper could lead to practical improvements in 

epidemic control across a range of human and wildlife ecological systems. 
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Appendix 

A.  The Quadratic Approximation method 

Formula (8): To solve the resident equation (6a) in RIA substitute the QA for S, 

namely: S  K0 + 2x1 + (2)
2x2  using the binomial approximation (1 + 2a)-1  1 –

2a + (2)
2a2 in QA to invert K.  Collect terms in powers of 2 to obtain linear 

equations of the form:  

dx1/dt =x1 + C1cos(t);  dx2/dt = x2 + C2x1cos(t) + C3(1 + cos(2t)) + C4x1
2  

where ,  Ci are constants with values  = -r, C1 = rK0, C2 = 2r, C3 = - rK0/2,  C4 = -

r/K0.  Solve these linear equations in sequence to obtain S asymptotically as: 

 S  K0 +2C5 cos(t – ) + (2)
2C6 + (2)

2(cosine terms)  (A1) 

where C5 = (C1/(2 + 2)), C6 = - C32/((2 + 2)),  = tan-1(-/),  = 2/p. 

From (5) with ave = 0, exclusion effort E0 =(Sdt)/(pd0).  Evaluate E0 by substituting 

S from (A1) and  from (7) to obtain (8).  (Note that the last term in (A1) averages out 

to zero on integration or generates terms of third or higher order.) 

   

Formula 17:  In this example we use the QA method to solve linear invasion 

equations.  To solve (15a) we use the QA: z  z0 + z1 + 2z2 and decompose the 

elements of J into unforced and forced parts by writing: 

A = A0 + A1; B = B0 + B1; C = C0 + C1, D = D0 + D1  (A2) 

If there is no forcing ( = 0) then z = z0 with z0 = - A0/B0 = - C0/D0 obtained from 

(15a) and detJ = 0 when u = u(0), the unforced exclusion value of u.  With forcing, 

substitute z and (A2) in (15a) and collect together powers of  to obtain:  

 dz1/dt = z1 + C1cos(t) + C2 cos(t + ) 

 dz2/dt = z2 + C3z1cos(t) + C4z1cos(t + ) + C5(z1)
2 

where  = A0 + D0 (when u = u(0)) and Ci are constants (different from those for 

formula (8)).  Solve these linear equations in sequence.  Substitute for z in (15b) and 

integrate over a cycle.  Symbolic manipulation software helps in carrying out these 

tasks.  

 

B. Parameter values for models (6), (13) 

Table B1: Parameter values for the SIS model (6) 

 

 (Note:  periodic forcing can always be made seasonal by appropriately scaling the 

unit of time.) 

 

 

Table B2: Parameter values for the SISI model defined by (13) and (19). 

 

Set 3 is formed from set 1 by adding parameter values: r2 = 0.8, c2 = 0.4. 

 

 

Parameter a b K    p    c 

Set 1 1.3 0.5 4.5 0.4 0.5 0.0   5 0.5 0.6   

Set 2 1.3 0.7 4.5 0.4 0.5 0.0   5 1.0 1.0 1.0 1.0 

Parameter K1 K2 d1 d2 110
 

220


120


210
 

 p 

Set 1 1.5 1.0 1.50 1.35 0.93 1.50 0.47 0.30 0.95   6 

Set 2 1.5 1.0 1.50 0.50 0.93 1.50 0.47 0.30 0.75   5 
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C.  Optimal control problems 

Consider the general optimal control problem:  Minimise  f(y, u, t)dt   subject to   

dy/dt = g(y, u, t) and y(t1) = a, y(t2) = b.  The integral in the objective function is taken 

over the control interval: t1 ≤ t ≤ t2 and u denotes the controls.  To solve this problem 

construct the Hamiltonian H: 

   H = f(y, u, t) + .g(y, u, t)   

with  the vector of adjoint (dual) variables. A necessary condition for optimality is:  

      {(i)  H/u = 0    (ii)     dy/dt = H/     (iii)    - d/dt = H/y }             (C1). 

For problem (9) t2= t1 + p, f(y, u, t) = p-1u-1, g(y, u, t) = (uF – V).y  so: H = p-1u-1 + 

.(uF – V).y  and:   

      {(i)  u-1 = (.F.y)  (ii)  dy/dt = (uF – V).y   (iii)  -d/dt = .(uF – V) }      (C2)    

with p = 1 without loss of generality.  The exact single host solution (10) for model 

(6) can be obtained from equations (C2), with the vectors now scalars.  From (C2ii) 

and (C2iii)  y = (0)y(0) = B (a constant).  From (C2i) u-1= yF) = (BF) so  uF = 

FSolving (C2ii) gives  ln(y(p)/y(0)) =( (F)dt)/ (B) -  Vdt = 0 using the end 

conditions on (C2ii). This gives an equation for (B) and 

 u-1(t) = A (F(t)) where A = ( (F(u))du)/  V(u)du)      (C3). 

