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Abstract 49	  

Introduction: Peroxiredoxin (PRDX) and Thioredoxin (TRX) are antioxidant proteins that 50	  

control cellular signalling and redox balance, although their response to exercise is unknown. 51	  

This study aimed to assess key aspects of the PRDX-TRX redox cycle in response to three 52	  

different modes of exercise. 53	  

Methods: Healthy males (n=10, mean ± SD: age 22 ± 3 yrs) undertook three exercise trials 54	  

on separate days: two steady-state cycling trials at a moderate (60% 2OV! MAX; 27 min, MOD) 55	  

and high (80% 2OV! MAX; 20 min, HIGH) intensity, and a low volume high intensity interval 56	  

training trial (10×1 min 90% 2OV! MAX, LV-HIIT). Peripheral blood mononuclear cells 57	  

(PBMCs) were assessed for TRX-1 and over-oxidised PRDX (isoforms I-IV) protein 58	  

expression before, during and 30 minutes following exercise (post+30). The activities of 59	  

TRX reductase (TRX-R) and the NF-κB p65 subunit were also assessed. 60	  

Results: TRX-1 increased during exercise in all trials (MOD +84.5%; HIGH +64.1%; LV-61	  

HIIT +205.7%; p<.05), whereas over-oxidised PRDX increased during HIGH only (MOD -62	  

28.7%; HIGH +202.9%; LV-HIIT -22.7%; p<.05). TRX-R and NF-κB p65 activity increased 63	  

during exercise in all trials, with the greatest response in TRX-R activity seen in HIGH 64	  

(p<.05). 65	  

Discussion: All trials stimulated a transient increase in TRX-1 protein expression during 66	  

exercise. Only HIGH induced a transient over-oxidation of PRDX, alongside the greatest 67	  

change in TRX-R activity. Future studies are needed to clarify the significance of heightened 68	  

peroxide exposure during continuous high intensity exercise and the mechanisms of PRDX-69	  

regulatory control.70	  
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Introduction 71	  

Exercise induces the production of reactive oxygen and nitrogen species (RONS), which 72	  

act as important signalling molecules in the vast array of metabolic adaptations that take 73	  

place in human tissues [1,2]. However, exercise of a certain intensity and duration can induce 74	  

acute cellular oxidative stress, a state whereby RONS overwhelm endogenous antioxidant 75	  

defence systems [3,4]. The exercise conditions required to achieve an optimal production of 76	  

RONS in order to stimulate adaptive processes, versus RONS that may initiate damage, is 77	  

currently unknown. Changes in markers of oxidative stress with exercise are commonly 78	  

studied in cells of the immune system, such as peripheral blood mononuclear cells (PBMCs) 79	  

[4,5] and recent work has focussed on the antioxidant proteins peroxiredoxin (PRDX) [6] and 80	  

thioredoxin (TRX) [7]. PRDX and TRX are ubiquitous oxidoreductase proteins that contain 81	  

thiol groups with a high capacity to control cellular levels of RONS and reduce oxidative 82	  

stress [8,9]. PRDX can directly target and reduce biological peroxides such as hydrogen 83	  

peroxide (H2O2), peroxynitrite and hydroperoxides [9]. TRX is central in maintaining the 84	  

reduced state of various antioxidant peroxidase enzymes [10], including four isoforms (I-IV) 85	  

of PRDX [11,12]. There is strong evidence that PRDX and TRX are central in modulating 86	  

peroxide based signals within a variety of cell types [13]. Understanding how PRDX and 87	  

TRX regulate the levels of RONS may be essential in aiding understanding of exercise-88	  

induced changes in RONS. 89	  

The oxidation states of TRX and PRDX have been studied extensively to facilitate the 90	  

understanding of cellular signalling in health and disease. The catalytic cysteine of 91	  

monomeric PRDX (20-30 kDa) can become oxidised by a peroxidase substrate to form 92	  

sulfenic acid (-SOH), before rapidly reacting with an adjacent PRDX molecule to form a 93	  

dimeric structure (Figure 1). TRX is the predominant antioxidant that reverses PRDX 94	  

(isoforms I-IV) oxidation and dimer formation [11,14], by similarly utilising its catalytic 95	  
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cysteine. TRX is subsequently maintained in a reduced state by the Nicotinamide adenine 96	  

dinucleotide phosphate (NADPH) dependent enzyme TRX-reductase (TRX-R). Under 97	  

conditions of high or prolonged peroxide exposure, PRDX has the capacity to become over–98	  

oxidised [15], and exceed the regulatory control of TRX [16]. Over-oxidation of PRDX 99	  

forms sulfinic (-SO2) and sulfonic acid (-SO3) PRDX oxidation states (PRDX-SO2-3) that 100	  

have limited or no peroxidase activity respectively [17]. 101	  

Previous work has highlighted that exercise can enhance the degree of PRDX over-102	  

oxidation (I-IV) in erythrocytes [18]. Only one study has previously addressed exercise-103	  

induced changes to PBMC PRDX oxidation states in humans. Turner et al, [6] observed an 104	  

increase in PRDX over-oxidation following an ultra-endurance race (126.7 - 233.4km; 20.4 - 105	  

