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Abstract: Cone Beam Computed Tomography (CBCT) is an imaging modality that has 

been used in  image-guided radiation therapy (IGRT). For applications such as lung 

radiation therapy, CBCT images are greatly affected by the motion artefacts. This is 

mainly due to low temporal resolution of CBCT. Recently, a dual modality of Electrical 

Impedance Tomography (EIT) and CBCT has been proposed, in which the high temporal 

resolution EIT imaging system provides motion data to a motion compensated  algebraic 

reconstruction technique (ART) based CBCT reconstruction software. High 

computational time associated with ART and indeed other variations of ART make it less 

practical for real applications. This paper develops a motion-compensated conjugate 

gradient least squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers 

several advantages over ART based methods; including possibilities for: explicit 

regularisation, rapid convergence, and parallel computations. This paper for the first time 

demonstrates motion compensated CBCT reconstruction using CGLS and reconstruction 

results  are shown in limited data CBCT considering only a quarter of full data set. The 

proposed algorithm is tested using simulated motion data in generic motion compensated 

CBCT as well as measured EIT data in dual EIT-CBCT imaging. 
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1. Introduction 

Cone beam CT (CBCT) is an imaging system combined into linear accelerator (Linac) for 

verifying the treatment area in radiation therapy. Due to slow rotating CBCT motion 

artefacts are often appears in CBCT images in applications such as lung imaging. The 

motion artefacts can result in target registration errors and radiation beam misalignment, 

which in turn can lead to over-radiation dose to normal tissue and inhomogeneous 

distribution of radiation dose to the tumor (Goitein, 2004, Bortfeld et al., 2002, Balter et 

al., 1996). In addition, reconstruction with limited data has also been studied in order to 

reduce the radiation dose to the patients (Andersen, 1989, Chlewicki et al., 2001, Qiu et 

al., 2010).  Motion will further degrade the limited data imaging. 

In the last decade motion-compensated CBCT, for removing motion blur artefacts in 

CBCT scans, has attracted the interest of many research groups (Rit et al., 2009b, Shirato 

et al., 2000, Dietrich et al., 2006, Isola et al., 2008, Sonke et al., 2005, Purdie et al., 

2006). Many reconstruction methods have been proposed for compensating the motion. 

Iterative algorithms e.g. the Algebraic Reconstruction Technique (ART), Simultaneous 

Algebraic Reconstruction Technique (SART) and Ordered-Subset SART (OS-SART) are 

the methods of choice (Gordon et al., 1970, Ge and Ming, 2004, Jiang and Wang, 2003, 

Raparia et al., 1997). Furthermore, motion compensation has been combined with ART 

and SART (Rit et al., 2009a, Pengpan et al., 2011). 

Conjugate Gradient Least Squares (CGLS) is an attractive iterative reconstruction 

algorithms, which has been applied to CBCT image reconstruction by Jia X, et al (Jia et 

al., 2011).  The CGLS has advantage over ART and SART, in terms of faster 

convergence rate and possibility of parallel computation. In addition, the CGLS provides 

possibility of including regularisation term, which is useful for limited data. While the 

Feldkamp, Davis and Kress (FDK) reconstruction, is one of the most commonly used in 

many volumetric CT, imaging based on filtered-back projection (FBP), showed 

inappropriate method for insufficient projection data (SOIMU et al., 2003) and less 
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accurate reconstruction in comparison with iterative method reconstruction (SART), in 

particular with limited projection data (Chlewicki et al., 2001).  CGLS has not been 

developed  in motion compensated CBCT based on our best knowledge. 

To our knowledge, the application of motion compensation to CGLS algorithm has not 

been reported. Therefore, it is proposed to apply fast image reconstruction CGLS with 

limited data, to remove motion blur artefacts on CBCT images and reduce the 

reconstruction time.  

The ART based motion compensated algorithm has been tested in a previously proposed 

dual modality electrical impedance tomography (EIT), CBCT setting for potential lung 

imaging application (Pengpan et al., 2011). EIT is an imaging system recently found 

momentum in area of lung imaging. EIT can provide a 3D image of electrical 

conductivity distribution by measuring current and voltages at the boundary electrodes. 

