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 2 

Abstract 1 

Dissolved organic matter (DOM) has recently been shown to reduce the transformation rate of 2 

various aqueous organic contaminants submitted to oxidation by excited triplet states, apparently 3 

by inhibiting the transformation of oxidation intermediates. The main goals of the present study 4 

were to evaluate in more detail the effect of concentration and type of DOM on the triplet-5 

induced transformation rate of four selected organic compounds and to check for an analogous 6 

inhibition effect in the case of oxidation induced by hydroxyl radical. A marked inhibition by 7 

DOM of triplet-induced oxidation was observed for N,N-dimethylaniline (DMA) and the two 8 

antibiotics sulfamethoxazole (SMX) and trimethoprim (TRI), DOM of terrestrial origin being a 9 

more effective inhibitor than DOM of aquatic origin. The results are important to understand the 10 

role of DOM both as a photosensitizer and as an inhibitor for the triplet-induced transformation 11 

of aquatic contaminants. In contrast, no DOM-induced reduction in second-order rate constant 12 

could be observed in competition kinetics experiments for the reaction of hydroxyl radical with a 13 

series of 15 organic compounds, covering several classes of aromatic contaminants, indicating 14 

that Suwannee River fulvic acid (SRFA) used as reference DOM does not affect this reaction 15 

mechanism. 16 

17 
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Introduction 1 

The presence of dissolved organic matter (DOM) in natural waters has an important influence 2 

on light-induced transformation pathways of organic contaminants. An increased photochemical 3 

transformation rate of pesticides in natural waters with respect to pure aqueous solutions was 4 

already reported more than three decades ago {Zepp, 1976 #1}. This acceleration of 5 

transformation is mainly initiated by the absorption of light by water components such as DOM, 6 

nitrate and nitrite ion, and various Fe(III) species, leading to the formation of several primary and 7 

secondary reactive species that are able to react with organic compounds {Zafiriou, 1984 8 

#81}{Richard, 2005 #5}. Among these species excited triplet states of DOM (3DOM*) and 9 

hydroxyl radical (•OH) play an important role because they have oxidative reactivity towards a 10 

wide range of environmentally relevant compounds (3DOM*: {Canonica, 1995 #22; Gerecke, 11 

2001 #90; Chin, 2004 #4; Werner, 2005 #3; Boreen, 2005 #13}; •OH: {Haag, 1992 #6; Huber, 12 

2003 #8; Esplugas, 2007 #7}). However, DOM can also contribute to decrease the 13 

phototransformation rate of contaminants by three distinct effects: Scavenging/quenching of 14 

reactive species, filtering/screening (attenuation) of the photochemically active light, and limiting 15 

of the net oxidation due to reduction of intermediates. 16 

While scavenging of hydroxyl radical {Brezonik, 1998 #87}{Goldstone, 2002 17 

#88}{Westerhoff, 2007 #26} and light screening by DOM {Leifer, 1988 #16} have been studied, 18 

little is known about the reduction of oxidation intermediates by DOM {Canonica, 2008 #10}. 19 

This reduction may be considered as an alternative case of scavenging/quenching, where not the 20 

oxidative reactive species itself but a transformation intermediate of the contaminant P reacts 21 

with DOM, as exemplified in the following scheme: 22 

 PRSPRS red          (1) 23 
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oxPP             (2) 1 

  DOMPDOMP         (3) 2 

According to eq 1, an oxidative reactive species RS (e.g., 3DOM*, •OH) reacts with the 3 

contaminant leading to a reduction product of RS, RSred, and an intermediate radical cation P•+. 4 

Subsequently P•+ undergoes parallel reactions, where it is either irreversibly oxidized to Pox (eq 2) 5 

or reduced back to its parent compound by easily oxidizable moieties of DOM generating an 6 

oxidized DOM  species (eq 3). The more the second pathway is favored the smaller the yield of 7 

