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 ABSTRACT 

 The aim of this paper is to demonstrate that a simple stirred batch cell can be used to 

study the effects of surface shear stress (amongst other process parameters) on fouling from 

saturated calcium salt solutions. For otherwise identical operating conditions, the overall 

fouling rate on a smooth mild steel surface was found to be reduced when either fine wires 

were attached to it or when helical threads were incorporated into the surface, either in the 

form of a continuous helical groove or in the form of a raised helix. The raised helical surface 

was more effective in reducing fouling than the helical groove. The results confirm the 

general effect that fouling rates can be reduced by increasing the surface shear stress through 

surface enhancement. A simple mathematical model has been developed to take into account 

the dynamic change in bulk concentration as crystallization fouling occurs. In all cases, the 

overall fouling resistance increased asymptotically towards a constant value and could easily 

and accurately be described quantitatively by the new analytical model. The variations of 

shear stresses on the various surfaces were determined from CFD simulations using the 

commercial package Comsol 4.2. 

 

INTRODUCTION 

 Crystallization fouling on heat exchanger surfaces can create chronic operational 

problems in a broad range of processing applications that include cooling water systems, 

desalination, steam generation, etc. Energy losses, additional power consumption and the 

costs of cleaning all make this practical operational problem a significant challenge in the 

progression towards sustainable development. 

Several researchers have investigated crystallization fouling of calcium sulfate and 

calcium carbonate using recirculating tubular flow type devices [1-4]. The effects of a 

number of operational parameters such as velocity, temperature, calcium concentration, and 



surface geometry on the fouling rate have been studied. In the research presented in this 

paper, a different approach has been adopted. The simple stirred batch cell which was 

originally designed by Young et al. [5] to study fouling from crude oils has now been used 

for the first time to study the effects of surface shear stress and surface temperature on 

fouling from saturated calcium salt solutions. The principal advantage of the batch cell over 

its continuous flow counterpart is that different surface configurations that enhance 

turbulence and heat transfer can easily be studied. The effects of enhancements such as wires, 

dimples, helical threads, etc, on fouling can then be interpreted to assist prediction of the 

effects of surface enhancements on fouling in, for example, plate heat exchangers and tubes 

fitted with inserts such as hiTRAN. A disadvantage of the stirred batch cell, given that the 

volume of solution is small (about 1 litre), is that the concentration of calcium salt may not be 

considered to be constant due to the formation of crystalline deposits on the heated surface. 

The fouling rate is therefore dynamically related to the change in bulk concentration with 

time. This clearly sets a challenge when interpreting the experimental data but, on the other 

hand, initial fouling rates arise at the known initial bulk concentration and, of course, the data 

may provide an excellent opportunity to discover the effect of bulk concentration on fouling 

rate in a single simple experiment. 

Apart from determining fouling resistances through interpretation of the heat transfer data, 

the actual fouling layer profiles have also been studied using a ProScan laser micro-scanning 

technology. In addition, the experimental data are complemented by computational fluid 

dynamics (CFD) simulations of the fluid flow in the stirred cell in the manner described 

elsewhere by Yang et al. [6]. The CFD studies have been made for test probes with and 

without surface enhancements using the commercial package Comsol 4.2. The resulting 

velocity, shear stress and temperature fields are able to show clearly how the experimental 



effects of temperature and surface shear stress on the fouling are well correlated by the CFD 

simulations. 

 

EXPERIMENTS 

The stirred cell and probes 

Details of the stirred cell system and the heated test probe shown in Figure 1 are provided 

by Young et al. [5]. The cell comprises a pressure vessel made in-house from a block of 304 

stainless steel and is fitted with a top flange. The base of the vessel houses an upwards 

pointing test probe heated internally by a cartridge heater. The heat flux is controlled 

electrically. A batch of about 1.0 litres of aqueous solution is agitated by a downwards facing 

cylindrical stirrer mounted co-axially with the test probe and driven by an electric motor. 

External band heaters are incorporated to provide initial heating to the vessel and its contents. 

