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Nonlinear graphene plasmonic waveguides: pulse propagation
equation

Andrey V. Gorbach

Centre for Photonics and Photonic Materials, Department of Physics, University of Bath,
Bath BA27AY, UK

ABSTRACT

Treating surface-only nonlinear optical response of graphene as the nonlinear boundary condition in Maxwell
equations and applyting perturbation expansion, the pulse propagation equation for graphene plasmonic waveg-
uides is derived. Effective nonlinear coefficient due to the graphene is derived and compared to bulk nonlinear
response of dielectrics.
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1. INTRODUCTION

Applications of graphene in photonics and optoelectronics are being actively discussed in recent years.1,2 In
particular, graphene plasmonics is considered as a promissing alternative to conventional plasmonics with noble
metals.3,4 Compared to conventional metals, graphene offers tunability, low losses and extremely high nonlinear
optical response. The latter has been predicted theoretically to exceed typical response of dielectrics by at
least eight order of magnitude.5,6 The particularly strong nonlinear repsonse of graphene has been confirmed in
several experiments, including direct measurements with optical Kerr gate7 and z-scan8 techniques, as well as
observation of four-wave mixing with graphene flakes,9 a range of nonlinear effects in a graphene-coated photonic
crystal nano-cavity,10 third harmonic generation from single- and multi-layered graphene flakes.11

Being purely two-dimensional crystal, graphene is fundamentally different from any bulk material, and its
nonlinear optical response requires adequate theoretical description. Recently, we developed a modification of
the conventional perturbation expansion procedure of Maxwell equations to include graphene as the nonlinear
boundary condition.12 This method has been applied for analysis of CW nonlinear graphene plasmons in single-
and multi-layered planar structures,12,13 and to investigate the enhancement of nonlinearity in a graphene-clad
tapered dielectric fibre.14 In this work, we further develop the perturbation expansion procedure to consider
frequency-mixing and noninear pulse propagation in a single-layer graphene plasmonic waveguide and graphene
nanoribbon waveguides.

2. PERTURBATION EXPANSION OF MAXWELL EQUATIONS

Consider a waveguide with a fixed structure in the (x, y)-plane and homogeneous along the propagation direction
z. To analyse pulse propagation in the structure, it is convenient to use Fourier expansion of the total electric
field:

~E(~r, t) =
1√
2π

∫ +∞

−∞
E(~r, ω)e−iωtdω + c.c. (1)

Each Fourier component E solves Maxwell equations:

~∇× ~∇×E =
ω2

c2ε0
D . (2)
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Optical response of all bulk materials is incorporated in the displacement vector D. Atom-thick graphene layer
is described by means of the surface current J, the corresponding boundary condition is:

~n× [H2 −H1] = J , (3)

where ~n is the unit vector normal to the graphene layer and pointing from medium 1 to medium 2, which are
on either side of the graphene layer.

In this work we will focus on instanteneous cubic (Kerr) nonlinearity of homogeneous isotropic media, so that
the dispacement vector and the induced current in graphene have the form, respectively:

D(ω) = ε0εE(ω) + ε0χ̂
(3)

...E(ω1)E∗(ω2)E(ω3) , (4)

J(ω) = σ̂(1)E(ω) + σ̂(3)
...E(ω1)E∗(ω2)E(ω3) , (5)

where ω3 = ω−ω1 +ω2, nonlinear susceptibility tensor is given by: χ̂
(3)
ipjs = (χ3/3) [δipδjs + δijδps + δisδpj ], δij is

the Kronecker’s delta. Considering graphene as the purely 2D material, and introducing local coordinates (ξ, τ, ζ)
with ζ being orthogonal to the graphene layer and (ξ, τ) in-plane of graphene, we assume a similar structure of

the nonlinear conductivity tensor σ̂
(3)
ipjs, but with the indexes i, p, j, s each from the subset of in-plane coordinates

(ξ, τ). Also, the 2D symmetry of graphene and the requirement Jζ = 0 still permit six additional non-zero tenzor

components σ̂
(3)
jjζζ = σ̂

(3)
jζjζ = σ̂

(3)
jζζj = σ̃3/3, j = ξ, τ . In absence of external magnetic fields, linear conductivity

tensor has only two diagonal non-zero components: σ̂
(1)
ii = σ1, i = ξ, τ .