41.4 hours of continuous running) in middle aged men. The role of TRX in this redox cycle 106	  

has not been previously monitored in response to exercise. The only study that has assessed 107	  

TRX in humans reported an increase in plasma TRX in response to an ultra-endurance race 108	  

[19]. The dissociation of TRX from TRX-interacting protein (TXNIP) and transcriptional 109	  

activation of TRX via NF-κB are likely mechanisms governing this observed extracellular 110	  

secretion. Indeed, RONS have been shown to upregulate the expression of a variety of 111	  

antioxidant enzymes via increased NF-κB activity [20] and TRX can dissociate from TXNIP 112	  

in a RONS-dependent manner [21]. 113	  

To our knowledge no studies have monitored the over-oxidation of PBMC PRDX 114	  

isoforms (I-IV) and their associations with TRX in response to modes of exercise that are 115	  

more commonly undertaken (i.e. <30 minutes). Further, no studies have examined the impact 116	  

of exercise intensity on these redox processes. The aim of the present study was to investigate 117	  

perturbations to TRX-1 protein expression, TRX reductase activity and PRDX over-oxidation 118	  

in PBMCs in response to three short duration exercise trials. To observe the mechanism of 119	  

TRX-1 response, we also assessed changes in the activity of the p65 subunit of NF-κB. 120	  
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Material and Methods 121	  

Participants 122	  

 Ten healthy males (Table 1) undertook three exercise trials, each separated by at least 123	  

seven days (Supplementary Figure 1). All participants gave their informed written consent 124	  

and the study was approved by the Science, Technology, Engineering and Mathematics 125	  

Ethical Review Committee at University of Birmingham (Approval number: ERN_12-0830). 126	  

Participants were non-smokers and had not taken any vitamin supplements or anti-127	  

inflammatory drugs for fourteen days prior to the first laboratory visit. Participants were also 128	  

required to refrain from any strenuous physical activity, consumption of alcoholic beverages 129	  

or food or drink with high nitrate content (beetroot, lettuce, spinach and processed meats) for 130	  

at least two days prior to each experimental session. 131	  

 132	  

Preliminary Assessments 133	  

 All experimental sessions took place within the School of Sport, Exercise and 134	  

Rehabilitation Sciences at the University of Birmingham. Participants visited the laboratory 135	  

to complete questionnaires addressing health history and demographics, and to have height 136	  

and weight assessed (Seca Alpha, Hamburg, Germany). Cardiorespiratory fitness ( 2OV! MAX) 137	  

was measured using an incremental test to exhaustion on an electromagnetically braked cycle 138	  

ergometer (Lode Excalibur Sport, Groningen, Netherlands). Following a three-minute warm 139	  

up at 30 watts, workload was increased by 30 watts every minute, until volitional exhaustion. 140	  

Oxygen uptake was assessed continuously using a breath-by-breath system (Oxygon Prx, 141	  

Jaeger, Wuerzberg, Germany) and heart rate monitored using a Polar Vantage heart rate 142	  

monitor (Polar Vantage, Kempele, Finland). The following criteria were used to indicate that 143	  

2OV! MAX had been reached: a fall in cadence below 60rpm, a respiratory exchange ratio 144	  
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( 2COV! / 2OV! ) >1.10-1.15, plateau in participant oxygen consumption or a maximal heart 145	  

rate >220 beats min-1- age [22]. 2OV! MAX was expressed relative to body weight (ml.kg-1min-146	  

1). 147	  

 148	  

Exercise Trials 149	  

 Seven days after preliminary measurements, participants returned to the laboratory to 150	  

undertake the first of three exercise trials. All trials were undertaken in the morning, 151	  

following an overnight fast, and all participants performed the three trials in a randomised 152	  

design. Each trial was separated by at least three days. Prior to each exercise trial, participants 153	  

undertook a warm up (5 minutes) at a workload eliciting 40% 2OV! MAX. Exercise trials were: 154	  

two workload matched steady-state cycling trials at moderate (60% 2OV! MAX; 27 minutes, 155	  