An internal cooling coil uses a non-fouling fluid (Paratherm) to remove heat at the rate that it 

is put in via the cartridge heater during the fouling run. The vessel is fitted with a pressure 

relief valve and there is a single thermocouple to measure the bulk solution temperature. The 

mechanisms for the control of bulk temperature and stirring speed are described elsewhere 

[5]. The surface temperature of the test probe can be changed by altering the heat flux by 

adjusting the input power to the cartridge heater. 

Details of the plain mild steel probe and the one fitted with a nest of wires, as shown in 

Figure 2, have been reported elsewhere [7].  The probe has, additionally, been modified by 

attaching sleeves with helical threads incorporated into their surface, either in the form of a 

continuous helical groove or in the form of a raised helix. Figure 3 shows the two helically 

enhanced sleeves with negative and positive helices, respectively, and as a reference, a plain 

sleeve of the same diameter as the two helically enhanced ones. 

 



Materials and experimental method 

The purpose of this paper is to confirm that the stirred batch cell can be used to study the 

effects of enhanced surfaces on fouling from aqueous solutions. For this purpose, simple 

standard solutions of calcium sulfate and calcium carbonate have been used. This study is not 

concerned with studying the effects of water chemistry on the fouling process. The standard 

solution of CaSO4 is prepared by dissolving 4.1g of Ca(NO3)2 and 8.0 g of Na2SO4(H2O)10 

(both from Sigma-Aldrich) in 500 ml of deionized water, and then mixing the two solutions 

to form a 1 litre working solution  containing 3400 ppm of CaSO4 at pH=5.6. The standard 

solution of CaCO3 is prepared by dissolving 1.68 g of NaHCO3 and 1.44 g of CaCl2(H2O)2 

(both from Sigma-Aldrich) in 500 ml of deionized water, and then mixing the two solutions 

to form a 1 litre working solution  containing 1000 ppm of CaCO3 at pH=5.2. For working 

solutions at other concentrations, the mass of each chemical is adjusted proportionately. All 

chemicals are reagent grade. The working solution is transferred to the stirred batch cell and 

brought up to the desired bulk operating temperature by means of the external band heaters 

with the solution being stirred by the cell’s internal rotor. Subsequently, the test probe is 

brought up to the desired surface temperature. The two heating sources and a PID-controlled 

cooling circulator work together and maintain the thermal steady state for the stirred cell. The 

operating conditions for data reported in this paper are provided in Table 1. 

At the end of a fouling run, the stirred batch cell is cooled and the probe is removed. After 

drying, the probe is held within a V block and placed in the measuring plate of the ProScan 

2000 instrument (Scantron Industrial Products Ltd, Taunton, UK). The surface of the probe is 

scanned using a laser optical sensor to measure the thickness profile of the fouling layer. 

 

 

 



CFD SIMULATION 

CFD and heat transfer simulations are carried out using Comsol Version 4.2a. The model 

geometry is set up to be three dimensional. The boundary conditions are wall functions for all 

solid-fluid boundaries, boundary layer heat sources for the cartridge heater and the band 

heaters, and variable temperature depending on the position from bottom to top for the 

cooling coil, respectively. The physical model is non-isothermal flow in a turbulent mode. 

Justification of the flow mode has been provided earlier by Yang et al. [6]. 

 

RESULTS AND DISCUSSION      

Fouling resistance  

The stirred batch cell is operated at constant bulk temperature and constant heat flux. 

Hence, as explained by Young et al. [5], the rate of fouling is directly proportional to the rate 

of change of surface temperature with time, with the assumption that as the deposit grows the 

film heat transfer coefficient remains constant.  

Typical CaSO4 curves for the difference between probe metal temperature and bulk 

temperature (for two thermocouple locations in one run) are shown in Figure 4. To convert 

the temperature difference to the fouling resistance, the heat flux at each thermocouple 

location needs to be determined instead of using the heat flux averaged over the whole of the 

probe surface. This is important because neither the surface temperature nor the heat flux is 

uniform vertically along the heated probe surface. The local heat flux can be obtained by 

means of CFD simulation. Figure 5 shows the CFD-predicted temperature field in the stirred 

cell and Figure 6 shows a comparison of the CFD-predicted surface temperatures with the 

measured values, thereby partially validating the CFD simulation. 