Pox and consequently the rate of contaminant transformation should be. Reduction of oxidation 8 

intermediates by DOM is plausible {Aeschbacher, 2010 #89} because DOM contains a variety of 9 

organic moieties, in particular phenolic functional groups, which may act as antioxidants. It 10 

should be noted that in the above reaction scheme P•+ stands as a representative for a suite of 11 

possible oxidation intermediates that may be reduced back to the parent compound. A direct 12 

observation of the species involved in eq 3 is still outstanding. 13 

An initial study of the possible inhibition of oxidation reactions by DOM {Canonica, 2008 #10} 14 

was carried out using the excited triplet state of benzophenone-4-carboxylate (CBBP) as the 15 

oxidant. The oxidation rate of around half of twenty-two environmentally relevant aquatic 16 

contaminants was found to decline in the presence of Suwannee River fulvic acid (SRFA), used 17 

as a reference DOM. Especially compounds having an aniline functionality, including antibiotics 18 

such as sulfonamides and trimethoprim (TRI), but also some phenols were hindered by DOM in 19 

their transformation. Triplet quenching by DOM was excluded as a possible underlying 20 

mechanism since a significant number of the studied contaminants was not affected by any 21 

reduction in oxidation rate in the presence of DOM. Triplet state quenching would result in a 22 
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uniform decrease in oxidation rate for any target contaminant. A simple reaction model was 1 

introduced to explain DOM-induced inhibition of oxidation. 2 

The objective of the present study was to further characterize the observed inhibition, to 3 

generalize and refine the reaction model and to screen for the occurrence of the effect in an 4 

alternative oxidation system. For triplet induced oxidation we selected four target compounds to 5 

be oxidized: (i) 4-methylphenol (4MP) as a representative for the compounds for which no 6 

inhibition of triplet induced oxidation by DOM was found, (ii) N,N-dimethylaniline (DMA), and 7 

the two antibiotics (iii) sulfamethoxazole (SMX) and (iv) trimethoprim (TRI) as compounds 8 

showing inhibition by DOM. Investigations were extended to consider the influence on oxidation 9 

for several types of DOM and a lake water and the use of 10 

2-acetonaphthone (2AN) as a photosensitizer (and excited triplet state precursor) in addition to 11 

CBBP. The second photosensitizer was included to have an improved model system for 12 

mimicking the oxidative properties of 3DOM* {Canonica, 2007 #11}. In additional experiments 13 

using competition kinetics, the influence of SRFA on the oxidation of several organic 14 

contaminants by •OH was investigated. Hydroxyl radical was chosen, because of its importance 15 

in the aquatic environment, where it is produced photochemically by various pathways {Larson, 16 

1994 #23}, and in water treatment processes such as ozonation and advanced oxidation (AOPs) 17 

{Hoigné, 1998 #24}. 18 

 19 

Experimental Section 20 

Materials and chemicals. All chemicals were from commercial sources and used without 21 

further purification. For a complete list of chemicals used see the Supporting Information (SI), 22 

Text S1. Standard DOMs: Nordic Aquatic Fulvic Acid (NAFA), Pony Lake Fulvic Acid (PLFA), 23 
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and Suwannee River Fulvic Acid (SRFA) were obtained from the International Humic 1 

Substances Society. Lake water (GSW) was collected at lake Greifensee, Switzerland ([DOM] = 2 

3.9 mgC L-1; pH 8.0), immediately filtered (0.45 μm, cellulose nitrate, Sartorius AG, Goettingen, 3 

Germany) and stored in glass bottles in the dark at 4°C. 4 

Irradiation experiments. Steady state irradiations were performed in glass-stoppered quartz 5 

glass tubes using a merry-go-round photoreactor equipped with a medium-pressure mercury lamp 6 

operated at 500 W and appropriate filters. Details about the irradiation procedures are given in SI, 7 

Text S2. Prior to irradiation, solutions were aerated and equilibrated for 15 min in a water bath at 8 

a temperature of 25.0 °C, which was kept constant (± 0.2 °C) during irradiation. 9 

The oxidation of contaminants and model compounds (in the following both referred to as target 10 

compounds) by 3Sens* in the presence of standard DOM and GSW was investigated by 11 

irradiating up to six tubes simultaneously. Solutions containing standard DOM were buffered at 12 

pH 8 with 5 mM phosphate (Na2HPO4/NaH2PO4) and adjusted with H2SO4. GSW was not further 13 

treated, prior to irradiations. Each tube was filled with 20 mL GSW or standard DOM solution at 14 

0  5 mgC L-1 (except the combination CBBF-TRI-PLFA: 0  8 mgC L-1) and supplemented with 15 

a target compound at a concentration of 5 µM and an aromatic photosensitizer at a concentration 16 

to obtain 5%  80% depletion during irradiation time. (Target compound/[CBBP]/[2AN]: 17 