It is convenient to decompose the dispacement vector and the induced current as D = D0 +Dp, J = J0 +Jp,
so that the solution of Maxwell equations with D0 and J0 gives the linear guided mode of the structure, while Dp

and Jp are treated as perturbations. Developing perturbation expansion, we introduce a dummy small parameter
s assuming Dp,Jp ∼ s3/2. Each Fourier component of the electric field is expanded in the perturbation series as:

E = s1/2I−1/2ω Aω(z)eω(x, y) + s3/2E1 +O(s5/2) , (6)

and a similar expansion for the magnetic field is assumed. Here eω is the mode of a given structure, obtained
in the lowest O(s1/2) order of perturbation analysis, Iω is the normalization factor to be specified below. In the
next order O(s3/2) the propagation equation for modal amplitudes Aω(z) is derived, which is the ultimate goal
of this work. The overall procedure is explained in details in the following sections, starting with a simple planar
geometry in Sec. 3, then proceeding to the fully 3D geometry of graphene nanoribbon waveguid in Sec. 4.

3. SURFACE GRAPHENE PLASMONS IN A PLANAR GEOMETRY

Consider a planar geometry with graphene layer sandwiched in-between two semi-infinite dielectrics, as illustrated
in Fig. 1. We choose x axis to be perpendicular to the interfaces, z is the direction of propagation, and y is
the unbound direction along which homogenity of fields is assumed. The structure supports surface plasmon
waves.12,15,16 In this case, linear graphene conductivity plays important role and should be included into the
lowest order of perturbation procedure. Thus we take:

D0 = ε0εE , ε(x < 0) = εs , ε(x > 0) = εc , (7)

J0 =
[
0, iσ

(I)
1 Ey, iσ

(I)
1 Ez

]T
, (8)

where we introduce real and imaginary parts of the linear graphene conductivity: σ1 = σ
(R)
1 + iσ

(I)
1 , σ

(R)
1

is responsible for damping of plasmons and will be included in the next order of perturbation together with
nonlinear terms (Jp).

Below we discuss TM plasmons existing for σ
(I)
1 > 0. In the lowest order O(s1/2) of the perturbation

expansion we obtain the boundary value problem for the linear mode e(x) = [ex, 0, ez]
T and the propagation



y z

x

|E
|,
 |
H

|

x

Substrate dielectric 

Cladding dielectric 

Graphene

Figure 1. Schematic illustration of surface plasmon propagating along graphene sheet. Fields are exponentionally localized
in x (across the interface), as shown in the left panel.

constant β(ω):

L̂TM · [ex, ez]T = 0 , (9)

L̂TM =

[
β2 − εk2 iβ∂x
iβ∂x −∂2xx − εk2

]
, (10)

∆[ez] = 0 , ∆[iβex − ∂xez] =
σ
(I)
1

ε0ω
Θ[ez] . (11)

Here k = ω/c, operators ∆ and Θ are defined as:

∆[f(x)] = lim
δ→0

(f(−δ)− f(δ)) , (12)

Θ[f(x)] =
1

2
lim
δ→0

(f(−δ) + f(δ)) . (13)

The corresponding mode can be found analytically in this case:

x < 0 : ez = eqsx , ex =
−iβ
qs

eqsx (14)

x > 0 : ez = e−qcx , ex =
iβ

qc
e−qcx (15)

qs,c =
√
β2 − εs,ck2 , (16)

where propagation constant β is defined through the dispersion relation:5,12

εs√
β2 − εsk2

+
εc√

β2 − εck2
=
σ
(I)
1

ε0ω
. (17)

We choose normalization factor as:

Iω =
ε0ω

2β

∫ +∞

−∞
ε|ex|2dx , (18)

so that the total power density (per unit length in the unbound y direction) Pω carried in the propagation
direction z by the mode at the given frequency is:12

Pω =
1

4

∫ +∞

−∞
(E×H∗) êzdx+ c.c. = s|Aω|2 +O(s2) , (19)



where êz is the unit vector along z-axis.