Figure 7 shows the vertical profile of the heat flux over the probe surface. The local heat 

flux can also be determined using the heat transfer coefficient, which may be assumed to be 



constant over the probe surface, given that it has been shown by Yang et al. [6] that the 

surface shear stress is relatively uniform over the probe surface when it is not enhanced. The 

local heat flux data were then used to calculate the fouling resistance using the temperature 

difference data such as that shown in Figure 4. Typical fouling curves in terms of how the 

fouling resistance varies with time are shown in Figures 8 and 9 for CaSO4 and CaCO3, 

respectively. 

Effect of bulk concentration 

Figures 8 and 9 show that the fouling resistances seem to reach asymptotic values 

relatively quickly. On the one hand, the net fouling rate which many consider to be the 

difference between a deposition rate and a removal rate can be considered to be reducing 

gradually towards zero up to the asymptote. On the other hand, further analysis reveals that 

this asymptotic situation could be caused by the gradual reduction in the driving force for 

crystallization as time progresses in the batch system. That is, as deposition progresses then 

the degree of super-saturation, due to the calcium salt leaving the bulk solution and 

depositing on the heated surface, causes a reduction in the bulk concentration. As an example 

of the potential magnitude of this concentration depletion effect, the dry mass of deposit after 

one fouling run was found to be 0.97 g, accounting for about 30% of the original salt mass in 

the bulk solution. If this is the cause of the asymptotic curves shown, for example, in Figures 

8 and 9, then traditional asymptotic models may not be applicable and the dynamic change in 

bulk solution must, accordingly, be taken into account. Fahiminia et al. [2] developed a 

fouling rate model after Konak [8] and Krause [9] that gives a relationship between the initial 

fouling rate and the difference in concentration between super-saturation in the bulk and in 

normal saturation: 
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Here Φ is the crystallization deposition rate, ΔC = (Cb-Cs) is the difference in 

concentration between the super-saturation in the bulk, Cb, and the normal saturation, Cs. 

Additionally, km, ka, and n are the mass transfer coefficient, reaction rate constant, and 

reaction order, respectively. The fouling rate is related to Φ after Fahiminia et al. [2], as 

follows: 

   

  
 

 

    
                                 (2) 

Here, λf and ρf are the thermal conductivity and density of the fouling deposit, 

respectively. Assuming that the bulk concentration reduction caused by fouling is 

proportional to the fouling resistance, then the change in bulk concentration is given by: 

                                   (3) 

In equation (3), Cb0 is the initial bulk concentration and α is a constant. Given that ΔC0 = 

(Cb0- Cs), then by combining equations (1), (2), and (3), by assuming that n = 1, and by taking 

into account a deposit removal term, as proposed by Crittenden et al. [10], equation (4) is 

obtained: 
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Here γ is the rate constant of any deposit removal process which would depend critically 

on both temperature and velocity (or surface shear stress). The equation is broadly similar to 

that developed for a model organic fluid system by Crittenden et al. [10]. Integration of 

equation (4) yields: 
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As shown in Figures 8 and 9, the calcium salt fouling curves obtained using the stirred cell 

are correlated well using equation (5). The equation shows correctly that Rf is zero at t = 0, 

and that the fouling resistance tends towards a constant value when the running time is 



sufficient, appearing to give a fouling curve of the asymptotic type. The maximum value of Rf 

is proportional to the difference in concentration between the initial bulk super-saturation and 

the normal saturation. The initial fouling rate can be obtained by differentiation of equation 

(5), setting t = 0, or simply using equation (4) and setting Rf = 0, at t = 0: 
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According to equation (6), the initial fouling rate is proportional to the initial difference in 

concentration between the initial super-saturation and the normal saturation. Figure 10 shows 

four initial fouling rates for CaSO4 at different initial concentrations, keeping all other 

operating parameters constant. Figure 10 indeed shows that the initial fouling rate is linearly 

dependent on the difference in concentration between the initial super-saturation and the 

normal saturation, as given by equation (6). 