4MP/40 μM/150 μM; DMA/40 μM/20 μM; SMX/40 μM/ 70 μM; TRI/40 μM/200 μM). Solutions 18 

were irradiated for 5 min. To determine phototransformation rates in “blank” samples, i.e. 19 

samples without a model photosensitizer, a set of tubes containing 5 M of target compound in 20 

buffered water, GSW or buffered standard DOM solutions was irradiated for 20 – 120 min, based 21 

on the depletion rate of the target compound (4MP: 20 min; DMA 60 min; TRI: 120 min; SMX: 22 
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120 min). Samples of 400 μL were withdrawn at six equidistant time intervals and analyzed 1 

immediately or stored at 4°C. 2 

For •OH competition kinetics experiments, performed based on hydrogen peroxide photolysis 3 

and using a procedure described elsewhere {Huber, 2003 #8}, a set of four tubes was irradiated 4 

for each target compound. Besides borate buffered solution (5 mM, pH 8) with 0.5 μM of target 5 

compound and 0.5 μM p-chlorobenzoic acid (pCBA), these tubes contained (i): no additions; (ii): 6 

2.5 mgC L-1 SRFA; (iii): 5 mM H2O2; (iv): 2.5 mgC L-1 SRFA and 5 mM H2O2. Six samples 7 

were taken during 20 min of irradiation. 8 

Analytical methods. A description of the HPLC systems used to examine depletion of target 9 

compounds including a complete list of HPLC conditions, detection wavelengths and separation 10 

columns is given together with details of spectrophotometric and pH-measurements in SI, Table 11 

S1 & Text S3. 12 

 13 

Results and Discussion 14 

A. Triplet-induced oxidation 15 

Kinetics analyses and corrections. The inhibition of oxidation of target compounds was 16 

quantified by means of kinetics experiments, where the initial concentrations of the selected 17 

target compound and photosensitizer were kept constant, while the DOM concentration was 18 

varied. For each concentration of selected DOM two kinetics runs were carried out with and 19 

without the selected photosensitizer, respectively. As already pointed out previously {Canonica, 20 

2008 #10}, the blank experiments, i.e. those conducted in the absence of a photosensitizer, serve 21 

to introduce some inevitable correction to compensate for direct and indirect 22 

phototransformations of the target compound which do not depend on the photosensitizer. Data 23 
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were analyzed by linear regression using the logarithmic form of the pseudo-first-order kinetic 1 

equation: tk
C

C
)ln(

0

, where C and C0 are the concentrations of target compound at 2 

irradiation time t and zero (before irradiation), respectively, and k (s-1) is the pseudo-first-order 3 

rate constant. A set of such regression lines is shown in SI (Figure S1). 4 

In general, photoinduced transformation in the absence of both photosensitizer and DOM, 5 

possibly arising from direct phototransformation and indirect phototransformation induced by 6 

impurities, kblank, were found to be negligible. DOM alone, which is well known to possess 7 

photosensitizing activity {Richard, 2005 #5; Canonica, 2008 #10}, induced significant depletion 8 

of the target compound in some cases. Thus, rate constants for the transformation of target 9 

compound in the presence of a photosensitizer and DOM,   DOMk DOMSens, , were corrected by 10 

applying eq 4. 11 

        DOMkDOMkDOMk DOMDOMSensDOMSens  ,

)1(

,      (4) 12 

where   DOMkDOM  is the target compound transformation rate constant obtained in the absence 13 

of photosensitizer and   DOMk DOMSens

)1(

,  is the corrected rate constant (note that for the case of 14 

absence of DOM,    SensDOMSens kDOMk  0,  and    blankDOM kDOMk  0 , leading to 15 

blankSensSens kkk )1( ). The superscript (1) indicates the first of two subsequent correction steps. 16 

Experimental conditions were chosen in order to minimize the DOM-photosensitized 17 

transformation of target compounds making only a small correction necessary. Data for kSens, 18 

kDOM([DOM] = 5 mgC L-1) and kblank are given in SI, Table S3. Generally, using CBBP at a 19 

concentration of 40 M the maximum correction introduced by eq 4 amounted to 10%. 20 

Corrections when using 2AN were in some cases higher, due to the slower transformation 21 

obtained with some target compounds (especially with TRI). 22 
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The second correction step introduced in the analysis of the present data concerns the 1 

compensation for the absorption of light by DOM, causing a screening effect or, in other words, a 2 

decrease in fluence rate and therefore in light available for the triplet-induced process. The 3 

procedure for calculating an approximate light screening factor,   DOMS
rel

SensDOM ,, , is described 4 

in detail in SI (Text S4, Figure S2 and Table S2). This further correction is expressed by eq 5. 5 