EIT has low spatial resolution, but its high temporal resolution makes it as a very good 

candidate to provide motion information to CBCT. EIT based motion data is real time and 

instant observation based and so can be more reliable than an estimated model based 

motion data currently used in 4D CBCT. This paper presents simulation and phantom 

experimental studies.  

Fig 1 shows a more complete idea of how the proposed scheme can be considered in 

future clinical studies. In this general plan, a patient specific model can be developed 

using high quality diagnostic CT images for patient specific modelling EIT imaging. The 

combined EIT-CBCT imaging will be used just before radiation session for treatment 

planning. In addition, one may be able use EIT imaging during radiation therapy for 

adaptive real time treatment, which is outside of the scope of the current paper. The area 

shown in Fig 1 (dashed-line ellipse) is the subject of this work.  
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Fig 1 Schematic diagram of proposed combined imaging system 

The main aim of this work is to investigate the effectiveness of the motion-compensated 

CBCT using proposed CGLS algorithm together with the EIT system for limited 

projection data reconstruction as shown in Fig 1. In this set up, the EIT will provide 

information about the movement of the organ(s). The motion data will then be used to 

enhance the CBCT images. In this paper the motion-compensated CGLS was developed 

and tested for the improvement of CBCT image reconstruction using one-fourth 

projection data. The motion-compensated CGLS was applied to the dual modality EIT-

CBCT (Pengpan et al., 2011) by utilising the motion estimated from EIT images. A better 

performance of motion compensated CBCT can be seen here due to the possibility of 

regularisation terms that can be included in CGLS scheme. 

2. Image reconstruction methods 

This section presents the image reconstruction methods used for CBCT and EIT. Imaging 

results are displayed as reconstructed images and one-dimensional plots and are analysed 

in terms of the Root Mean Square Error (RMSE) of reconstructed images compared with 

the true image as follows: 
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where N is the number of voxles, xi  and gi  are the reconstructed and true value in 

the ith voxel, respectively.  

 

2.1 EIT image reconstruction 

An EIT is an imaging technique of impedance distribution within electrically conductive 

objects from surface electrical measurements. The main advantage of EIT is its high 

temporal resolution. EIT imaging was proposed to use as motion monitoring system in 

this study. To generate the EIT images, forward problem needs to be solved, which can 

be performed using a finite element method. The forward problem is a problem of 

estimating the measured EIT data with given conductivity distribution. The image 

reconstruction problem is an inverse problem and so to solve the inverse problem the 

forward modeling is needed. Under low-frequency assumptions, the full Maxwell’s 

equations can be simplified to the complex-valued Poisson equation: 

     0 u      (2) 

where u is the complex-valued electric potential and  is the conductivity of the medium. 

Appropriate boundary conditions (complete electrode model) are needed to enable a 

representative model for the EIT measurement process. In this work the complete 

electrode model is adapted, which took into account both the shunting effect of the 

electrodes and the contact impedance between the electrodes and tissue. Using this 

boundary condition the EIT model includes  
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where zl is the effective contact impedance between the lth electrode and the tissue, n is 

the outward normal to the surface electrodes, U is the complex-valued voltage, I is the 

complex-valued current and el denotes the electrode l. Here, l

L

lx er  /  indicates a 

point on the boundary not under the electrodes. Difference imaging mode with a 

Tikhonov type algorithm has been used for the image reconstruction:  

∆σ = (JT J + δR)-1 JT ∆V     (6) 

where R is the regularization matrix (identity matrix here), J is the Jacobian matrix, ΔV  

is the measurement vector, δ is the regularization parameter, which has been selected 

empirically with test samples in experimental data.  