Effect of temperature 

In general, fouling is more intensive when the surface temperature is higher. As shown in 

Figures 5 and 6, the surface temperature of the heated probe is higher in the middle and lower 

towards its two ends. This variation arises as a result of the complex fluid flow patterns 

within the inner boundary of the batch cell’s stirrer. 

Figure 11 shows a photograph of the probe with a scaling deposit, and Figure 12 shows 

the deposit thickness profile along the vertical length obtained using ProScan 2000. It can be 

seen that the fouling layer thickness profile over the probe surface is strikingly similar in 

form to the temperature profile shown in Figure 6, with maxima in both deposit thickness and 

temperature occurring near to the middle of the heated probe surface. As reported previously 

by Yang et al. [6], the shear stress over the probe surface where the fouling zone is located is 

relatively constant. Hence the profile of the fouling behaviour is determined solely by the 

surface temperature and not the shear stress. Accordingly, the similarity of the temperature 



and the fouling layer thickness profiles can be used to explain qualitatively the fouling rate 

behaviour in the experiment as a function of surface temperature. 

Effect of surface enhancements on fouling 

The overall fouling rate on a mild steel surface was found to be reduced when fine wires 

were attached to it. Under the same operational conditions of bulk temperature (55°C), initial 

surface temperature (88°C) and stirrer speed (300 rpm), the fouling rates on the wired probe 

and the bare probe were 2.9 x 10
-5

 m
2 

K J
-1

, and 4.2 x 10
-5

 m
2 

K J
-1

, respectively. 

Furthermore, as shown in Figure 13, the fouling rates on the probes fitted with helical 

surfaces (both negative and positive) were found to be lower than on the smooth surface. 

Moreover, the fouling rates on the positive helical surface were found to be the lowest. These 

reductions in fouling rate with enhanced surfaces are caused by the enhanced turbulence 

created either by the attached wires or by the incorporated helical threads. As shown in 

Figure 14, the shear stress is higher over the surface of the wired probe than over the bare 

probe. In the cases of probes fitted with sleeves, the average shear stress was found to 

increase in the order of smooth surface, negative helical groove, and positive helical surface, 

as shown in Figure 15. The difference in fouling rate on the different surface configurations 

can therefore be explained using the shear stress data obtained by CFD simulation. 

It can be seen from Figure 16 that when wires are present the distribution of fouling is 

non-uniform. Indeed, the greatest amount of fouling appears downstream of the wires where 

the surface shear stress is the lowest (Figure 14) and the least amount appears just upstream 

of the wires where the surface shear stress is the highest. Given the clockwise flow direction, 

the shear stress is higher in front of a wire than behind it. This may suggest that fouling is 

more likely behind the wire, and this is confirmed by Figure 16. 

       At present it is not possible to measure surface shear stresses directly in the stirred cell. 

Nonetheless, values of the shear stress obtained by CFD simulation can be compared with 



those inside a round tube. This leads to the concept of equivalent velocity first proposed by 

Yang et al. [6] which is the velocity inside a round tube that gives the same surface shear 

stress as in the geometry under study (here, the batch stirred cell). In the present case, the 

equivalent tube flow velocity of water lies in the range 0.05 to 0.5 m s
-1

 for the shear stress 

levels shown in Figure 15. 

     Figure 17 shows that the data obtained from Figures 13 and 15 seem to confirm that, for 

otherwise similar operating parameters including stirrer speed, there is a single correlation of 

initial fouling rate against surface shear stress that unifies the smooth surface and the two 

spirally enhanced surfaces. Although there is a limited amount of data from the three 

surfaces, the single correlation shows clearly the value in maintaining a high surface shear 

stress in crystallization fouling from calcium salts, whatever the method is to create the high 

shear stress on the heat transfer surface. 