        DOMSDOMkDOMk
rel

SensDOMDOMSensDOMSens ,,
)1(

,

)2(

,      (5) 6 

Although the two corrections according to eqs 4 and 5 are needed for an accurate quantitative 7 

data analysis, they do not drastically change the rate constants, and qualitative trends are 8 

generally the same for both corrected and uncorrected data. In the following, the superscript (2) 9 

indicates that the data shown underwent both correction steps. 10 

Corrected oxidation rate constants: Dependence on DOM concentration. The effect of the 11 

presence of DOM on the photosensitized oxidation rate constants of the selected target 12 

compounds is shown in Figure 1 for the case of SRFA as a model DOM. For an optimal data 13 

representation the corrected rate constants (eq 5) were normalized to the zero-DOM value, i.e. to 14 

  0)2(

,

)2(  DOMkk DOMSensSens , and plotted as    )2()2(

, / SensSRFASens kSRFAk . For CBBP as the 15 

photosensitizer (Figure 1a), the strongest decrease of the oxidation rate could be observed for the 16 

pyrimidine derivative TRI. Already an addition of 0.5 mgC L-1 of SRFA led to a decline of 80% 17 

in oxidation rate constant. Addition of more than 1 mgC L-1 gave no significant further decrease. 18 

A steady decrease in oxidation rate with increasing [SRFA] was found for SMX, with a reaction 19 

rate decrease of 70% at 5 mgC L-1 of SRFA. For DMA the decrease in relative rate constant at 20 

low [SRFA] was slightly more pronounced than for SMX, but at higher [SRFA] the relative rate 21 

constant appeared to level off to reach a limiting value of  0.5. In contrast to these three 22 
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compounds, the phenolic compound 4MP showed no decreased oxidation rate in the presence of 1 

SRFA, as expected from previous results {Canonica, 2008 #10}. 2 
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Figure 1. The influence of Suwannee River fulvic acid (SRFA) on the rate constants for 5 

oxidation photosensitized by a) CBBP and b) 2AN, for the four target compounds 4MP (■), 6 

DMA (●), SMX (▲), and TRI (▼). Error bars indicate 95% confidence intervals. Curves 7 

represent non-linear fits to eq 7. Insets: Relative oxidation rate constants of target compounds 8 

normalized to DMA in the absence of DOM. 9 

 10 

The results obtained using 2AN as the photosensitizer (Figure 1b) are somewhat different from 11 

those observed with CBBP. Whereas the trends for DMA and SMX are similar to those shown in 12 

Figure 1a, TRI exhibits a completely different behavior, with strong data scattering and even a 13 

slight increase in oxidation rate with increasing [SFRA]. The data scattering is due to the very 14 

low reactivity of 32AN* towards TRI (Figure 1b, inset), which makes the determination of rate 15 

constants inaccurate. The assignment of such a residual TRI reactivity to direct oxidation by 16 

32AN* is uncertain, and a comparison with results obtained using CBBP is not useful. The 4MP-17 
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32AN* data show a moderate increase in oxidation rate with increasing [SRFA], and this 1 

contradicts the expectation that the oxidation rate of 4MP should not be affected by DOM. We 2 

interpret this enhancement in oxidation rate as being due to the formation of additional oxidative 3 

species by interaction of 32AN* with DOM, which would add a further reaction channel for 4MP 4 

oxidation. 5 

Analogous rate constant diagrams, as shown in Figure 1, are given in SI (Figure S3) for the 6 

other two standard DOMs used here, namely NAFA and PLFA. For NAFA patterns are very 7 

similar as for SRFA. This common feature is not surprising since both NAFA and SRFA have a 8 

strong allochthonous (soil-derived) component. In contrast, PLFA showed a more complex 9 

behavior. Trends observed in the system with CBBP and PLFA are almost the same as for the 10 

two previous DOMs (the only deviation consists in slightly higher values for the SMX oxidation 11 

rate constant at low [PLFA]). In the system with 2AN and PLFA it is hard to recognize a 12 

decrease in oxidation rate constant with increasing [PLFA]. On the contrary, the rate constants 13 

for 4MP and SMX oxidation are even increased by up to about 50% in the presence of PLFA. As 14 

suggested above when discussing the behavior of 4MP in the 2AN-SRFA system, the formation 15 

of additional photooxidants by interaction of the excited triplet ketones with DOM appears to be 16 

a plausible explanation for the increased depletion rate of the target compounds, and such an 17 

effect seems to be stronger for PLFA than for the other two fulvic acids. Such a difference in the 18 

behavior of PLFA and the mostly allochtonous fulvic acids is probably connected to their 19 

markedly different chemical composition, with lower aromaticity and much higher nitrogen 20 

content for PLFA {Guerard, 2009 #80}. 21 

To check the transferability of results obtained using standard DOMs to real surface waters, 22 

additional experiments were performed using almost undiluted GSW (CBBP systems: 94.5%, 23 