MOD) and high (80% 2OV! MAX; 20 minutes, HIGH) intensity and a low volume high 156	  

intensity interval training (LV-HIIT) trial. LV-HIIT consisted of ten 1 minute cycling 157	  

intervals at 90% 2OV! MAX, with 1 minute low intensity cycling at 40% 2OV! MAX.  158	  

 159	  

 160	  

Blood sampling 161	  

Prior to exercise, a catheter (Becton, Dickson & Company, Oxford, UK) was inserted 162	  

into the antecubital vein of the arm and a rested blood sample drawn after thirty minutes of 163	  

supine rest (baseline). The catheter was kept patent with saline (0.9% NaCl). Subsequent 164	  

blood samples were taken during the last minute of exercise (exercise) and then 30 minutes 165	  

following the exercise trial (post+30). At each time point, 15 ml of blood was drawn into four 166	  

separate vacutainer tubes containing potassium ethylene diaminetetraacetic acid (EDTA) 167	  

(Becton, Dickson & Company, Oxford, UK). 168	  
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 169	  

Blood Cell Isolation 170	  

Three EDTA tubes (approximately 15 ml) from each time point were used to isolate 171	  

PBMCs from whole blood using density gradient centrifugation. Briefly, whole blood was 172	  

diluted 1:1 with Roswell Park Memorial Institute Media (RMPI), and then layered carefully 173	  

on top of Ficoll paque PLUS (GE Healthcare) (2:1), before centrifuging at 400g for 30 174	  

minutes at 21°C.  The PBMC layer was aspirated and then washed three times with RPMI, by 175	  

centrifuging steps at 200g for 5 minutes. The final cell pellet was divided into two equal 176	  

aliquots. The first aliquot was lysed using RIPA buffer (1x, Sigma Aldrich) containing a 177	  

protease inhibitor cocktail (1µL/mL, Sigma Aldrich), vortexed thoroughly and lysate 178	  

collected. The second aliquot was resuspended in a freezing mixture (RPMI, fetal calf serum 179	  

(FCS) and dimethyl sulfoxide (DMSO); 7:2:1) and frozen at −1°C /min using a freezing 180	  

container (Nalgene “Mr Frosty” Thermoscientific). Both aliquots were stored at -80°C until 181	  

further analyses. 182	  

 183	  

Analytical Procedures 184	  

 Whole blood cell counts (i.e., total leukocyte differential) were assessed using the 185	  

coulter principle. In addition, haemoglobin (g/dL) and haematocrit (%) were assessed to 186	  

calculate blood volume changes as a result of exercise using the formulae shown in Bosch et 187	  

al, 2005 [23,24] (Coulter Analyser, Beckman-Coulter, High Wycombe, UK). Protein 188	  

concentration was determined using the bicinchoninic assay method [25]. 189	  

 190	  

Western Blotting Protocol 191	  

All reagent mixtures were sonicated thoroughly prior to use. PBMC protein lysates 192	  

(10 µg) were mixed 1:1 with laemmli sample buffer (10% 2-mercaptoethanol, Sigma Aldrich, 193	  
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Dorset, UK) and separated on 15-18% polyacrylamide gels. Gels were electrophoresed at 194	  

115V for 105 minutes using electrophoresis buffer (25 mM Tris, 192 mM glycine, and 0.1% 195	  

w/v SDS). Proteins were transferred onto Hybond-P® PVDF membrane (GE Healthcare, 196	  

Amersham, UK) with transfer buffer (25 mM Tris, 192 mM glycine, and 20% w/v methanol) 197	  

for 105 minutes at 170mA. Transfer was assessed by Ponceau S (Sigma Aldrich, Dorset, UK) 198	  

before membranes were washed with sodium hydroxide (0.1 M) and then blocked overnight 199	  

in non-fat milk (5%) in TBST blocking buffer (0.21 M NaCl, 0.05 M Tris Base, 0.1% w/v 200	  

Tween). Membranes were washed 6 times (5 minutes) in TBST (0.21 M NaCl, 0.05 M Tris 201	  

Base, 0.05% w/v tween-20) prior to incubation with rabbit polyclonal for anti-PRDX-SO2-3 202	  

(I-IV) (1:500, ab16830, Abcam, Cambridge, UK), mouse monoclonal anti-TRX-1 (1:1000, 203	  

ab16965, Abcam, Cambridge, UK), and mouse monoclonal anti-beta actin (1:10,000, A1978, 204	  

Sigma Aldrich, Dorset, UK) antibodies for 2 hours at room temperature. Membranes were 205	  

washed (6x5 min) before peroxidase conjugated goat anti-rabbit (for PRDX SO2-3 (I-IV) work, 206	  