Our 16 electrode EIT system in a LabVIEW environment based on National Instruments  

(NI) cards was used in this study (Pengpan et al., 2011). Fig 2 shows the imaging 

capability of the EIT system used in this study, 001.0  is a suitable choice for the 

regularization parameter here. Fig 2 (b) shows the EIT reconstructed image of four bottles 

in a tank phantom (fig 2 (a)). Adjacent current pattern with the electric current of 5 mA in 

a single frequency of 10 kHz was used. The same EIT system, algorithm and EIT 

phantom was used for experimental study for dual modality EIT-CBCT presented in 

section 4. 

 

(a)                              (b) 

Fig 2  An example of  EIT image reconstruction for four inclusions 

2.2 Motion-compensated CGLS Algorithm for CBCT 

CGLS is an iterative method well suited for large sparse least squares problem of Ax=b, 

in CBCT reconstruction x is the image values for 
Nx  and b  is observed data 
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for
Mb . The weighting (

NMA ) is created using a forward projection 

programme. Matrix A is a combination of the sub-matrix for each projection. The length 

of intersection of mth ray with nth cell is Amn. In the case where matrix A is positive-

definite, then the matrix ATA is positive-definite for any matrix A. The iterative method 

is terminated at most i steps for k = 0, 1, 2, …, i.  The residual (rk) at each step is 

computed by (Hestenes and Stiefel, 1952, Bjorck, 1996, Hansen, 1998) 

kk
Axbr       (7) 
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Normally, an initial approximation is 00 x , then br 0
 and bAp

T0
. In case the 

residual r is zero, it implies that the problem is solved. Otherwise, if the residual r is non-

zero, the desired solution for rk  to be minimised, which can be monitored by the L2 norm 

of the rk for each iteration. This can be achieved by updating the residual r into the 

problem iteratively.  

For motion-compensated CGLS, a motion compensation technique based on our previous 

report (Pengpan et al., 2011) was used. The weight matrix A which is partitioned into 

sub-matrices to be shifted its column appropriately applied according to a motion model 
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to each measured projection. This technique implements the motion compensation into a 

matrix A rather than image side x. The weight matrix 
NMA was partitioned by row 

into sub-matrices that correspond to each unique projection. The motion compensation 

was then applied separately for each sub-matrix, by shifting the columns within each sub-

matrix according to the motion model for the relevant projection. For this reason, the 

motion must be estimated for each and every projection.   

To evaluate the motion-compensated CGLS, two types of motions: “correct motions”, 

assuming the motion was exactly known and “approximated motion” are considered, 

assuming that the motion was known but with some error. In “correct motion 

compensation”, matrix A was compensated by applying the same amount of motion as 

applied to the phantom for each projection.  Considering limited spatial resolution in EIT 

imaging the “approximated motion compensation” is closer to EIT motion data. This has 

been investigated in previous study ( Pengpan et al., 2011), where images with 10% error 

in motion data could have sufficiently compensates for motion artefacts in CBCT images.  

For “approximated motion compensation”, matrix A was shifted by the motion signals 

extracted from EIT images for the relative projection. 

Moreover, regularised CGLS was also studied here for limited data problems. Limited 

data generally require regularisation terms for the image reconstruction. Standard 

Tikhonov is one of the commonly used methods for regularisation. It was used in this 

study to create a regularised CGLS as follows: 
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where  is the regularization parameter, R is the regularization matrix, which is the 

identity matrix in this case. 

2.2.1 CGLS reconstruction of consistent and inconsistent phantom 

These are the results of CGLS reconstruction of CBCT for consistent phantom and 

inconsistent phantom. Fig 3 (a) shows image error plot between reconstructed images and 

the true image (fig 3 (b)) for both cases. The behaviours of consistency and inconsistency 

were similar to each other for the first few iterations. After the 12th iteration, the 

reconstruction of the consistent phantom remained steady, but, for the inconsistent 

phantom, the reconstruction after the 8th iteration diverged.  Reconstructed images at the 

1st and the 12th iteration of the consistent phantom are shown in fig 3 (c) and fig 3 (d); and 

reconstructed image at the 1st and the 12th iteration of inconsistent phantom are shown in 

fig 3 (e) and fig 3 (f), respectively. These results clearly showed the sharper images for 

consistent phantom. 
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(a) 

 

(b)       (c)  

 

(d)      (e)     (f) 

Fig 3 (a) RMSE of CGLS reconstruction algorithm for consistent case and in consistent case; reconstructed 

images at (b) the true image, (c) the 1st iteration of consistent phantom, (d) the 12th iteration of consistent 

phantom, (e) the 1st iteration of inconsistent phantom and (f) the 12th iteration of inconsistent phantom. 