2AN systems: >96.8%). Samples of this water were taken from Lake Greifensee, a small 24 
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eutrophic lake whose DOM contains predominantly autochtonous but also allochtonous 1 

components, and should therefore have intermediate chemical characteristics with respect to 2 

NAFA and SRFA on the one hand and PLFA on the other. Figure 2 shows normalized oxidation 3 

rates (    )2()2(

, / SensDOMSens kDOMk ) for GSW and solutions of standard DOM, all containing the same 4 

amount of DOM (3.9 mgC L-1). In the case of 4MP the increase of the rate in GSW was found to 5 

be higher than for the corresponding amounts of standard fulvic acids (in terms of carbon). This 6 

indicates that the already proposed formation of additional photooxidants is more efficient in the 7 

lake water than in DOM solutions (possibly due to the presence of anions such as 8 

carbonate/bicarbonate and nitrite). For the other three target compounds, the extent of inhibition 9 

of oxidation for GSW was similar to the studied DOM solutions, but was not always intermediate 10 

with respect to the studied autochtonous and allochtonous DOM. The only deviation from this 11 

general behavior was found for the system SMX/CBBP, where inhibition in GSW was almost 12 

negligible. 13 
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Figure 2. Ratio of reaction rates of triplet-induced oxidation in DOM free solutions to GSW and 1 

reference DOM solutions (all at 3.9 mgC L-1, according to GSW concentration) for a) CBBP and 2 

b) 2AN. Error bars represent 95% confidence intervals.  3 

 4 

Models for the DOM concentration dependence of the inhibition of oxidation. To analyze 5 

the data obtained in the present study, two kinetic models of different complexity were 6 

considered (see Scheme 1). 7 

 8 

Scheme 1. Proposed kinetic models for the DOM concentration dependence of the 9 

inhibition of oxidation  10 

 11 

 12 

 13 

 14 

 15 

A) One reaction channel inhibited by DOM   B) Two parallel reaction channels, 16 

             one thereof inhibited by DOM 17 

 18 

The first model (Scheme 1A) is equivalent to the one considered in our previous paper 19 

{Canonica, 2008 #10}. The second model allows two parallel channels for the reaction of the 20 

excited triplet photosensitizer (3Sens*) with the target compound (P) to form the intermediates 21 

P1’ (with yield f) and P2’ (with yield (1 - f)). P1’ is then transformed analogously as for the above 22 

single-channel model, while P2’ is not affected by DOM and fully reacts to an oxidized product 23 

P2,ox. Assuming that the corrected rate constants determined in this study can be related to these 24 
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models, one obtains eqs 6 and 7 (for details see SI Text S5) in the case of model A and B, 1 

respectively. Note that both equations do not account for triplet state quenching and are therefore 2 

not intended to be used in the case of DOM concentrations much higher than the ones used in this 3 

study, where quenching may be significant. 4 

  
 DOM

k

k
kDOMk

ox

DOMred

SensDOMSens

,

)2()2(

,

1

1
/



       (6) 5 

  
 

 f

DOM
k

k

f
kDOMk

ox

DOMred

SensDOMSens 



 1

1

/

,1

,,1

)2()2(

,      (7) 6 

For the one-channel model, oxk  and DOMredk ,  are the first-order rate constant for reaction of the 7 

intermediate P’ leading to Pox and the second-order rate constant for reduction of the intermediate 8 

P’ by DOM, respectively, and an analogous meaning holds for the parameters of the two-channel 9 

model. These kinetic constants cannot be determined experimentally by the methods applied here, 10 

but from data fitting to eqs 6 or 7 their ratio can be obtained. One can define such a ratio as 11 