1:10,000, A6154) or goat anti-mouse (for TRX-1 and beta actin work, 1:10,000, A0168) 207	  

antibodies (Sigma Aldrich, Dorset, UK) were applied for 1 hour at room temperature. 208	  

Following a further washing step (6 x 5 min), visualisation of proteins was undertaken using 209	  

Amersham ECL Prime detection reagent (GE Healthcare, Amersham, UK). Imaging and 210	  

band quantification was assessed using Syngene G:Box F3 (Geneflow, Staffordshire, UK) and 211	  

Syngene tools software respectively, and expressed in arbitrary units. 212	  

 213	  

Thioredoxin Reductase Activity 214	  

PBMCs were rapidly thawed in a water bath (37°C). Pellets were washed twice in 215	  

RPMI and FCS (9:1) to discard excess DMSO. Approximately 2 million cells were counted 216	  

using a haemocytometer and aliquoted for each time point (baseline and exercise). All 217	  

samples were adjusted to the lowest sample protein concentration. The lysate was then 218	  
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assessed for TRX reductase enzyme activity using a commercially available kit according to 219	  

manufacturer instructions (ab83463, Abcam, Cambridge, UK). Briefly, assay buffer (10 µl) or 220	  

TRX reductase inhibitor (10 µl) were added to two sets of identical samples (50 µl, diluted to 221	  

0.55mg/ml protein using assay buffer). All samples were then incubated with a reaction mix 222	  

(30µl assay buffer + 8µl 5,5’-dithiobis (2-nitrobenzoic) acid (DTNB) + 2µl nicotinamide 223	  

adenine dinucleotide phosphate (NADH) per well) and absorbances (λ = 412 nm) determined 224	  

immediately and at 25 minutes to monitor reaction kinetics (Labsystems Multiskan MS, 225	  

Virginia, USA). Values were then obtained from a linear standard curve of known 5-thio-2-226	  

nitrobenzoic acid (TNB) concentrations (0-50 nmol/well). 227	  

 228	  

NF- κB p65 subunit activation 229	  

The activity of the p65 subunit of NF-κB was assessed using a commercially available 230	  

ELISA (TransAM NF-kB p65 Chemi, Active Motif, La Hulpe, Belgium). Briefly, PBMC 231	  

lysates (6µg/well) were added to wells coated with an oligonucleotide, containing the NF-κB 232	  

consensus site (5’-GGGACTTTCC-3’). An antibody specific to an epitope on the p65 subunit 233	  

of NF-κB (50µl, 1:1000) was added to each sample, with binding occurring only when NF-234	  

kB was activated and bound to the target DNA sequence. Data are expressed as relative 235	  

absorbance units (nm). 236	  

 237	  

Statistical Analysis 238	  

 The Kolmogorov Smirnov test was used to test for normally distributed data at all 239	  

time points. Normally distributed variables (changes in lymphocytes, monocytes, lymphocyte: 240	  

monocyte ratio and, NF-kB activity and TRX-R activity) in response to exercise were 241	  

assessed by repeated measures ANOVA. All white blood cell values were adjusted for 242	  

changes in blood volume in response to exercise. Post hoc analysis of any interaction effects 243	  
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was performed by a test of simple effects by pairwise comparisons, with Bonferroni 244	  

correction. Non-normally distributed data (TRX-1 and PRDX-SO3 protein expression 245	  

changes) in response to exercise were analysed using the Friedman’s test, with Wilcoxon 246	  

signed-ranked pairwise comparisons. Differences between variables (e.g., participant 247	  

characteristics) at baseline were assessed using one-way analyses of variance (ANOVA). 248	  

Values are presented as means ± standard deviation or error (indicated throughout 249	  

manuscript). Statistical significance was accepted at the p<.05 level. Statistical analyses were 250	  

performed using SPSS (PASW Statistics, release 21.0, SPSS Inc., Chicago, IL, USA).   251	  

 252	  

Results 253	  

Participant characteristics 254	  

All participant characteristics are summarised in table 1. None of the participants 255	  

were smokers, nor taking regular medications or antioxidant supplements. 256	  

 257	  

Exercise Physiology Data 258	  

Table 2 reports the exercise physiology data during the three exercise trials. Total 259	  

energy expenditure (Kcal/ kg) was significantly lower in LV-HIIT, compared to HIGH 260	  