To handle boundary conditions such as 0 < u(t) ≤ 1  see for example Bryson and Ho 

(1975) or Lenhart and Workman (2007).   

 

  



 21 

References 
Anderson, R. M., May, R. M.,  1981. The population dynamics of microparasites and 

their invertebrate hosts. Phil. Trans. R. Soc. Lond. B 291, 451-524. 

Anderson, R. M., May, R.M.,  1986.  The invasion, persistence and spread of 

infectious diseases within animal and plant communities.  Phil. Trans. R. Soc. 

Lond. B 314: 533-573. 

Bacaer, N., Guernaoui, S.,  2006.  The epidemic threshold of vector-borne diseases 

with seasonality.  J. Math. Biol.  53, 421-436. 

Bacaer, N., Aits Dads, E. H.,  2011.  Genealogy with seasonality, the basic 

reproduction number and the influenza pandemic,  J. Math. Biol.  62, 741-762. 

Bairagi, N., Chaudhuri, S., Chattopadhyay, J.,  2009.  Harvesting as a disease control 

measure in an eco-epidemiological system – A theoretical study.  Mathematical 

Biosciences 217, 134-144.  

Brassil, C. E.,  2006.  Can environmental variation generate positive indirect effects in 

a model of shared predation?  Am. Nat. 167, 43-54. 

Bryson, A. E., Ho, Y-C., 1975.  Applied Optimal Control.  New York, Halstead Press. 

Chesson, P., 1982.  The stabilising effect of a random environment.  J. Math. Biol. 15, 

1-36. 

Choisy, M., Rohani, P., 2006. Harvesting can increase severity of wildlife disease 

epidemics. Proc. R. Soc. B 273, 2025-2034. 

Cox, D. R., Donnelly, C. A., Bourne, F. J., Gettinby, G., McInerney, J. P., Morrison, 

W. I., Woodroffe, R.,  2005.  Simple model for tuberculosis in cattle and badgers.  

PNAS  102, 17588-17593. 

Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J.,  1990.  On the definition and the 

computation of the basic reproduction ratio R0 in models for infectious diseases 

in heterogeneous populations.  J. Math. Biol. 28, 365-382. 

Diekmann, O., Heesterbeek, J. A. P.,  2000.  Mathematical Epidemiology of 

Infectious Diseases.  John Wiley & Son, Ltd., Chichester, UK. 

Diekmann, O., Heesterbeek, J. A. P., Roberts, M. G.,  2010.  The construction of 

next-generation matrices for compartmental epidemic models.  J. R. Soc. 

Interface  7, 873-885. 

Dietz, K., 1976.  The incidence of infectious diseases under the influence of seasonal 

fluctuations.  Lect. Notes Biomath. 11, 1-15. 

Grassly, N. C., Fraser, C., 2006.  Seasonal infectious disease epidemiology.  Proc. R. 

Soc. B 273, 2541-2550. 

Greenman, J. V., Pasour, V. B.,  2012.  Threshold dynamics for periodically forced 

ecological systems: The control of population invasion and exclusion.  J. Theor. 

Biol.  295, 154-167. 

Hale, J. K.,  1969.  Ordinary Differential Equations. Wiley-Interscience, New York. 

Hartemink, N. A., Randolph, S. E., Davis, S. A., Heesterbeek, J. A. P.,  2008.  The 

basic reproduction number for complex disease systems: defining R0 for tick-

borne infections.  Am. Nat.  171: 743-754. 

Heesterbeek, J. A. P., Roberts, M. G.,  1995.  Threshold quantities for helminth 

infections.  J. Math. Biol.  33, 415-434. 

Heffernan, J. M., Smith, R. J., Wahl, L. M.,  2005.  Perspectives on the basic 

reproduction ratio.  J. R. Soc. Interface 2, 281-293. 



 22 

Hosseini, P. R., Dhondt, A. A., Dobson, A.,  2004.  Seasonality and wildlife disease: 

how seasonal birth, aggregation and variation in immunity affect dynamics of 

Mycoplasma gallisepticum in house finches.  Proc. R. Soc. B 271, 2569-2577. 

Koelle, K., Rodo, X., Pascual, M., Yunus, Md., Mostafa, G.,  2005.  Refractory 

periods and climate forcing in cholera dynamics.  Nature  436, 696-700. 

Lenhart, S., Workman, J. T.,  2007. Optimal Control applied to biological problems.  

London: Chapman and Hall (CRC). 