  2/1DOM  (eq 8), which is the concentration of DOM required to reduce the observed oxidation 12 

rate constant to the half of the value in the absence of DOM. 13 

 
DOMred

ox

k

k
DOM

,

2/1           (8) 14 

Similar considerations hold for the two-channel model,   2/1DOM  referring in this case to half 15 

of the maximum reduction in oxidation rate constant. In our previous study, eq 6 was transformed 16 

by taking the inverse of both terms to get a linear relationship with respect to [DOM] (eq 6a). 17 

         2/1

,)2(

,

)2( /11/ DOMDOMDOM
k

k
DOMkk

ox

DOMred

DOMSensSens     (6a) 18 
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Model application to data. As shown in Figure 3, the one-channel model and eq 6a applied 1 

well for SMX oxidation in the presence of SRFA and NAFA, and regression lines for these two 2 

DOMs showed a very similar slope (corresponding to the inverse of   2/1DOM ). The fit between 3 

the PLFA data and eq 6a was not satisfactory, indicating a deviation from the simple model, 4 

which is apparently due to the concomitant presence of factors enhancing and inhibiting 5 

oxidation of the target compounds, as already mentioned in the above qualitative discussion of 6 

the data. Nevertheless, from Figure 3 it can be concluded that the net inhibition caused by PLFA 7 

is much smaller than that caused by the other two fulvic acids. 8 
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Figure 3. Plots of inverse rate constant ratios for sulfamethoxazole (SMX) versus [DOM] and 4 

linear regression lines according to eq 6a. Photosensitizers: a) CBBP and b) 2AN. DOMs: ●, 5 

Nordic Aquatic fulvic acid (NAFA); ■, Suwannee River fulvic acid (SRFA); ▲, Pony Lake 6 

fulvic acid (PLFA). 7 

 8 

For DMA and TRI only the two-channel model (eq 7) was able to yield satisfactory data fits 9 

(performed using the non-linear curve fit procedure for rational functions as provided by the 10 

Origin software version 8.0 (OriginLab)). The model curves are shown in Figures 1 and S3 of SI, 11 

and fit parameters for both models A and B are collected in Table 1.   2/1DOM , which is the 12 
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relevant parameter for the quantification of the inhibition of oxidation, was found to fall in the 1 

range of 0.11  2.85 mgC L-1 for all systems studied. SMX showed the least efficient inhibition 2 

of oxidation, with values of   2/1DOM  higher for the 2AN than for the CBBP system. This might 3 

indicate the formation of different oxidation intermediates of the target compound in the two 4 

systems or a photosensitizer-specific change in the antioxidant property of DOM. In addition, the 5 

application of model B tended to somewhat increase the   2/1DOM  values, but did not 6 

significantly improve the fits, suggesting that the one-channel model is sufficient to describe the 7 

inhibition of SMX oxidation by DOM. For TRI,   2/1DOM  values were at least an order of 8 

magnitude smaller than for SMX and about half of those for DMA, meaning that, for the 9 

oxidation channel inhibited by DOM, transformation of TRI and DMA is much more effectively 10 

inhibited than that of SMX. For the systems involving PLFA, fitting parameter values from Table 11 

1 are given in square brackets because the models appear to be too simplistic to accurately fit the 12 

data. Nevertheless markedly higher   2/1DOM  values for PLFA than for the other two fulvic 13 

acids, confirm the qualitative picture obtained above that PLFA is less efficient in inhibition of 14 

oxidation. As far as f, the fraction of reaction inhibited by DOM, is concerned, SMX exhibits 15 

potentially complete inhibition (f  1) and TRI (only the system with CBBP could be analyzed) is 16 

not very far from this limit (f  0.93  0.95), whereas for DMA only about one half of the 17 

reaction appears to be inhibited by DOM (f  0.42  0.61). According to the model, f should be 18 

independent of the type of DOM employed for inhibition (for a given target 19 

compound/photosensitizer system), and this is generally confirmed by the data in Table 1. 20 

Relevance to aquatic photochemistry. The results of the present study reinforce the 21 

conclusions of our previous paper {Canonica, 2008 #10} that excited triplet-induced oxidation of 22 

some aquatic contaminants can be inhibited by the presence of DOM. The usage of 2AN as a 23 
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model photosensitizer permitted to verify the inhibiting effect of DOM in the case of oxidation 1 

by excited triplet states possessing a relatively low oxidizing strength, thus fortifying the 2 

hypothesis that oxidations induced by 3DOM* should also be subject to such an inhibition by 3 