2.2.2 Regularised CGLS for inconsistent phantom 

Due to the divergence after a few iteration of the inconsistent phantom reconstruction, 

regularised CGLS was introduced in this study. Variation of regularisation parameter (λ) 

was also investigated. Fig 4 (a) shows RMSE of no regularised CGLS and regularised 

CGLS with different values of the λ. The reconstructed images, after the 12th iterations, 

are shown in fig 4 (b) to (e). The RMSE plot shows that the appropriate λ value could be 

reduce divergence effects of the CGLS reconstruction for the inconsistent case. In this 

study, λ =10 gave the best convergence compared to no regularisation and regularisation 

for λ ={1, 100}. In conclusion, the regularisation with optimal regularisation parameter 

has a feasibility to keep the convergence of CGLS reconstruction for inconsistent case 

steadily after the 12th iteration. However, in this study the 12th iteration was chosen for the 

motion-compensated CGLS in order to keep the computational time minimal.  
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(a) 

 

(b)         (c)                (d)       (e) 

Fig 4 (a) RMSE comparing between un-regularised CGLS, regularised CGLS with λ  {1, 10, 100}; 

reconstructed images of (b) un-regularised CGLS, (c) regularised CGLS with λ =1, (d) regularised CGLS 

with λ =10 and (e) regularised CGLS with λ =100. 

 

3. Motion compensated CBCT: simulated motion data 

3.1 Simulated motion data 

A simulated phantom was created for investigating motion-compensated CGLS image 

reconstruction using EIT motion signals. To test CGLS algorithm for the CBCT imaging, 

a consistent phantom was first reconstructed. However, the most clinical cases were 

inconsistency, the image reconstruction of inconsistent cases was also studied by 

corrupting the right hand side of the Ax=b with errors, so-called “inconsistency”. The 

inconsistent cases were created by adding random Gaussian noise at 5% of the standard 

deviation for each projection data at each relative projection.   

For testing the motion-compensated CGLS, a moving phantom was created by shifting 

the simulated phantom with 20 mm peak-to-peak amplitude of sinusoidal signal (fig 2) in 
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the up/down direction. Motion-compensated CGLS for the phantom when motion with 

additive motion error applied was subsequently evaluated. Three types of motion error 

(amplitude error, Gaussian error, and phase error) with different percentages of error were 

added into the original sinusoidal signal (fig 5). For amplitude error, 5%, 10%, 15% and 

20% of the 20 mm peak-to-peak amplitude of the original sinusoidal signal was applied. 

Next, motion signals with additive Gaussian noises were created by adding Gaussian 

noises with standard deviation set to 5%, 10%, 15% and 20% of the 20 mm peak-to-peak 

amplitude of the original motion signal. Finally, phase errors were generated by using 2% 

to 20% with 2% interval of a complete cycle of the original signal. These motion signals 

with motion error were used to shift the phantom when collecting projection data. 

0 100 200 300
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Fig 5 A 20 mm peak-to-peak amplitude of sinusoidal signal. 

3.2 Motion-compensated CGLS  

Motion-compensated CGLS algorithm (as described in Methods section) was tested in 

this part of the study. The RMSE of no motion applied, sinusoidal motion applied, and 

correct motion compensation when motion applied are shown in fig 6 (a). The plot of the 

correct motion compensation shows similarity behaviour as no motion applied. When the 

motion applied into data acquisition process, the image reconstruction shows motion blur 

artefacts can be easily seen in fig 6 (c). The results here suggested that the motion-

compensated CGLS can be used to reduce the motion blur artefacts in CBCT image 

reconstruction. 
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(b)   (c)   (d) 

Fig 6 (a) RMSE of reconstructed images when no motion applied, with motion applied and motion 

compensation applied; reconstructed image of (b) no motion applied, (c) motion applied, and (d) motion 

compensation applied. 