(p<0.0001) and MOD (p<0.0001) trials. There were no statistical differences in energy 261	  

expenditure between MOD and HIGH. Peak heart rate and rate of perceived exertion was 262	  

greatest during HIGH, relative to MOD (p’s<0.0001) and LV-HIIT (p’s<0.05). Peak heart 263	  

rate was significantly greater in HIGH compared to LV-HIIT (p=0.025). 264	  

 265	  

White Blood Cell Data 266	  

 Table 3 reports the changes in lymphocyte number, monocyte number and 267	  

lymphocyte: monocyte ratio, adjusted for changes in blood volume in response to the three 268	  
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exercise trials. Lymphocyte number increased during exercise in all trials (F2,18 = 54.3, 269	  

p<0.0001) and returned to baseline post+30 (F2,18 = 54.3, p<.0001). A significant time × 270	  

condition interaction was observed (F4,36 = 18.5, p<.0001) and pairwise comparisons revealed 271	  

that the increase in lymphocyte number during HIGH was greater than MOD (p=0.002). 272	  

Monocyte number increased during exercise in all trials (p=0.028) and returned to baseline 273	  

levels post+30 (p=.010). No differences were observed in monocyte number between trials. 274	  

No statistical differences were observed in lymphocyte: monocyte ratio in response to any of 275	  

the exercise trials.  276	  

 277	  

Thioredoxin-1 and Peroxiredoxin-SO2-3 (I-IV) protein expression changes 278	  

Figures 2 and 3 indicate changes in TRX-1 and PRDX SO2-3 (I-IV) expression in the 279	  

three exercise trials following normalisation for beta-actin and quantification with Genetools 280	  

(arbitrary values). Figures 2B and 3B are example western blots for one participant. TRX-1 281	  

increased in response to exercise in MOD (Ӽ2 (2) = 8.600, p=0.014), HIGH (Ӽ2 (2) = 6.200, 282	  

p=0.045) and LV-HIIT (Ӽ2 (2) = 11.436, p=0.003). Post hoc analyses with Wilcoxon signed-283	  

rank tests revealed a significant increase in TRX-1 from baseline to during exercise in the 284	  

LV-HIIT trial only (Z = -2.666, p=0.008). However, no differences were observed in TRX-1 285	  

protein expression during exercise between the three trials, i.e. increases in TRX-1 were not 286	  

exercise intensity dependent. Total PRDX-SO2-3 increased in response to HIGH only (Ӽ2 (2) 287	  

= 7.824, p=0.020). Post hoc analyses revealed that PRDX- SO2-3 increased during HIGH, 288	  

relative to baseline (Z = -2.524, p=.012). 289	  

	   290	  

Thioredoxin Reductase Activity 291	  

Figure 4 indicates changes in TRX reductase activity from baseline to during exercise 292	  

in the three exercise trials. TRX reductase activity increased during exercise, relative to 293	  
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baseline in all trials (F1,9 = 82.7, p=.002). A significant group x time interaction effect was 294	  

found (p=0.010), and a test of simple effects analysis by pairwise comparisons indicated that 295	  

the change in TRX reductase enzyme activity during exercise was greater in HIGH than 296	  

MOD (F2,18 = 3.1, p=.042). Differences between HIGH and LV-HIIT did not reach statistical 297	  

significance (p=.123). TRX reductase activity values returned to baseline post+30 (data not 298	  

shown). 299	  

 300	  

NF- κB p65 subunit activation 301	  

Figure 5 indicates changes in NF-kB p65 subunit activation in response to exercise. 302	  

NF-kB p65 activity increased during exercise in all trials, relative to baseline (F2,18 = 4.0, p = 303	  

0.036). No differences were observed between trials. 304	  

 305	  

Discussion 306	  

This study demonstrates that PBMC TRX-1 protein expression and NF-kB p65 activity 307	  

increased during exercise in young healthy males, irrespective of exercise intensity. An 308	  

increase in over-oxidised PRDX was shown during exercise in HIGH only. The activity of 309	  

TRX-R increased during exercise in all trials, with the greatest response observed in HIGH. 310	  

To our knowledge this is the first study assessing changes in PBMC TRX-1 protein 311	  

expression in response to single bouts of exercise in humans (Figure 2). Previously, TRX-1 312	  

protein expression in PBMCs of mice significantly increased 12 hours following a short bout 313	  

of swimming exercise, with no changes observed between 30 minutes and 6 hours [7]. In 314	  

response to heightened oxidative stress, TRX can scavenge RONS [12], reduce oxidised 315	  

macromolecules [10] and regulate the expression/recycling of antioxidant proteins such as 316	  

manganese superoxide dismutase [26] and reduced glutathione [27]. The transient changes in 317	  
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both TRX-1 expression and NF-kB p65 activity (i.e. increase during exercise and return to 318	  

baseline values within thirty minutes), suggests that cytosolic TRX-1 has been released in a 319	  