DOM. It also showed some intrinsic limitations of the methodology, which become apparent 4 

especially when considering the enhanced oxidation of 4MP upon DOM addition. Probably, an 5 

unwanted side-reaction is introduced, which might arise from complex formation between 6 

ground-state 2AN and DOM leading to an enhanced production of photooxidants. The 7 

employment of negatively charged photosensitizers (such as CBBP), which tend to less complex 8 

formation with DOM at circumneutral pH, could partly avoid such side-reactions but not 9 

eliminate them completely, as evidenced by some increase in oxidation rates observed for the 10 

system CBBP-PLFA. Despite this limitation, the use of model photosensitizers gives access to 11 

valuable data for the study of indirect phototransformations of aquatic contaminants, for which 12 

DOM may act not only as a photosensitizer but also as an inhibitor of their transformation. 13 

Regarding this dual function of DOM, it is interesting to note that mainly allochtonous, highly 14 

aromatic DOM (such as SRFA and NAFA) generally presents a higher efficiency to inhibit 15 

excited triplet-induced oxidation and, at the same time, a lower photochemical reactivity (see 16 

Table S3 in SI) than mainly autochthonous DOM. Similar differences in photochemical reactivity 17 

were recently observed by Guerard and coworkers for 3DOM*-induced transformation of 18 

sulfadimethoxine and triclocarban {Guerard, 2009 #80}{Guerard, 2009 #91} and were also 19 

documented in a previous study {Canonica, 1995 #22}. It may be concluded that, particularly for 20 

the contaminants affected by inhibition of oxidation, their phototransformation induced by 21 

3DOM* will be vary greatly depending on DOM type, and be quite inefficient for highly aromatic 22 

DOMs. 23 
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Table 1. Results of data fitting to kinetic models. a, b, c 1 

 2 

Photosensitizer CBBP 2AN 

Target 

compound 

Type of 

DOM 

        

A) one channel model [DOM]1/2 

/ mgC L-1 

 r2 d n e [DOM]1/2 

/ mgC L-1 

 r2 d n e 

 NAFA 1.10 (±0.23)  0.981 6 2.10 (±0.42)  0.967 6 

SMX SRFA 1.49 (±0.13)  0.992 8 2.21 (±0.26)  0.943 8 

 PLFA [2.9]  [0.90] 9 [6.9]  [0.51] 9 

         

B) two channel model 

 

[DOM]1/2 

/ mgC L-1 

f r2 d n e [DOM]1/2 

/ mgC L-1 

f r2 d n e 

 NAFA 0.18 (±0.06) 0.60 (±0.02) 0.964 5 0.20 (±0.06) 0.42 (±0.03) 0.973 6 

DMA SRFA 0.28 (±0.04) 0.55 (±0.01) 0.994 6 0.13 (±0.03) 0.61 (±0.01) 0.987 6 

 PLFA [0.45] [0.52] [0.91] 6 [0.11] [0.20] [0.73] 6 

 NAFA 0.12 (±0.02) 0.95 (±0.01) 0.972 6 n.a. n.a. n.a. 5 

TRI SRFA 0.11 (±0.05) 0.93 (±0.02) 0.954 6 n.a. n.a. n.a. 6 

 PLFA [0.66] [1] [0.94] 10 n.a. n.a. n.a. 6 

 NAFA 1.56 (±0.70) 1 0.959 6 2.85 (±1.56) 1 0.942 6 

SMX SRFA 1.67 (±0.52) 1 0.983 8 2.82 (±1.25) 1 0.924 8 

 PLFA [5.2] [1] [0.74] 9 [13] [1] [0.23] 9 

 3 

Notes: a Errors given in parentheses as standard deviations. b n.a.: Not applicable to data. c In case of large deviation from the model, 4 

fit parameters are given in square brackets. d correlation coefficient (coefficient of determination). e number of data points included in 5 

data fitting. 6 

 7 
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B. Oxidation induced by hydroxyl radical (•OH) 1 

For oxidation induced by •OH, a possible inhibition due to interaction of SRFA used as reference 2 

DOM with oxidation intermediates was investigated by using competition kinetics (see Text S6 3 

in SI for details). This method was employed mainly to account for scavenging of •OH by DOM, 4 

and second-order depletion rate constants of target compounds in the presence and absence of 5 