3.3 Motion-compensated CGLS when motion error applied 

This was the study of 20 mm peak-to-peak amplitude of sinusoidal motion signal, 

corrupted by three types of motion error: amplitude error, Gaussian error, and phase error.  

Fig 7 (a) to (c) show RMSE of reconstructed images when motion error applied and 

motion-compensated CGLS used, and fig 7 (d) to (g) show the motion-compensated 

images after the 12th iteration of no motion error applied and motion error applied for 

20% of motion. The RMSE plots show that an increase in percentages of the motion error 

results in an increase in RMSE for all types of error. Phase shifting was the most effects 

to the motion-compensated CGLS when compared with amplitude error and Gaussian 

error. This can be clearly seen in the reconstructed images shown in fig 7 (d) to (g). The 

reconstructed image of phase error added (fig 7 (g)) shows higher blurring artefacts at the 

same level of motion error. 
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(d)        (e)              (f)        (g) 

Fig 7 RMSE of motion compensation when different percentages of (a) amplitude error applied (b) Gaussian 

noise applied, and (c) phase error applied; reconstructed images of (d) 0% motion error, (e) 20% of 

amplitude error, (f) 20% of Gaussian error, and (g) 20% of phase error. 

 

4. Motion compensated CBCT: EIT phantom data  

The motion information is extracted from a sequence of EIT images using a simple 

motion detection technique. This technique is an image processing thresholding technique 

developed and used in (Pengpan et al., 2011, Terzija et al., 2010). The image processing 

thresholding technique is converting the grey scale EIT images to binary images using the 

average of maximum and minimum pixel values for each image. The centre of objects 

within a binary image is extracted, and, then, is tracked for a sequence of images. This 

result in the difference in positions of centroids between the sequence images and the first 

image so called the motion signal extracted from EIT images. 

The motion-compensated CGLS, using motion signals extracted from EIT images, was 

tested with a 50 mm diameter cylindrical object. This object was moved in the up/down 
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direction for 20 mm peak-to-peak displacement and 60 mm peak-to-peak displacement 

and in the left/right direction for 40 mm peak-to-peak. 

The results of the motion-compensated CGLS using EIT motion signals for the up/down 

movement, are shown in fig 4 for 20 mm displacement and fig 6 for 60 mm displacement. 

Fig 8 shows the results of the motion-compensated CGLS using EIT motion signals for 

the left/right direction with 40 mm movement. 

For the 20 mm up/down displacement, reconstructed images after the 12th iteration are 

shown in fig 8 (a) to (d), RMSE is shown in fig 8 (e), and 1D plot is shown in fig 8 (f). It 

can be seen that fig 8 (b) is corrupted by motion. When correct motion compensation 

technique (as described above) was applied into image reconstruction process, the 

resulted image is shown in fig 8 (c). Furthermore, fig 8 (d) shows a motion-compensated 

image using motion signal extracted from EIT images. RMSE shows the behaviours of no 

motion applied and correct motion compensation were very similar. On the other hand, 

the motion compensation using EIT motion signal has higher image error than the correct 

motion compensation; however lower image error than motion applied. 1D plot also 

supports the results of the reconstructed images and the RMSE plot.  
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Fig 8 CBCT Images with (a) no motion applied, (b) 20 mm peak-to-peak sinusoidal motion applied, (c) 

motion compensation applied using true motion signal and (d) motion compensation applied using motion 

signal extracted from EIT images; (e) RMSE of (a) to (d) compared with the true image (case 1: no motion 

applied; case 2: motion applied; case 3: motion compensation using actual signal; case 4: motion 

compensation using EIT signal ) ; (f) 1D plots running through the centre of object (x=128) of (a) to (d) . 
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The results of the 60 mm up/down displacement motion compensation are shown in fig 9. 