RONS-dependent manner from its binding protein Thioredoxin-interacting protein (TXNIP) 320	  

[21] to elicit an array of antioxidant actions during all exercise trials. NF-kB activity has been 321	  

shown to be increased in response to various modes of exercise [28,29] and to elicit a variety 322	  

of antioxidant actions [20,30]. Hollander et al, showed that superoxide dismutase expression 323	  

increased in response to aerobic exercise in the vastus lateralis muscle of rats, with maximal 324	  

NF-kB binding occurring at 2 and 10 hours post-exercise [30]. The transient activation of 325	  

NF-kB in the current study could be, in part, due to direct TRX binding of NF-kB [8]. We 326	  

suggest that thirty minutes following cessation of exercise, TRX and TXNIP have re-327	  

associated (i.e. reformation of disulphide bond), with transcriptionally regulated changes in 328	  

TRX protein expression occurring later, supporting previous work by Sumida et al, [7]. These 329	  

responses are in agreement with other data from our study confirming transient exercise-330	  

induced increases in whole-body oxidative stress (e.g., increased plasma lipid hydroperoxides 331	  

and elevated plasma total antioxidant capacity) (data not shown; Wadley et al, 2014, 332	  

manuscript under review). It is however surprising that PRDX over-oxidation returned to 333	  

baseline values within thirty minutes of exercise in all trials (Figure 3). Recycling of over-334	  

oxidised PRDX is a process known to occur very slowly in vitro [31]. Despite there being 335	  

limited data on this mechanism in exercising humans, this finding warrants further study.  336	  

Increases in PRDX over-oxidation in PBMCs during exercise may occur in response to 337	  

higher levels of RONS such as H2O2 and peroxynitrite [32]. The catalytic cysteine residue of 338	  

PRDX can utilise its peroxidase activity to regulate peroxide mediated cellular signalling 339	  

[9,33]. In the current study, a significant increase in over-oxidised PRDX (isoforms I – III, 340	  

Figure 3) was only observed during exercise in HIGH, suggesting that peroxide exposure was 341	  

highest in this trial and/or that the reducing power of TRX was sufficient in the other trials to 342	  
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limit PRDX peroxidase activity. Lower exercise-induced peroxide exposure in MOD and LV-343	  

HIIT may have limited PRDX cysteine oxidation to the initial oxidation state, -SOH. In this 344	  

conformational change, a PRDX cysteine residue forms a disulphide bond with an adjacent 345	  

PRDX molecule [14]. TRX-R, the reducing partner of TRX, showed an increase in activity 346	  

during all exercise trials (Figure 4), with the greatest increase observed during HIGH. This 347	  

too suggests higher peroxide exposure and greater formation of intra-molecular disulphides 348	  

within the TRX protein in HIGH. Collectively, these results suggest that a threshold may 349	  

exist, whereby exercise-induced RONS exposure can exceed TRX/TRX-R regulatory control 350	  

and over-oxidise PRDX. This threshold may have been exceeded during short-duration, high 351	  

intensity steady state exercise.  352	  

Both TRX [34] and PRDX [35] have been previously associated with heightened 353	  

inflammation. Additional data (Wadley et al, 2014, manuscript under review) from this study 354	  

demonstrated that plasma Interleukin (IL)-6 and IL-10 concentrations were significantly 355	  

increased in response to exercise, with the greatest responses observed following HIGH and 356	  

LV-HIIT. Recent evidence has demonstrated that following TRX-TXNIP dissociation, 357	  

TXNIP can directly induce increases in IL-1β, an early inflammatory cascade cytokine [21] 358	  

and signal for IL-6 production [36]. Similarly, PRDX has been linked with IL-23 [35] and IL-359	  

6 production in macrophages [37], primarily following oxidation-induced oligomerisation 360	  

and switch from peroxidase to chaperone function [37]. Further research is necessary to 361	  

understand the interactions and relationships between the redox cycle of PBMCs and the 362	  

inflammatory response/immune cell function.  363	  

It must be noted that despite normalisation of PRDX and TRX data for total cell and 364	  

protein content, shifts in the number and phenotype of lymphocytes and monocytes can occur 365	  

during exercise [5,38]. Indeed, lymphocyte and monocyte number did increase in response to 366	  

exercise in all trials (Table 3). However, previous work has indicated that shifts in the cellular 367	  
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composition of peripheral blood do not influence biomarkers of oxidative stress [3]. A 368	  

limitation to the current study is that PRDX (I-III) protein expression was not measured to 369	  

quantify the relative oxidised to reduced ratio of PRDX proteins. With regards to exercise-370	  

induced changes in PBMC TRX protein expression, future work should expand upon the 371	  

current findings, by distinguishing between TXNIP-mediated and transcriptional regulation 372	  

of TRX by monitoring time-course responses to exercise of various intensities. 373	  