In the next order O(s3/2) we obtain boundary value problem for the correction E1:

L̂TM ·
[
E1x

E1z

]
= I−1/2ω

[
∂zAω(2iβex − ∂xez) + ω2

c2ε0
Dpx

−∂zAω∂xex + ω2

c2ε0
Dpz

]
(20)

∆[E1z] = 0 , (21)

∆[iβE1x + ∂zAωI
−1/2
ω ex − ∂xE1z] = − iσ

(R)
1

ε0ω
I−1/2ω AωΘ[ez] +

σ
(I)
1

ε0ω
Θ[E1z]−

i

ε0ω
Θ[Jpz] , (22)

where nonlinear polarization Dp and current Jp and given by:

Dp =
ε0χ3

16π

∫ ∫
Aω1

A∗ω2
Aω3√

Iω1Iω2Iω3

[(
eω1e

∗
ω2

)
eω3 +

(
eω3e

∗
ω2

)
eω1 + (eω1eω3) e∗ω2

]
dω1dω2 , (23)

Jpz =
σ3

16π

∫ ∫
Aω1A

∗
ω2
Aω3√

Iω1
Iω2

Iω3

[(
eω1

e∗ω2

)
s
eω3,z +

(
eω3

e∗ω2

)
s
eω1,z + (eω1

eω3
)s e
∗
ω2,z

]
dω1dω2 . (24)

In the above expressions, (ab) stands for the standard scalar product, while (ab)s = ηaxbx + ayby + azbz,
deformation factor η = σ̃3/σ3 characterizes the relative impact of the orthogonal field component on the induced
current in the graphene layer.

To proceed, we project Eq. (20) onto the mode eω, split the full integral in the l.h.s. into two parts as∫∞
−∞ dx =

∫ 0

−∞ dx+
∫ +∞
0

dx and take the resulting integrals by parts applying boundary conditions from Eqs. (11),
(21), (22). As the result, we obtain the following equation describing evolution of the modal amplitude with
propagation distance:

i∂zAω = −(β + iαω)Aω −
ω

2π

∫ ∫ ∞
−∞

Γωω1ω2ω3
Aω1

A∗ω2
Aω3

dω1dω2 , (25)

where nonlinear coefficients Γωω1ω2ω3 combine contributions from the dielectrics and graphene:

Γωω1ω2ω3 = Γ(D)
ωω1ω2ω3

+ Γ(G)
ωω1ω2ω3

, (26)

Γ(D)
ωω1ω2ω3

=
ε0

16
√
IωIω1

Iω2
Iω3

∫ ∞
−∞

χ3

[(
eω1

e∗ω2

)
(eω3

e∗ω) +
(
eω3

e∗ω2

)
(eω1

e∗ω) + (eω1
eω3

)
(
e∗ω2

e∗ω
)]
dx , (27)

Γ(G)
ωω1ω2ω3

=
1

16
√
IωIω1

Iω2
Iω3

iσ3
ω

Θ
[(
eω1

e∗ω2

)
s
eω3,ze

∗
ω,z +

(
eω3

e∗ω2

)
s
eω1,ze

∗
ω,z + (eω1

eω3
)s e
∗
ω2,ze

∗
ω,z

]
,(28)

and coefficient αω gives attenuation of the graphene plasmon:

αω =
σ
(R)
1

4Iω
Θ
[
|eω,z|2

]
. (29)

4. GRAPHENE NANORIBBON WAVEGUIDE

The above described procedure can be generalized to fully 3D geometries. Consider a graphene nanoribbon
waveguide, in which graphene layer has a finite width along y direction, see Fig. 2. The guided mode now has all
three non-zero components of the electric field eω, and needs to be computed numerically.17 Following similar
steps as described in the above section, and applying nonlinear boundary conditions in the rellevant region where
the graphene nanoribbon is located (x = 0,−L/2 < y < L/2), we derive the modal propagation equation (25)
with the following coefficients:

Γ(D)
ωω1ω2ω3

=
ε0

16
√
IωIω1

Iω2
Iω3

×
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Figure 2. Schematic illustration of a graphene nanoribbon waveguide.