The reconstructed images of no motion applied, motion applied, correct motion 

compensation applied and motion compensation using EIT motion signal applied are 

given in fig 9 (a) to (d), respectively. Fig 9 (e) and (f) show RMSE and 1D plot of 

reconstructed images. It can be seen that the motion compensated image using EIT 

motion signal of 60 mm shows higher image noise than the motion compensated image 

using EIT motion signal of 20 mm.  
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Fig 9 CBCT Images with (a) no motion applied, (b) 60 mm peak-to-peak sinusoidal motion applied, (c) 

motion compensation applied using true motion signal and (d) motion compensation applied using motion 

signal extracted from EIT images; (e) RMSE of (a) to (d) compared with the true image (case 1: no motion 

applied; case 2: motion applied; case 3: motion compensation using actual signal; case 4: motion 

compensation using EIT signal ); (f) 1D plots running through the centre of object (x=128) of (a) to (d) . 

 

The results of the motion compensation using EIT motion signal for 40 mm displacement 

in the left/right direction are shown in fig 10. Fig 10 (a) is the reconstructed image 

without motion applied. Blurring effect of the movement in CBCT reconstructed image 

can be noticeable in fig 10 (b). Fig 10 (c) and (d) are motion-compensated CGLS images 

after the 12th iteration using correct motion signal and motion signal extracted from EIT 

images, respectively. RMSE plot shows the behaviour of motion compensation using 

correct motion signal is similar to the behaviour of no motion applied.  In addition, the 

motion compensation using EIT motion signal can reduce the motion blur artefact on 

CGLS image reconstruction. One-dimensional plot running through the centre of object 

in fig 10 (a) to (d) is shown in fig 10 (f). The boundaries of the object, in motion-

compensated images, are sharper than those of motion image. 
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Fig 10  CBCT images with (a) no motion applied, (b) 40 mm peak-to-peak sinusoidal motion applied, (c) 

motion compensation applied using true motion signal and (d) motion compensation applied using motion 

signal extracted from EIT images; (e) RMSE of (a) to (d) compared with the true image (case 1: no motion 

applied; case 2: motion applied; case 3: motion compensation using actual signal; case 4: motion 

compensation using EIT signal ); (f) 1D plots running through the centre of object (y=128) of (a) to (d) . 

 

Comparing among the motion-compensated images using EIT motion signal for 20, 40 

and 60 mm displacements, motion artefacts for the 20 mm image is lower than those for 

the 40 mm and 60 mm images. These results suggested that motion-compensated CGLS 

by using EIT motion signal can reduce motion blur artefacts, especially for small amounts 

of motion. This implied that the efficiency of removing motion artefacts may depend on 

the accuracy of motion detection technique. 
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5. Conclusion 

This paper presents a motion-compensated CBCT with limited data (one-fourth data) 

using CGLS reconstruction algorithm. CGLS is a superior iterative method compared to 

Kaczmarz's type methods (ART, SIRT, and SART), in terms of the speed of convergence, 

well suited for parallel computation, and possibility of including the regularisation and a 

priori knowledge in the image reconstruction process. The results suggested that the 

motion-compensated CGLS can improve image blur artefacts. Moreover, the motion-

compensated CGLS was applied to our dual modality of EIT-CBCT, which uses the 

motion signal extracted from EIT images to compensate in CBCT image reconstruction. 

The results show that the motion signal extracted from EIT images can be used to 

compensate the motion artefact in CBCT image reconstruction by using proposed motion-

compensated CGLS algorithm. Furthermore, the performance of motion compensation 

algorithm depends on the accuracy of motion signal. Further work will be required to 

implement this dual modality strategy in more meaningful clinical setting. Motion 

compensation can reduce blurring artefacts in CBCT scan, especially the movement of 

body organs e.g. heart, chest and abdomens.  
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