 

CONCLUSION 

The stirred batch cell fouling has been used to make preliminary investigations of the 

effects of surface shear stress, surface temperature, and starting bulk concentration on 

calcium sulfate and calcium carbonate fouling. The paper demonstrates the flexibility and 

adaptability of the cell over its continuous flow counterpart, thereby offering a facility in 

which ways to mitigate fouling problems can be studied quickly. The potential weakness of 

the stirred batch cell is that it cannot be operated at steady state conditions. Hence, a model 

has been developed to take into account the dynamic change in bulk concentration as scaling 

occurs. The experimental results show that calcium salt scaling can be mitigated to some 

extent by changing the turbulence structure by means of attaching wires or incorporating 

helical threads into the heat transfer surface. This augurs well for mitigation of scaling by 

adding inserts into tubular flow systems or by surface corrugation. The scaling behaviour can 



only be interpreted properly with the help of CFD simulation since it is essential that an 

understanding of the effect of shear stress is available. Given that the work reported in this 

paper focuses only on developing a methodology for interpreting fouling data in a stirred 

batch cell as well as on the effects of enhanced surfaces, the effect of the chemistry of 

calcium salt solutions has not been addressed here, but could be the subject for further 

research. Nevertheless, for otherwise similar operating conditions, it seems that there is a 

single correlation between initial fouling rate from calcium salt solutions and the shear stress 

at the heat transfer surface, irrespective of what the surface geometry is. 
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NOMENCLATURE 

C     CaSO4 concentration, g/L or kg m
-3

 

Cb    CaSO4 bulk concentration, kg m
-3

 

Cb0   CaSO4 initial bulk concentration, kg m
-3

    

Cs     CaSO4 saturation concentration, kg m
-3 

ΔC   (Cb – Cs), kg m
-3 

ΔC0  (Cb0 – Cs), kg m
-3 

ka      surface reaction/attachment rate constant, m
4 

kg
-1 

s
-1

 

km     mass transfer coefficient, m s
-1

 



n       reaction order 

Rf      fouling resistance, m
2 

K W
-1

 

t      time, s and hour 

 

Greek symbols 

α     model constant, kg m
-5 

K
-1 

W     

ρf     fouling deposit density, kg m
-3 

λf     fouling deposit thermal conductivity, W m
-1

 K
-1 

γ      deposit removal rate coefficient, s
-1 

Φ    deposition flux, kg m
-2

 s
-1 
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Table 1 Operating Parameters 

Operational parameter Range 

Bulk temperature (°C) 50 - 60 

Average heat flux (kW m
-2

) 15 - 152 

Surface temperature (°C) 70 - 95 

Stirring speed (rpm) 60 - 400 

Pressure (bar) 1 – 1.5 

 

  



List of Figure Captions 

Fig. 1 The stirred batch cell 

twb, twm, and tws are thermocouples 

Fig. 2 A fouling probe fitted with a nest of wires [7] 

Fig. 3 Probe sleeves  

a: Sleeve with negative helical thread 

b: Sleeve with positive helical thread 

c: Plain sleeve 

Fig. 4 Typical fouling curve for a stainless steel probe 

Symbols: temperature by twm; line: temperature by twb 

Stirrer speed: 150 rpm; Bulk temperature: 55°C; Average heat flux: 31 kWm
-2 

 

Fig. 5 Temperature field in the stirred cell 

Heater power: 130 W; Stirrer speed: 300 rpm; Bulk temperature: 55°C 

Temperature scale in K 

Fig. 6 Vertical temperature profiles over the probe surface and over the vertical line where 

thermocouples are located. 

Dashed line: probe surface temperature by simulation; 

Solid line: temperature over the vertical line where the thermocouples located by 

simulation; 

■: temperature reading by twm; ♦: temperature reading by twb 

Stirrer speed: 130 rpm; Bulk temperature: 55°C; Average heat flux: 31 kW m
-2

 

Fig. 7 Heat flux profile over the probe surface 

(stainless steel probe) 

Heating power: 130W; Stirrer speed: 310 rpm; Bulk temperature: 55°C 

Fig. 8 Fouling resistance data of CaSO4 and model fit (stainless steel probe) 



Symbols: experimental data derived from twb; Line: model fitting  

Stirrer speed: 150 rpm; Bulk temperature: 55°C; Average heat flux: 32 kW m
-2

 

Fig. 9 Fouling resistance data of CaCO3 and model fit (stainless steel probe) 

Symbols: experimental data derived from twb; Thin line: model fitting 

Stirrer speed: 150 rpm; Bulk temperature: 55°C; Average heat flux: 33 kW m
-2

 