DOM could be determined using para-chlorobenzoic acid (pCBA), in its anionic form, as a 6 

reference compound. pCBA has been extensively used as a probe compound to determine •OH 7 

concentration and exposure in aquatic systems {Hoigné, 1997 #83}{Elovitz, 1999 #82} and its 8 

second-order rate constant for reaction with •OH is known: 
pCBAOH

k
,  = 5.0  109 M-1s-1 {Neta, 9 

1968 #84}. As a working hypothesis, 
pCBAOH

k
,  is assumed to be unaffected by the presence of 10 

DOM. When not irradiated, all sample solutions were found to be stable over the time needed for 11 

experiments and HPLC analysis. Blank experiments consisting in irradiation of aqueous solutions, 12 

with or without SRFA, containing all ingredients but hydrogen peroxide, were performed to 13 

check and possibly correct for side reactions other than oxidation by •OH, such as direct or 14 

DOM-induced phototransformation. For the large majority of studied compounds (including the 15 

reference compound pCBA) no correction was made owing to the negligible depletion rates 16 

measured in blank experiments (< 5 % of overall depletion due to side reactions). In the cases 17 

where side reactions were found to be important, correction was done on the basis of observed 18 

pseudo-first-order kinetics for the depletion of the target compounds in competition kinetics and 19 

blank experiments. The correction method as well as the compounds affected by the correction 20 

are given in detail in SI (Text S6). 21 

The bar chart in Figure 4 shows second-order rate constants (
POH

k
, ) obtained from competition 22 

kinetics experiments for fifteen selected compounds, representing environmentally relevant 23 



 21 

contaminants as well as model compounds. The rate constants measured in the absence of SRFA 1 

agree well with available literature values {Buxton, 1986 #85}{Huber, 2003 #8}. For most 2 

compounds, •OH reaction rate constants did not change significantly upon addition of SRFA (2.5 3 

mgC L-1). No decrease in reaction rate was observed for any compound. Only for the x-ray 4 

contrast media iohexol and iopromide, the rate constant increased by about 25% in the presence 5 

of SRFA. 6 
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Figure 4. Second-order reaction rate constants of hydroxyl radical with fifteen target compounds 10 

in the presence and absence of SRFA (2.5 mgC L-1) used as reference DOM. Error bars represent 11 

95% confidence intervals of regression lines obtained by competition kinetics experiments. 12 
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 1 

The absence of DOM-induced inhibition effect for oxidation of the selected compounds by •OH 2 

is somewhat surprising in view of the many cases of such inhibition found for oxidation by 3 

excited triplet states. It should be discussed here by considering possible reaction mechanisms. 4 

With most substrates, •OH reacts at close to diffusion controlled rates and undergoes mainly three 5 

types of reactions: Addition to double bonds and aromatic compounds, H-abstraction and less 6 

frequently electron transfer {Von Sonntag, 2006 #52}. The addition of •OH, which is the most 7 

likely mechanism to occur with the studied compounds, proceeds via a reversible π-complex, 8 

which then transforms to a σ-complex radical. Subsequently, the radicals are oxidized forming 9 

the corresponding hydroxylated compounds {Ashton, 1995 #75; Volkert, 1968 #76}. The tight 10 

CO bond in the σ-complex formed upon •OH addition appears to offer no possibility to reform 11 

the parent compound. For phenols, formation of phenoxyl radical intermediates after •OH 12 

addition and water elimination has also been reported {Roder, 1999 #86}, and this could lead to 13 

reformation of phenol in the presence of antioxidants, but apparently such a pathway is not 14 

relevant under the experimental conditions of the present study. An increased reactivity of 15 

iodinated contrast media in the presence of DOM, possibly connected to the increase in •OH-16 

induced reactivity found here, has been previously observed for ozonation of river water {Huber, 17 

2003 #8}. Finally, in view of the quite variable extent of the inhibition effect observed with 18 

triplet-induced oxidation {Canonica, 2008 #10} and the absence of DOM effect on the •OH 19 

competition kinetics rate constants obtained for almost all compounds studied here, it appears to 20 

be quite unlikely that the used reference compound, pCBA, is subject to interference by DOM in 21 

its depletion induced by •OH. Furthermore, this is confirmed by many studies in which pCBA 22 

served as a probe compound to predict the relative elimination of micropollutants in natural 23 
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waters during ozonation and AOPs based on the second-order rate constants measured in 1 

ultrapurified water {Huber, 2003 #8}{von Gunten, 2003 #92}. Thus, no contraindication to the 2 

use of pCBA as a probe compound to determine •OH concentrations in the presence of DOM can 3 

be derived from this study. 4 
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