Lintott, R.A., Norman, R. A., Hoyle, A. S.,  2013.  The impact of increased dispersal 

in response to disease control in patchy environments.  Journal of Theoretical 

Biology 323, 57-68. 

McCallum, H., N. Barlow, and J. Hone.  2001.  How should pathogen transmission be 

modelled?  Trends in Ecology and Evolution 16, 295-300. 

Omori, R., Adams, B.,  2011.  Disrupting seasonality to control disease outbreaks: 

The case of koi herpes virus.  J. Theor. Biol.  271, 159-165. 

Packer, C., Holt, R.D, Hudson, P.J., Lafferty, K.D., and Dobson, A.P.  2003.  Keeping 

the Herds healthy and alert: implications of predator control for infectious 

disease.  Ecology Letters.  6: 797-802. 

Rinaldi, S., Muratori, S., Kuznetsov, Y.,  1993.  Multiple attractors, catastrophes and 

chaos in seasonally perturbed predator-prey communities.  Bull. Math. Biol. 55, 

15-35. 

Tompkins, D. M., White, A. R., Boots, M.,  2003.  Ecological replacement of native 

red squirrels by invasive greys driven by disease.  Ecol. Lett. 6, 189-196. 

Wang, W., Zhao, X-Q.,  2008.  Threshold Dynamics for Compartmental Epidemic 

Models in Periodic Environments.  J. Dyn. Diff. Equat.  20, 699-717. 

Williams, B. G., Dye, C.,  1997.  Infectious disease persistence when transmission 

varies seasonally.  Math. Biosci.  145, 77- 88. 

Wichmann, M. C., Johst, K., Moloney, K. A., Wissel, C., Jeltsch, F.,  2003.  

Extinction risk in periodically fluctuating environments.  Ecolo. Modell. 167, 

221-231. 

Zambrano, S., Seoane, J. M., Marino, I. P., Sanjuan, M. A. F., Euzzor, S., Meucci, R., 

Arecchi, F. T.,  2008.  Phase control of excitable systems.  New J. Phys.  10, 

073030.  

 

  



 23 

 

 
 

Figure 1:   Pathogen exclusion thresholds as a function of phase lag  for SIS model 

(6) with forcing on , K (7).   The threshold is (bb) when the system is forced 

(exclusion effort E0) and (aa) when unforced ( ).  Forcing strengths (1, 2) have 

values: (aa) (0, 0); (bb) (0.5, 0.6); (cc) (0, 0.6).  Other parameter values are given in 

Table B1 (set 1) in Appendix B. 

 

 

 
 

 

 

Figure 2:   Time series showing the relative positioning of , S, K for  at point A in 

Fig 1 (S and  ‘out of phase’).  For clarity, averages have been made zero and 

amplitudes made equal.  (Multiply  by p/2 to get the lag when the period is p.)  

0E
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Figure 3:   Variation of optimal effort E(t) over a single cycle for SIS model (6) in 

scenario (7).  Paths: (a, b, c, d) correspond to lag equal to (, 1.34 (point A in Fig 

1), 3/2, 0.33 (point B in Fig 1)).  Path d exhibits off-on optimal control switching,  

Parameter values are given in Table B1 (set 1). 

 

 

 

 

Figure 4: The SIS model with periodic forcing on birth rate and infection transmission 

and with varying culling control P, to illustrate the ‘amplification effect’. Figures 

show the threshold surfaces in terms of control and seasonal lags 2, 1, in (a) for 

direct effort P0 and in (b) for indirect effort E1. 
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Figure 5:  The level of control u required to achieve pathogen exclusion in the SISI 

model with Jacobian (13) is shown as a function of lag  (see (14)).  Parameters given 

in Table B2 (set 1) for (a) and Table B2 (set 2) for (b).   

 

 

 

 

 
 

Figure 6:  Variation of optimal control E(t) over a single cycle for SISI model with 

Jacobian (13). Paths: (a, b) correspond to lags : (0, ) in Fig 5a.  The control is 

switched off and on again on path a.  Parameter values are given in Table B2 (set 1).   
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Figure 7:  SISI model with constant direct (culling) controls on the residents.  Shown 

are the thresholds in indirect control space (u1, u2). Threshold a; b; c corresponds to  

value 0; /2; .  Host 2 is the only reservoir of infection. For threshold d  (110 = 1.1, 

 = ) both hosts are reservoirs. Parameters given in Table B2 (set 3). 

 

 

 

 
 

 

Figure 8:  Contour map of the direct control threshold surface when there is one 

reservoir and one direct now-varying control P2.  The map relates the average value 

P20 of P2 against control and seasonal lags 2, 1.  Comparison with Fig 7 indicates 

when there is advantage in varying P2.       