Fig. 10 Linear dependency of initial fouling rate on the difference in concentration between 

initial super-saturation and normal saturation 

ΔC0 = (Cb0  - Cs) 

with Cs = 2.070 kg m
-3

 from Calmanovici et al. [11] 

Fig. 11 Mild steel probe with CaSO4 deposit 

Fig. 12 ProScan deposit thickness profile 

Fig. 13 Fouling rates of CaCO3 on smooth, negative and positive helical surfaces 

Bulk temperature: 55°C 

Fig. 14 Comparison of shear stress over the wired probe surface – around a circle (0 - 2 π)  

Stirrer speed: 200 rpm; Bulk temperature: 55°C 

Upper curve: shear stress over wired probe 

Lower curve: shear stress over bare probe 

Fig. 15 Average shear stress on smooth surface, negative and positive helical surfaces 

Fig. 16 Photograph of the wired probe after CaSO4 fouling test; fluid flows clockwise when 

viewed from the top 

Fig.17 Single correlation of initial fouling rate against surface shear stress 

 

 

 

 



 

                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The stirred batch cell 

twb, twm, and tws are thermocouples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig. 2 A fouling probe fitted with a nest of wires [7] 
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Fig. 3 Probe sleeves  

a: Sleeve with negative helical thread; b: Sleeve with positive helical thread; c: Plain sleeve 

  



 

 

 

 

Fig. 4 Typical fouling curve for a stainless steel probe 

Symbols: temperature by twm; Line: temperature by twb 

Stirrer speed: 150 rpm; Bulk temperature: 55°C; Average heat flux: 31 kWm
-2
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Fig. 5 Temperature field in the stirred cell 

Heater power: 130 W; Stirrer speed: 300 rpm; Bulk temperature: 55°C 

Temperature scale in K 

 

  



 

Fig. 6 Vertical temperature profiles over the probe surface and over the vertical line where 

thermocouples are located. 

Dashed line: probe surface temperature by simulation; 

Solid line: temperature over the vertical line where the thermocouples located by simulation; 

■: temperature reading by twm; ♦: temperature reading by twb 

Stirrer speed: 130 rpm; Bulk temperature: 55°C; Average heat flux: 31 kW m
-2
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Fig. 7 Heat flux profile over the probe surface 

(stainless steel probe) 

Heating power: 130W; Stirrer speed: 310 rpm; Bulk temperature: 55°C 
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Fig. 8 Fouling resistance data of CaSO4 and model fit (stainless steel probe) 

Symbols: experimental data derived from twb; Line: model fitting  

Stirrer speed: 150 rpm; Bulk temperature: 55°C; Average heat flux: 32 kW m
-2
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Fig. 9 Fouling resistance data of CaCO3 and model fit (stainless steel probe) 

Symbols: experimental data derived from twb; Thin line: model fitting 

Stirrer speed: 150 rpm; Bulk temperature: 55°C; Average heat flux: 33 kW m
-2
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Fig. 10 Linear dependency of initial fouling rate on the difference in concentration between 

initial super-saturation and normal saturation 

ΔC0 = (Cb0  - Cs) 

with Cs = 2.070 kg m
-3

 from Calmanovici et al. [11] 
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Fig. 11 Mild steel probe with CaSO4 deposit 

  



 

Fig. 12 ProScan deposit thickness profile 

  



 

 

Fig. 13 Fouling rates of CaCO3 on smooth, negative and positive helical surfaces 

Bulk temperature: 55°C 
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Fig. 14 Comparison of shear stress over the wired probe surface – around a circle (0 - 2 π)  

Stirrer speed: 200 rpm; Bulk temperature: 55°C 

Upper curve: shear stress over wired probe 

Lower curve: shear stress over bare probe 

  



 

Fig. 15 Average shear stress on smooth surface, negative and positive helical surfaces 
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Fig. 16 Photograph of the wired probe after CaSO4 fouling test; fluid flows clockwise when 

viewed from the top 

  



 

Fig.17 Single correlation of initial fouling rate against surface shear stress 
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