In conclusion, the present results show that both TRX-1 and PRDX are perturbed in 374	  

response to exercise in PBMCs from untrained males. While similar increases in TRX-1 were 375	  

observed in response to all exercise trials, only high intensity steady state exercise (i.e., 376	  

HIGH) caused over-oxidation of PRDX. Future studies should expand upon this work to 377	  

elucidate the implications of PRDX over-oxidation in response to high intensity steady state 378	  

exercise. 379	  

 380	  
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Tables 514	  

Table 1:  Characteristics of male subjects.   515	  

 
(N=10, male) 

Age (yrs.) 22 ± 3 

Weight (kg) 78.1 ± 11.0 

Height (m) 1.8 ± 0.1 

BMI (kg.m
2
) 24.0 ± 3.1 

VO2max (ml.kg.min
-1
) 42.7 ± 5.0 

 516	  

Table 1 Legend: Values are means ± standard deviation.  517	  

 518	  

 519	  

 520	  

 521	  

 522	  

 523	  

 524	  

 525	  

 526	  

 527	  

 528	  

 529	  

 530	  

 531	  
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Table 2:  Exercise Physiology Data.  532	  

 MOD HIGH LV-HIIT 

Average Workload 
(Watts / kg) 1.40 ±  0.22 +++ 2.14 ± 0.33 ***+ 2.69 ±  0.54 *** 

Peak Heart Rate 
(bpm) 146.70 ± 11.08 +++ 185.00 ± 9.17 ***+ 176.00 ± 13.80 *** 

Total Energy 
Expenditure (Kcal / 

kg) 
3.33 ± 0.43 3.39 ± 0.47 +++ 2.63 ± 0.34 *** 

Peak rate of 
Perceived Exertion 

(Borg Scale) 
13.33 ± 1.42 17.90 ± 1.45 *** 16.20 ± 2.15 * 

 533	  

Table 2 Legend: Average workload (Watts/kg), peak heart rate (bpm), total energy 534	  

expenditure (Kcal/kg) and peak rate of perceived exertion during the exercise trials. Values 535	  

are means ± standard deviation. * indicates a significant difference in values, relative to 536	  

MOD: * p<.05; ** p<.01; *** p<.0001). + indicates a significant difference in values, 537	  

relative to LV-HIIT: + p<.05; ++ p<.01; +++ p<.0001). 538	  

 539	  

 540	  

 541	  

 542	  

 543	  

 544	  

 545	  

 546	  

 547	  

 548	  

 549	  
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Table 3:  Immune cell responses to the three exercise trials.  550	  

 551	  

Table 3 Legend:  Lymphocyte, Monocyte and Lymphocyte: Monocyte Ratio data, adjusted 552	  

for changes in blood volume in response to exercise in the MOD, HIGH and LV-HIIT trials. 553	  

Values are means ± standard deviation. * indicates a significant difference relative to baseline: 554	  

* p<.05; ** p<.01; *** p<.0001). $ indicates a significant difference relative to during 555	  

exercise: $ p<.05; $$ p<.01; $$$ p<.0001). # indicates a significantly greater response during 556	  

HIGH relative to MOD (p<.002). 557	  

 558	  

 559	  

 560	  

 561	  

 562	  

 563	  

 564	  

 565	  

 566	  

 567	  

 

MOD HIGH LV-HIIT 

Base Exercise Post+30 Base Exercise Post+30 Base Exercise Post+30 

Lymphocytes 
(×10

6
/ml) 

1.89 ± 
0.47 

2.52 ± 
0.73*** 

1.67 ± 
0.39

$$$
 

1.86 ± 
0.42 

4.27 ± 
1.26***## 

1.79 ± 
0.40

$$$
 

1.79 ± 
0.47 

3.28 ± 
1.31*** 

1.61 ± 
0.40

$$$
 

Monocytes 
(×10

6
/ml) 

0.29 ± 
0.15 

0.41 ± 
0.21* 

0.22 ± 
0.08

$$
 

0.32 ± 
0.18 

0.56 ± 
0.39* 

0.31 ± 
0.14

$$
 

0.23 ± 
0.11 

0.37 ± 
0.10* 

0.33 ± 
0.16

$$
 

Lymphocyte: 
Monocyte 

Ratio 

7.60 ± 
3.04 

7.19 ± 
4.71 

8.54 ± 
3.45 

7.44 ± 
3.58 8.86 ± 4.55 6.79 ± 

3.12 
10.02 
± 6.50 

9.47 ± 
5.74 

5.64 ± 
2.09 
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Figure Legends 568	  