∫ ∫ ∞
−∞

χ3

[(
eω1

e∗ω2

)
(eω3

e∗ω) +
(
eω3

e∗ω2

)
(eω1

e∗ω) + (eω1
eω3

)
(
e∗ω2

e∗ω
)]
dxdy , (30)

Γ(G)
ωω1ω2ω3

=
1

16
√
IωIω1

Iω2
Iω3

iσ3
ω
×∫ L/2

−L/2
Θ
[(
eω1e

∗
ω2

)
s

(eω3e
∗
ω)G +

(
eω3e

∗
ω2

)
s

(eω1e
∗
ω)G + (eω1eω3)s

(
e∗ω2

e∗ω
)
G

]
dy , (31)

αω =
σ
(R)
1

4Iω

∫ L/2

−L/2
Θ [(eωeω)G] dy , (32)

where (ab)G = ayby + azbz is the reduced scalar product involving only components in-plane of the graphene
nanoribbon.

The normalization factor Iω is computed as the total power Pω carried in the propagation direction z by the
mode:

Iω =
1

4

∫ ∫ ∞
−∞

(e× h∗) êzdxdy + c.c. (33)

Note that in the fully 3D geometry Iω is measured in watts, rather than in watts per meter as in the planar
case in the previous section.

5. PULSE PROPAGATION EQUATION

Modelling of a nonlinear pulse propagation in a graphene plasmonic waveguide within the derived in previous
sections modal propagation equation (25) is a computationally challenging task. A more convenient approach is
to derive pulse propagation equation for the Fourier mirror A(t, z) of the modal amplitudes Aω(z). For spectrally
narrow pulses, the common approximation is to neglect dispersion of nonlinear coefficients Γωω1ω2ω3

, replacing
them by the constant value Γ0 at the pulse reference frequency. A more advanced appoarch which still takes
into account dispersion of nonlinearity, is based on the factorization approximation:18

Γωω1ω2ω3
≈ gωgω1

gω2
gω3

, gω = Γ1/4
ωωωω . (34)

Accuracy of this factorization approximation must be checked separately for a given geometry and the range of
frequencies of interest.

Introducing rescaled modal amplitudes:

Aω = (g0/gω)Ψω , (35)



where subsript 0 relates to a reference frequency ω0, Eq. (25) becomes:

i∂zΨω = −(β + iαω)Ψω −
γ

2π

∫ ∫ ∞
−∞

Ψω1
Ψ∗ω2

Ψω3
dω1dω2 , (36)

where the nonlinear coefficient γ is introduced as follows:

γ = ω
√

Γ0000Γωωωω . (37)

Introducing polynomial fits of β(δ = ω − ω0), α(ω), γ(ω), and using inverse Fourier transform

ψ(t, z) =
1√
2π

∫ +∞

−∞
Ψω(z)e−i(ω0+δ)tdδ , (38)

the following pulse propagation equation is obtained:18

i∂zψ = −D̂(i∂t)ψ − Ĝ(i∂t)
(
|ψ|2ψ

)
, (39)

D̂ =

Nd∑
j=0

βj + iαj
j!

(i∂t)
j , (40)

Ĝ =

Ng∑
j=0

γj
j!

(i∂t)
j , (41)

where βj , αj and γj are coefficients of polynomial fits of the propagation constant β, attenuation α and nonlinear
coefficient γ as functions of δ = ω − ω0.

6. SUMMARY

Treating optical response of graphene as the nonlinear boundary condition in Maxwell eqations, we derive the
pulse propagation equaion for a layered graphene and graphene nanoribbon surface plasmon waveguides. The
effective nonlinear coefficient and attenuation coefficient due to the graphene layer are obtained. Calculation of
these coefficients is performed by contour integration alond the graphene layer, as opposed to surface integration
in case of corresponding coefficients for bulk materials. The overall procedure, and the derived coefficients, can
be easily extended to other plasmonic and photonic geometries with graphene.
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