Figure 1:  A schematic representation of the oxidation states of PRDX and TRX 569	  

following peroxide exposure. R = R-group -SH = Sulfhydryl group  SRX = Sulfiredoxin  S-570	  

S = Disulphide Bond 571	  

 572	  

Figure 2:  Total TRX-1 levels in response to the three exercise trials. A) Bars represent 573	  

total TRX-1 in PBMC lysates before (Baseline), during (Exercise) and thirty minutes 574	  

following exercise (Post+30). Values are means ± standard error. * indicates significant 575	  

differences during exercise, relative to baseline: * p<.05; ** p<.01; *** p<.0001). B) 576	  

Example western blot of a single subject. The image represents PBMC lysates under reducing 577	  

conditions.	  578	  

 579	  

Figure 3:  Total PRDX-SO2-3 (I-IV) levels in response to the three exercise trials. A) Bars 580	  

represent total PRDX-SO2-3 (I-IV)  in PBMC lysates before (Baseline), during (Exercise) and 581	  

thirty minutes following exercise (Post+30). Values are means ± standard error. * indicates 582	  

significant differences during exercise, relative to baseline: * p<.05; ** p<.01; *** p<.0001). 583	  

B) Example western blot of a single subject. The image represents PBMC lysates under 584	  

reducing conditions. The two distinct bands in are representative of the different isoforms of 585	  

PRDX. Over-oxidised PRDX isoforms 1 and 2 resolve at 20-22kDa, PRDX-3 at 26kDa and 586	  

PRDX-4 at 31kDa (no band). 587	  

 588	  

Figure 4:  Changes in Thioredoxin Reductase Activity during exercise, relative to 589	  

baseline in response to the three exercise trials. Bars represent changes in Thioredoxin 590	  

Reductase Activity in PBMC lysates from baseline to during exercise. Values are means ± 591	  
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standard error. * indicates significant differences in response to exercise, relative to baseline 592	  

in all trials: * p<.05; ** p<.01; *** p<.0001). # indicates a significant difference in the 593	  

response between HIGH and MOD during exercise (p<0.042). Enzyme activity was also 594	  

assessed 30 minutes post-exercise and values returned to baseline levels (data not shown). 595	  

 596	  

Figure 5:  Changes in NF-κB	  p65 subunit activation in response to the three exercise 597	  

trials. Bars represent relative absorbance values in PBMC lysates before (Baseline), during 598	  

(Exercise) and thirty minutes following exercise (Post+30). Values are means ± standard 599	  

error. * indicates significant differences during exercise, relative to baseline: * p<.05; ** 600	  

p<.01; *** p<.0001). 601	  

 602	  

Supplementary Figure 1:  Experimental protocol. Participants completed 3 randomised 603	  

exercise trials in a fasted state.  LV-HIIT consisted of ten 1 minute stages at 90% 2OV! MAX, 604	  

interspersed with nine 1 minute intervals at 40% 2OV! MAX.  605	  

↓ Blood samples (baseline, exercise & post+30);   W, Warm up 606	  

	  607	  

 608	  

 609	  

 610	  

 611	  

 612	  

 613	  

 614	  

 615	  
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Supplementary Table 616	  

 617	  

Supplementary Table 1:  Changes in blood and plasma volume in response to exercise.  618	  

 619	  

 MOD HIGH LV-HIIT 

Base Exercise Post+30 Base Exercise Post+30 Base Exercise Post+30 

Blood 

Volume 

(%) 

100 94.2 ± 

4.7*** 

99.9 ± 

5.0$$$ 

100 92.3 ± 

2.9 *** 

100.7 ± 

4.5$$$ 

100 91.8 ± 

4.2*** 

99.3 ± 

4.2$$$ 

Plasma 

Volume 

(%) 

57.6± 

2.7 

55.8 ± 

12.7** 

57.5 

± 3.8$$ 

56.4 

± 3.7 

48.2 ± 

3.5** 

56.9 

± 3.8$$ 

57.7 

± 2.3 

49.3 ± 

4.2** 

56.7 ± 

4.4$$ 

 620	  

Supplementary Table 1 Legend:  Changes in blood volume, relative to baseline (100) are 621	  

indicated. Plasma volume was calculated by monitoring changes in blood haematocrit. 622	  

Values are means ± standard error. * indicates significant differences in response to exercise, 623	  

relative to baseline in all trials: * p<.05; ** p<.01; *** p<.0001). $ indicates a significant 624	  

difference relative to during exercise: $ p<.05; $$ p<.01; $$$ p<.0001).	  625	  
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